
Extending Ordinary Inheritance Schemes to Include Generalization

Claus H. Pedersen
Hewlett Packard Laboratories

Filton Road, Stoke Gifford
Bristol BS12 6&Z

England
Phone: +44 272 799910

email: chp@hp.co.uk or chp@hplb.hpl.hp.com

Abstract

The arrangement of classes in a specialization hier-
archy has proved to be a useful abstraction mech-
anism in class-based object oriented programming
languages. The success of the mechanism is based
on the high degree of code reuse that is offered,
along with simple type conformance rules.

The opposite of specialization is generalization. We
will argue that support of generalization in addi-
tion to specialization will improve class reusability.
A language that only supports specialization re-
quires the class hierarchy to be constructed in a top
down fashion. Support for generalization will make
it possible to create super-classes for already exist-
ing classes, hereby enabling exclusion of methods
and creation of classes that describe commonalities
among already existing ones.

We will show how generalization can coexist with
specialization in class-based object oriented pro-
gramming languages. Furthermore, we will verify
that this can be achieved without changing the sim-
ple conformance rules or introducing new problems
with name conflicts.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-333-7/89/0010/0407 $1.50

1 Introduction

Traditional class-based object oriented program-
ming languages [3, 5, 6, 141 allow the program-
mer to create new classes either by describing them
from scratch, or by specializing existing ones. This
has proven to be a successful approach. Two of the
main reasons for this are:

l Specialization allows existing class descrip-
tions to be reused in the creation of new
classes.

l In spite of the reuse offered, the conformance
rules are normally very simple.

Conformance rules are the rules in the language
that are used to check whether a type T conforms
to another type S. A type T conforms to a type S
if instances of type T can be used as if they were
instances of type S. We also refer to instances of
type T conforming to S.

In class-based object oriented programming langu-
ages, the classes are the types. If the classes are
arranged in a specialization hierarchy the confor-
mance rules become very simple. The rules are
usually that a class A conforms to a class B if and
only if A and B are the same class or B is. an an-
cestor of A in the hierarchy.

More sophisticated type systems have been pro-
posed to further improve reusability [7, 111, but

October 1-6, 1989 OOPSLA ‘89 Proceedings 407

in these systems the programmer has to deal with
more elaborate conformance rules. For a more
thorough discussion of types and conformance refer
to [l, 2, 41.

The reason that the conformance rules in class-
based object oriented programming languages can
be so simple is that the languages only support
creation of sub-classes through specialization. In-
stances of any descendants of a class A are guaran-
teed to support the methods defined by A.

The organization of classes in a pure specialization
hierarchy has been criticised for two reasons [8,12].

It is not possible to exclude methods that are
defined in a super-class. This would destroy
the basis for the simple conformance rules.

It is not possible to create a new class that de-
scribes commonalities among existing classes.
Specialization requires that super-classes are
created before sub-classes. If we realize that
there are similarities (a potential common
super-class) among a set of classes, there is no
support to create a more general class, using
the specialized ones that already have been im-
plemented. As more programs are developed
in an incremental fashion, this problem will
grow.

Both these restrictions can be eliminated by intro-
ducing a notion for generalization. This makes it
possible to exclude methods, and it also makes it
possible to create new classes that describe similar-
ities among already existing classes. Both of these
properties enhance class reusability in class-based
object oriented programming languages. Generali-
zation is an extension of the primitives found in tra-
ditional class-based object oriented programming
languages. The explicit classification hierarchies,
specialization and the simple conformance rules are
all maintained.

The rest of this paper is organized as follows. Sec-
tion 2 clarifies the notions of specialization and ge-
neralization by examples leading to more precise

definitions. Section 3 gives examples to illustrate
the use of generalization in programming. These
are related to the current literature to show how
generalization solves some of the established prob-
lems. Section 4 is the main section of the docu-
ment. It describes how generalization can be in-
troduced into class-based object oriented program-
ming languages. Solutions to the major prob-
lems are presented. We also show that problems
related to name conflicts are equivalent to those
found in languages supporting multiple specializa-
tion. Throughout the paper we distinguish between
the interface (method declarations) and the imple-
mentation (instance variables, code) of classes.

2 Specialization and generaliza-
tion

Specialization and generalization are relationships
between concepts. We will use a simplification of
the Aristotelian view of concepts [lo]. We will say
that any concept is strictly defined by a set of prop-
erties called the intension of the concept. The ez-
tension of a concept is all phenomena fulfilling the
intension. We will denote the intension of a concept
C by C intension and its extension by CeztenSiOn~

An example of a concept is mammaZ. Its intension
is “animals possessing mammae in which milk is
secreted for the nourishment of their young”‘. An
example of a phenomenon belonging to the exten-
sion of mammal is my neighbour’s dog.

In object oriented programming languages, con-
cepts and relationships between them are often
modeled by classes and class hierarchies. A class
models the intension of a concept by defining the
properties that must be fulfilled by all instances of
the class (for example the methods they have). In
programming terminology we would say that the
neighbour’s dog is an instance of class mammal.

‘According to “The Shorter Oxford English Dictionary,
third edition”

408 OOPSLA ‘89 Proceedings October 1-6, 1989

2.1 Specialization

A concept Cspecial is a single specialization of a con-
cept C if all phenomena belonging to C~$:$“‘i”” also
belongs to Cestension. The concept car is a single
specialization of the concept vehicle. This is be-
cause cars have all the properties of vehicles plus
some more. This implies that a car will always
do whenever one needs a vehicle, but not necessar-
ily the other way around. This can be expressed
formally by using the notation introduced above.
A concept Cspecial is a single specialization of a
concept C iE 2 E C~~~~~~~ 3 x E Ceztension.
This can also be expressed by saying that any phe-
nomenon x belonging to Cspecial will at least fulfil
the properties defined by Cintension.

A concept is a multiple specialization of a set of
concepts if it is a single specialization of each of
the concepts in the set. 2 The concept escalator is
a multiple specialization of the concepts staircase
and conveyer belt. This is because any escalator
fulfils the defining properties of a staircase as well
as those of a conveyer belt.

Formally, Cspecial is a multiple specialization of
Cl,.. . $2, iE x E C~~~~~~ 3 V i E 1. . . n : 2 E
qztension. We will use the term specialization to
describe single as well as multiple specialization.

In this paper we shall view the methods described
by a class as the defining properties determining
membership of the class. Creating a sub-class cor-
responds to specialization, as new methods can be
added or the behaviour of existing ones refined (vir-
tual methods). Specialization has been modeled in
this way by class-based object oriented program-
ming languages for a number of years, starting with
the class concept in Simula [5]. In programming
terms we would say that class car is a specializa-
tion (sub-class) of class vehicle and class escalator
is a multiple specialization of class staircase and
class conveyer belt.

Some languages have other ways of defining sub-

2Note that multiple specialization is single specialization
if the set of concepts consists of only one element.

classes apart from adding and refining methods,
e.g. restricting the possible values of an object.
Such languages will only be partly covered in the
discussion to follow.

2.2 Generalization

A concept Cgeneral is a single generalization of a
concept C if membership of Ceztension implies mem-
bership of CizFgT. The concept vehicle is a sin-
gle generalization of the concept car because all
cars are vehicles. Formally, Cgeneral is a generali-
zation of C if2 2 E CeztePlsion * 2 E Ci$e!$tn

Just as there is multiple specialization, so there is
multiple generalization. A concept is a multiple
generalization of a set of concepts if it is a single
generalization of each of the concepts in the set,3
i.e. membership of any of the concepts in ‘the set
implies membership of the generalization. Mam-
mal is a multiple generalization of dog, elephant
and human, because any dog, elephant or human
is a mammal. Formally, Cgeneral is a multiple ge-
neralization of Cr ,. . . ,C, iE V i E 1 . . . 72, 2 E

We will use the term generalization to describe sin-
gle as well as multiple generalization.

Generalization corresponds to being able to create
a super-class for an existing class or a set of classes.
So if class A is a generalization of class B then class
B will conform to A even if A was created after B.
We do not know of any programming languages
that explicitly support generalization.

We note that A is a generalization of B if and only
if I3 is a specialization of A.

The relationship between single/multiple specia-
lization and generalization is illustrated in fig-
ure 1 below. Ar is a (multiple) generalization of
Br,. . . ,B4. A2 is a (single) generalization of Bd.
Br,... ,Bz are all (single) specializations of A1 and
B4 is a (multiple) specialization of Ar and AZ.

3Note that multiple generalization is single generalization
if the set of concepts consists of only one element.

October 1-6, 1989 OOPSLA ‘89 Proceedings 409

Bl ,’ - - 7 Bq all conform to Al while only BJ conforms
to A2

Figure 1: Generalization and specialization.

3 Use of generalization in pro-
gramming

We will discuss the usefulness of a notion for gene-
ralization in class-based object oriented program-
ming languages. In section 4 we will show that it
can actually be supported and that multiple ge-
neralization causes no new problems compared to
multiple specialization.

3.1 Exclusion of methods

One obvious use of (single) generalization is to
reuse selected parts of an already existing class.
An example of this which has been discussed in the
literature is deque [12]. A deque is a stack which
permits elements to be added and removed from
either end. Deque is illustrated in figure 2 below.

push2 push2

POP2 POP2

top2 top2

push push

POP POP

top top

empty empty

Figure 2: Deque

Assume that class deque is already implemented.
Clearly, deque implements the functionality of an
ordinary stack (push, pop, top, empty), but in or-
der to convert deque so that it behaves strictly
as a stack, we must be able to exclude the meth-
ods push2, pop2 and top‘2 from its interface. As
pointed out in [12], this cannot be described in an

inheritance scheme that only supports specializa-
tion. In such a scheme we will have to create class
stack, and then make deque a specialization of it.

Introducing a notion of generalization solves the
problem. Class stack can be obtained by general-
izing class deque. This makes stack a super-class
for deque. In this way stack has been created by
reusing selected parts of deque and without violat-
ing the conformance rules. Stack as a generaliza-
tion of deque is illustrated in figure 3.

n POP-
push
top
empty

0 push push2
Deque

Eb”pp
POP2
top2

empty

Figure 3: Stack is a generalization of deque and
deque therefore a subclass of stack.

3.2 Late classification

People recognize common&ties among concepts by
seeing a number of them. We have to understand a
number of “specializations” before we realize that
there is a more general concept that defines the
similarities in their own right. Normally we have
to understand concepts such as car, bus and lorry
before we understand the concept vehicle. This
learning pattern is not supported in an ordinary in-
heritance scheme, where super-classes have to exist
before sub-classes.

This was one of the arguments used for the intro-
duction of delegation [8]. Delegation allows pro-
grammers to use objects as “prototypes” for other
objects without having to create a classification hi-
erarchy. Delegation is an elegant way of modeling
how we initially describe phenomena by relating
them to other phenomena, but it does not help us
in creating a class hierarchy when we have obtained
enough knowledge to do that. Generalization will
support this.

410 OOPSLA ‘89 Proceedings October 1-6, 1989

As an example of this, consider a programmer who
is implementing classes that enable programs to
control different types of terminal devices. He has
implemented classes Terminakl and Terminakz.
A new type of terminal, Terminals, arrives, and
he realises that it is an ANSI terminal - it sup-
ports the ANSI-defined control sequences. As well
as these, it has other means of control that en-
able optimized screen control. The programmer
realizes that this was also the case for Terminal1
and Terminalz. He can create TerminaZANsI by
generalizing the classes Terminal1 and Terminaln.
Then he can create class Termin& as a speciali-
zation of TermiTZUlAjvsr. He will only have to im-
plement methods that allow screen control in the
ways not defined by the ANSI standard.

Not only did the programmer save some work
implementing class Terminals but he also ob-
tained a more general class that describes a com-
mon behaviour which all the terminal types have.
Thereby he explicitly stated relationships among
the different kind of terminals. These relation-
ships ensure that programs can do basic screen
control assuming that the terminal is of class
TeTminaZANsI (more specific screen control will
still require knowledge of the exact type of the
terminal). This would not have been possible u-
sing specialization. TerminalAN would have
had to be implemented from scratch and Termi-
null . . . TerminaZ3 re-implemented as specializa-
tions of TerminaZANsI. The relationships between
the different types of terminals are illustrated in
figure 4 below.

Terminals Terminal2 Terminals

Figure 4: TerminaZANsz is a generalization of
TeTminaZl and TerminaZ2. Terminals is a spe-
cialization of TerminCJlA~sI

4 A generalization scheme in a
simple language

We will demonstrate that generalization can co-
exist with specialization in class-based object o-
riented programming languages. This is done in
three stages. In section 4.1 we discuss interface is-
sues, that is, what methods an instance of a class
will have if the class has been created via genera-
lization. From this we verify that generalization
can coexist with specialization without introduc-
ing conflicts in the class-hierarchy. In section 4.2
we discuss how a class created by generalization
can obtain its implementation, that is, its instance
variables and code.

In section 4.3 we discuss the problems of name con-
flicts. We show that the name conflicts in multiple
generalization are the same as those encountered in
multiple specialization (inheritance) and that they
can be solved in the same way.

As a vehicle for the discussions in section 4.1 and
4.2 we will use a language called SC. SC has a
notion of (multiple) generalization as well as spe-
cialization. SC is only a vehicle for a theoretical
discussion and is not proposed as a new program-
ming language.

4.1 Class interfaces

We will present simple rules that decides which
methods an object will have, in a language offering
both specialization and generalization. We will use
SC to present these rules. Following this we revisit
some of the examples from section 3.

4.1.1 Class interfaces in SC

The subset of S,C relevant to the following discus-
sion is presented in figure 5. It is the subset used
to define class interfaces. The subset of SL rele-
vant to the definition of class implementations is
discussed in section 4.2.

October 1-6, 1989 OOPSLA ‘89 Proceedings 411

< ClassDef> ::= class<Name> is {<MethodDefList>J<AdvClassDesc>};
<MethodDefList> ::= <Name><ParameterDesc> {E 1, <MethodDefList>}
<AdvClassDesc> ::= (<Generalization>[<Specialization>}
<Generalization> ::= generalizing <NameList> removing <NameList>
<Specialization> ..- ..- specializing <NameList> adding <MethodDefList>
<NameList> **- <Name>{< 1, <NameList>} ..-
c denotes the empty string.

Figure 5: SL - syntax for interfaces

The simplest way to define a class is to list all its
methods. In St this can be written as:

class A is mi,...,m,; 4

We will denote the set of methods of a class A by
A . methods So in this case:

A methods
= {ml,-.,%)

Specialization is described by listing all the super-
classes of the new class and by defining new meth-
ods that the class will have in addition to those
obtained from the super-classes:

class B is specializing Al, AZ,. . . , Ak
adding ml,. . . ,m,;

This means that class B has Al ,Az, . . . , Al,
as super-classes and defines the new methods
?-f-Ll,...,?-&. For now, we will assume there are
no name conflicts, so if the same name is present
in more than one of the classes we can assume it
is the same method. Bmethods will therefore be the
union of all the methods inherited from the super-
classes plus the newly defined ones.

k

B methods = U Ayethods U {ml,. . . , m,}
i=l

A class conforms to all its immediate super-classes
(for B this is Al,Aa,. . . ,Ak) and all classes to

*Specification of formal parameters are ignored for simp-
licity.

which they conform. So instances of B will conform
to B and all B’s ancestors in the class hierarchy.

Generalization is described as easily as specializa-
tion in SL, however, the classes listed will be those
that the new class will have as sub-classes, and the
methods listed will be methods to be removed from
the interface of the new class:

class A is generalizing B1, B2, . . . , Bk
.

removing ml,. . . , n-h

Class A is a generalization of the classes

Bl, B2, . . . , Bk. This means that Bi (i E 1. . . k)
must conform to A. This again implies that the
methods of instances of class A will have to be a
subset of those of any instance of class B; (i E
1 . . . k). The way to obtain this is by defining
Amethods to be the intersection of all the Bpethods
minus those explicitly removed. This is expressed
formally below.

k

A methods =
n Brethods \ {ml,, . . , m,}
i=l

In this way we have ensured that Bi (i E 1. . . k)
conforms to A. The conformance rules remain un-
changed as A is a super-class of B; (i E 1. . . k) in
the class hierarchy.

The symmetry between generalization and speci-
alization in SL should now be clear. Going “up-
wards” (towards the super-classes) in the classifi-
cation hierarchy corresponds to generalization and
therefore removes methods compared to the sub-
classes. Going down corresponds to specialization

412 OOPSLA ‘89 Proceedings October 1-6, 1989

and therefore extend the set of methods compared
to any super-class.

Any class will conform to all its super-classes. It
does not matter whether the sub/super-class re-
lationship has been introduced through specializa-
tion or generalization. The conformance rules are
still that a class A conforms to a class I3 if and only
if A and B are the same class or B is an ancestor
(generalization) of A in the class hierarchy.

4.1.2 Examples revisited - interfaces

In SC the generalization of class deque to class
stack as discussed in section 3.1 would be described
as:

class stack is generalizing deque
removing push2, pap2, top2;

which (according to the rules above) defines class
stack to have the desired interface, namely methods
push, pop, top and empty.

The terminal example from section 3.2 will be ex-
pressed as:

class TerminaZANsI is generalizing
TerminalI, Terminal;!

.
removing non1,. . . , non,;

where non1 , . . . , nonnm are the names of the me-
thods that can be used for controlling both
Terminal1 and Terminal2 but are not supported
by the ANSI standard.

Terminals also conforms to the ANSI standard.
So it can be described as a specialization of class
TerminalANSI:

class Terminals is specializing TerminalANSI
adding tl,...,&

t1 , . . . , t, are the control operations supported by
Terminals that are not supported by the ANSI
standard.

4.2 Class implementation

We will describe one way that a class created as a
generalization may obtain its implementation. The
proposal should only be seen as demonstrating that
a solution exists, as the problem can be solved
in different ways. We will do this using another
subset of SL. We will only briefly discuss imple-
mentation of classes defined through specialization
(section 4.2.3), as we assume it is already well un-
derstood. The relevant subset of SC’s syntax is
presented in figure 6

The discussion is divided into two parts. In sec-
tion 4.2.1 we assume that none of the methods in
the class are virtual. A virtual method is a method
whose behaviour can be refined in a sub-class. Vir-
tual methods are supported in a number of different
languages, for example [3, 5, 6, 141. In the second
half of the discussion (4.2.2) this assumption is re-
moved and we propose a way to solve the problems
unique to virtual methods. Finally, we revisit the
examples from section 3.

4.2.1 No virtual methods

Assume that class A has been obtained by general-
izing classes Br , BQ, . . . , B, and none of the meth-
ods of A are virtual methods.

Any instance of Bi i E 1.. . n conforms to A. So an
implementation of A can be obtained simply by us-
ing any one of the implementations of Br, . . . , B,.
The compiler/interpreter just has to ensure that
only methods belonging to Amethods can be exe-
cuted on instances of A. Implementation of other
methods may still be used internally.

In the case of n = 1 the choice of implementation
is implicit. If n > 1 the system or the program-
mer can chose the Bj that will provide A with its
implementation. We recommend that the choice is
left to the programmer for two reasons:

l The programmer has knowledge about the im-
plementation of Br , . . . , B, and is therefore

October 1-6, 1989 OOPSLA ‘89 Proceedings 413

<ClassImpl> ::= { <GenImpl> 1 <SpecImpl>}
<GenImpl> ::= implementation <Name> implements <Name> (c;I <ImplPart>)
<SpecImpl> ::= implementing <Name><ImplPart>
<ImplPart> ::= by <Variables><MethodImplList>

Figure 6: SC - syntax for implementation

more likely to make an optimal choice than
the system is.

l In many languages, interface inheritance im-
plies implementation inheritance as well. If
the programmer wants to create a specializa-
tion of class A in such a language, he will have
to know which implementation was chosen for
A.

In SL this is simply expressed as:
implementation Bj implements A;

We also recommend that it should be possible to
provide a complete new implementation for a class.
This can be useful if a more efficient implementa-
tion is needed or if the programmer wants to avoid
dependencies on implementations of other classes.

4.2.2 How to deal with virtual methods

Assume again that class A has been obtained by
generalizing classes Br, . . . , B, but that a, E
Amethods is virtual.

Virtual methods are particularly interesting as they

may be refined differently in Br , . . . , B,. We
want a,,‘~ implementation to express the common

behaviour among the implementations of a,, in

Bl ,‘.‘, B,?

We will distinguish three different cases:

1. No common behaviour. In this case the imple-

mentation of a, should be empty. The pres-
ence of a, in A’s interface only specifies that

5By behaviour we mean the externally visible effects or
specified state changes obtained by invoking the method.

2. All implementations exhibit the same beha-
viour. In this case the implementation of a,
can be obtained from the class from which A
has obtained its implementation of non-virtual
methods. This solution does not work if the
programmer wants a less refined (more gen-
eral) implementation of a,,. See 3 for this case.

3. Some common behaviour. The different im-
plementations of a,, implement different levels
of refinement. The programmer will have to
provide information for the system to ensure
that the implementation of a,, in A describes
the common behaviour only.

We suggest that 2 should be the default choice.

specializations of A will all have this method.
An example of this is a graphical system where
all graphical objects possess a method print.
But printing a rectangle is not the same as
printing a circle. Class GraphicalObject will
therefore have an empty virtual method print,
that is differently refined in every specializa-
tion of the class.

The programmer can override this by providing an
implementation for a,. This covers cases 1 and 3, as

he can provide an empty implementation in case 1.

In SLY we express the case where a different imple-
mentation is needed for a, as follows:
implementation Bj implements A by
method a, begin “statements” end;

The problems discussed above are closely related
to discussions concerning multiple specialization of
virtual methods and how their implementations
are combined to express the complete behaviour
of all the implementations in the super-classes. A

414 OOPSLA ‘89 Proceedings October 1-6, 1989

thorough discussion of this problem can be found
in [13].

It is worth noticing how the problem is reduced
in the case of single generalization. In this case
we do not have to consider different behaviour in
different implementations. The problem is reduced
to case 2.

4.2.3 Examples revisited - implementation

To illustrate the implementation issues discussed
above we will briefly review the examples discussed
previously.

Obtaining class stack from deque was an exam-
ple that emphasized the reuse aspect of generali-
zation. It is therefore important to notice that the
implementation of stack can simply reuse the im-
plementation of deque without changes. In SL this
is stated as:

implementation deque implements stack;

In the terminal example we assume that there
is a method ScreenSize in both Terminal1 and
Terminal;!. It will describe different behaviour for
the two types of terminals (assuming they are of
different sizes). As the behaviour is different for the
two types of terminals the programmer has to pro-
vide a new (empty) implementation for this method
in TerminalANsI. We will also assume that the
programmer wants to use the implementation of
Terminal2 to implement TerminalANSI.

implementation Terminal:!
implements TerminaZANsr by
ScreenSize begin end;

Term&a/a is an ordinary specialization of Termi-
m&/ANSI. The programmer will have to provide
implementations of the methods added (see sec-
tion 4.1.2), and refine the method ScreenSize.

implementing TerminaZz by
ScreenSize begin “statements” end;
tl begin “statements” end;

t2 begin “statements” end;

t, begin “statements” end;

4.3 Name conflicts in multiple generali-
zation

In 4.1 and 4.2 we assumed that name conflicts did
not exist. In this paper we will not try to solve
the problems concerning name conflicts in multiple
generalizations, but we will show that solving them
for multiple generalization is equivalent to solving
them for multiple specialization.

We will discuss name conflicts at a very low techni-
cal level. For a more thorough discussion of name
conflicts refer to [9].

In the following discussion name denotes what
identifies a method, such as qualifications and for-
mal parameters.

Assume class A has been created by generalizing
the two classes Br and B2, and that this has in-
troduced a name conflict between the two names
br from Br and bz from B2. We will consider two
types of name conflicts between bl and b2.

1. The names br and bz can not be distinguished
but denotes different methods. In this case
neither br nor b2 should denote a method on
instances of A as they are different properties.

2. bl and b2 are different names but denote the
same method. In this case some name br,z
must denote this method on instances of class
A.

Assume the system supports multiple specializa-
tion. If we created class C as a multiple specializa-
tion of Bi and B2 we would have the same prob-
lems. In case 1 br and b2 must be distinguished
by the system so that instances of C have both
methods, and two different names will have to be
provided to be able to distinguish the two. In case 2

October I-6, 1989 OOPSLA ‘89 Proceedings 415

the system will need enough information to know
that br and b2 denote the same method. One so-
lution is to allow both br and bz to be used, which
would also be a perfectly valid solution for genera-
lization.

Our conclusion is that the information needed to
solve name conflicts in a multiple generalization
of classes is the same as is needed in the multi-
ple specialization of the same classes. Resolving
name conflicts in a multiple specialization scheme
is a research issue in itself and is outside the scope
of this paper.

5 Conclusion

It has been shown that introducing generalization
in class-based object oriented programming langu-
ages has several advantages. It extends the reuse
aspects of the languages and allows the program-
mer to create classification hierarchies when simi-
larities between classes are discovered.

Generalization has been discussed solely as a lan-
guage construct. It may also be an integrated part
of a programming environment such as the one
provided by Smalltalk [6]. Like other constructs
for modularization and reuse, generalization will
increase the need for good programming environ-
ments. Good tools for browsing are needed to find
classes and to make clear the side effects if a class
interface/implementation is changed;

By means of a simple example language, we have
shown the symmetry between generalization and
specialization and how the two can coexist. In
addition we have verified that the simple confor-
mance rules from traditional “specialization-only”
languages are sufficient in the combined case.

We discussed how a class that is created by genera-
lization can obtain its implementation. This is sim-
ple if there are no virtual methods, as any of the
classes that were generalized potentially provides
an implementation. Virtual methods introduce
problems for which a solution was proposed. The

solution may require the programmer to rewrite
part of the implementation of the virtual methods.

We then showed that the potential name conflicts
introduced by multiple generalization are essen-
tially the same as those created by multiple spe-
cialization. No solution was proposed to the prob-
lems, but we concluded that if they were solved
for multiple specialization, then the same solution
could be applied to multiple generalization.

Name conflicts will not occur in the case of sin-
gle generalization. Furthermore the problems con-
cerning the implementation of virtual methods in
multiple generalization are simplified in the case of
single generalization.

References

PI

PI

PI

PI

PI

Andrew Black, Norman Hutchinson, Eric Jul,
and Henry Levy. Object structure in the
Emerald system. In OOPSLA ‘86 Object ori-
ented programming systems, languages and
applications. ACM, 1986.

Andrew Black, Norman Hutchinson, Eric Jul,
Henry Levy, and Larry Carter. Distribution
and abstract types in Emerald. IlL?3E Z’ransac-
tion on Software Engineering, SE-13(l), Jan-
uary 1987.

Bent Bruun Kristensen, Ole Lehrmann Mad-
sen, Birger Mgller-Pedersen, and Kristen Ny-
gaard. The Beta Programming Language. In
Bruce Shriver and Peter Wegner, editors, Re-
search Directions in Object-Oriented Program-
ming. MIT Press, Series in Computer Systems,
1987.

Luca Cardelli and Peter Wegner. On Under-
standing Types, Data Abstraction, and Poly-
morphism. ACM Computing surveys, 17(4),
December 1985.

Ole-Johan Dahl, Bjerrn Myrhaug, and Kristen
Nygaard. SIMULA 67 Common Base Lan-
guage. Norwegian Computing Center, Febru-
ary 1984.

416 OOPSLA ‘89 Proceedings October I-6, 1989

[6] Adele Goldberg and David Robson. SmaZEtalk-
80; The Language and its Implementation.
Addison- Wesley Publishing Company, Xerox
Palo Alto Research Center, 1983.

[7] Chris Horn. Conformance, Genericity, Inheri-
tance and Enhancement. In ECOOP’87 Euro-
pean Conference on Object-Oriented Program-
ming. Springer-Verlag, 1987.

[8] Henry Lieberman. Using Prototypical Ob-
jects to Implement Shared Behavior in Ob-
ject Oriented Systems. In OOPSLA ‘86 Object
oriented programming systems, languages and
applications. ACM, 1986.

[9] Jergen Lindskov Knudsen. Name collision in
multiple classification hierarchies, In ECOO~
‘88 European Conference on Object-Oriented
Programming. Springer-Verlag, 1988.

[lo] Jgrgen Lindskov Knudsen and Kristine
Stoug&d Thomsen. A conceptual framework
for programming languages. Publication PB-
192, Computer Science Department, Aarhus
University, Aarhus, Denmark, April 1985.

[ll] David Sandberg. An alternative to subclass-
ing. In OOPSLA ‘86 Object oriented pro-
gramming systems, languages and applica-
tions. ACM, 1986.

[12] Alan Snyder. Inheritance and the Develop-
ment of Encapsulated Software Components.
In Bruce Shriver and Peter Wegner, editors,
Research Directions in Object-Oriented Pro-
gramming. MIT Press, Series in Computer
Systems, 1987.

[13] Kristine Stoug%rd Thomsen. Multiple inheri-
tance a structuring mechanism for data, pro-
cess and procedures. Publication PB-209,
Computer Science Department, Aarhus Uni-
versity, Aarhus, Denmark, April 1986.

[14] Bjarne Stroustrup. The C++ Programming
Language. Addison Wesley, AT&T Bell Labo-
ratories, Murray Hill, New Jersey, 1986.

October 1-6, 1989 OOPSLA ‘89 Proceedings 417

