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Abstract 

The arrangement of classes in a specialization hier- 
archy has proved to be a useful abstraction mech- 
anism in class-based object oriented programming 
languages. The success of the mechanism is based 
on the high degree of code reuse that is offered, 
along with simple type conformance rules. 

The opposite of specialization is generalization. We 
will argue that support of generalization in addi- 
tion to specialization will improve class reusability. 
A language that only supports specialization re- 
quires the class hierarchy to be constructed in a top 
down fashion. Support for generalization will make 
it possible to create super-classes for already exist- 
ing classes, hereby enabling exclusion of methods 
and creation of classes that describe commonalities 
among already existing ones. 

We will show how generalization can coexist with 
specialization in class-based object oriented pro- 
gramming languages. Furthermore, we will verify 
that this can be achieved without changing the sim- 
ple conformance rules or introducing new problems 
with name conflicts. 
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1 Introduction 

Traditional class-based object oriented program- 
ming languages [3, 5, 6, 141 allow the program- 
mer to create new classes either by describing them 
from scratch, or by specializing existing ones. This 
has proven to be a successful approach. Two of the 
main reasons for this are: 

l Specialization allows existing class descrip- 
tions to be reused in the creation of new 
classes. 

l In spite of the reuse offered, the conformance 
rules are normally very simple. 

Conformance rules are the rules in the language 
that are used to check whether a type T conforms 
to another type S. A type T conforms to a type S 
if instances of type T can be used as if they were 
instances of type S. We also refer to instances of 
type T conforming to S. 

In class-based object oriented programming langu- 
ages, the classes are the types. If the classes are 
arranged in a specialization hierarchy the confor- 
mance rules become very simple. The rules are 
usually that a class A conforms to a class B if and 
only if A and B are the same class or B is. an an- 
cestor of A in the hierarchy. 

More sophisticated type systems have been pro- 
posed to further improve reusability [7, 111, but 
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in these systems the programmer has to deal with 
more elaborate conformance rules. For a more 
thorough discussion of types and conformance refer 
to [l, 2, 41. 

The reason that the conformance rules in class- 
based object oriented programming languages can 
be so simple is that the languages only support 
creation of sub-classes through specialization. In- 
stances of any descendants of a class A are guaran- 
teed to support the methods defined by A. 

The organization of classes in a pure specialization 
hierarchy has been criticised for two reasons [8,12]. 

It is not possible to exclude methods that are 
defined in a super-class. This would destroy 
the basis for the simple conformance rules. 

It is not possible to create a new class that de- 
scribes commonalities among existing classes. 
Specialization requires that super-classes are 
created before sub-classes. If we realize that 
there are similarities (a potential common 
super-class) among a set of classes, there is no 
support to create a more general class, using 
the specialized ones that already have been im- 
plemented. As more programs are developed 
in an incremental fashion, this problem will 
grow. 

Both these restrictions can be eliminated by intro- 
ducing a notion for generalization. This makes it 
possible to exclude methods, and it also makes it 
possible to create new classes that describe similar- 
ities among already existing classes. Both of these 
properties enhance class reusability in class-based 
object oriented programming languages. Generali- 
zation is an extension of the primitives found in tra- 
ditional class-based object oriented programming 
languages. The explicit classification hierarchies, 
specialization and the simple conformance rules are 
all maintained. 

The rest of this paper is organized as follows. Sec- 
tion 2 clarifies the notions of specialization and ge- 
neralization by examples leading to more precise 

definitions. Section 3 gives examples to illustrate 
the use of generalization in programming. These 
are related to the current literature to show how 
generalization solves some of the established prob- 
lems. Section 4 is the main section of the docu- 
ment. It describes how generalization can be in- 
troduced into class-based object oriented program- 
ming languages. Solutions to the major prob- 
lems are presented. We also show that problems 
related to name conflicts are equivalent to those 
found in languages supporting multiple specializa- 
tion. Throughout the paper we distinguish between 
the interface (method declarations) and the imple- 
mentation (instance variables, code) of classes. 

2 Specialization and generaliza- 
tion 

Specialization and generalization are relationships 
between concepts. We will use a simplification of 
the Aristotelian view of concepts [lo]. We will say 
that any concept is strictly defined by a set of prop- 
erties called the intension of the concept. The ez- 
tension of a concept is all phenomena fulfilling the 
intension. We will denote the intension of a concept 
C by C intension and its extension by CeztenSiOn~ 

An example of a concept is mammaZ. Its intension 
is “animals possessing mammae in which milk is 
secreted for the nourishment of their young”‘. An 
example of a phenomenon belonging to the exten- 
sion of mammal is my neighbour’s dog. 

In object oriented programming languages, con- 
cepts and relationships between them are often 
modeled by classes and class hierarchies. A class 
models the intension of a concept by defining the 
properties that must be fulfilled by all instances of 
the class (for example the methods they have). In 
programming terminology we would say that the 
neighbour’s dog is an instance of class mammal. 

‘According to “The Shorter Oxford English Dictionary, 
third edition” 
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2.1 Specialization 

A concept Cspecial is a single specialization of a con- 
cept C if all phenomena belonging to C~$:$“‘i”” also 
belongs to Cestension. The concept car is a single 
specialization of the concept vehicle. This is be- 
cause cars have all the properties of vehicles plus 
some more. This implies that a car will always 
do whenever one needs a vehicle, but not necessar- 
ily the other way around. This can be expressed 
formally by using the notation introduced above. 
A concept Cspecial is a single specialization of a 
concept C iE 2 E C~~~~~~~ 3 x E Ceztension. 
This can also be expressed by saying that any phe- 
nomenon x belonging to Cspecial will at least fulfil 
the properties defined by Cintension. 

A concept is a multiple specialization of a set of 
concepts if it is a single specialization of each of 
the concepts in the set. 2 The concept escalator is 
a multiple specialization of the concepts staircase 
and conveyer belt. This is because any escalator 
fulfils the defining properties of a staircase as well 
as those of a conveyer belt. 

Formally, Cspecial is a multiple specialization of 
Cl,.. . $2, iE x E C~~~~~~ 3 V i E 1. . . n : 2 E 
qztension. We will use the term specialization to 
describe single as well as multiple specialization. 

In this paper we shall view the methods described 
by a class as the defining properties determining 
membership of the class. Creating a sub-class cor- 
responds to specialization, as new methods can be 
added or the behaviour of existing ones refined (vir- 
tual methods). Specialization has been modeled in 
this way by class-based object oriented program- 
ming languages for a number of years, starting with 
the class concept in Simula [5]. In programming 
terms we would say that class car is a specializa- 
tion (sub-class) of class vehicle and class escalator 
is a multiple specialization of class staircase and 
class conveyer belt. 

Some languages have other ways of defining sub- 

2Note that multiple specialization is single specialization 
if the set of concepts consists of only one element. 

classes apart from adding and refining methods, 
e.g. restricting the possible values of an object. 
Such languages will only be partly covered in the 
discussion to follow. 

2.2 Generalization 

A concept Cgeneral is a single generalization of a 
concept C if membership of Ceztension implies mem- 
bership of CizFgT. The concept vehicle is a sin- 
gle generalization of the concept car because all 
cars are vehicles. Formally, Cgeneral is a generali- 
zation of C if2 2 E CeztePlsion * 2 E Ci$e!$tn 

Just as there is multiple specialization, so there is 
multiple generalization. A concept is a multiple 
generalization of a set of concepts if it is a single 
generalization of each of the concepts in the set,3 
i.e. membership of any of the concepts in ‘the set 
implies membership of the generalization. Mam- 
mal is a multiple generalization of dog, elephant 
and human, because any dog, elephant or human 
is a mammal. Formally, Cgeneral is a multiple ge- 
neralization of Cr ,. . . ,C, iE V i E 1 . . . 72, 2 E 

We will use the term generalization to describe sin- 
gle as well as multiple generalization. 

Generalization corresponds to being able to create 
a super-class for an existing class or a set of classes. 
So if class A is a generalization of class B then class 
B will conform to A even if A was created after B. 
We do not know of any programming languages 
that explicitly support generalization. 

We note that A is a generalization of B if and only 
if I3 is a specialization of A. 

The relationship between single/multiple specia- 
lization and generalization is illustrated in fig- 
ure 1 below. Ar is a (multiple) generalization of 
Br,. . . ,B4. A2 is a (single) generalization of Bd. 
Br,... ,Bz are all (single) specializations of A1 and 
B4 is a (multiple) specialization of Ar and AZ. 

3Note that multiple generalization is single generalization 
if the set of concepts consists of only one element. 
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Bl ,’ - - 7 Bq all conform to Al while only BJ conforms 
to A2 

Figure 1: Generalization and specialization. 

3 Use of generalization in pro- 
gramming 

We will discuss the usefulness of a notion for gene- 
ralization in class-based object oriented program- 
ming languages. In section 4 we will show that it 
can actually be supported and that multiple ge- 
neralization causes no new problems compared to 
multiple specialization. 

3.1 Exclusion of methods 

One obvious use of (single) generalization is to 
reuse selected parts of an already existing class. 
An example of this which has been discussed in the 
literature is deque [12]. A deque is a stack which 
permits elements to be added and removed from 
either end. Deque is illustrated in figure 2 below. 

push2 push2 

POP2 POP2 

top2 top2 

push push 

POP POP 

top top 

empty empty 

Figure 2: Deque 

Assume that class deque is already implemented. 
Clearly, deque implements the functionality of an 
ordinary stack (push, pop, top, empty), but in or- 
der to convert deque so that it behaves strictly 
as a stack, we must be able to exclude the meth- 
ods push2, pop2 and top‘2 from its interface. As 
pointed out in [12], this cannot be described in an 

inheritance scheme that only supports specializa- 
tion. In such a scheme we will have to create class 
stack, and then make deque a specialization of it. 

Introducing a notion of generalization solves the 
problem. Class stack can be obtained by general- 
izing class deque. This makes stack a super-class 
for deque. In this way stack has been created by 
reusing selected parts of deque and without violat- 
ing the conformance rules. Stack as a generaliza- 
tion of deque is illustrated in figure 3. 

n POP- 
push 
top 
empty 

0 push push2 
Deque 

Eb”pp 
POP2 
top2 

empty 

Figure 3: Stack is a generalization of deque and 
deque therefore a subclass of stack. 

3.2 Late classification 

People recognize common&ties among concepts by 
seeing a number of them. We have to understand a 
number of “specializations” before we realize that 
there is a more general concept that defines the 
similarities in their own right. Normally we have 
to understand concepts such as car, bus and lorry 
before we understand the concept vehicle. This 
learning pattern is not supported in an ordinary in- 
heritance scheme, where super-classes have to exist 
before sub-classes. 

This was one of the arguments used for the intro- 
duction of delegation [8]. Delegation allows pro- 
grammers to use objects as “prototypes” for other 
objects without having to create a classification hi- 
erarchy. Delegation is an elegant way of modeling 
how we initially describe phenomena by relating 
them to other phenomena, but it does not help us 
in creating a class hierarchy when we have obtained 
enough knowledge to do that. Generalization will 
support this. 
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As an example of this, consider a programmer who 
is implementing classes that enable programs to 
control different types of terminal devices. He has 
implemented classes Terminakl and Terminakz. 
A new type of terminal, Terminals, arrives, and 
he realises that it is an ANSI terminal - it sup- 
ports the ANSI-defined control sequences. As well 
as these, it has other means of control that en- 
able optimized screen control. The programmer 
realizes that this was also the case for Terminal1 
and Terminalz. He can create TerminaZANsI by 
generalizing the classes Terminal1 and Terminaln. 
Then he can create class Termin& as a speciali- 
zation of TermiTZUlAjvsr. He will only have to im- 
plement methods that allow screen control in the 
ways not defined by the ANSI standard. 

Not only did the programmer save some work 
implementing class Terminals but he also ob- 
tained a more general class that describes a com- 
mon behaviour which all the terminal types have. 
Thereby he explicitly stated relationships among 
the different kind of terminals. These relation- 
ships ensure that programs can do basic screen 
control assuming that the terminal is of class 
TeTminaZANsI (more specific screen control will 
still require knowledge of the exact type of the 
terminal). This would not have been possible u- 
sing specialization. TerminalAN would have 
had to be implemented from scratch and Termi- 
null . . . TerminaZ3 re-implemented as specializa- 
tions of TerminaZANsI. The relationships between 
the different types of terminals are illustrated in 
figure 4 below. 

Terminals Terminal2 Terminals 

Figure 4: TerminaZANsz is a generalization of 
TeTminaZl and TerminaZ2. Terminals is a spe- 
cialization of TerminCJlA~sI 

4 A generalization scheme in a 
simple language 

We will demonstrate that generalization can co- 
exist with specialization in class-based object o- 
riented programming languages. This is done in 
three stages. In section 4.1 we discuss interface is- 
sues, that is, what methods an instance of a class 
will have if the class has been created via genera- 
lization. From this we verify that generalization 
can coexist with specialization without introduc- 
ing conflicts in the class-hierarchy. In section 4.2 
we discuss how a class created by generalization 
can obtain its implementation, that is, its instance 
variables and code. 

In section 4.3 we discuss the problems of name con- 
flicts. We show that the name conflicts in multiple 
generalization are the same as those encountered in 
multiple specialization (inheritance) and that they 
can be solved in the same way. 

As a vehicle for the discussions in section 4.1 and 
4.2 we will use a language called SC. SC has a 
notion of (multiple) generalization as well as spe- 
cialization. SC is only a vehicle for a theoretical 
discussion and is not proposed as a new program- 
ming language. 

4.1 Class interfaces 

We will present simple rules that decides which 
methods an object will have, in a language offering 
both specialization and generalization. We will use 
SC to present these rules. Following this we revisit 
some of the examples from section 3. 

4.1.1 Class interfaces in SC 

The subset of S,C relevant to the following discus- 
sion is presented in figure 5. It is the subset used 
to define class interfaces. The subset of SL rele- 
vant to the definition of class implementations is 
discussed in section 4.2. 
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< ClassDef> ::= class<Name> is {<MethodDefList>J<AdvClassDesc>}; 
<MethodDefList> ::= <Name><ParameterDesc> {E 1, <MethodDefList>} 
<AdvClassDesc> ::= (<Generalization>[<Specialization>} 
<Generalization> ::= generalizing <NameList> removing <NameList> 
<Specialization> ..- ..- specializing <NameList> adding <MethodDefList> 
<NameList> **- <Name>{< 1, <NameList>} ..- 
c denotes the empty string. 

Figure 5: SL - syntax for interfaces 

The simplest way to define a class is to list all its 
methods. In St this can be written as: 

class A is mi,...,m,; 4 

We will denote the set of methods of a class A by 
A . methods So in this case: 

A methods 
= {ml,-.,%) 

Specialization is described by listing all the super- 
classes of the new class and by defining new meth- 
ods that the class will have in addition to those 
obtained from the super-classes: 

class B is specializing Al, AZ,. . . , Ak 
adding ml,. . . ,m,; 

This means that class B has Al ,Az, . . . , Al, 
as super-classes and defines the new methods 
?-f-Ll,...,?-&. For now, we will assume there are 
no name conflicts, so if the same name is present 
in more than one of the classes we can assume it 
is the same method. Bmethods will therefore be the 
union of all the methods inherited from the super- 
classes plus the newly defined ones. 

k 

B methods = U Ayethods U {ml,. . . , m,} 
i=l 

A class conforms to all its immediate super-classes 
(for B this is Al,Aa,. . . ,Ak) and all classes to 

*Specification of formal parameters are ignored for simp- 
licity. 

which they conform. So instances of B will conform 
to B and all B’s ancestors in the class hierarchy. 

Generalization is described as easily as specializa- 
tion in SL, however, the classes listed will be those 
that the new class will have as sub-classes, and the 
methods listed will be methods to be removed from 
the interface of the new class: 

class A is generalizing B1, B2, . . . , Bk 
. 

removing ml,. . . , n-h 

Class A is a generalization of the classes 

Bl, B2, . . . , Bk. This means that Bi (i E 1. . . k) 
must conform to A. This again implies that the 
methods of instances of class A will have to be a 
subset of those of any instance of class B; (i E 
1 . . . k). The way to obtain this is by defining 
Amethods to be the intersection of all the Bpethods 
minus those explicitly removed. This is expressed 
formally below. 

k 

A methods = 
n Brethods \ {ml,, . . , m,} 
i=l 

In this way we have ensured that Bi (i E 1. . . k) 
conforms to A. The conformance rules remain un- 
changed as A is a super-class of B; (i E 1. . . k) in 
the class hierarchy. 

The symmetry between generalization and speci- 
alization in SL should now be clear. Going “up- 
wards” (towards the super-classes) in the classifi- 
cation hierarchy corresponds to generalization and 
therefore removes methods compared to the sub- 
classes. Going down corresponds to specialization 
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and therefore extend the set of methods compared 
to any super-class. 

Any class will conform to all its super-classes. It 
does not matter whether the sub/super-class re- 
lationship has been introduced through specializa- 
tion or generalization. The conformance rules are 
still that a class A conforms to a class I3 if and only 
if A and B are the same class or B is an ancestor 
(generalization) of A in the class hierarchy. 

4.1.2 Examples revisited - interfaces 

In SC the generalization of class deque to class 
stack as discussed in section 3.1 would be described 
as: 

class stack is generalizing deque 
removing push2, pap2, top2; 

which (according to the rules above) defines class 
stack to have the desired interface, namely methods 
push, pop, top and empty. 

The terminal example from section 3.2 will be ex- 
pressed as: 

class TerminaZANsI is generalizing 
TerminalI, Terminal;! 

. 
removing non1,. . . , non,; 

where non1 , . . . , nonnm are the names of the me- 
thods that can be used for controlling both 
Terminal1 and Terminal2 but are not supported 
by the ANSI standard. 

Terminals also conforms to the ANSI standard. 
So it can be described as a specialization of class 
TerminalANSI: 

class Terminals is specializing TerminalANSI 
adding tl,...,& 

t1 , . . . , t, are the control operations supported by 
Terminals that are not supported by the ANSI 
standard. 

4.2 Class implementation 

We will describe one way that a class created as a 
generalization may obtain its implementation. The 
proposal should only be seen as demonstrating that 
a solution exists, as the problem can be solved 
in different ways. We will do this using another 
subset of SL. We will only briefly discuss imple- 
mentation of classes defined through specialization 
(section 4.2.3), as we assume it is already well un- 
derstood. The relevant subset of SC’s syntax is 
presented in figure 6 

The discussion is divided into two parts. In sec- 
tion 4.2.1 we assume that none of the methods in 
the class are virtual. A virtual method is a method 
whose behaviour can be refined in a sub-class. Vir- 
tual methods are supported in a number of different 
languages, for example [3, 5, 6, 141. In the second 
half of the discussion (4.2.2) this assumption is re- 
moved and we propose a way to solve the problems 
unique to virtual methods. Finally, we revisit the 
examples from section 3. 

4.2.1 No virtual methods 

Assume that class A has been obtained by general- 
izing classes Br , BQ, . . . , B, and none of the meth- 
ods of A are virtual methods. 

Any instance of Bi i E 1.. . n conforms to A. So an 
implementation of A can be obtained simply by us- 
ing any one of the implementations of Br, . . . , B,. 
The compiler/interpreter just has to ensure that 
only methods belonging to Amethods can be exe- 
cuted on instances of A. Implementation of other 
methods may still be used internally. 

In the case of n = 1 the choice of implementation 
is implicit. If n > 1 the system or the program- 
mer can chose the Bj that will provide A with its 
implementation. We recommend that the choice is 
left to the programmer for two reasons: 

l The programmer has knowledge about the im- 
plementation of Br , . . . , B, and is therefore 
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<ClassImpl> ::= { <GenImpl> 1 <SpecImpl>} 
<GenImpl> ::= implementation <Name> implements <Name> (c;I <ImplPart>) 
<SpecImpl> ::= implementing <Name><ImplPart> 
<ImplPart> ::= by <Variables><MethodImplList> 

Figure 6: SC - syntax for implementation 

more likely to make an optimal choice than 
the system is. 

l In many languages, interface inheritance im- 
plies implementation inheritance as well. If 
the programmer wants to create a specializa- 
tion of class A in such a language, he will have 
to know which implementation was chosen for 
A. 

In SL this is simply expressed as: 
implementation Bj implements A; 

We also recommend that it should be possible to 
provide a complete new implementation for a class. 
This can be useful if a more efficient implementa- 
tion is needed or if the programmer wants to avoid 
dependencies on implementations of other classes. 

4.2.2 How to deal with virtual methods 

Assume again that class A has been obtained by 
generalizing classes Br, . . . , B, but that a, E 
Amethods is virtual. 

Virtual methods are particularly interesting as they 

may be refined differently in Br , . . . , B,. We 
want a,,‘~ implementation to express the common 

behaviour among the implementations of a,, in 

Bl ,‘.‘, B,? 

We will distinguish three different cases: 

1. No common behaviour. In this case the imple- 

mentation of a, should be empty. The pres- 
ence of a, in A’s interface only specifies that 

5By behaviour we mean the externally visible effects or 
specified state changes obtained by invoking the method. 

2. All implementations exhibit the same beha- 
viour. In this case the implementation of a, 
can be obtained from the class from which A 
has obtained its implementation of non-virtual 
methods. This solution does not work if the 
programmer wants a less refined (more gen- 
eral) implementation of a,,. See 3 for this case. 

3. Some common behaviour. The different im- 
plementations of a,, implement different levels 
of refinement. The programmer will have to 
provide information for the system to ensure 
that the implementation of a,, in A describes 
the common behaviour only. 

We suggest that 2 should be the default choice. 

specializations of A will all have this method. 
An example of this is a graphical system where 
all graphical objects possess a method print. 
But printing a rectangle is not the same as 
printing a circle. Class GraphicalObject will 
therefore have an empty virtual method print, 
that is differently refined in every specializa- 
tion of the class. 

The programmer can override this by providing an 
implementation for a,. This covers cases 1 and 3, as 

he can provide an empty implementation in case 1. 

In SLY we express the case where a different imple- 
mentation is needed for a, as follows: 
implementation Bj implements A by 
method a, begin “statements” end; 

The problems discussed above are closely related 
to discussions concerning multiple specialization of 
virtual methods and how their implementations 
are combined to express the complete behaviour 
of all the implementations in the super-classes. A 
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thorough discussion of this problem can be found 
in [13]. 

It is worth noticing how the problem is reduced 
in the case of single generalization. In this case 
we do not have to consider different behaviour in 
different implementations. The problem is reduced 
to case 2. 

4.2.3 Examples revisited - implementation 

To illustrate the implementation issues discussed 
above we will briefly review the examples discussed 
previously. 

Obtaining class stack from deque was an exam- 
ple that emphasized the reuse aspect of generali- 
zation. It is therefore important to notice that the 
implementation of stack can simply reuse the im- 
plementation of deque without changes. In SL this 
is stated as: 

implementation deque implements stack; 

In the terminal example we assume that there 
is a method ScreenSize in both Terminal1 and 
Terminal;!. It will describe different behaviour for 
the two types of terminals (assuming they are of 
different sizes). As the behaviour is different for the 
two types of terminals the programmer has to pro- 
vide a new (empty) implementation for this method 
in TerminalANsI. We will also assume that the 
programmer wants to use the implementation of 
Terminal2 to implement TerminalANSI. 

implementation Terminal:! 
implements TerminaZANsr by 
ScreenSize begin end; 

Term&a/a is an ordinary specialization of Termi- 
m&/ANSI. The programmer will have to provide 
implementations of the methods added (see sec- 
tion 4.1.2), and refine the method ScreenSize. 

implementing TerminaZz by 
ScreenSize begin “statements” end; 
tl begin “statements” end; 

t2 begin “statements” end; 

t, begin “statements” end; 

4.3 Name conflicts in multiple generali- 
zation 

In 4.1 and 4.2 we assumed that name conflicts did 
not exist. In this paper we will not try to solve 
the problems concerning name conflicts in multiple 
generalizations, but we will show that solving them 
for multiple generalization is equivalent to solving 
them for multiple specialization. 

We will discuss name conflicts at a very low techni- 
cal level. For a more thorough discussion of name 
conflicts refer to [9]. 

In the following discussion name denotes what 
identifies a method, such as qualifications and for- 
mal parameters. 

Assume class A has been created by generalizing 
the two classes Br and B2, and that this has in- 
troduced a name conflict between the two names 
br from Br and bz from B2. We will consider two 
types of name conflicts between bl and b2. 

1. The names br and bz can not be distinguished 
but denotes different methods. In this case 
neither br nor b2 should denote a method on 
instances of A as they are different properties. 

2. bl and b2 are different names but denote the 
same method. In this case some name br,z 
must denote this method on instances of class 
A. 

Assume the system supports multiple specializa- 
tion. If we created class C as a multiple specializa- 
tion of Bi and B2 we would have the same prob- 
lems. In case 1 br and b2 must be distinguished 
by the system so that instances of C have both 
methods, and two different names will have to be 
provided to be able to distinguish the two. In case 2 
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the system will need enough information to know 
that br and b2 denote the same method. One so- 
lution is to allow both br and bz to be used, which 
would also be a perfectly valid solution for genera- 
lization. 

Our conclusion is that the information needed to 
solve name conflicts in a multiple generalization 
of classes is the same as is needed in the multi- 
ple specialization of the same classes. Resolving 
name conflicts in a multiple specialization scheme 
is a research issue in itself and is outside the scope 
of this paper. 

5 Conclusion 

It has been shown that introducing generalization 
in class-based object oriented programming langu- 
ages has several advantages. It extends the reuse 
aspects of the languages and allows the program- 
mer to create classification hierarchies when simi- 
larities between classes are discovered. 

Generalization has been discussed solely as a lan- 
guage construct. It may also be an integrated part 
of a programming environment such as the one 
provided by Smalltalk [6]. Like other constructs 
for modularization and reuse, generalization will 
increase the need for good programming environ- 
ments. Good tools for browsing are needed to find 
classes and to make clear the side effects if a class 
interface/implementation is changed; 

By means of a simple example language, we have 
shown the symmetry between generalization and 
specialization and how the two can coexist. In 
addition we have verified that the simple confor- 
mance rules from traditional “specialization-only” 
languages are sufficient in the combined case. 

We discussed how a class that is created by genera- 
lization can obtain its implementation. This is sim- 
ple if there are no virtual methods, as any of the 
classes that were generalized potentially provides 
an implementation. Virtual methods introduce 
problems for which a solution was proposed. The 

solution may require the programmer to rewrite 
part of the implementation of the virtual methods. 

We then showed that the potential name conflicts 
introduced by multiple generalization are essen- 
tially the same as those created by multiple spe- 
cialization. No solution was proposed to the prob- 
lems, but we concluded that if they were solved 
for multiple specialization, then the same solution 
could be applied to multiple generalization. 

Name conflicts will not occur in the case of sin- 
gle generalization. Furthermore the problems con- 
cerning the implementation of virtual methods in 
multiple generalization are simplified in the case of 
single generalization. 
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