
JRefleX: Towards Supporting Small Student Software Teams

Kenny Wong, Warren Blanchet, Ying Liu, Curtis Schofield, Eleni Stroulia, Zhenchang Xing
Department of Computing Science

University of Alberta
{kenw,blanchet,yingl,schofiel,stroulia,xing}@cs.ualberta.ca

Abstract

The success of a software development project
depends on the technical competency of the de-
velopment team, the quality of the tools they
use, and the project-management decisions they
make during the software lifecycle. Instructors
of software-engineering courses that involve small
project teams are often overwhelmed with the task
of monitoring the progress of multiple teams. With-
out adequate monitoring and advice on best prac-
tices, problems in the team’s process or the devel-
oped product may go unnoticed until it is too late to
be easily fixed. This paper introduces the JRefleX
environment, with components built upon Eclipse,
to support the education of small software teams.

Keywords: software process, small teams,
project management, software quality, software en-
gineering education

1. Introduction

Changing requirements, tight delivery sched-
ules, and developer turnaround are common chal-
lenges facing almost every software development
team today. To address these challenges effectively,
developers must have a good understanding of their
project status, have sufficient programming experi-
ence, collaborate well within their teams, and adapt
efficiently as needs dictate.

Such abilities are difficult to teach and acquire
in a university software-engineering course. In-
structors are eager to teach their students with in-
dustrially relevant tools and skills, but closely mon-
itoring and mentoring a large number of small soft-
ware teams in a course is a major issue. In our
experience, involving roughly 30 small teams in a

course of over 120 students, there are often major
variations among the team projects and the skills
of team members, making the detection of individ-
ual problems too subtle. Students may get mired
in the complexity of the product or their individual
components, and not recognize signs of problems
in their overall design or development process early
enough to effectively involve the instructor.

This year, we embarked on the JRefleX
project, whose goal is to develop a tool to moni-
tor the collaboration process of software teams and
to aid the understanding of changes in software de-
signs. In particular, we are aiming to infer high-
level information about how teams work together,
including team-organization style and the impact of
each member’s contribution or lack thereof. The
data to support these needs is gathered unobtru-
sively as developers work on their code. Visualiza-
tions are created and delivered to the instructor so
that he can see an up-to-date view of their progress
and make comparisons across teams. With a co-
herent view of team collaboration and deliverables
produced, we expect the instructor to better man-
age these projects and provide relevant, timely, and
informative feedback. Certain views are valuable
enough that we are considering making them avail-
able to the students to monitor themselves and to
see how their teams might rank against others in the
course. We hypothesize that teams who are aware
of their own collaborative process, reflect upon
their progress, and make adjustments as needed are
more likely to make the right project-management
decisions when new challenges arrive.

In the longer term, the JRefleX environment
is to provide an experience repository for the col-
laborative development processes of a series of
projects. Such a repository could be data mined
to discover interesting correlations between ob-

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full cit ation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

jectively collected process and product data, sub-
jective developer perceptions of their own work,
and their performance as assessed in their project
marks.

The JRefleX environment currently uses CVS
(Concurrent Versioning System) to support collab-
orative software development. The environment
accesses the CVS history of a team’s software de-
velopment work on a project. The analysis modules
are implemented as Eclipse plugins. As well, JRe-
fleX provides a Wiki-based user interface to deliver
the results of analyses in a web-based format.

Section 2 introduces the architecture of JRe-
fleX. Section 3 briefly describes the database that
manages the process and product metadata storage
for the environment. Section 4 outlines an Eclipse
plugin to provide analyses of the team’s collabora-
tive process. Section 5 outlines an Eclipse plugin
to show analyses of software design changes. Sec-
tion 6 briefly summarizes our early experiences.

2. Architecture

The JRefleX environment consists of three
main parts:

• the repository,

• the analysis components, and

• the development environment (based on
Eclipse and a web browser).

2.1. Repository

The repository consists of:

• CVS, where all development work products
are actually stored;

• a database, where work product metadata and
analysis information about the software pro-
cess and its products are maintained; and

• a Wiki server that delivers web-based reports
to students and instructors using the database
content.

2.2. Analysis components

The analysis components are responsible for
analyzing the database and CVS content to dis-
cover information about how a team has collabo-
rated, as captured in the history of member actions

and software changes. We have been developing
a set of heuristics for understanding the way team
members work together. In particular, if a team
member has authored, and has regularly modified
most of the code files in his team’s CVS area, espe-
cially if this member began making changes earlier
than the others, we might infer that this member is
the “team leader”. Alternatively, if a team member
has made small changes to a variety of code files
authored originally by other members, we might
infer that this member has a “debugger” role on
the team. Finally, if each team member has au-
thored and maintained a specific set of code files
with no changes to these by another member, we
might infer that the team has decomposed the appli-
cation into a number of fairly independent compo-
nents, each assigned to a team member. This level
of understanding and insight is very valuable for
instructors (and managers) to follow the progress
of a project effectively. Combined with cross-team
summary reports delivered by the Wiki server, in-
structors can compare the performance for multiple
teams.

2.3. Development environment

The development environment is based partly
on Eclipse and interoperates with CVS. One even-
tual purpose (besides supporting software construc-
tion) is to record unobtrusively the fine-grained tool
actions of developers working upon their code and
documentation. Also, Eclipse provides the plat-
form for which plugins can visually present the
analysis results to instructors or students (without
requiring a web browser).

In parallel to the Eclipse tool, the development
environment provides a set of browser-accessible
services, including TSP/PSP [1] forms where de-
velopers self-assess and provide information about
their development process, to be stored also in the
repository. This information includes estimates of
planned work and peer reviews of individual con-
tributions to various development activities. The
services also include reports, generated by the Wiki
server, which summarize and visualize the various
analyses of software process and products.

The architecture of JRefleX depends on
Eclipse as the main development tool to provide a
seamless integration of software construction and
analysis reporting activities. However, teams that
do not adopt Eclipse for development can still gain

much of the benefits of JRefleX as long as they use
a web browser and CVS. (Due to the database layer,
JRefleX is actually largely independent of CVS.)
This is a practical adoption issue since Eclipse is
computationally intensive (especially on the stu-
dents’ home computers), and our transitions to it
in the lab environment must be done in phases.

3. Database

This section describes the JRefleX database
core which stores work product metadata, analysis
information, and self-assessment information.

The database core provides the underlying
structure which includes the following basic con-
cepts: CourseTerm, Project, Team, Member,
WorkProduct, Version, and in the future, Activity
and Quality.

In particular, a CourseTerm represents a partic-
ular group of Projects that are being developed for a
class project in a specific academic term. A Project
represents a particular module or portion of a mod-
ule within a CVS area, and it is associated with a
specific Team. A Team is a group of Members who
are working together on one or more Projects.

Projects, Teams, and Members lay the ground-
work for a particular piece of a Project, referred to
as a WorkProduct. A WorkProduct represents a file
within the Project’s CVS area, and is anything re-
quiring constructive effort by a specific Member.
The actual information regarding what a Member
has produced is stored as a Version of a WorkProd-
uct. A Version parallels the notion of a CVS file
revision and contains much the same metadata.

Future concepts include Activity and Qual-
ity. An Activity describes a particular type of
work that Members may do while working on
Projects. Such activities include planning, design,
coding, testing, documentation, etc. This function-
ality would require instrumentation enhancements
to Eclipse. A Quality describes a particular kind of
non-functional requirement that is of interest for a
Project, which instructors use for product evalua-
tion. These qualities include learnability, usability,
and extensibility.

There are other details to the database, in-
cluding administration, population through CVS
events, assessment form construction, and Wiki
support, but for brevity they have been omitted
here.

4. Collaboration Analysis

This section outlines the collaboration analy-
sis component, which provides insight and under-
standing into the way teams work together, thus
potentially alerting instructors and the teams them-
selves of potential problems.

This component consists of several parts, in-
cluding:

• collaboration Wiki report, which presents col-
laboration analysis diagrams;

• collaboration Eclipse plugin, which conveys
these views for Eclipse users (see Figure 1);
and

• an analysis daemon, to recalculate collabora-
tion analyses, software metrics, and develop-
ment statistics daily (except data mining cal-
culations which are done weekly).

The results of these analyses are currently
shown only to instructors and teaching assistants.
We are currently exploring data mining techniques
to extract valuable, but less obvious information
from the accumulated datasets. For example, sup-
pose file f1 is always modified by student s1 once
the file f2 is changed by student s2 (implying some
relationship between the two files). If the anal-
ysis finds that file f2 is changed once again, but
file f1 has not been modified for some time, a re-
minder should be sent to student s1. (Such re-
minders and mentoring possibilities are the topic
of future work.) Additional analyses are described
in [2].

5. Evolution Analysis

This section describes the evolution analysis
component, which enables developers and instruc-
tors to understand how a design has changed over
time. The goal of this component, centered upon
an Eclipse plugin, is to reveal the evolution style of
a software system, the change profile of individual
classes, co-dependent changes, and occurrences of
refactoring.

5.1. Approach

The main input for the plugin is a sequence
of design models, represented in XMI, correspond-
ing to a sequence of snapshots of an object-oriented

Figure 1. Count of student actions over time

application, generated by regular checkouts from
the CVS area for a project. XMI models can be
reverse engineered from the application code, us-
ing roundtrip engineering tools such as Borland To-
gether and Rational Rose. The core of the plugin
relies on recovering the structural design changes
from one version to the next. That is, the plugin
implements a UML differencing algorithm that can
extract surface changes to classes and interfaces,
attributes, methods, and inheritance relations in
terms of element additions, deletions, moves, and
renamings. The algorithm produces change trees
that report the deltas of the compared versions.

Aggregate information can then be extracted
from a sequence of such change trees. By examin-
ing and analyzing the aggregate data, we can obtain
a quick overview of the whole application evolu-
tion history. In particular, we can recover the over-
all software evolution history at three different lev-
els:

• at the system level, we can identify different
evolution phases and styles through the appli-
cation evolution history;

• at the class level, we can recognize differ-
ent classes according to their change history,
such as continuously modified classes versus
legacy classes;

• at the change-tree level, we can identify vari-
ous change patterns, such as refactorings.

5.2. Implementation

The Eclipse evolution analysis plugin works
incrementally. Given a sequence of XMI models,
the plugin reads the XMI files and parses them into
class hierarchy trees, then runs the tree differencing
algorithm against these trees, and saves the deltas
into change trees. The change trees are analyzed
further to present the following perspective, which
contains four main views (see Figure 2).

The system matrix view shows a matrix that
provides a quick overview to understanding the
overall evolution history of the software project.
Each column represents a version of the soft-
ware, while each row represents different types of
changes shown in different colors. The area of
the bubble represents the number of each type of
change. Thus, a bubble of size s at the (x,y) point in
the matrix shows that s changes of type y happened
between version x-1 and x. The exact number for s
can be obtained from change summary view.

The class view depicts the change profile of
each individual class. The changes can be shown
in two different diagrams, matrix or histogram. The
class matrix is similar to the system matrix, but it
shows the changes of a particular class instead of

Figure 2. Evolution perspective views

the whole system. The histogram uses a stacked
bar chart to display changes. It is easier to see the
number of changes in the histogram, while the ma-
trix is more convenient to find evolution styles. The
plugin analyzes the change profiles of individual
classes, and assigns them different evolution types,
such as explosive, short-lived, idle, etc., which are
shown in the view title. A query mechanism is
implemented to filter out the unwanted evolution
types and allow the users focus only on types of
interest.

The change tree and change summary views
show detailed and summarized information of
changes between two consecutive versions. The
change summary view shows a pie chart that sum-
marizes the number of different types of changes,
while the change tree view presents the de-
tailed changes to classes/interfaces and their at-
tributes/methods in an explorer-style tree. The
different icons represent class, interface, attribute,
and method respectively. The different adornments
on an icon represent different types of changes,
such as plug sign for addition, empty triangle
for changes like adding parameter, etc. Double-
clicking a specific element will bring up the Java
source editor.

6. Conclusion

Our work on JRefleX is still one in progress,
and much research remains to properly test our hy-
pothesis. Nevertheless, we have collected some
promising experiences on how such an environ-
ment could be deployed in a third-year comput-
ing science software design course (using an ear-
lier prototype). An incredible amount of data can
be extracted, but the challenge for enabling under-
standing is to find the right combination of heuris-
tics and views.

This work was supported by CSER, the Con-
sortium for Software Engineering Research, and an
IBM Eclipse Innovation Grant.

References

[1] Humphrey, W. “PSP/TSP”,
<http://www.sei.cmu.edu/
tsp/watts-bio.html>

[2] Liu, Y.; Stroulia, E. “Reverse Engineering
the Process of Small Novice Software Teams”
Working Conference on Reverse Engineering
(WCRE 2003: Victoria, BC; November 13–
16, 2003).

	P51:
	Numb:
	Numbx:
	C: 50
	L:
	R:

	P52:
	Numb:
	Numbx:
	C: 51
	L:
	R:

	P53:
	Numb:
	Numbx:
	C: 52
	L:
	R:

	P54:
	Numb:
	Numbx:
	C: 53
	L:
	R:

	P55:
	Numb:
	Numbx:
	C: 54
	L:
	R:

