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Abstract: The paper presents a solution of the problem of wrapping relational
databases to  an object-oriented  business  model in the data grid architecture.
The main problem with this kind of wrappers is how to utilize the native SQL
query optimizer, which in majority of RDBMS is transparent for the users. In
our  solution  we use the stack-based approach  to  query languages,  its  query
language  SBQL,  updateable  object-oriented  virtual  views  and  the  query
modification technique. The architecture rewrites the front-end OO query to a
semantically equivalent back-end query addressing the M0 object model that is
1:1 compatible with the relational model. Then, in the resulting SBQL query
the wrapper  looks for  patterns  that  correspond to  optimizable  SQL queries.
Such  patterns  are  then  substituted  by  dynamic  SQL  execute  immediately
statements. The method is illustrated by a sufficiently sophisticated example.
The method is currently being implemented within the prototype OO server
ODRA devoted to Web and grid applications.

1 Introduction

The art of object-oriented wrappers build on top of relational database systems has
been developed for years – first papers on the topic are dated to late 80-ties and were
devoted  to  federated  databases.  The  motivation  for  the  wrappers  is  reducing  the
technical  and cultural difference between traditional  relational databases and novel
technologies  based  on  object-oriented  paradigms,  including  analysis  and  design
methodologies (e.g. based on UML), object-oriented programming languages (C++,
Java, C#, and others), object-oriented middleware (e.g. based on CORBA), object-
relational databases and pure object-oriented databases. Recently, Web technologies
based on XML/RDF also require similar wrappers. Despite the big pressure on object-
oriented  and  XML-oriented  technologies,  people  are  quite  happy  with  relational
databases and there is a little probability that the market will massively change soon to
other data store paradigms. 

Unfortunately,  the  object-orientedness  has  as  many  faces  as  existing  systems,
languages  and  technologies.  Thus,  the  number  of  combinations  of  object-oriented
options with relational systems and applications is very large. Additionally, wrappers
can  have  different  properties,  in  particular,  can  be  proprietary  to  applications  or
generic, can deal with updates or be read-only, can materialize objects on the wrapper



side or deliver purely virtual objects, can deal with object-oriented query language or
provide some iterative “one-object-in-a-time” API, etc [1]. This causes an extremely
huge number of various ideas and technologies. For instance, Google reports more
than 100 000 Web pages as a response to the query “object relational wrapper”.

In  this  paper  we  deal  with  object-to-relational  wrappers  for  distributed,
heterogeneous  and  redundant  data  and  service  resources  that  are  to  be  virtually
integrated into a centralized, homogeneous and non-redundant whole. The technology
is recently referred to as a “data-intensive grid” or a ”data grid”. While originally the
grid technology denotes massive computations that have to be done in parallel on
hundreds or thousands of small computers, in business applications a data grid means
higher forms of distribution transparency plus some common infrastructures build on
top  of  the  grid,  including  the  trust  infrastructure  (security,  privacy,  licensing,
payments, etc.), web services, distributed transactions, workflow management, etc [2].

The major problem with the described architecture concerns how to utilize an SQL
optimizer.  In all  known RDBMS-s the optimizer and its  particular  structures (e.g.
indices)  are transparent to the SQL users.  A naive implementation of the wrapper
causes that  it  generates primitive SQL queries such as  select  *  from R,  and then,
processes the results of such queries by SQL cursors. Hence the SQL optimizer has no
chances to work. Our experience has shown that direct translation of object-oriented
queries into SQL is unfeasible for a sufficiently general case.

The solution to this problem presented in this paper is based on the object-oriented
query  language  SBQL,  virtual  object-oriented  views  defined  in  SBQL,  query
modification [13], and an architecture that will be able to detect in a query syntactic
tree  some patterns  that  can  be  directly mapped as  optimizable  SQL queries.  The
patterns  match  typical  optimization  methods  that  are  used  by  the  SQL  query
optimizer,  in  particular,  indices  and  fast  joins.  The  idea  is  currently  being
implemented within our object-oriented platform ODRA. 

The rest  of  the paper  is  organized as follows. In Section 2 we present a  more
detailed  discussion  concerning  object-oriented  wrappers  built  on  top  of  relational
databases,  including our  experience.  Section  3  shortly  introduces  the  Stack-Based
Approach (SBA) to object-oriented query languages, its query language SBQL and
virtual updateable object-oriented views. The section presents only basic ideas - the
approach  has  already  resulted  in  extensive  literature  (e.g.  [12])  and  several
implementations. Section 4 presents the data grid architecture. Section 5 discusses an
object-relational  wrapper  and  presents  a  simple  example  showing  how  it  works.
Section 6 concludes.

2 More Discussion of the Problem

Mapping between a relational database and a target global object-oriented database
should not involve materialization of objects on the global side, i.e. objects delivered
by such a wrapper should be virtual. Materialization is simple,  but leads to  many
problems,  such  as  storage  capacity,  network  traffic  overhead,  synchronization  of
global  objects  after  updates  on  local  servers,  and  (for  some  applications)
synchronization of local servers after updates of global objects. Materialization can
also be forbidden by security and privacy regulations.



If global objects have to be virtual, they are to be processed by a query language
and the wrapper has to be generic, we are coming to concept of virtual object-oriented
database  views that  do  the  mapping from tables  into  objects.  Till  now,  however,
sufficiently powerful object-oriented views are still a dream, despite a lot of papers
and some implementations. The ODMG standard does not even mention views1. The
SQL-99 standard deals a lot with views, but currently it is perceived as a huge set of
loose recommendations rather than as entirely implementable artifact. In our opinion,
the Stack-Based Approach and its query language SBQL offer the first and universal
solution to the problem of updateable object-oriented database views. In this paper we
show that the query language and its view capability can be efficiently used to build
optimized object-oriented wrappers on top of relational databases.

Basing on the knowledge and experience2 gained from our previous attempts to
wrap  relational  content  into  its  object-oriented  representation,  currently  we  are
implementing (under .NET) an object-oriented platform named ODRA for Web and
grid applications, thus the problem of a wrapper on top of relational databases comes
again  into  the  play.  After  previous  experience  we  have  made  the  following
conclusions:
− the system will be based on our own, already implemented, object-oriented query

language SBQL (described shortly in Section 3), which has many advantages over
OQL, XQuery, SQL-99 and other languages,

− the system will be equipped with a powerful mechanism of object-oriented virtual
updateable  views  based  on  SBQL.  Our  views  have  the  power  of  algorithmic
programming languages, hence are much more powerful than e.g. SQL views. A
partial implementation of SBQL views is ready too [7].

The architecture assumes that a relational database will be seen as a simple object-
oriented database, where each tuple of a relation is mapped virtually to a primitive
object. Then, on such a database we define object-oriented views that convert such
primitive virtual objects into complex, hierarchical virtual objects conforming to the
global canonical schema, perhaps with complex repeated attributes and virtual links
among the objects. Because SBQL views are algorithmically complete, we are sure
that  every such a mapping can be expressed. Moreover,  because SBQL views can
possess a state, have side effects and be connected to classes, one would be able to
implement a behavior related to the objects on the SBQL side.

The major problem concerns how to utilize the SQL optimizer. After our previous
experience we have concluded that static (compile time) mapping of SBQL queries
into SQL is unfeasible. On the other hand, a naive implementation of the wrapper, as
presented  above,  leaves  no  chances  to  the  SQL  optimizer.  Hence  we  must  use
optimizable SQL queries on the back-end of the wrapper.

The solution of this problem is presented in this paper. It combines SBQL query
engine with the SQL query engine. There are a lot of various methods used by an SQL
optimizer, but we can focus on three major ones:  rewriting (e.g. pushing selections
before joins), indices (i.e. internal auxiliary structures for a fast access), fast joins (e.g.
hash joins).

1 The define clause of OQL is claimed to be a view, but this is misunderstanding: it is a macro-
definition (a textual shorthand) on the client-side, while views are server-side entities. 

2 A gateway from the DBPL system to Ingres and Oracle (1993) and a part of the European
project ICONS (Intelligent COntent maNagement System), IST-2001-32429



Concerning rewriting, our methods are perhaps as good as SQL ones, thus this kind
of optimization will be done on the SBQL side. Two next optimizations cannot be
done on the SBQL side. The idea is that an SBQL syntactic query tree is first modified
by views [13], thus we obtain a much larger tree, but addressing a primitive object
database that is 1:1 mapping of the corresponding relational databases. Then, in the
resulting tree we are looking for some patterns that can be mapped to SQL and which
enforce  SQL to  use  its  optimization  method.  For  instance,  if  we  know that  the
relational database has an index for Names of Persons, we are looking in the tree the
sub-trees representing the SBQL query such as:

Person where Name = “Doe”
After finding such a pattern we substitute it by the dynamic SQL statement:

exec_immediately(select * from Person where Name = “Doe”)
enforcing SQL to use the index. The result returned by the statement is converted to
the SBQL format. Similarly for other optimization cases. In effect, we do not require
that the entire SBQL query syntactic is to be translated to SQL. We interpret the tree
as usual by the SBQL engine, with except of some places, where instead of some
subtrees we issue SQL execute immediately statements.

3 Stack Based Approach, SBQL and Updatable Object Views

In the stack-based approach (SBA) a query language is considered a special kind of a
programming language. Thus, the semantics of queries is based on mechanisms well
known from programming languages like the environment stack. SBA extends this
concept  for  the  case  of  query  operators  (selection,  projection/navigation,  join,
quantifiers,  etc.).  Using  SBA,  one  is  able  to  determine  precisely  the  operational
semantics (abstract implementation) of query languages, including relationships with
object-oriented  concepts,  embedding  queries  into  imperative  constructs,  and
embedding queries into programming abstractions: procedures, functional procedures,
views, methods, modules, etc.

SBA is defined for a general object store model. Because various object models
introduce a lot of incompatible notions, SBA assumes some families of object store
models  which are enumerated M0,  M1,  M2 and M3.  The simplest  is  M0,  which
covers  relational,  nested-relational  and  XML-oriented  databases.  M0  assumes
hierarchical objects with no limitations concerning nesting of objects and collections.
M0 covers also binary links (relationships) between objects. Higher-level store models
introduce classes and static inheritance (M1), object roles and dynamic inheritance
(M2),  and  encapsulation  (M3).  For  these  models  there  have  been  defined  and
implemented the query language SBQL, which is much more powerful than ODMG
OQL [10] and XML-oriented query languages such as XQuery [14]. SBQL, together
with  imperative  extensions  and  abstractions,  has  the  computational  power  of
programming languages, similarly to Oracle PL/SQL or SQL-99.

Rigorous formal semantics implied by SBA creates a very high potential for the
query  optimization.  Several  optimization  methods  have  been  developed  and
implemented, in particular methods based on query rewriting, indices, removing dead
queries, and others [11].

SBQL is based on the principle of compositionality, i.e. semantics of a complex
query is recursively built from semantics of its components. In SBQL, each binary



operator  is  either  algebraic  or  non-algebraic.  Examples  of  algebraic  operators  are
numerical  and  string  operators  and  comparisons,  aggregate  functions,  union,  etc.
Examples of non-algebraic operators are selection (where), projection/navigation (the
dot), join, quantifiers (∃,  ∀), and transitive closures. The semantics of non-algebraic
operators is based on a classical environmental stack, thus the name of the approach.

The idea of SBQL updatable views relies in augmenting the definition of a view
with the information on user intentions with respect to updating operations. The first
part of the definition of a view is the function, which maps stored objects onto virtual
objects  (similarly to SQL), while the second part  contains redefinitions of  generic
operations on virtual objects. The definition of a view usually contains definitions of
subviews, which are defined by the same principle [4].

The first part of the definition of a view has the form of a functional procedure. It
returns entities called seeds that unambiguously identify virtual objects (usually seeds
are  OIDs  of  stored  objects).  Seeds  are  then  (implicitly)  passed  as  parameters  of
procedures  that  overload  operations  on  virtual  objects.  These  operations  are
determined in the second part of the definition of the view. There are distinguished
several generic operations that can be performed on virtual objects:  delete removes
the given virtual object,  retrieve (dereference) returns the value of the given virtual
object, navigate navigates according to the given virtual pointer, update modifies the
value of the given virtual object according to a parameter, etc.

All  procedures,  including  the  function  supplying  seeds  of  virtual  objects  are
defined in SBQL and can be arbitrarily complex [4].

Fig. 1. Architecture of a data grid

4 Architecture of the Data Grid

Figure 1 shows the architecture of a data grid. Its central part is the  global virtual
store containing virtual objects and services.  Its  role is to store addresses of local
servers and to process queries sent from global client applications. The global virtual
store presents the business objects and services according to the global schema, which
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has to  be defined and agreed  upon the  organization creating the grid.  The global
schema  is  used  by  programmers  to  create  global  client  applications.  The  grid
integrates services and objects physically stored in the local servers. Administrators of
local  servers  define  contributory  schemata and  corresponding  contributory  views
[3, 5], mapping local data and services to the global schema demands. Local data can
be  stored  within  any  kind  of  DBMS  providing  a  corresponding  wrapper  plus
contributory views are implemented. The global virtual store is a collection of views
that are responsible for the integration of distributed, heterogeneous and redundant
resources and ensure higher-level transparencies. The contributory views and global
views are updatable. The  integration schema presents information on dependencies
between local servers (replications, redundancies, etc.) [3, 6].

5 Architecture of the Object-Relational Wrapper and Examples

Fig. 2. The architecture of a generic wrapper for relational databases

Figure 2 presents the architecture of the wrapper. The general assumptions are the
following:
− externally  the  data  are  designed  according  to  the  OO  model  and  the  business

intention of the global schema – the front-end of the wrapper (SBQL),
− internally  the  relational  structures  are  presented  in  the  M0  model  (excluding

pointers and nesting levels above 2) [12] – the back-end of the wrapper (SBQL),
− the mappings between  front-end and  back-end is  defined with updatable object

views. They role is to map back-end into front-end for querying and front-end onto
back-end for updating (virtual objects),

− for global queries, if some not very strict conditions are satisfied, the mapping form
front-end into back-end query trees is done through query modification, i.e macro-
substituting every view invocations in a query by the view body.
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5.1 Updates Through the Wrapper and the Optimization Procedure

The  presented  architecture  assumes  retrieval  operations  only,  because  the  query
modification  technique  assumed  in  this  architecture  does  not  work  for  updates.
However, the situation is not hopeless (although more challenging). Because in SBQL
updates  are  parameterized  by  queries,  the  major  optimizations  concern  just  these
parameters, with the use of the query modification technique as well. Then, after the
optimization, we can develop algorithms that would recognize in the back-end query
tree all updating operations and then, would attempt to change them to dynamic SQL
update, delete and insert statements. There are technical problems with identification
of relational tuple within the SBQL engine (and further in SQL). Not all relational
systems support tuple identifiers (tids). If tids are not supported, the developers of a
wrappers must relay on a combination (relation_name, primary_key_value(s)), which
is much more complicated in implementation. Tids (supported by SQL) simply and
completely solve the problem of any kind of updates.

In  Figure  2  we have assumed that  the  internal  wrapper  utilizes  information on
indices  and  fast  joins  (primary-foreign  key  dependencies)  available  in  the  given
RDBMS. In cases of some RDBMS (e.g. MS SQL Server) this information cannot be
derived  from the  catalogs.  Then,  the  developers  are  forced  to  provide  an  utility
allowing the wrapper designer to introduce this information manually.

The query optimization procedure (looking from wrapper's front-end to back-end)
for the proposed solution can be divided into several steps:
1. Query modification is applied to all view invocations in a query, which are macro-

substituted with seed definitions of the views. If an invocation is preceded by the
dereference operator, instead of the seed definition, the corresponding on_retrieve
function is  used (analogically,  on_navigate for virtual  pointers).  The effect is  a
monster  huge SBQL query referring to  the M0 version of the  relational  model
available at the back-end.

2. The query is rewritten according to static optimization methods defined for SBQL
[11] such as removing dead sub-queries,  factoring out independent sub-queries,
pushing expensive operators (e.g. joins) down in the syntax tree, etc. The resulting
query is SBQL-optimized, but still no SQL optimization is applied.

3. According to  the  available  information  about  the  SQL optimizer,  the  back-end
wrapper's  mechanisms analyze  the  SBQL query in  order  to  recognize  patterns
representing SQL-optimizable queries. Then, exec_immediately clauses are issued.

4. The results returned by exec_immediately are pushed onto the SBQL result stack as
collections of structures, which are then used for regular SBQL query evaluation.

5.2 Optimization Example

The example discusses a simple two-table relational database containing information
about employees EmpR and departments DeptR, “R” stands for “relational” to increase
the clearness (fig. 3).



Fig. 3. The example of a relational schema

The  relational  schema  is  wrapped  into  an  object  schema  shown  in  figure  4
according to the following view definitions. The EmpR-DeptR relationship is realized
with worksIn and boss virtual pointers:
create view EmpDef {
  virtual_objects Emp {return EmpR as e;}
  virtual_objects Emp(EmpId) {return (EmpR where ID == EmpId) as e;}
  create view nameDef {
    virtual_objects name{return e.name as n;}
    on_retrieve {return n;}
  }
  create view salaryDef {
    virtual_objects salary {return e.salary as s;}
    on_retrieve {return s;}
  }
  create view worksInDef {
    virtual_pointers worksIn {return e.deptID as w;}
    on_navigate {return Dept(w) as Dept;}
  }
}

create view DeptDef {
  virtual_objects Dept {return DeptR as d;}
  virtual_objects Dept(DeptId) {return (DeptR where ID == DeptId) as d;}
  create view nameDef {
    virtual_objects name {return d.name as n;}
    on_retrieve {return n;}
  }
  create view bossDef {
    virtual_pointers boss {return e.bossID as b;}
    on_navigate {return Emp(b) as Emp;}
  }
}

Fig. 4. Object schema used in the optimization example (wrapper's front-end)

Consider a query appearing at the front-end (visible as a business database schema)
that aims to retrieve names of the employees working in the “Retail” department with
salary  the  same  as  the  employee  named  Doe's.  The  query  can  be  formulated  as
follows (we assume that there is only one employee with that name in the store):

((Emp where worksIn.Dept.name == "Retail") where 
   salary == ((Emp where name == "Doe").salary)).name;

The  information  about  the  local  schema  (the  relational  model)  available  to  the
wrapper  that  can  be  used  during  query  optimization  is  that  the  name column is
uniquely indexed and there is a primary-foreign key integrity between DeptId column
(EmpR table) and ID column (DeptR table).

The optimization procedure is performed in the following steps:
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1. Introduce implicit deref (dereference) functions
((Emp where worksIn.Dept.deref(name) == "Retail") where deref(salary)
== (Emp where deref(name) == "Doe").deref(salary)).deref(name);

2. Substitute  deref with the invocation of  on_retrieve function for virtual objects
and on_navigate for virtual pointers
((Emp where worksIn.(Dept(w) as Dept).Dept.(name.n) == "Retail")
where (salary.s) == (Emp where (name.n) == "Doe").(salary.s)).
(name.n);

3. Substitute all view invocations with the queries from sack definitions
(((EmpR as e) where ((e.deptID as w).(((DeptR where ID == w) as d) as
Dept)).Dept.((d.name as n).n) == "Retail") where ((e.salary as s).s)
== ((EmpR as e) where ((e.name as n).n) == "Doe").((e.salary as s).
s)).((e.name as n).n);

4. Remove auxiliary names s and n
(((EmpR as e) where ((e.deptID as w).(((DeptR where ID == w) as d) as
Dept)).Dept.(d.name) == "Retail") where (e.salary) == ((EmpR as e)
where (e.name) == "Doe").(e.salary)).(e.name);

5. Remove auxiliary names e and d
((EmpR where ((deptID as w).((DeptR where ID == w) as Dept)).
Dept.name == "Retail") where salary == (EmpR  where name == "Doe").
salary).name;

6. Remove auxiliary names w and Dept
((EmpR where (DeptR where ID == deptID ).name == "Retail") where
salary == (EmpR  where name == "Doe").salary).name;

7. Now take  common part  before  loop  to  prevent  multiple  evaluation  of  a  query
calculating salary value for Emp named Doe
((((EmpR where name == "Doe").salary ) group as z).(EmpR where
((DeptR where ID == deptID).name == "Retail")) where salary == z).
name;

8. Connect where and navigation clause into one where connected with and operator
((((EmpR where name == "Doe").salary ) group as z).(EmpR where (DeptR
where (ID == deptID and name == "Retail")) where salary == z).name;

9. Because name column is uniquely indexed, the sub-query (EmpR  where name ==
"Doe") can be substituted with exec_ immediately clause
(((exec_immediately("SELECT salary FROM EmpR WHERE name = 'Doe'"))
group as z).(EmpR where (DeptR where (ID == deptID and name ==
"Retail")) where salary == z).name;

10.Because the integrity constraint with EmpR.DeptId column and DeptR.ID column is
available  to  the  wrapper,  the  pattern is  detected and  another  exec_immediately
substitution is performed:
(((exec_immediately("SELECT salary FROM EmpR WHERE name = 'Doe'"))
group as z).(exec_immediately("SELECT * FROM EmpR, DeptR WHERE
EmpR.deptID = DeptR.ID AND DeptR.name = 'Retail'") where salary ==
z).name;

Either of the SQL queries invoked by exec_immediately clause is executed in the local
relational  resource  and  pends  native  optimization  procedures  (with application  of
indices and fast join, respectively).

6. Conclusions

We  have  presented  the  approach  to  wrapping  relational  databases  to  an  object-
oriented business model. The approach assumes the stack-based approach, its query



language SBQL, updatable views and the query modification technique. As shown in
the example, a front-end SBQL query can be modified and optimized with application
of SBA rules and updatable views within the wrapper and then the native relational
optimizers for SQL language can be employed. The described wrapper architecture
enables  building generic  solutions  allowing presentation of  data  stored  in  various
relational resources as object-oriented models visible at the top level of the grid and
accessing the data with object query language.

The  described  optimization  process  assumes  correct  relational-to-object  model
transformation  (with no  loss  of  database  logic)  and  accessibility  of  the  relational
model optimization information such as indices and/or primary-foreign key relations.

The method is currently being implemented as a part of our new project ODRA
devoted to Web and grid applications.
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