
Object-Oriented Wrapper for Relational Databases in
the Data Grid Architecture

Kamil Kuliberda1, Jacek Wislicki1, Radoslaw Adamus1, Kazimierz Subieta1,2,3

1 Computer Engineering Department, Technical University of Lodz, Lodz, Poland
2Institute of Computer Science PAS, Warsaw, Poland

3Polish-Japanese Institute of Information Technology, Warsaw, Poland
[kkulibe, jacenty, radamus]@kis.p.lodz.pl, subieta@pjwstk.edu.pl

Abstract: The paper presents a solution of the problem of wrapping relational
databases to an object-oriented business model in the data grid architecture.
The main problem with this kind of wrappers is how to utilize the native SQL
query optimizer, which in majority of RDBMS is transparent for the users. In
our solution we use the stack-based approach to query languages, its query
language SBQL, updateable object-oriented virtual views and the query
modification technique. The architecture rewrites the front-end OO query to a
semantically equivalent back-end query addressing the M0 object model that is
1:1 compatible with the relational model. Then, in the resulting SBQL query
the wrapper looks for patterns that correspond to optimizable SQL queries.
Such patterns are then substituted by dynamic SQL execute immediately
statements. The method is illustrated by a sufficiently sophisticated example.
The method is currently being implemented within the prototype OO server
ODRA devoted to Web and grid applications.

1 Introduction

The art of object-oriented wrappers build on top of relational database systems has
been developed for years – first papers on the topic are dated to late 80-ties and were
devoted to federated databases. The motivation for the wrappers is reducing the
technical and cultural difference between traditional relational databases and novel
technologies based on object-oriented paradigms, including analysis and design
methodologies (e.g. based on UML), object-oriented programming languages (C++,
Java, C#, and others), object-oriented middleware (e.g. based on CORBA), object-
relational databases and pure object-oriented databases. Recently, Web technologies
based on XML/RDF also require similar wrappers. Despite the big pressure on object-
oriented and XML-oriented technologies, people are quite happy with relational
databases and there is a little probability that the market will massively change soon to
other data store paradigms.

Unfortunately, the object-orientedness has as many faces as existing systems,
languages and technologies. Thus, the number of combinations of object-oriented
options with relational systems and applications is very large. Additionally, wrappers
can have different properties, in particular, can be proprietary to applications or
generic, can deal with updates or be read-only, can materialize objects on the wrapper

side or deliver purely virtual objects, can deal with object-oriented query language or
provide some iterative “one-object-in-a-time” API, etc [1]. This causes an extremely
huge number of various ideas and technologies. For instance, Google reports more
than 100 000 Web pages as a response to the query “object relational wrapper”.

In this paper we deal with object-to-relational wrappers for distributed,
heterogeneous and redundant data and service resources that are to be virtually
integrated into a centralized, homogeneous and non-redundant whole. The technology
is recently referred to as a “data-intensive grid” or a ”data grid”. While originally the
grid technology denotes massive computations that have to be done in parallel on
hundreds or thousands of small computers, in business applications a data grid means
higher forms of distribution transparency plus some common infrastructures build on
top of the grid, including the trust infrastructure (security, privacy, licensing,
payments, etc.), web services, distributed transactions, workflow management, etc [2].

The major problem with the described architecture concerns how to utilize an SQL
optimizer. In all known RDBMS-s the optimizer and its particular structures (e.g.
indices) are transparent to the SQL users. A naive implementation of the wrapper
causes that it generates primitive SQL queries such as select * from R, and then,
processes the results of such queries by SQL cursors. Hence the SQL optimizer has no
chances to work. Our experience has shown that direct translation of object-oriented
queries into SQL is unfeasible for a sufficiently general case.

The solution to this problem presented in this paper is based on the object-oriented
query language SBQL, virtual object-oriented views defined in SBQL, query
modification [13], and an architecture that will be able to detect in a query syntactic
tree some patterns that can be directly mapped as optimizable SQL queries. The
patterns match typical optimization methods that are used by the SQL query
optimizer, in particular, indices and fast joins. The idea is currently being
implemented within our object-oriented platform ODRA.

The rest of the paper is organized as follows. In Section 2 we present a more
detailed discussion concerning object-oriented wrappers built on top of relational
databases, including our experience. Section 3 shortly introduces the Stack-Based
Approach (SBA) to object-oriented query languages, its query language SBQL and
virtual updateable object-oriented views. The section presents only basic ideas - the
approach has already resulted in extensive literature (e.g. [12]) and several
implementations. Section 4 presents the data grid architecture. Section 5 discusses an
object-relational wrapper and presents a simple example showing how it works.
Section 6 concludes.

2 More Discussion of the Problem

Mapping between a relational database and a target global object-oriented database
should not involve materialization of objects on the global side, i.e. objects delivered
by such a wrapper should be virtual. Materialization is simple, but leads to many
problems, such as storage capacity, network traffic overhead, synchronization of
global objects after updates on local servers, and (for some applications)
synchronization of local servers after updates of global objects. Materialization can
also be forbidden by security and privacy regulations.

If global objects have to be virtual, they are to be processed by a query language
and the wrapper has to be generic, we are coming to concept of virtual object-oriented
database views that do the mapping from tables into objects. Till now, however,
sufficiently powerful object-oriented views are still a dream, despite a lot of papers
and some implementations. The ODMG standard does not even mention views1. The
SQL-99 standard deals a lot with views, but currently it is perceived as a huge set of
loose recommendations rather than as entirely implementable artifact. In our opinion,
the Stack-Based Approach and its query language SBQL offer the first and universal
solution to the problem of updateable object-oriented database views. In this paper we
show that the query language and its view capability can be efficiently used to build
optimized object-oriented wrappers on top of relational databases.

Basing on the knowledge and experience2 gained from our previous attempts to
wrap relational content into its object-oriented representation, currently we are
implementing (under .NET) an object-oriented platform named ODRA for Web and
grid applications, thus the problem of a wrapper on top of relational databases comes
again into the play. After previous experience we have made the following
conclusions:
− the system will be based on our own, already implemented, object-oriented query

language SBQL (described shortly in Section 3), which has many advantages over
OQL, XQuery, SQL-99 and other languages,

− the system will be equipped with a powerful mechanism of object-oriented virtual
updateable views based on SBQL. Our views have the power of algorithmic
programming languages, hence are much more powerful than e.g. SQL views. A
partial implementation of SBQL views is ready too [7].

The architecture assumes that a relational database will be seen as a simple object-
oriented database, where each tuple of a relation is mapped virtually to a primitive
object. Then, on such a database we define object-oriented views that convert such
primitive virtual objects into complex, hierarchical virtual objects conforming to the
global canonical schema, perhaps with complex repeated attributes and virtual links
among the objects. Because SBQL views are algorithmically complete, we are sure
that every such a mapping can be expressed. Moreover, because SBQL views can
possess a state, have side effects and be connected to classes, one would be able to
implement a behavior related to the objects on the SBQL side.

The major problem concerns how to utilize the SQL optimizer. After our previous
experience we have concluded that static (compile time) mapping of SBQL queries
into SQL is unfeasible. On the other hand, a naive implementation of the wrapper, as
presented above, leaves no chances to the SQL optimizer. Hence we must use
optimizable SQL queries on the back-end of the wrapper.

The solution of this problem is presented in this paper. It combines SBQL query
engine with the SQL query engine. There are a lot of various methods used by an SQL
optimizer, but we can focus on three major ones: rewriting (e.g. pushing selections
before joins), indices (i.e. internal auxiliary structures for a fast access), fast joins (e.g.
hash joins).

1 The define clause of OQL is claimed to be a view, but this is misunderstanding: it is a macro-
definition (a textual shorthand) on the client-side, while views are server-side entities.

2 A gateway from the DBPL system to Ingres and Oracle (1993) and a part of the European
project ICONS (Intelligent COntent maNagement System), IST-2001-32429

Concerning rewriting, our methods are perhaps as good as SQL ones, thus this kind
of optimization will be done on the SBQL side. Two next optimizations cannot be
done on the SBQL side. The idea is that an SBQL syntactic query tree is first modified
by views [13], thus we obtain a much larger tree, but addressing a primitive object
database that is 1:1 mapping of the corresponding relational databases. Then, in the
resulting tree we are looking for some patterns that can be mapped to SQL and which
enforce SQL to use its optimization method. For instance, if we know that the
relational database has an index for Names of Persons, we are looking in the tree the
sub-trees representing the SBQL query such as:

Person where Name = “Doe”
After finding such a pattern we substitute it by the dynamic SQL statement:

exec_immediately(select * from Person where Name = “Doe”)
enforcing SQL to use the index. The result returned by the statement is converted to
the SBQL format. Similarly for other optimization cases. In effect, we do not require
that the entire SBQL query syntactic is to be translated to SQL. We interpret the tree
as usual by the SBQL engine, with except of some places, where instead of some
subtrees we issue SQL execute immediately statements.

3 Stack Based Approach, SBQL and Updatable Object Views

In the stack-based approach (SBA) a query language is considered a special kind of a
programming language. Thus, the semantics of queries is based on mechanisms well
known from programming languages like the environment stack. SBA extends this
concept for the case of query operators (selection, projection/navigation, join,
quantifiers, etc.). Using SBA, one is able to determine precisely the operational
semantics (abstract implementation) of query languages, including relationships with
object-oriented concepts, embedding queries into imperative constructs, and
embedding queries into programming abstractions: procedures, functional procedures,
views, methods, modules, etc.

SBA is defined for a general object store model. Because various object models
introduce a lot of incompatible notions, SBA assumes some families of object store
models which are enumerated M0, M1, M2 and M3. The simplest is M0, which
covers relational, nested-relational and XML-oriented databases. M0 assumes
hierarchical objects with no limitations concerning nesting of objects and collections.
M0 covers also binary links (relationships) between objects. Higher-level store models
introduce classes and static inheritance (M1), object roles and dynamic inheritance
(M2), and encapsulation (M3). For these models there have been defined and
implemented the query language SBQL, which is much more powerful than ODMG
OQL [10] and XML-oriented query languages such as XQuery [14]. SBQL, together
with imperative extensions and abstractions, has the computational power of
programming languages, similarly to Oracle PL/SQL or SQL-99.

Rigorous formal semantics implied by SBA creates a very high potential for the
query optimization. Several optimization methods have been developed and
implemented, in particular methods based on query rewriting, indices, removing dead
queries, and others [11].

SBQL is based on the principle of compositionality, i.e. semantics of a complex
query is recursively built from semantics of its components. In SBQL, each binary

operator is either algebraic or non-algebraic. Examples of algebraic operators are
numerical and string operators and comparisons, aggregate functions, union, etc.
Examples of non-algebraic operators are selection (where), projection/navigation (the
dot), join, quantifiers (∃, ∀), and transitive closures. The semantics of non-algebraic
operators is based on a classical environmental stack, thus the name of the approach.

The idea of SBQL updatable views relies in augmenting the definition of a view
with the information on user intentions with respect to updating operations. The first
part of the definition of a view is the function, which maps stored objects onto virtual
objects (similarly to SQL), while the second part contains redefinitions of generic
operations on virtual objects. The definition of a view usually contains definitions of
subviews, which are defined by the same principle [4].

The first part of the definition of a view has the form of a functional procedure. It
returns entities called seeds that unambiguously identify virtual objects (usually seeds
are OIDs of stored objects). Seeds are then (implicitly) passed as parameters of
procedures that overload operations on virtual objects. These operations are
determined in the second part of the definition of the view. There are distinguished
several generic operations that can be performed on virtual objects: delete removes
the given virtual object, retrieve (dereference) returns the value of the given virtual
object, navigate navigates according to the given virtual pointer, update modifies the
value of the given virtual object according to a parameter, etc.

All procedures, including the function supplying seeds of virtual objects are
defined in SBQL and can be arbitrarily complex [4].

Fig. 1. Architecture of a data grid

4 Architecture of the Data Grid

Figure 1 shows the architecture of a data grid. Its central part is the global virtual
store containing virtual objects and services. Its role is to store addresses of local
servers and to process queries sent from global client applications. The global virtual
store presents the business objects and services according to the global schema, which

Contributory
schema

Contributory
schema

Global
client 1

Global infrastructures (trust, transactions,
indexing, workflow, enhanced web services)

Global schema

Integration
schema

Global
client 2

Global
client 3

Global virtual object and service store
(implemented through global views)

Wrapper +
Contributory

views

Local
schema

Local server 1

Wrapper +
Contributory

views

Local
schema

Local server 2

Grid
designer

Grid
designer

has to be defined and agreed upon the organization creating the grid. The global
schema is used by programmers to create global client applications. The grid
integrates services and objects physically stored in the local servers. Administrators of
local servers define contributory schemata and corresponding contributory views
[3, 5], mapping local data and services to the global schema demands. Local data can
be stored within any kind of DBMS providing a corresponding wrapper plus
contributory views are implemented. The global virtual store is a collection of views
that are responsible for the integration of distributed, heterogeneous and redundant
resources and ensure higher-level transparencies. The contributory views and global
views are updatable. The integration schema presents information on dependencies
between local servers (replications, redundancies, etc.) [3, 6].

5 Architecture of the Object-Relational Wrapper and Examples

Fig. 2. The architecture of a generic wrapper for relational databases

Figure 2 presents the architecture of the wrapper. The general assumptions are the
following:
− externally the data are designed according to the OO model and the business

intention of the global schema – the front-end of the wrapper (SBQL),
− internally the relational structures are presented in the M0 model (excluding

pointers and nesting levels above 2) [12] – the back-end of the wrapper (SBQL),
− the mappings between front-end and back-end is defined with updatable object

views. They role is to map back-end into front-end for querying and front-end onto
back-end for updating (virtual objects),

− for global queries, if some not very strict conditions are satisfied, the mapping form
front-end into back-end query trees is done through query modification, i.e macro-
substituting every view invocations in a query by the view body.

SBQL front-end query

Parser

front-end SBQL query tree

External wrapper (updatable
views + query modification)

back-end SBQL query tree

Rewriting query optimizer

Business model
(object oriented)

M0 representation
of relational model

Internal wrapper (convertion of
parts of the tree to SQL

exec_immediately)

Info on indices and fast joins

SBQL interpreter
Dynamic SQL

(ODBC, JDBC, ADO,...)

RDBMS Relational model

5.1 Updates Through the Wrapper and the Optimization Procedure

The presented architecture assumes retrieval operations only, because the query
modification technique assumed in this architecture does not work for updates.
However, the situation is not hopeless (although more challenging). Because in SBQL
updates are parameterized by queries, the major optimizations concern just these
parameters, with the use of the query modification technique as well. Then, after the
optimization, we can develop algorithms that would recognize in the back-end query
tree all updating operations and then, would attempt to change them to dynamic SQL
update, delete and insert statements. There are technical problems with identification
of relational tuple within the SBQL engine (and further in SQL). Not all relational
systems support tuple identifiers (tids). If tids are not supported, the developers of a
wrappers must relay on a combination (relation_name, primary_key_value(s)), which
is much more complicated in implementation. Tids (supported by SQL) simply and
completely solve the problem of any kind of updates.

In Figure 2 we have assumed that the internal wrapper utilizes information on
indices and fast joins (primary-foreign key dependencies) available in the given
RDBMS. In cases of some RDBMS (e.g. MS SQL Server) this information cannot be
derived from the catalogs. Then, the developers are forced to provide an utility
allowing the wrapper designer to introduce this information manually.

The query optimization procedure (looking from wrapper's front-end to back-end)
for the proposed solution can be divided into several steps:
1. Query modification is applied to all view invocations in a query, which are macro-

substituted with seed definitions of the views. If an invocation is preceded by the
dereference operator, instead of the seed definition, the corresponding on_retrieve
function is used (analogically, on_navigate for virtual pointers). The effect is a
monster huge SBQL query referring to the M0 version of the relational model
available at the back-end.

2. The query is rewritten according to static optimization methods defined for SBQL
[11] such as removing dead sub-queries, factoring out independent sub-queries,
pushing expensive operators (e.g. joins) down in the syntax tree, etc. The resulting
query is SBQL-optimized, but still no SQL optimization is applied.

3. According to the available information about the SQL optimizer, the back-end
wrapper's mechanisms analyze the SBQL query in order to recognize patterns
representing SQL-optimizable queries. Then, exec_immediately clauses are issued.

4. The results returned by exec_immediately are pushed onto the SBQL result stack as
collections of structures, which are then used for regular SBQL query evaluation.

5.2 Optimization Example

The example discusses a simple two-table relational database containing information
about employees EmpR and departments DeptR, “R” stands for “relational” to increase
the clearness (fig. 3).

Fig. 3. The example of a relational schema

The relational schema is wrapped into an object schema shown in figure 4
according to the following view definitions. The EmpR-DeptR relationship is realized
with worksIn and boss virtual pointers:
create view EmpDef {
 virtual_objects Emp {return EmpR as e;}
 virtual_objects Emp(EmpId) {return (EmpR where ID == EmpId) as e;}
 create view nameDef {
 virtual_objects name{return e.name as n;}
 on_retrieve {return n;}
 }
 create view salaryDef {
 virtual_objects salary {return e.salary as s;}
 on_retrieve {return s;}
 }
 create view worksInDef {
 virtual_pointers worksIn {return e.deptID as w;}
 on_navigate {return Dept(w) as Dept;}
 }
}

create view DeptDef {
 virtual_objects Dept {return DeptR as d;}
 virtual_objects Dept(DeptId) {return (DeptR where ID == DeptId) as d;}
 create view nameDef {
 virtual_objects name {return d.name as n;}
 on_retrieve {return n;}
 }
 create view bossDef {
 virtual_pointers boss {return e.bossID as b;}
 on_navigate {return Emp(b) as Emp;}
 }
}

Fig. 4. Object schema used in the optimization example (wrapper's front-end)

Consider a query appearing at the front-end (visible as a business database schema)
that aims to retrieve names of the employees working in the “Retail” department with
salary the same as the employee named Doe's. The query can be formulated as
follows (we assume that there is only one employee with that name in the store):

((Emp where worksIn.Dept.name == "Retail") where
 salary == ((Emp where name == "Doe").salary)).name;

The information about the local schema (the relational model) available to the
wrapper that can be used during query optimization is that the name column is
uniquely indexed and there is a primary-foreign key integrity between DeptId column
(EmpR table) and ID column (DeptR table).

The optimization procedure is performed in the following steps:

Emp [1..*]
name
salary
...

Dept [1..*]
name
...

* ► worksIn

boss ◄

Name
Salary

ID (PK)
EmpR

......DeptId (FK)
...

Name

...

Boss (FK)
DeptR

ID PK)

1. Introduce implicit deref (dereference) functions
((Emp where worksIn.Dept.deref(name) == "Retail") where deref(salary)
== (Emp where deref(name) == "Doe").deref(salary)).deref(name);

2. Substitute deref with the invocation of on_retrieve function for virtual objects
and on_navigate for virtual pointers
((Emp where worksIn.(Dept(w) as Dept).Dept.(name.n) == "Retail")
where (salary.s) == (Emp where (name.n) == "Doe").(salary.s)).
(name.n);

3. Substitute all view invocations with the queries from sack definitions
(((EmpR as e) where ((e.deptID as w).(((DeptR where ID == w) as d) as
Dept)).Dept.((d.name as n).n) == "Retail") where ((e.salary as s).s)
== ((EmpR as e) where ((e.name as n).n) == "Doe").((e.salary as s).
s)).((e.name as n).n);

4. Remove auxiliary names s and n
(((EmpR as e) where ((e.deptID as w).(((DeptR where ID == w) as d) as
Dept)).Dept.(d.name) == "Retail") where (e.salary) == ((EmpR as e)
where (e.name) == "Doe").(e.salary)).(e.name);

5. Remove auxiliary names e and d
((EmpR where ((deptID as w).((DeptR where ID == w) as Dept)).
Dept.name == "Retail") where salary == (EmpR where name == "Doe").
salary).name;

6. Remove auxiliary names w and Dept
((EmpR where (DeptR where ID == deptID).name == "Retail") where
salary == (EmpR where name == "Doe").salary).name;

7. Now take common part before loop to prevent multiple evaluation of a query
calculating salary value for Emp named Doe
((((EmpR where name == "Doe").salary) group as z).(EmpR where
((DeptR where ID == deptID).name == "Retail")) where salary == z).
name;

8. Connect where and navigation clause into one where connected with and operator
((((EmpR where name == "Doe").salary) group as z).(EmpR where (DeptR
where (ID == deptID and name == "Retail")) where salary == z).name;

9. Because name column is uniquely indexed, the sub-query (EmpR where name ==
"Doe") can be substituted with exec_ immediately clause
(((exec_immediately("SELECT salary FROM EmpR WHERE name = 'Doe'"))
group as z).(EmpR where (DeptR where (ID == deptID and name ==
"Retail")) where salary == z).name;

10.Because the integrity constraint with EmpR.DeptId column and DeptR.ID column is
available to the wrapper, the pattern is detected and another exec_immediately
substitution is performed:
(((exec_immediately("SELECT salary FROM EmpR WHERE name = 'Doe'"))
group as z).(exec_immediately("SELECT * FROM EmpR, DeptR WHERE
EmpR.deptID = DeptR.ID AND DeptR.name = 'Retail'") where salary ==
z).name;

Either of the SQL queries invoked by exec_immediately clause is executed in the local
relational resource and pends native optimization procedures (with application of
indices and fast join, respectively).

6. Conclusions

We have presented the approach to wrapping relational databases to an object-
oriented business model. The approach assumes the stack-based approach, its query

language SBQL, updatable views and the query modification technique. As shown in
the example, a front-end SBQL query can be modified and optimized with application
of SBA rules and updatable views within the wrapper and then the native relational
optimizers for SQL language can be employed. The described wrapper architecture
enables building generic solutions allowing presentation of data stored in various
relational resources as object-oriented models visible at the top level of the grid and
accessing the data with object query language.

The described optimization process assumes correct relational-to-object model
transformation (with no loss of database logic) and accessibility of the relational
model optimization information such as indices and/or primary-foreign key relations.

The method is currently being implemented as a part of our new project ODRA
devoted to Web and grid applications.

References

1. Bergamaschi, S., Garuti, A., Sartori, C., Venuta, A.: Object Wrapper: An Object-Oriented
Interface for Relational Databases. EUROMICRO 1997, pp.41-46

2. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. Global Grid Forum, June 22,
2002

3. Kaczmarski, K., Habela, P., Subieta, K.: Metadata in a Data Grid Construction. Proc. of
13th IEEE International Workshops on Enabling Technologies: Infrastructures for
Collaborative Enterprises (WETICE-2004), Italy, June, 2004

4. Kozakiewicz, H., Leszczy owski, J., P odzie , J., ł ł ń Subieta, K.: Updateable Object Views.
ICS PAS Reports 950, October 2002

5. Kozankiewicz, H., Stencel, K., Subieta, K.: Implementation of Federated Databases
through Updateable Views. Proc. EGC 2005 - European Grid Conference, Springer LNCS,
2005, to appear

6. Kozankiewicz, H., Stencel, K., Subieta, K.: Integration of Heterogeneous Resources
through Updatable Views. Workshop on Emerging Technologies for Next generation GRID
(ETNGRID-2004), 13th IEEE WETICE-2004, University of Modena and Reggio Emilia,
Italy, June 14-16, 2004, Proceedings published by IEEE

7. Kozankiewicz, H., Subieta, K.: SBQL Views - Prototype of Updateable Views. ADBIS
(Local Proceedings) 2004

8. Matthes, F., Rudloff A., Schmidt, J.W., Subieta, K.: A Gateway from DBPL to Ingres.
Proc. of Intl. Conf. on Applications of Databases, Vadstena, Sweden, Springer LNCS 819,
pp.365-380, 1994

9. Moore, R., Merzky, A.: Persistent Archive Concepts. Global Grid Forum GFD-I.026.
December-2003

10. Object Data Management Group: The Object Database Standard ODMG, Release 3.0.
R.G.G.Cattel, D.K.Barry, Ed., Morgan Kaufmann, 2000

11. Plodzien, J.: Optimization Methods in Object Query Languages, PhD Thesis. IPIPAN,
Warszawa 2000

12. Subieta, K.: Theory and Construction of Object-Oriented Query Languages. Editors of the
Polish-Japanese Institute of Information Technology, 2004, 522 pages

13. Subieta, K., Plodzien, J.: Object Views and Query Modification, (in) Databases and
Information Systems (eds. J. Barzdins, A. Caplinskas), Kluwer Academic Publishers, pp. 3-
14, 2001

14. W3C: XQuery 1.0: An XML Query Language. W3C Working Draft 12, November 2003,
http://www.w3.org/TR/xquery/

