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Abstract

We introduce MetaML, a statically-typed multi-stage
programming language extending Nielson and Nielson’s
two stage notation to an arbitrary number of stages.
MetaML extends previous work by introducing four dis-
tinct staging annotations which generalize those pub-
lished previously [25, 12, 7, 6]

We give a static semantics in which type checking
is done once and for all before the first stage, and a
dynamic semantics which introduces a new concept of
cross-stage persistence, which requires that variables
available in any stage are also available in all future
stages.

We illustrate that staging is a manual form of bind-
ing time analysis. We explain why, even in the presence
of automatic binding time analysis, explicit annotations
are useful, especially for programs with more than two
stages.

A thesis of this paper is that multi-stage languages
are useful as programming languages in their own right,
and should support features that make it possible for
programmers to write staged computations without sig-
nificantly changing their normal programming style. To
illustrate this we provide a simple three stage example,
and an extended two-stage example elaborating a num-
ber of practical issues.

1 Introduction

Multi-stage languages have recently been proposed as
intermediate representations for partial evaluation [12]
and runtime code generation [7]. These languages gen-
eralize the well-known two-level notation of Nielson &
Nielson [25] to an arbitrary number of levels.

A major thesis of this paper is that multi-stage lan-
guages are useful not only as intermediate representa-
tions, but also as programming languages in their own
right. Multi-stage programming is important because
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performance is important. But there is very little lan-
guage support for writing multi-stage programs. This
paper extends previous work on multi-stage programing
with features that are of practical use to real program-
mers.

We introduce MetaML, a statically-typed multi-stage
programming language extending Nielson and Nielson’s
two-level notation to an arbitrary number of stages (sim-
ilar to their B-level language). MetaML is an extension
of a Hindley-Milner polymorphically-typed [22] call-by-
value A-calculus [13] with support for sums, products,
recursion, polymorphism, primitive datatypes and static
type-inference. It provides the following extensions not
found in previous work on multi-stage systems:

e Four distinct staging annotations, which we be-
lieve are necessary and sufficient for all multi-stage
programming. (Section 5) These annotations gen-
eralize and safely combine those published previ-

ously [25, 12, 7, 6].

e A type system ensuring the well-formedness of ac-
ceptable multi-stage programs. Type checking is
done once and for all before the first stage (Section

10.1).

e Variables of any stage are available in all future
stages. This feature, in a language which also con-
tains run! makes MetaML’s annotations strictly
more expressive than the languages of Nielsen &
Nielsen [25, 24], Davies & Pfenning [7], and Davies
[6]. We also deal with the interesting technical
problem of ensuring the hygienic binding of free
variables (Section 10.2) in code expressions.

e A non-Hindley-Milner, second order type judge-
ment for the run annotation to ensure that no code
1s ever run in a context in which it 1s undefined.

As a consequence of the above properties, MetaML
provides a programming language suitable for express-
ing staged computations explicitly. We believe that
MetaML can have positive implications for understand-
ing and communicating ideas about multi-stage pro-
grams, partial evaluation and the complex process of
binding-time analysis in much the same way that the
boxed / unboxed(#) distinction provides a language for
understanding boxing optimizations as source-to-source
transformations [16].

L An eval-like operator



2 Why Multi-stage Programs?

The concept of a stage arises in a wide variety of sit-
uations. For a compiled language, there are two dis-
tinct stages: compile-time, and run-time. But three
distinct stages appear in the context of program gener-
ation: generation, compilation, and execution. For ex-
ample, the Yacc parser generator first reads a grammar
and generates C code; second, this program is compiled;
third, the user runs the object code.

Yet despite the numerous examples of multi-stage
software systems, almost all these systems have realized
staging in ad-hoc ways. Our goal is to provide a lan-
guage with well-designed support for multi-staged pro-
gramming by using explicit stagmg annotations. In par-
ticular, a multi-stage programming language supplies a
basis for generation technology. Generators can provide
dramatic improvements in the following areas:

Efficiency. Specializing a function on a fixed argu-
ment can lead to dramatic efficiency gains. Program
generators can provide the same efficiency gains that
partial evaluation does.

Productivity and reuse. When a programming
task or activity becomes routine, programmers can use
program generators to encapsulate their knowledge of
the routine task. This capture of a problem family
rather than a single problem increases programmer pro-
ductivity. Program generators let experts capture their
knowledge in a clear (and hence reusable) notation that
can then be used for synthesising the desired software
component [21, 17, 18].

Reliability and quality. The greatest source of er-
rors in code maintenance is human intervention. When
less human intervention is needed to modify a software
product, there are proportionately fewer opportunities
for error insertion and less rework of code is neces-
sary. Automatically generated components require lit-
tle manual rework after a re-generation.

Our language, MetaML, was designed as basis for an
integrated generator system. It provides an approach
radically different from, and superior to, the classic
“programs-as-strings” view that seems to predominate
in many ad-hoc multi-stage software systems. MetaML
is tightly integrated in this sense.

3 Relationship to Partial Evaluation

Today, the most sophisticated automatic staging tech-
niques are found in partial evaluation systems [15] Par-
tial evaluation optimizes a program usmg a priorl infor-
mation about some of that program’s inputs. The goal
1s to identify and perform as many computations as pos-
sible in a program before run-time.

Offline partial evaluation has two distinct steps, binding-

time analysis (BTA) and specialization. BTA deter-
mines which computations can be performed in an ear-
lier stage given the names of inputs available before run-
time (static inputs).

In essence, BTA performs automatic staging of the
input program. After BTA, the actual values of the in-
puts are made available to the specializer. Following

the annotations, the specializer either performs a com-
putation, or produces text for inclusion in the output
(residual) program.

The relationship between partial-evaluation and multi-
stage programming is that the intermediate data struc-
ture between the two steps is a two-stage annotated pro-
gram [2%, and that the specialization phase is (the first
stage 1n) the execution of the two-stage annotated pro-
gram produced by BTA. Recently, Gluck and Jgrgensen
proposed multi-level BTA and showed that it 1s an effi-
cient alternative to multiple specialization [9, 10]. Their

underlying annotated language is closely related to MetaML.

4 Why Explicit Annotations?

If BTA performs staging automatically, why should pro-
grammers stage programs manually? They shouldn’t
have to, but there are several important reasons why
they may want to:

Pragmatic. While there are advantages to dis-
cussing the semantics of annotated programs and the
techniques of BTA at the same time, we feel that the
complexity of the semantics of annotated programs war-
rants studying them in (relative) isolation of other par-
tial evaluation issues.

Pedagogical tool. It has been observed that it
is sometimes hard for users to understand the work-
ings of partial evaluation systems [14]. New users of-
ten lack a good mental model of how partial evaluation
systems work. Although BTA is an involved process,
requiring special expertise, the annotations it produces
are relatively simple and easy to understand. However,
new users are often uncertain: What is the output of
a binding-time analysis? What are the annotations?
How are they expressed? What do they really mean?
The answers to these questions are crucial to the effec-
tive use of partial evaluation. Qur observation is that
programmers can understand the annotated output of
BTA, without actually knowing how BTA works. Hav-
ing a programming language with explicit staging an-
notations would help users of partial evaluation under-
stand more of the issues involved in staged computation,
and, hopefully, reduce the steep learning curve currently
associated with learning to use a partial evaluator ef-
fectively [15]. Nielson & Nielson’s two-stage notation is
the only widely accepted notation for expressing staged
computation. But Nielson & Nielson’s notation is not
widely viewed as a programming language, perhaps be-
cause over-bars and under-bars do not appear on the
standard keyboard and no implementation of 1t is in
widespread use.

Controlling Evaluation Order. When perfor-
mance is an issue, control of evaluation order is essen-
tial. BTA optlmlzes the evaluation order, but some-
times it is just easier to say what you want than to force
a BTA to discover it. Automatic analyses like BTA are
necessarily incomplete, and can only approximate the
knowledge of the programmer. By using explicit anno-
tations the programmer can exploit his full knowledge
of the program domain.

In addition, BTA for programs with more than two
stages 1s still imprecise. Hand annotation may be the



only feasible mechanism for staging multi-stage pro-

grams, and may be the only mechanism expressive enough

for the degree of control needed in many circumstances.

High-Level Program Generation. As we will
also illustrate in this paper, staging annotations also
provide a powerful tool for high-level program genera-
tion. No explicit construction of parse trees is needed.
As a consequence, generators can be simpler and more
reliable than their hand constructed counterparts. It is
also easier to verify the correctness of both the gener-
ators and the programs they generate, as the issues of
representation are hidden away from the programmer.

5 MetaML’s Multi-Stage Programming An-
notations

The two-level notation of Nielson & Nielson [25] features
two annotations: over-bars to mark computations of the
first stage, and under-bars to mark those of the second
stage. Although quite powerful, this is only a subset
of the annotations needed for generic multi-stage pro-
gramming. MetaML has four programming constructs:

e Meta-Brackets (<_>) are the primary means for de-
laying a computation. For example, whereas the
expression 40+2 specifies a current (or first) stage
computation, <40+2> specifies one for the next (or
second) stage. A binary type constructor < _ , _
> is used to distinguish the type of the latter ex-
pression from the first one. For example, 7 has
type int, but <7> has type <int, ’a>, where as is
in ML ’a is a free type variable. The expression
<<(1,<2+1>)>> has type:
<<(int * <int,’c>),’b>,’a> and the addition
will be performed in the fourth stage. The second
type in the code type constructor represents the
name of the context in which this code can execute.
In the examples above the context is completely
unconstrained hence the type variables. More about
this in section 10.

e Escape ("_) can occur only inside enclosing meta-
brackets. It 1s the mechanism used to insert smaller
delayed computations into larger ones. Escape al-
lows its argument to escape the “freeze” imposed
by a surrounding meta-bracket and to “splice” its
result into the delayed computation being built.
For example:

let val a=<1+4> in <72+"a> end

returns the expression <72+(1+4)>. The escaped
computation must yield a piece of code with a type
that can be inserted in the context where the es-
cape appears. The type system ensures that this
1s the case. For example, if x has type <int, ’a>,

then <(x,1)> has type <<int,’a>,’b>and <("x,1)>

has type <(<int,’a> * int),’b>. Objects of type
code are first class citizens, and can even be A-
abstracted. For example:

val add_72_later = fn a => <72+7a>

declares a first class function with type <int, ’a>
-> <int, ’a>, and the expression add_72_later <8>
returns <72+8>. From the language designer’s point
of view, escape poses a very interesting technical
problem, as not all uses of escape are reasonable.
We discuss this issue in Section 10.1.

e Run (run _) takes a code-valued argument and
runs 1t. It is the only way a computation “frozen”
using meta-brackets can be computed (or “forced”)
in the current stage. The argument to run must be
of code type. Having run in the language implies
introducing a kind of reflection [30], and allows
a future-stage computation to be performed now.
To 1llustrate, consider the expression:

let val a = <50-10> in 2+(run a) end

This expression has type int and returns the value
42 when computed. Although run is not an anno-
tation used in the result of BTA, it is an essential
feature for a programmer who wants to use multi-
stage programming to control evaluation order .

o Lift (1ift _) allows the user to convert any ground
value (not containing a function) into code. Con-
trast this with meta-brackets which converts any
syntactic expression into a piece of code. Lift is
most often used in conjunction with escape, be-
cause only pieces of code can be “spliced-in”. For
example, in the expression <1+~(lift 2+3)>, the
escape forces 1ift (2+3) to be computed in the
first stage. The addition evaluates to the value
5, and lift converts this result into the piece of
code <5>, which is spliced (because of the escape)
back into the original expression to return <1+5>.
Lift can be used on structured values such as tu-
ples and lists as long as they do not contain func-
tions. For example 1ift [(2,3),(2%1,4)] eval-
uates to [(2,3),(2,4)]. Function values can-
not be lifted using lift, as we cannot derive an in-
tensional representation for them in general (This
does not mean that function values cannot be de-
layed using meta-brackets. See Section 7.)

Precedence Issues. The escape operator ("_) has
the highest precedence; even higher than function appli-
cation. This allows us to write: <f “x y> rather than
<f ("x) y>. The lift (1ift _) and run (run _) oper-
ators have the lowest precedence. The scope of these
operators extends to the right as far as possible. This
makes it possible to write < “(lift g y) z> rather
than <£ “(lift (g y)) z>.

6 Hand-Staging: A Short Example

Using MetaML, the programer can stage programs by
inserting the proper annotations at the right places in
the program. The programmer uses these annotations
to modify the default (strict) evaluation order of the
program.

In our experience, starting with the type of the func-
tion to be hand-staged makes the number of different
ways in which i1t can be annotated quite tractable. This



leads us to believe that the location of the annotations
in a staged version of a program is significantly con-
strained by its type. For example, consider the function
member defined as:

(* member : int -> int list -> bool *)
fun member v 1 =
if (null 1)
then false
else if v=(hd 1)
then true
else member v (tl 1);

The function member has type int -> List int ->
bool 2. A good strategy for hand annotating a program
is to first determine the target type of the desired an-
notated program. In the member example, the list pa-
rameter 1 is available in the first stage, and the element
searched for will be available later. So, one target type
for the hand-staged function is <int,’a>-> List int
-> <bool,’a> .

Now we can begin annotating, starting with the whole
expression, and work inwards until all sub-expressions
are covered. At each step, we consider what annota-
tions will “fix” the type of the expression so that the
whole function has a type closer to the target type.

The following function realizes this type:

(* member :
fun member v 1 =
if (null 1)
then <false>
else <if “v="(1lift hd 1)
then true
else “(member v (t1 1))>;

In this example, and others, when giving the types of
functions in comments, we write <int> for <int, ’a>
and <<int>> for <<int,’a>, ’b> (and so on) when the
context of the code types is completely unconstrained.
The annotation “(1ift hd 1) is used rather than hd 1
in order to ensure that hd is performed during the first
stage. Otherwise, all selections of the head element of
the list would have been delayed until the code con-
structed was run in a later stage.

The meta-brackets around the branches of the out-
ermost if-expression ensure that the return value of
member will be a <?,7>. The first branch (false) needs
no further annotations, and makes the return value pre-
cisely a <bool, ’a>. Moving inwards in the else branch,
the condition of the inner if-expression (in particular
“v) forces the type of the v parameter to have type
<int,’a> as planned.

Just like the first branch of the outer if-statement,
the whole of the inner if-statement must return bool.
So, the first branch (true) is fine. But because the
recursive call to member has type <bool,’a>, it must
be escaped. Inserting this escape also implies that the
recursion will be performed in the first stage, which
1s exactly the desired behavior. Thus, the result of
the staged member function is a recursively-constructed
piece of code with type bool.

Evaluating <fn x => “(member <x> [1,2,3])> yields:

2Function “=” has type (int # int) => bool which forces v and 1
to have types int and List int, respectively.

<int,’a> -> int list —> <bool,’a> *)

<fn di =>
if d1 %=1
then true
else if d1 %= 2
then true
else if d1 %= 3
then true
else false>

The percentage sign (%) at the beginning of an iden-
tifier indicates that it was bound to a value in the envi-
ronment in which the code was constructed. Its precise
meaning will be explained in Sections 7 and 10.2.

7 The Design of MetaML

MetaML was designed as a statically-typed program-
ming language, and not as an internal representation
for a multi-stage system. Our primary goals were: first,
it should be easy to write multi-staged programs, second
it should be as flexible as possible, and third it should
ensure that only “reasonable things” can be done using
the annotations. Therefore, our design choices where
different from those of other multi-stage systems such
as Nielson & Nielson, Hatcliff & Gliick, and Davies &
Pfenning. In particular, we consider the following qual-
ity crucial to MetaML:

Cross-stage Persistence: A variable i bound in
stage n, will be available in stages n, n + 1 and dll fu-
ture stages.

To the user, this means the ability to stage non-

closed expressions. Non-closed expressions, like A-abstractions

with free variables, must resolve their free variable oc-
currences in the static environment where the meta-
bracketed expression occurs. One can think of a code
value as containing an environment which binds its free
variables. For example the expression,

let val a=1+4 in <72+a> end

returns a value <72+%a>. The % sign indicates that the
free variable a is bound in the value’s local environment.
The % sign is printed by the display mechanism. The
variable a has been bound during the first stage to the
constant 5. In fact, in MetaML %a is not a variable, but
rather, a new constant, and the name “a” is only hint to
the user about where this constant originated. When %a
is evaluated in a later stage, it will return 5 independent
of the binding for the variable a in the new context since
it is bound in the value’s local environment. Arbitrary
values (including functions) can be delayed using this
hygienic binding mechanism.

Specifying this behavior turns out to be non-trivial.
In an interpreter for a multi-stage language, this re-
quirement manifests itself as complex variable-binding
rules, the use of closures, or capture-free substitutions.
Our semantics addresses this in a rather unique way
(See Section 10.2).

Cross-Stage Persistence poses a problem when stag-
ing is used for program generation. If the first stage
1s performed on one computer, and the second on an-
other, we must “port” the local environments from the



first machine to the second. Since arbitrary objects,
such as functions, closures, can be bound in these local
environments this can become a problem. Currently,
MetaML assumes that the computing environment does
not change between stages. This is part of what we
mean by having an integrated system.

Cross-Stage Persistence can be relaxed by allowing
variables to be available at exactly one stage. This
seems to have been the case in all multi-stage languages
known to us to date [25, 12, 7, 6]. The primary diffi-
culty in implementing persistence 1s the proper hygienic
treatment of free variables. We will show how this prob-
lem can be solved, thus allowing the user to stage signif-
icantly more expressions than was previously possible.

But even in MetaML, it will not be possible to stage
every expression in the language. In particular, we must
ensure that the user can only specify computations that
respect the following condition:

Cross-Stage Safety: An input first available at stage

m cannot be used at a stage n 1f m > n.

The problem arises with the use of the escape anno-
tation. In particular, consider the expression

fn a => <fn b => ~“(a+b)>

which is an (incorrectly) staged version of the function
Aa.Ab.a+b. Operationally, the annotations require com-
puting a+b in the first stage, while the value of b will be
available only in the second stage! Therefore, MetaML’s
type system was designed to ensure that “well-typed
programs won’t go wrong”, where going wrong now in-
cludes the violation of the cross-stage safety condition,
as well as the standard notions of “going wrong” [22] in
statically-typed languages.

In our experience with the language, having a type
system to screen-out programs containing this kind of
error 1s a significant aid in hand-staging programs.

8 Isomorphism for Code Types

application of back is in a language extended with a new
construct that allows us to embed any value into syntax,
without needing to know about its intentional represen-
tation. Thus, we are really not converting functions into
source code, but rather, returning syntax that denotes
this function under our semantics. Under this proviso
(and disregarding termination issues) the composition
of these two functions is identity under MetaML’s se-
mantics (see Section 10). They define an isomorphism
between values of type <A,’c> —=> <B,’c> and <A ->
B,’c>. [3].

We note that back and forth coorespond to 2-level
eta-expansion which Danvy finds to be an important
element in partial evaluation[5].

This isomorphism can also be viewed as a formaliza-
tion of the intuitive equivalence of a symbolic evalua-
tor [23] <A,’c> —> <B, ’c> and the syntactic represen-
tation of a function <& -> B,’c>. It seems that this
isomorphism, which MetaML has allowed us to make
concrete, is at the heart of concise reduction systems,
such as Danvy’s type-directed partial evaluator [4] and
its extensions [27]. Under MetaML’s semantics, we can
switch between the two types without needing to worry
about substitution or variable capture.

This has profound implications for the writing of
staged functions. In our experience annotating a func-
tion to have type <4,’c> —> <B, ’c> requires less an-
notations than annotating it to have type <A -> B, ’c>
and is often easier to think about. Because we are more
used to reasoning about functions, this leads us to avoid
creating functions of the latter kind except when we
need to inspect the code.

The type of back is one of the axioms of the logic sys-
tem motivating the type system of Davies [6]. MetaML’s
type system was motivated purely by operational rea-
sons. At the same time, it is important for the pro-
grammer to have both coercions, thereby being able to
switch back and forth between the two isomorphic types
as the need arises.

This becomes even more important when writing
programs with more than two stages. Consider the
function:

fun back2 £ = <fn x => <fn y => "7(f <x> <Ky>>)>>;

3 . 1 )
Recall the types of the staged member function: <int, ’a> back2 : (<a> > <<b>> —> <<e>>) —> <a —> <b —> o3

-> List int -> <bool,’a>, and the type of the term
<fn x => (member <x> [1,2,3])>whichis: <int,’a>

-> bool. This suggests that a function from code to
code can be turned into the code of a function. This is
important to users because <alpha,’a> -> <beta,’a>
is a function and cannot be printed or observed, while
<alpha -> beta,’a>is a representation of a function,
and can be printed and observed. We can define two
functions to convert between these two types:

(* Dback: <’A,’c> -> ’<B,’c>
fun back £ = <fn x => “(f <x>)>;

This allows us to write a program which takes a <a>
and a <<b>> as arguments and which produces a <<c¢>>
and stage it into a three-stage function. Our experience
1s that such functions have considerably fewer annota-
tions, and are easier to think about. We illustrate this
in the next section.

9 A Multi-Stage Example

-> <(’A => ’B),’c> *)

When information arrives in multiple phases it is pos-
sible to take advantage of this fact to get better per-

(¥ forth: <(’A -> ’B),’c> -> (<’4,’c> —> <’B,’c>) fapmance. Consider a generic function for computing

fun forth f x = <"f "x>;

Here we use capitalized type variables to distinguish
the type in the code from the context the code must
evaluate 1n.

The conversion 1s not between syntactic forms, but
semantic values. For example, the code produced by an

the inner product of two vectors. In the first stage the
arrival of the size of the vectors offers an opportunity
to specialize the inner product function on that size,
removing the overhead of looping over the body of the
computation n times. The arrival of the first vector
affords a second opportunity for specialization. If the
inner product of that vector is to be taken many times



with other vectors it can be specialized by removing the
overhead of looking up the elements of the first vector
each time. This is exactly the case when computing the
multiplication of 2 matrixes. For each row in the first
matrix, the dot product of that row will be taken for
each column of the second. This example has appeared
in several other works [9, 20] and we give our version
below:

Below we give three versions of the inner product
function. One (iprod) with no staging annotations,
the second (iprod2) with two levels of annotations, and
the third (iprod3) with two levels of annotations but
constructed with the back2 function. In MetaML we
quote relational operators involving < and > because of
the possible confusion with meta-brackets.

(* iprod : int -> Vector -> Vector -> int *)
fun iprod n v w =
ifn ’> O

val f2 = (run f1) [1,0,4];
£f2: <Vector -> int> =
<fn d1 => (4 * (Y%nth d1 3)) +
(0 * (%nth d1 2)) +
(1 % (Ynth d1 1)) + 0 >

Note how the actual values of the first array appear in
the code, and how the access function nth appears as a
constant expression applied to the second vector d1.
While this code is good, it does not take full advan-
tage of all the information known in the second stage.
In particular, note that we generate code for the third
stage which may contain multiplication by 0 or 1. These
multiplications can be optimized. To do this we write
a second stage function add which given an index into
a vector i, an actual value from the first vector x, and
a piece of code with the name of the second vector y,
constructs a piece of code which adds the result of the x
and y multiplication to the code valued fourth argument

then ((nth v n) * (nth w n)) + (iprod (n-1) vew)When x is 0 or 1 special cases are possible.

else 0;

(* iprod2 : int —-> <Vector -> <Vector -> int>> %) fun add i x y e =

fun iprod2 n = <fn v => <fn w =>
““(if n >’ O
then << (“(lift nth v n) * (nth w n)) +
(" (" (iprod2 (n-1)) v) w)
>>
else <<0>>) >>;

(* p3 :
fun p3 n v w =
ifn >’ O
then << (“(lift nth “v n) * (nth "“w n)) +
““(p3 (n-1) v w) >>
else <<0>>;

fun iprod3 n = back2 (p3 n);

Notice that the staged versions are remarkably similar
to the unstaged version, and that the version written
with back2 has fewer annotations. The type inference
mechanism was a great help in placing the annotations
correctly.

An important feature of MetaML is the visualization
help that the system affords. By “testing” iprod2 on
some inputs we can “see” what the results are immedi-
ately.

val f1 = iprod3 3;

f1 : <Vector -> <Vector -> int>> =

<fn di =>

<fn d5 =>

("(1ift %nth d1 3) * (%nth 45 3)) +
("(1ift %nth d1 2) * (%nth 45 2)) +
("(1ift %nth d1 1) * (Ynth 45 1)) +
0 >>

When this piece of code is run it will return a function,
which when applied to a vector builds another piece of
code. This building process includes looking up each
element in the first vector and splicing in the actual
value using the 1ift operator. Using lift is especially
valuable if we wish to inspect the result of the next
phase. To do that we evaluate the code by running it,
and apply the result to a vector.

(% add : int -> int —-> <Vector> —> <int> *)
if x=0
then e

else if x=1
then <(nth "y ~(1lift 1)) + “e>

else <("(1lift x) * (nth “y ~(lift 1))) + “e>;

This specialized function is now used to build the second

. . tage computation:
int -> <Vector> -> <<Vector>> -> <<int>> *) 9 b

(* p3 int -> <Vector> -> <<Vector>> -> <<int>> *)
fun p3 n v w =
if n =1

then << “(add n (nth “v n) "w <0>) >>
else << “(add n (nth "v n) “w
< "7 (p3 (n-1) v w) >) >>;

fun iprod3 n = back2 (p3 n);

Now let us observe the result of the first stage compu-
tation.

val £3 = iprod3 3;
£3: <Vector -> <Vector —-> int>> =
<fn di =>
<fn d5 =>
“(%add 3 (%nth d1 3) <d5>
< “(%add 2 (%nth d1 2) <d5>
< "(%add 1 (%nth d1 1)
<0>)>)>) >>

This code is linear in the size of the vector; if we had
actually inlined the calls to add it would be exponential.
This is why being able to have free variables (such as
add) in code is indispensable. Now let us observe the
result of the second stage computation:

val f4 = (eval £3) [1,0,4];
f4: <Vector -> int> =
<fn d1 => (4 * (%nth d1 3)) + (¥nth d1 1) + 0>

Note that now only the multiplications that contribute
to the answer are evident in the third stage program. If
the vector 1s sparse then this sort of optimization can
have dramatic effects.

<d5>



10 Semantics of \M

Figure 1 presents the static and dynamic semantics of
the meta-lambda calculus, A . This calculus is a mini-
MetaML, which illustrates the relevant features of the
staging annotations on the semantics of MetaML.

AM s a call by value lambda calculus which supports
integers, functions, and code (int | ¢ = ¢ | (¢)). The
syntax of terms includes integer constants, variables,
applications, abstractions (i | = | ee | Azt €) and
the four staging annotations: meta brackets, escape, lift
and tun (<e> | “e | lift' e | rune). In addition,
the constant operator (1 v) allows us to injects a value
into a term, and is crucial to the conciseness of our
implementation of Cross-Stage Persistence. It is these
constants that we print out as a % followed by a name.
Note that users do not write programs with the con-
stant operator; it is only introduced during reduction.
Every shift in stage from a lower stage to a higher stage
enriches the syntax passed to the higher stage with a
new set of constants; the values of the previous stage
that could still be referenced in the future.

10.1 Static Semantics

The static semantics is expressed as a set of inference
rules that determine if a term is well-formed, and deter-

n
mine its type. The judgement ¥ A F z : 7,7 is read
under the context stack X2, the type environment A, the
term x has type T at level n and may execute in the
context with name 1.

The intutition behind contexts, 1s that any expres-
sion can only execute in a context which contains bind-
ings for its free variables. The type inference algorithm
assigns the same context name to expressions that must
execute in the same context.

The type assignment A maps variable to types and
levels and context names. Every variable is bound at
some particular level, namely, the level of the abstrac-
tion in which it is bound (Abs rule). The role of n in the

n

judgement A F x : o is to keep track of the level of the
expression being typed. The level of a subexpression is
the number of uncancelled surrounding brackets. One
surrounding escape cancels one surrounding bracket.
Hence, n is incremented for an expression inside meta-
brackets (Bracket), and decremented for one inside an
escape (Escape). Note that the rule Escape does not al-
low escape to appear at level 0. In other words, escape
must appear inside uncancelled meta-brackets.

There are three main kinds of errors related to stag-
ing annotations that can occur at runtime:

e A variable is used in a stage before it 1s available,
or

e Run or escape are passed values having a non-code
type, or

e Run is passed a code-type value with free variables.
This manifests itself in the type, where the name
of the context is constrained.

The first kind of error i1s checked by the Varjn and
Var=n rules. Because there is no rule for m > n en-
forces Cross-Stage Persistence: Variables available in

the current stage (m) can be used in all future stages
(n). The second kind of error is checked by the Run
n and Esc n+1 rules. Detecting the third kind of error
1s an important contribution of this paper, and is ac-
complished by the free variable check in the rule Run n.
Only code whose context is completely unconstrained
my be run.

For the standard part of the language, code (now
denoted by (_) for conciseness) is a normal type con-
structor that needs no special treatment and the level
n is never changed. Similar type systems have been
identified and used by Gomard and Jones [11], Davies
& Pfenning [6] and Davies [7].

An important difference between these type systems
and the one in Figure 1 is that in all previous statically-
typed multi-stage languages [25, 7, 6], only the following
monolithic type rule is used for variables:

(As)=
Alr—lx:r

Var (Monolithic): when m = n

Whereas we allow the more general condition m < n.
This means any generated expressions may as well be
evaluated in the empty environment since all well-typed
terms are closed terms and cannot reference any free
variables. For example the expression:

val lift like = fn x => <x>

i1s accepted, because inside the meta-brackets, n = 1,
and (A x) = «”. This expression is not accepted by
the monolithic variable rule. Note that while the whole
function has type a — (&) it does not provide us with
the functionality of lift, because the result of applying
lift_like to any value always returns <%x>, and not a
literal expression denoting the value. But this example
demonstrates that meta-brackets can be used to “lift”
any value, including functions. This is explained in the
dynamic semantics.
The type system rejects the expression

fn a => <fn b => “(a+b)>

because, inside the escape, n = 0, and (? b) = o', but
1> 0.

10.2 Dynamic Semantics

The dynamic semantics provides meaning to well-typed
terms. Values are a subset of terms, and we denote them
with a small diamond superscript (¢ | {Az'.e}® |
(e)?). The semantics given in Figure 1, when applied to
well typed terms, maintains the invariant that no free
variables ever occur in code values which will later be
run.

The most important thing to notice about the dy-
namic semantics is that it is broken into two sets of
rules, reduction and rebuilding. Reduction (? + e —

- 1
v) maps terms to values and rebuilding (7 + e (s €)
maps terms to terms and is indexed by a level n + 1.
Rebuilding “reconstructs” terms under the environment
7
The environment 7 binds a variable to a value. Bind-
ings in environments come in two flavors: real (Real(v))
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terms e — 1|z |ee| AzT.e| <e>| “e| rune | tw
values voo—= | {Azt.e} | (e)°
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n
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(a;Z) A F e:T,09 YAz (r, )" Fe:mo YA Fe:{7)% a0
Br n - Abs n: " Esc n+1 1
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Figure 1:

The Semantics of \M




and symbolic (Sym(z)"). The extension of the environ-
ment with real values occurs only in the rule App 0.
Such values are returned under reduction (Var 0), or
injected into constant terms (RVar n+1) under rebuild-
ing.

Several things about rebuilding should be noted.

1. Rebuilding replaces all free variables with a con-
stant expression (1 v) where the v comes from
Real(v) bindings in ? (Rvar n+1).

2. Rebuilding renames all bound variables. Symbolic
Sym(2’)" bindings occur in rules Abs 0 and Abs
n+1 where a term is rebuilt, and new names must
be introduced to avoid potential variable capture.
These new names are projected from the environ-
ment in rule SVar n+1.

3. Rebuilding executes escaped expressions to obtain
code to “splice” into the context where the escaped
term occurs (Escape 1).

Without the staging annotations, rebuilding is sim-
ply capture-free substitution of the symbolic variables
bound in 7. Rebuilding is initiated in two places, in
rule Abs 0 where it is used for capture-free substitution,
and in rule Bracket 0 where it is applied to terms in-
side dynamic brackets and it describes how the delayed
computations inside a dynamic value are constructed.

The type system ensures that in rule Abs 0, there
are no embedded escapes at level 1 that will be encoun-
tered by the rebuilding process, so rebuilding actually
implements capture-free substitution as advertised.

The rules Escape 1, Run 0, and Bracket 0 are at the
heart of the dynamic semantics.

In the rebuilding rule Escape 1, an escaped expres-
sion at level 1 indicates a computation must produce a
code valued result ({e32)°), and rebuilding returns the
term es.

The reduction rule Bracket 0 describes how a code
value 1s constructed from a meta-bracketed term <e;>.
The embedded expression is rebuilt at level 1, and the
returned term is injected into the domain of values.

The reduction rule Run 0 describes how a code val-
ued term is executed. The term is reduced to a code
valued term, and the embedded term is then reduced
in the empty environment to produce the answer. The
empty environment is sufficient because all free vari-
ables in the original code valued term have been re-
placed by constant expressions (1 v).

11 Optimizations

11.1 Safe Beta Reduction

To write multi-stage programs effectively, one needs to
observe the programs produced, and these programs
should be as simple as possible. For this reason, our
implementation performs automatic safe-beta reduction
on constants and variables. A beta reduction is safe if
it does not change evaluation order, or effect termina-
tion properties. There is one safe case which 1s par-
ticularly easy to recognize, namely, Plotkin’s 3, rule
[26]. Whenever an application is constructed where the
function part is an explicit lambda abstraction, and the

argument part is a value, then that application can be
symbolically beta reduced. In order to avoid duplicat-
ing code we restrict our optimizations to constants or
variables (while Plotkin’s 5, rule also allows the values
to be lambda expressions). For example in:

val g
val h

= <fn x => x * 5>;

= <fn x => ("g x) - 2>;

The variable h evaluates to: <fn di1 => (d1 * 5) -
2> rather than <fn di => ((fn d2 => 42 * 5) d1)
- 2>,

We realize of course that this might make it hard
to understand why a particular program was generated.
In our experience, the resulting smaller, simpler pro-
grams, are easier to understand and make this tradeoff
worthwhile.

11.2 Nested Escapes

When we first wrote programs with more than two levels
we observed that our programs took a long time to run.
We traced this to rule Escape n+42 of our semantics.
Consider the case where a deeply bracketed term e at
level n is escaped all the way to level 0. In order to
execute this term (which escapes to level 0) it must be
rebuilt n times. Consider the reduction sequence below
for the term run (run << ~“e >>), where e is bound
in 7 to <5>, of which we show only the innermost run.

e = (<5>)°
. 1
e f;) <h> 5 (i) 5
T e = “<h> <5> <= (5)°
<T T e> ri> <" <H>> ~<5> fi> 5

<K Te>> 5 (KT <B>>)° <" <b>> = (5)°
run <<” " e>> < (5)°

For two levels the term is rebuilt 2 times. For three
levels the term is rebuilt 3 times. A simple refinement
can prevent this from happening. We change the re-
building of escaped expressions at levels greater than 1
by adding the rule Escape Opt n+2 in addition to the
rule Escape n+2.

n+1
Tk e = <ex>

. n42
7R €] “— €»s

Escape Opt n+2:

Escape n+2:

Thus a long sequence of escapes surrounded by an equal
number of brackets gets rebuilt exactly one. This opti-
mization is safe since there are no variables in a rebuilt
term. So rebuilding it more than once performs no use-
ful work. This correctness of this optimization follows
from the fact that under our semantics ~ <e> is always
equal to e.



Facility Example NN [25] | GA [11] | GB [9] | Th [31] | HG [12] [ A" [7] | A© [6] | MM
Staging <Ax.x> 2 2 + 2 + + + +
Strong Typing Y 1 N N N Y Y Y
Monolithic Variables <Ax. (£ <x>)> Y Y Y Y Y N Y Y
Reflection run or eval N N N Y N Y N Y
Lifting lift Y Y Y Y Y Y¢ Y? Y
X-Stage Persistance Af.<Ax.f © N N N N N N N Y
X-Platform Portability Y Y Y Y Y Y Y N

“Can be expressed at each ground datatype manually.

®Can be expressed at each ground datatype manually.
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Figure 2: Comparative feature set

Discussion and Related Works

A summary of the distinguishing characteristics of other
work on multi-stage languages is shown in figure 2. In
the figure we list whether or not that work contains the
properties we believe to be important. Those properties

are:

Staging: Staging can be expressed in all these lan-
guages, in the sense that code representing expres-
sions can be expressed, and that applications can
be delayed to future stages. In this row, “2” means
two stages are supported, and “+” means arbi-
trary number of stages is supported.

Strong Typing: In a single stage language, strong
typing ensures that a well-typed program “cannot
go wrong” by applying functions to arguments of
the wrong type. In addition, multi-stage programs
can go wrong if a computation attempts to use a
variable before it is available. A strongly typed
multi-stage language protects against both kinds
of errors.

Monolithic Variables: Whether a variable from one
stage can be used in all reasonable ways at that
same stage. In the example, £ is applied to <x>,
and hence £ is acting as a “code transformer”.

run or eval function: The languages also come
with different set of multi-stage programming con-
structs. In particular, not all the language allow
reflection in the form of a run or eval function.
Most notably, even in the most recent work of
Davies, it was not known how eval could be in-
cluded in the language [6].

Lifting: The ability to convert a value of ground
type into its representation as a literal.

Cross-Stage Persistence: This is the most distin-
guishing feature of MetaML, and has been dis-
cussed in detail in this paper. To our knowledge,
this feature has not been proposed or incorpo-
rated into any multi-stage programming language.
In essence, cross-stage persistence means that the
programmer can use a variable bound in any stage
in an expression executed in any future stage. Al-
ternatively, 1t allows us to stage expressions con-
taining free variables, as long as the type system

1s satisfied that these variables are available before
this expression is evaluated.

Cross-Platform Portability: The ability to print
generated code as text. This allows code gener-
ated on one machine to be compiled and run on
other machines. If code embeds its own “local en-
vironment” this becomes considerably more diffi-
cult. The loss of this ability is the price paid for
cross stage persistence.

In what follows is an historical perspective of the

work highlighted in the table:

e NN: Nielson and Nielson pioneered the investiga-

tion of staged languages with their two-level func-
tional language [25, 24]. They presented rules for
the well-formedness of the binding-times of expres-
sions in the language, from which MetaML’s type
rules are derived. They also sketched guidelines for
a multi-stage (“B-level”) language. The two-level
language is widely used to describe binding-time
annotations in the partial evaluation literature.

GA: Gomard and Jones use a statically-typed two-
stage language for partial evaluation of the un-
typed A-calculus [11]. The language allows the
treatment of expressions containing monolithic free
variables. They use a “const” construct only for
constants of ground type. Our treatment of vari-
ables in the formal semantics is inspired by their
work.

GB: Gliick and Jgrgensen [9] present the novel idea
of multi-level BTA, as a very efficient and effective
alternate to multiple self-application. An untyped
multi-level language based on Scheme is used for
the presentation. Our study of MetaML is at a
more basic level: MetaML 1s an abstract calculus.
It 1s also notable that all intermediate results in GJ
are printable, i.e., have an intensional representa-
tion. In MetaML, cross-stage persistence allows us
to have intermediate results (between stages) that
contain constants for which no intentional repre-
sentation is available. While this i1s very conve-
nient for run-time code generation, it makes the
proper specification of MetaML more difficult. For
example, we can’t use [9]’s “Generic Code Genera-
tion functions” to define the language. A latter pa-
per [10] demonstrates the impressive efficiency of




MBTA, and the use of constraints-solving methods
to perform the analysis. The MBTA is type-based,
but underlying language is dynamically typed.

Th: Thiemann [31] studies a two-level language
with eval, apply, and call/cc, in the context of
studying the partial evaluation of a greater subset
of scheme than was done previously. A BTA based
on constraint-solving is presented. Although the
problems with eval and call/cc are highlighted,
and unlike with MetaML, there is no explicit no-
tion of partially static types, an so, the complex-
ity of introducing eval into a multi-stage language
does not manifest itself. Thiemann also deals with
the issue of variable-arity functions, which is a
practical problem when dealing with eval in Scheme.

HG: Hatcliff & Gliick studied a multi-stage flow-
chart language called S-Graph-n, and thoroughly
investigated the issues involved in the implemen-
tation of such a language [12]. The syntax of
S-Graph-n explicitly captures all the information
necessary for specifying the staging of a compu-
tation: each construct is annotated with a num-
ber indicating the stage during which it is to be
executed, and all variables are annotated with a
number indicating the stage of their availability.
S-Graph-n is not statically typed, and the syntax
and formal semantics of the language are quite
sizable. Programming in S-Graph-n requires the
user to annotate every construct and variable with
stage annotations, and ensuring the consistency
of the annotations is the user’s responsibility. In
their work, Hatcliff & Gliick identified language-
independence of the internal representation of “code”
as an important characteristic of any multi-stage
language.

AP: Davies & Pfenning presented the first statically-
typed multi-stage language Mini-ML® [6]. The
type system is motivated by constructive modal
logic, and a formal proof is presented for the equiv-
alence of binding-time correctness and modal cor-
rectness. In contrast, the MetaML type-system
was motivated primarily by operational considera-
tions. Despite the different origins, the languages
have a lot in common: meta-brackets, escape, and
run roughly correspond to box, unbox, and eval re-
spectively. Mini-ML”’s O type constructor is also
similar to code. Interestingly, in Mini-ML", eval
is defined in terms of unbox, whereas in MetaML,
neither run or escape can be defined in terms of
each other. Also, while Mini-ML"” can simulate
persistance for code values, a stage-zero function,
for examBle, cannot be made persistant. Finally,
Mini-ML"™ allows delaying only closed terms, and
hence, functions like back are not expressible in
the language.

AO: The multi-stage language Mini-MLC [6] is
motivated by a linear-time constructive modal logic.
While the logic is more restricted than that behind
Mini-ML", the language is more expressive, allow-
ing staged expressions to contain monolithic free

variables. The two constructs of Mini-ML®; next

and prev, correspond quite closely to MetaML’s

meta-brackets and escape. The type constructor
(O also corresponds (roughly) to code. Unfortu-
nately, eval is no longer expressible in the lan-
guage. While Davies shows how lift can be de-
fined in terms of next and prev for a Succ/Zero
representation for naturals, it must be explicitly
programmed.

Sheard has also investigated richer type systems for
multi-staged programming. Sheard and Nelson investi-
gated a two-stage language for the purpose of program
generation [28]. The base language was statically typed,
and dependent types were used to generate a wider class
of programs than is possible by MetaML restricted to
two stages. Sheard and Shields [29] investigate a dy-
namic type systems for multi-staged programs where
some type obligations of staged computations can be
put off till run-time.

The type rule for run presented in this paper is mo-
tivated by the type system for runST [19].

The back and forth functions are similar to multi-
level n-expansion [5]. In MetaML, however, back and
forth are not only meta-level concepts or optimiza-
tions, but rather, first class functions in the language,
and the user can apply them directly to values of the
appropriate type.

13 Conclusion

We have described an n-stage multi-stage programming
language which we call MetaM L. MetaML was designed
as a programming language. Our primary purpose was
to support the writing of multi-stage programs. Be-
cause of this our design choices where different from
those of other multi-stage systems. We find the fol-
lowing features essential when writing multi-stage pro-
grams.

e Cross stage persistence. The ability to use
variables from any past stage i1s crucial to writ-
ing staged programs in the manner to which pro-
grammers are accustomed. Cross stage persistence
provides a solution to hygienic macros in a typed
language, i.e. macros which bind identifiers in the
enviroment of definition, which are “captured” in
the environment of use.

o Multi-stage aware type system. The type
checker reports phase errors as well as type errors
is crucial when debugging multi-stage programs,
thus ensuring Cross-Stage Safety.

¢ Display of code. When debugging, it is impor-
tant for users to observe the code produced by
their programs. This implies a display mechanism
(pretty-printer) for values of type code.

¢ Display of Constants. Constants originating
from persistent variables are hard to identify. The
% tags provide an approximation of where these
constants came from. While potentially mislead-
ing they are often quite useful.

e The Isomorphism between <4, ’c¢> —> <B, ’c>
and <A -> B, ’c>. The isomorphism (which can



only be expressed because of cross-stage persis-
tence), reduces, sometimes drastically, the num-
ber of annotations needed to stage multi-stage pro-
grams.

e Lift. The lift annotation makes it possible to force
computation in a early stage and lift this value
into a program to be incorporated at a later stage.
While never necessary (because of cross-stage per-
sistence) it helps produce code which is easier to
understand, because constants become explicit.

e Safe beta reduction. Safe beta reduction of the
application of explicit abstractions to explicit vari-
ables reduces the clutter in generated code.

To further illustrate this we provide an extended ex-
ample in Appendix A which stages a term rewriting
system in which the the rewriting rules become known
in the first stage and the terms to be rewritten become
known only in later stages.

14 Future Work

We have built an implementation which was used to
program the examples in this paper. Currently, the
implementation supports polymorphic type-inference so
that type information on bound variables 1s not neces-
sary. We are currently extending this implementation
to include all the features in core-ML.

We are also actively pursuing a subject reduction
theorem for A™. The multi-level syntax makes the
syntactic approaches to type soundness [32] difficult to
apply, because reduction contexts may appear inside
lambda expressions at levels greater than zero. We have
also found that the non-Hindley-Milner type judgement
for the run annotation complicates matters consider-

ably.
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A Term Rewriting: An Extended Example

In this section we provide an extended example which
illustrates multi-stage programming.

Dershowitz [8] defines a term-rewriting system as a
set of directed rules. Each rule is made of a left-hand
side and a right-hand side. A rule may be applied to a
term ¢ if a subterm s of { matches the left-hand under
some substitution o. A rule is applied by replacing s
with ¢/, where ¢’ is the result of applying the substitu-
tion o to the right-hand side. We say ‘¢ rewrites (in one
step) to t'”; and write t = #'. The choice of which rule
to apply is made non-deterministically. As an example,
here are the rules for a Monoid [8]:

71 r+0 — «zx
To O+x — =
rs: x4+ (y+z) = (x+y +=

Variables z, y, and z in the rules can each match any
term. If a variable occurs more than once on the left-
hand side of a rule, all occurrences must match identical
terms. We call this the compatibility condition. These
rules allow us to have derivations such as:

(@+b)+ 0+ (d+¢))

= by ry,0 =[(d +e¢)/z]
(a+b)+(d+e)

= by rs,o =[(a+b)/x,d/y, e/z]
(a4 +d)+e

where the subterm being rewritten (s) has been under-
lined.

Generally, the rules do not change over the life of
the system. At the same time, the basic form of the
matching function is a simultaneous traversal of a sub-
ject term and the left-hand side of the rule it is being
matched against. This offers an opportunity for stag-
ing: We can “specialize” matching over the rules in a
first stage, and eliminate the overhead of traversing the
left-hand side of the rules. Not only that, but as we
will see, we can also remove a significant amount of ad-
ministrative computations involved in constructing and
applying the substitution o. One would expect that this
would significantly speed up the rewriting system.

Terms can be implemented using the following MetaML

type:

datatype ’a T = Const of int
| Var of string
| Op of (a * string * ’a);



The declaration introduces a type constructor T pa-
rameterized by another type, >a. The constructors of
this type are Const, Var and Op representing one level of
an integer, variable, or infix binary term, respectively.
The following definitions will also be used:

datatype Term = In of (term T);

datatype ’a Maybe = Nothing of unit | Just of ’a;
type Sub = ((string * term) List) Maybe;

type Rule = (Term * Term);

fun
fun
fun
fun

var x = In (Var x);
op x In (Op x);
out (In x) = x;

const x = In (Const x);

where Term ties the recursive knot in T to repre-
sent terms, and Sub is the type of substitutions, respec-
tively. The Maybe type provides a mechanism to write
functions that can fail to return a meaningful value by
returning Nothing () instead. Since pattern matching
may fail the substitution type is a Maybe type. We rep-
resent rules as an ordered pair of terms. Thus, r; would
be (op(var "x","+",int "0"),var "x"). The func-
tion out Term —> Term T removes a term from the
recursive type to the 1 level type.

To simplify, we focus on match, a function that matches
a rule with the whole subject term, that is, the special
case when s = . We assume that a separate helper
function applies match to all subterms of the subject
term.

Now, let us consider what the result of specializing
match over a rule should look like. If we take r{ : =+
0 — z as an example, then an good result should have
a form close to:

fun rewriteR1l term =
case (out term) of
Op (t1,s,t2) =>
if streq(s,"+")
then (case (out t2) of
Const n => if n=0 then t1 else term
| _ => term)
else term
| _ => term;

Here there is no interpretive overhead of traversing the
rule, and the substitution operation has also been com-
puted in the first stage. In the rest of this section,
we will see how far towards this goal we can go using
MetaML.

Al

Figure 3 presents the complete code for match, together
with a staged version. Note that if we erase the annota-
tions from the staged version, we get the source version
back. The source match function takes a pattern term
pat, a substitution msigma, a term term, and returns a
substitution. Recall that a substitution is a maybe type
and may be Nothing().

Hence, the type of the match function is @ — ¥ —
O — X, where © = Term, and ¥ = Sub.

If matchis passed an invalid substitution Nothing ()
the outer case-statement propagates the failure. Other-
wise, if the pattern term is a variable, the substitution is

An Implementation of match

extended appropriately after checking the compatibility
condition. Similarly, if the pattern term is an operator,
1t must be checked that the subject term is also an op-
erator with the same operation, and then the right- and
left-hand-sides of the pattern and the subject term are
recursively matched, extending the substitution. If the
pattern term is an integer, then the subject term must
also be an integer with the same value. In this case
the original substitution is returned. In all other cases,
match returns Nothing (), indicating that match has
failed.

The staged match function has type @ =< X ’a >—<
0,’a >—< X, ’a >. The type indicates that the pat-
tern term is inspected only in the first stage, and the
result is a specialized function that can be run in a fu-
ture stage. We can also define and annotate rewrite
using the helper function wrapper as follows:

(* wrapper : Rule -> <Term> -> <Term> *)
fun wrapper (lhs,rhs) term =
val ms = match lhs <Just []> term

let
in
< case ("ms) of
lothing () => "term
| Just (sigma) =>
subst sigma rhs > end ;

*)
<fn x => "(wrapper rule <x>)>;

(* rewrite : Rule -> <Term -> Term>
fun rewrite rule =

In Figure 4 the code generated for 1 : z+0 —
appears. The traversal of the pattern term has been
performed. Yet, compared with the code we derived
by hand, there are too many nested case-statements,
and the calls to subst and compatible have not been
performed.

Careful inspection shows that it should, in fact, be
possible to reduce the nested case-statements by meaning-
preserving transformations. If the outer case-statements
could be “pushed” through the inner ones, then we
would be able to simplify all the values at the leaves
of the inner if-statements. In particular, in every case
where we return Nothing (), the unchanged term t1
would be returned, and where Just (o) is returned
then the substitution subst o could be performed on
rhs.

Given that we were able to write the function rewriteR1
by hand, it should be clear that values of Maybe-type
need not appear in the generated code. Unfortunately,
this cannot be achieved by using only the staging an-
notations on the current program.

In particular, the test of the compatibility condition
in match cannot be performed at generation time since
the subject term 1s unknown. At the same time, this call
determines whether Nothing or Just is returned. This
implies match must return a value of type < Maybe
alpha,’a >. This means the generated code will con-
tain values of Maybe type.

Similarly, threading msigma through the recursive
calls to match stops us from being able to reduce the
calls to compatible and subst at generation time: The
result of both of these functions depends on the sub-
stitution list, but because we are forced to annotate
msigma to have type: <((string * Term)List)Maybe,
and not
((string * <Term, ’a >)List)Maybe, these two func-
tions cannot “access” the list at generation time.

a>



(* Source match: Term -> Sub -> Term -> Sub *)

fun match pat msigma term =
case (msigma) of
Nothing () => Nothing O
| Just (sigma) =>
(case (out pat) of
Var u =>

(* Annotated match: Term -> <Sub> -> <Term> -> <Sub> *)

fun match pat msigma term =
<case "msigma of
Nothing () => Nothing O
| Just (sigma) =>
“(case (out pat) of
Var u =>

if compatible u sigma term
then Just (cons((u,term),sigma))
else Nothing ()
| Op (t11,s1,t12) =>
(case (out term) of
Op (t21,s2,t22) =>
(if streq(s2,( s1))
then (match ti11
(match t12 msigma t22)
t21)
else Nothing ())
| _ => Hothing ()
| Const n =>
(case (out term) of
Const u => if u=n
then msigma
else Nothing ()
_ => Nothing O)));

| Op (t11,s1,t12) =>

| Const n =>

<if compatible u sigma “term
then Just (cons((u, term),sigma))
else Nothing (>

<case (out “term) of
Op (t21,s2,t22) =>
(if streq(s2, "(lift s1))
then ~(match t11
(match t12 msigma <t22>)
<t21>)
else Nothing ())
| _ => Hothing (>

<case (out “term) of
Const u => if u= “(lift n)
then "msigma
else Nothing ()
_ => Nothing ()>)>;

Figure 3: Normal and Annotated versions of the function match.

<(fn t1 =>
(case (case %out tl1 of
Op(tl,opl,tr) =>
if Ystreq (opl,"+")
then (case (case %out tr of
Const n =>

if %= (n,0) then Just(nil) else Nothing ()

| Var s => Hothing ()

| Op s => Nothing ()) of

Nothing () => Nothing O

| Just s => if Ycompatible "x" s tl then Just (%cons (("x",tl),s)) else Nothing ()

else Nothing ()
| Const n => Nothing ()
| Var s => Hothing ()) of
Hothing () => ti
| Just s => Y%subst s In Var "x"))>

Figure 4: Code generated from rule 1 = 2z 4+ 0 — z by function match.

That our first attempt at staging our example was
only partly successful, should not be too surprising.
Users of partial evaluation systems restructure their
programs to help BTA succeed all the time. Just be-

cause binding-time annotations are placed manually shouldn’t

exempt us from this requirement. Because we can touch,
see, and experiment with both the explicit annotations
and the code returned, it helps us understand and rea-
son about what is going on. Using the type system
to filter out obviously incorrectly phased programs was
also extremely useful. The strength of MetaML is the
mental model it provides to reason about what is going
on.

A.2 Continuation-Passing Style

Our solution needs to propagate the context (perform-
ing a substitution over the right-hand side of the rule)

into the leaves of the nested case expressions. This
suggests rewriting the source program in continuation-
passing style (CPS). This has been found to be quite
useful in partial evaluation systems [1].

Figure 5 shows both a source version of match using
an explicit continuation and an annotated two stage ver-
sion of the same function. The function takes a pattern
pat, a continuation k, a substitution msigma, and a term
term. This function actually has a rather polymorphic
type since nothing constrains the value returned by the
continuation k. ]gn the figure we have constrained the
continuation to have type substitution to term. The
continuation should apply the substitution to the right-
hand side of the rule, or return the term unchanged if
the substitution is a failure. Thus the wrapper function
could be written:

fun wrapper (lhs,rhs) term =
match lhs
(fn Nothing () => term | Just s => subst rhs s)




(* Source *)

type Cont = Sub -> Term type Sub’ = ((string * <Term>) List) Maybe;
type Cont’ = Sub’ -> <Term>
(* match : Term -> Cont -> Sub -> Term -> Term *) (* match : Term -> Cont’ -> Sub’ -> <Term> -> <Term> *)

fun match pat k msigma term =
case (msigma) of
Hothing () => k (Wothing())
| Just (sigma) =>
(case (out pat) of
Var u =>
if compatible u sigma term
then k (Just (cons((u,term),sigma)))
else k (WNothing ())
| Op (t11,s1,t12) =>
(case (out term) of
Op (t21,s2,t22) =>
(if streq(s2,s1)
then (match ti1
(fn s => match t12 k s t22)
ms igma
t21)
else k (Nothing ()))
| _ => k(Wothing ()))
| Const n =>
(case (out term) of
Const u => if u=n
then k msigma
else k (Nothing ())
_ => k(Nothing ())));

(* Annotated *)

fun match pat k msigma term =
case (msigma) of
Hothing () => k (Hothing())
| Just (sigma) =>
(case (out pat) of

| Op (t11,s1,t12) =>

| Const n =>

Var u =>
<if “(compatible’ u sigma term)
then "(k (Just (cons((u,term),sigma))))
else “(k (Hothing ()))>

<case (out “term) of
Op (t21,s2,t22) =>
(if streq(~(lift s1),s2)
then ~(match ti11
(fn s => match t12 k s <t22>)
ms igma
<t21>)
else “(k (Hothing ())))
| _ => “(k(Wothing ()))>
<case (out “term) of
Const u => if u= “(lift n)
then “(k msigma)
else “(k (Hothing ()))
_ => "(k(Wothing ()))>);

Figure 5: Normal and Annotated versions of the CPS style match.

(Just [1)

term;

The annotated version is again remarkably similar
to the original except for the annotations. The only
difference 1s that we needed to write a staged version of
the compatible function, since in the staged version a
substitution (Sub’) maps a string to a piece of code with
type term, rather than a term. We call this function
compatible’. It returns a piece of code with type bool.

fun compatible’ u sigma term =

case find u sigma of
Nothing() => <true>
| Just w => <termeq "w “term>;
Finally, the code generator can be constructed by

supplying a suitable substitution continuation. This
function needs a annotated substitution function which
returns a piece of code with type term rather than a
term, and 1s given below:

fun subst’ (In t) sig =
case (t) of

Var v =>
(case find v sig of
Hothing _ => <In (Var "(lift v))>

| Just w => w)
| Op (t1,s,t2) =>
<In (Op ("(subst’ t1 sig),
“(lift s),
“(subst’ t2 sig))) >
| Const i => <In (Const “(lift i))>;

fun wrapper (lhs,rhs) term =
match lhs
(fn Nothing () => term | Just s => subst’ rhs s)
QJust [

term;

When this function is used to generate code for the
rule 71 = 2 4+ 0 — « the following is generated:

<fn t =>
(case %out t of
Op(tl,s,tr) =>
if Ystreq ("+",s)
then (case %out tr of
Const n => if %= (n,0) then tl else t

| Var s => t

| Op z => t)
else t
| Const n => t
| Var z => t)>

In addition to being compact and free of reducible
nested case-statements or calls to subst or compatible,
this output is virtually identical to the idealized code
we presented for rewriteR1. We have observed that
the code generated for a variety of other rules is equally
as compact.



