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performance is important. But there is very little lan-guage support for writing multi-stage programs. Thispaper extends previous work on multi-stage programingwith features that are of practical use to real program-mers.We introduce MetaML, a statically-typed multi-stageprogramming language extending Nielson and Nielson'stwo-level notation to an arbitrary number of stages (sim-ilar to their B-level language). MetaML is an extensionof a Hindley-Milner polymorphically-typed [22] call-by-value �-calculus [13] with support for sums, products,recursion, polymorphism,primitive datatypes and statictype-inference. It provides the following extensions notfound in previous work on multi-stage systems:� Four distinct staging annotations, which we be-lieve are necessary and su�cient for all multi-stageprogramming. (Section 5) These annotations gen-eralize and safely combine those published previ-ously [25, 12, 7, 6].� A type system ensuring the well-formedness of ac-ceptable multi-stage programs. Type checking isdone once and for all before the �rst stage (Section10.1).� Variables of any stage are available in all futurestages. This feature, in a language which also con-tains run1 makes MetaML's annotations strictlymore expressive than the languages of Nielsen &Nielsen [25, 24], Davies & Pfenning [7], and Davies[6]. We also deal with the interesting technicalproblem of ensuring the hygienic binding of freevariables (Section 10.2) in code expressions.� A non-Hindley-Milner, second order type judge-ment for the run annotation to ensure that no codeis ever run in a context in which it is unde�ned.As a consequence of the above properties, MetaMLprovides a programming language suitable for express-ing staged computations explicitly. We believe thatMetaML can have positive implications for understand-ing and communicating ideas about multi-stage pro-grams, partial evaluation and the complex process ofbinding-time analysis in much the same way that theboxed / unboxed(#) distinction provides a language forunderstanding boxing optimizations as source-to-sourcetransformations [16].1An eval-like operator



2 Why Multi-stage Programs?The concept of a stage arises in a wide variety of sit-uations. For a compiled language, there are two dis-tinct stages: compile-time, and run-time. But threedistinct stages appear in the context of program gener-ation: generation, compilation, and execution. For ex-ample, the Yacc parser generator �rst reads a grammarand generates C code; second, this program is compiled;third, the user runs the object code.Yet despite the numerous examples of multi-stagesoftware systems, almost all these systems have realizedstaging in ad-hoc ways. Our goal is to provide a lan-guage with well-designed support for multi-staged pro-gramming by using explicit staging annotations. In par-ticular, a multi-stage programming language supplies abasis for generation technology. Generators can providedramatic improvements in the following areas:E�ciency. Specializing a function on a �xed argu-ment can lead to dramatic e�ciency gains. Programgenerators can provide the same e�ciency gains thatpartial evaluation does.Productivity and reuse. When a programmingtask or activity becomes routine, programmers can useprogram generators to encapsulate their knowledge ofthe routine task. This capture of a problem familyrather than a single problem increases programmer pro-ductivity. Program generators let experts capture theirknowledge in a clear (and hence reusable) notation thatcan then be used for synthesising the desired softwarecomponent [21, 17, 18].Reliability and quality. The greatest source of er-rors in code maintenance is human intervention. Whenless human intervention is needed to modify a softwareproduct, there are proportionately fewer opportunitiesfor error insertion and less rework of code is neces-sary. Automatically generated components require lit-tle manual rework after a re-generation.Our language, MetaML, was designed as basis for anintegrated generator system. It provides an approachradically di�erent from, and superior to, the classic\programs-as-strings" view that seems to predominatein many ad-hoc multi-stage software systems. MetaMLis tightly integrated in this sense.3 Relationship to Partial EvaluationToday, the most sophisticated automatic staging tech-niques are found in partial evaluation systems [15]. Par-tial evaluation optimizes a program using a priori infor-mation about some of that program's inputs. The goalis to identify and perform as many computations as pos-sible in a program before run-time.O�ine partial evaluation has two distinct steps, binding-time analysis (BTA) and specialization. BTA deter-mines which computations can be performed in an ear-lier stage given the names of inputs available before run-time (static inputs).In essence, BTA performs automatic staging of theinput program. After BTA, the actual values of the in-puts are made available to the specializer. Following

the annotations, the specializer either performs a com-putation, or produces text for inclusion in the output(residual) program.The relationship between partial-evaluation and multi-stage programming is that the intermediate data struc-ture between the two steps is a two-stage annotated pro-gram [2], and that the specialization phase is (the �rststage in) the execution of the two-stage annotated pro-gram produced by BTA. Recently, Gl�uck and J�rgensenproposed multi-level BTA and showed that it is an e�-cient alternative to multiple specialization [9, 10]. Theirunderlying annotated language is closely related to MetaML.4 Why Explicit Annotations?If BTA performs staging automatically, why should pro-grammers stage programs manually? They shouldn'thave to, but there are several important reasons whythey may want to:Pragmatic. While there are advantages to dis-cussing the semantics of annotated programs and thetechniques of BTA at the same time, we feel that thecomplexity of the semantics of annotated programs war-rants studying them in (relative) isolation of other par-tial evaluation issues.Pedagogical tool. It has been observed that itis sometimes hard for users to understand the work-ings of partial evaluation systems [14]. New users of-ten lack a good mental model of how partial evaluationsystems work. Although BTA is an involved process,requiring special expertise, the annotations it producesare relatively simple and easy to understand. However,new users are often uncertain: What is the output ofa binding-time analysis? What are the annotations?How are they expressed? What do they really mean?The answers to these questions are crucial to the e�ec-tive use of partial evaluation. Our observation is thatprogrammers can understand the annotated output ofBTA, without actually knowing how BTA works. Hav-ing a programming language with explicit staging an-notations would help users of partial evaluation under-stand more of the issues involved in staged computation,and, hopefully, reduce the steep learning curve currentlyassociated with learning to use a partial evaluator ef-fectively [15]. Nielson & Nielson's two-stage notation isthe only widely accepted notation for expressing stagedcomputation. But Nielson & Nielson's notation is notwidely viewed as a programming language, perhaps be-cause over-bars and under-bars do not appear on thestandard keyboard and no implementation of it is inwidespread use.Controlling Evaluation Order. When perfor-mance is an issue, control of evaluation order is essen-tial. BTA optimizes the evaluation order, but some-times it is just easier to say what you want than to forcea BTA to discover it. Automatic analyses like BTA arenecessarily incomplete, and can only approximate theknowledge of the programmer. By using explicit anno-tations the programmer can exploit his full knowledgeof the program domain.In addition, BTA for programs with more than twostages is still imprecise. Hand annotation may be the



only feasible mechanism for staging multi-stage pro-grams, and may be the onlymechanism expressive enoughfor the degree of control needed in many circumstances.High-Level Program Generation. As we willalso illustrate in this paper, staging annotations alsoprovide a powerful tool for high-level program genera-tion. No explicit construction of parse trees is needed.As a consequence, generators can be simpler and morereliable than their hand constructed counterparts. It isalso easier to verify the correctness of both the gener-ators and the programs they generate, as the issues ofrepresentation are hidden away from the programmer.5 MetaML's Multi-Stage Programming An-notationsThe two-level notation of Nielson & Nielson [25] featurestwo annotations: over-bars to mark computations of the�rst stage, and under-bars to mark those of the secondstage. Although quite powerful, this is only a subsetof the annotations needed for generic multi-stage pro-gramming. MetaML has four programming constructs:� Meta-Brackets (< >) are the primarymeans for de-laying a computation. For example, whereas theexpression 40+2 speci�es a current (or �rst) stagecomputation, <40+2> speci�es one for the next (orsecond) stage. A binary type constructor < ,> is used to distinguish the type of the latter ex-pression from the �rst one. For example, 7 hastype int, but <7> has type <int,'a>, where as isin ML 'a is a free type variable. The expression<<(1,<2+1>)>> has type:<<(int * <int,'c>),'b>,'a> and the additionwill be performed in the fourth stage. The secondtype in the code type constructor represents thename of the context in which this code can execute.In the examples above the context is completelyunconstrained hence the type variables. More aboutthis in section 10.� Escape (~ ) can occur only inside enclosing meta-brackets. It is the mechanismused to insert smallerdelayed computations into larger ones. Escape al-lows its argument to escape the \freeze" imposedby a surrounding meta-bracket and to \splice" itsresult into the delayed computation being built.For example:let val a=<1+4> in <72+~a> endreturns the expression <72+(1+4)>. The escapedcomputationmust yield a piece of code with a typethat can be inserted in the context where the es-cape appears. The type system ensures that thisis the case. For example, if x has type <int,'a>,then <(x,1)> has type <<int,'a>,'b> and <(~x,1)>has type <(<int,'a> * int),'b>. Objects of typecode are �rst class citizens, and can even be �-abstracted. For example:val add 72 later = fn a => <72+~a>

declares a �rst class function with type <int,'a>-> <int,'a>, and the expression add 72 later <8>returns <72+8>. From the language designer's pointof view, escape poses a very interesting technicalproblem, as not all uses of escape are reasonable.We discuss this issue in Section 10.1.� Run (run ) takes a code-valued argument andruns it. It is the only way a computation \frozen"using meta-brackets can be computed (or \forced")in the current stage. The argument to runmust beof code type. Having run in the language impliesintroducing a kind of re
ection [30], and allowsa future-stage computation to be performed now.To illustrate, consider the expression:let val a = <50-10> in 2+(run a) endThis expression has type int and returns the value42 when computed. Although run is not an anno-tation used in the result of BTA, it is an essentialfeature for a programmer who wants to use multi-stage programming to control evaluation order .� Lift (lift ) allows the user to convert any groundvalue (not containing a function) into code. Con-trast this with meta-brackets which converts anysyntactic expression into a piece of code. Lift ismost often used in conjunction with escape, be-cause only pieces of code can be \spliced-in". Forexample, in the expression <1+~(lift 2+3)>, theescape forces lift (2+3) to be computed in the�rst stage. The addition evaluates to the value5, and lift converts this result into the piece ofcode <5>, which is spliced (because of the escape)back into the original expression to return <1+5>.Lift can be used on structured values such as tu-ples and lists as long as they do not contain func-tions. For example lift [(2,3),(2*1,4)] eval-uates to [(2,3),(2,4)]. Function values can-not be lifted using lift, as we cannot derive an in-tensional representation for them in general (Thisdoes not mean that function values cannot be de-layed using meta-brackets. See Section 7.)Precedence Issues. The escape operator (~ ) hasthe highest precedence; even higher than function appli-cation. This allows us to write: <f ~x y> rather than<f (~x) y>. The lift (lift ) and run (run ) oper-ators have the lowest precedence. The scope of theseoperators extends to the right as far as possible. Thismakes it possible to write <f ~(lift g y) z> ratherthan <f ~(lift (g y)) z>.6 Hand-Staging: A Short ExampleUsing MetaML, the programer can stage programs byinserting the proper annotations at the right places inthe program. The programmer uses these annotationsto modify the default (strict) evaluation order of theprogram.In our experience, starting with the type of the func-tion to be hand-staged makes the number of di�erentways in which it can be annotated quite tractable. This



leads us to believe that the location of the annotationsin a staged version of a program is signi�cantly con-strained by its type. For example, consider the functionmember de�ned as:(* member : int -> int list -> bool *)fun member v l =if (null l)then falseelse if v=(hd l)then trueelse member v (tl l);The function member has type int -> List int ->bool 2. A good strategy for hand annotating a programis to �rst determine the target type of the desired an-notated program. In the member example, the list pa-rameter l is available in the �rst stage, and the elementsearched for will be available later. So, one target typefor the hand-staged function is <int,'a>-> List int-> <bool,'a> .Now we can begin annotating, starting with the wholeexpression, and work inwards until all sub-expressionsare covered. At each step, we consider what annota-tions will \�x" the type of the expression so that thewhole function has a type closer to the target type.The following function realizes this type:(* member : <int,'a> -> int list -> <bool,'a> *)fun member v l =if (null l)then <false>else <if ~v=~(lift hd l)then trueelse ~(member v (tl l))>;In this example, and others, when giving the types offunctions in comments, we write <int> for <int,'a>and <<int>> for <<int,'a>,'b> (and so on) when thecontext of the code types is completely unconstrained.The annotation ~(lift hd l) is used rather than hd lin order to ensure that hd is performed during the �rststage. Otherwise, all selections of the head element ofthe list would have been delayed until the code con-structed was run in a later stage.The meta-brackets around the branches of the out-ermost if-expression ensure that the return value ofmember will be a <?,?>. The �rst branch (false) needsno further annotations, and makes the return value pre-cisely a <bool,'a>. Moving inwards in the else branch,the condition of the inner if-expression (in particular~v) forces the type of the v parameter to have type<int,'a> as planned.Just like the �rst branch of the outer if-statement,the whole of the inner if-statement must return bool.So, the �rst branch (true) is �ne. But because therecursive call to member has type <bool,'a>, it mustbe escaped. Inserting this escape also implies that therecursion will be performed in the �rst stage, whichis exactly the desired behavior. Thus, the result ofthe staged member function is a recursively-constructedpiece of code with type bool.Evaluating <fn x => ~(member <x> [1,2,3])> yields:2Function \=" has type (int * int) -> bool which forces v and lto have types int and List int, respectively.

<fn d1 =>if d1 %= 1then trueelse if d1 %= 2then trueelse if d1 %= 3then trueelse false>The percentage sign (%) at the beginning of an iden-ti�er indicates that it was bound to a value in the envi-ronment in which the code was constructed. Its precisemeaning will be explained in Sections 7 and 10.2.7 The Design of MetaMLMetaML was designed as a statically-typed program-ming language, and not as an internal representationfor a multi-stage system. Our primary goals were: �rst,it should be easy to write multi-staged programs, secondit should be as 
exible as possible, and third it shouldensure that only \reasonable things" can be done usingthe annotations. Therefore, our design choices wheredi�erent from those of other multi-stage systems suchas Nielson & Nielson, Hatcli� & Gl�uck, and Davies &Pfenning. In particular, we consider the following qual-ity crucial to MetaML:Cross-stage Persistence: A variable i bound instage n, will be available in stages n, n + 1 and all fu-ture stages.To the user, this means the ability to stage non-closed expressions. Non-closed expressions, like �-abstractionswith free variables, must resolve their free variable oc-currences in the static environment where the meta-bracketed expression occurs. One can think of a codevalue as containing an environment which binds its freevariables. For example the expression,let val a=1+4 in <72+a> endreturns a value <72+%a>. The % sign indicates that thefree variable a is bound in the value's local environment.The % sign is printed by the display mechanism. Thevariable a has been bound during the �rst stage to theconstant 5. In fact, in MetaML %a is not a variable, butrather, a new constant, and the name \a" is only hint tothe user about where this constant originated. When %ais evaluated in a later stage, it will return 5 independentof the binding for the variable a in the new context sinceit is bound in the value's local environment. Arbitraryvalues (including functions) can be delayed using thishygienic binding mechanism.Specifying this behavior turns out to be non-trivial.In an interpreter for a multi-stage language, this re-quirement manifests itself as complex variable-bindingrules, the use of closures, or capture-free substitutions.Our semantics addresses this in a rather unique way(See Section 10.2).Cross-Stage Persistence poses a problem when stag-ing is used for program generation. If the �rst stageis performed on one computer, and the second on an-other, we must \port" the local environments from the



�rst machine to the second. Since arbitrary objects,such as functions, closures, can be bound in these localenvironments this can become a problem. Currently,MetaML assumes that the computing environment doesnot change between stages. This is part of what wemean by having an integrated system.Cross-Stage Persistence can be relaxed by allowingvariables to be available at exactly one stage. Thisseems to have been the case in all multi-stage languagesknown to us to date [25, 12, 7, 6]. The primary di�-culty in implementing persistence is the proper hygienictreatment of free variables. We will show how this prob-lem can be solved, thus allowing the user to stage signif-icantly more expressions than was previously possible.But even in MetaML, it will not be possible to stageevery expression in the language. In particular, we mustensure that the user can only specify computations thatrespect the following condition:Cross-Stage Safety: An input �rst available at stagem cannot be used at a stage n if m > n.The problem arises with the use of the escape anno-tation. In particular, consider the expressionfn a => <fn b => ~(a+b)>which is an (incorrectly) staged version of the function�a:�b:a+b. Operationally, the annotations require com-puting a+b in the �rst stage, while the value of b will beavailable only in the second stage! Therefore, MetaML'stype system was designed to ensure that \well-typedprograms won't go wrong", where going wrong now in-cludes the violation of the cross-stage safety condition,as well as the standard notions of \going wrong" [22] instatically-typed languages.In our experience with the language, having a typesystem to screen-out programs containing this kind oferror is a signi�cant aid in hand-staging programs.8 Isomorphism for Code TypesRecall the types of the staged member function: <int,'a>-> List int -> <bool,'a>, and the type of the term<fn x => (member <x> [1,2,3])>which is: <int,'a>-> bool. This suggests that a function from code tocode can be turned into the code of a function. This isimportant to users because <alpha,'a> -> <beta,'a>is a function and cannot be printed or observed, while<alpha -> beta,'a> is a representation of a function,and can be printed and observed. We can de�ne twofunctions to convert between these two types:(* back: <'A,'c> -> '<B,'c> -> <('A -> 'B),'c> *)fun back f = <fn x => ~(f <x>)>;(* forth: <('A -> 'B),'c> -> (<'A,'c> -> <'B,'c>) *)fun forth f x = <~f ~x>;Here we use capitalized type variables to distinguishthe type in the code from the context the code mustevaluate in.The conversion is not between syntactic forms, butsemantic values. For example, the code produced by an

application of back is in a language extended with a newconstruct that allows us to embed any value into syntax,without needing to know about its intentional represen-tation. Thus, we are really not converting functions intosource code, but rather, returning syntax that denotesthis function under our semantics. Under this proviso(and disregarding termination issues) the compositionof these two functions is identity under MetaML's se-mantics (see Section 10). They de�ne an isomorphismbetween values of type <A,'c> -> <B,'c> and <A ->B,'c>. [3].We note that back and forth coorespond to 2-leveleta-expansion which Danvy �nds to be an importantelement in partial evaluation[5].This isomorphism can also be viewed as a formaliza-tion of the intuitive equivalence of a symbolic evalua-tor [23] <A,'c> -> <B,'c> and the syntactic represen-tation of a function <A -> B,'c>. It seems that thisisomorphism, which MetaML has allowed us to makeconcrete, is at the heart of concise reduction systems,such as Danvy's type-directed partial evaluator [4] andits extensions [27]. Under MetaML's semantics, we canswitch between the two types without needing to worryabout substitution or variable capture.This has profound implications for the writing ofstaged functions. In our experience annotating a func-tion to have type <A,'c> -> <B,'c> requires less an-notations than annotating it to have type <A -> B,'c>and is often easier to think about. Because we are moreused to reasoning about functions, this leads us to avoidcreating functions of the latter kind except when weneed to inspect the code.The type of back is one of the axioms of the logic sys-temmotivating the type system of Davies [6]. MetaML'stype system was motivated purely by operational rea-sons. At the same time, it is important for the pro-grammer to have both coercions, thereby being able toswitch back and forth between the two isomorphic typesas the need arises.This becomes even more important when writingprograms with more than two stages. Consider thefunction:fun back2 f = <fn x => <fn y => ~~(f <x> <<y>>)>>;back2 : (<a> -> <<b>> -> <<c>>) -> <a -> <b -> c>>This allows us to write a program which takes a <a>and a <<b>> as arguments and which produces a <<c>>and stage it into a three-stage function. Our experienceis that such functions have considerably fewer annota-tions, and are easier to think about. We illustrate thisin the next section.9 A Multi-Stage ExampleWhen information arrives in multiple phases it is pos-sible to take advantage of this fact to get better per-formance. Consider a generic function for computingthe inner product of two vectors. In the �rst stage thearrival of the size of the vectors o�ers an opportunityto specialize the inner product function on that size,removing the overhead of looping over the body of thecomputation n times. The arrival of the �rst vectora�ords a second opportunity for specialization. If theinner product of that vector is to be taken many times



with other vectors it can be specialized by removing theoverhead of looking up the elements of the �rst vectoreach time. This is exactly the case when computing themultiplication of 2 matrixes. For each row in the �rstmatrix, the dot product of that row will be taken foreach column of the second. This example has appearedin several other works [9, 20] and we give our versionbelow:Below we give three versions of the inner productfunction. One (iprod) with no staging annotations,the second (iprod2) with two levels of annotations, andthe third (iprod3) with two levels of annotations butconstructed with the back2 function. In MetaML wequote relational operators involving < and > because ofthe possible confusion with meta-brackets.(* iprod : int -> Vector -> Vector -> int *)fun iprod n v w =if n '>' 0then ((nth v n) * (nth w n)) + (iprod (n-1) v w)else 0;(* iprod2 : int -> <Vector -> <Vector -> int>> *)fun iprod2 n = <fn v => <fn w =>~~(if n '>' 0then << (~(lift nth v n) * (nth w n)) +(~(~(iprod2 (n-1)) v) w)>>else <<0>>) >>;(* p3 : int -> <Vector> -> <<Vector>> -> <<int>> *)fun p3 n v w =if n '>' 0then << (~(lift nth ~v n) * (nth ~~w n)) +~~(p3 (n-1) v w) >>else <<0>>;fun iprod3 n = back2 (p3 n);Notice that the staged versions are remarkably similarto the unstaged version, and that the version writtenwith back2 has fewer annotations. The type inferencemechanism was a great help in placing the annotationscorrectly.An important feature of MetaML is the visualizationhelp that the system a�ords. By \testing" iprod2 onsome inputs we can \see" what the results are immedi-ately.val f1 = iprod3 3;f1 : <Vector -> <Vector -> int>> =<fn d1 =><fn d5 =>(~(lift %nth d1 3) * (%nth d5 3)) +(~(lift %nth d1 2) * (%nth d5 2)) +(~(lift %nth d1 1) * (%nth d5 1)) +0 >>When this piece of code is run it will return a function,which when applied to a vector builds another piece ofcode. This building process includes looking up eachelement in the �rst vector and splicing in the actualvalue using the lift operator. Using lift is especiallyvaluable if we wish to inspect the result of the nextphase. To do that we evaluate the code by running it,and apply the result to a vector.

val f2 = (run f1) [1,0,4];f2: <Vector -> int> =<fn d1 => (4 * (%nth d1 3)) +(0 * (%nth d1 2)) +(1 * (%nth d1 1)) + 0 >Note how the actual values of the �rst array appear inthe code, and how the access function nth appears as aconstant expression applied to the second vector d1.While this code is good, it does not take full advan-tage of all the information known in the second stage.In particular, note that we generate code for the thirdstage which may contain multiplication by 0 or 1. Thesemultiplications can be optimized. To do this we writea second stage function add which given an index intoa vector i, an actual value from the �rst vector x, anda piece of code with the name of the second vector y,constructs a piece of code which adds the result of the xand ymultiplication to the code valued fourth argumente. When x is 0 or 1 special cases are possible.(* add : int -> int -> <Vector> -> <int> *)fun add i x y e =if x=0then eelse if x=1then <(nth ~y ~(lift i)) + ~e>else <(~(lift x) * (nth ~y ~(lift i))) + ~e>;This specialized function is now used to build the secondstage computation:(* p3 : int -> <Vector> -> <<Vector>> -> <<int>> *)fun p3 n v w =if n = 1then << ~(add n (nth ~v n) ~w <0>) >>else << ~(add n (nth ~v n) ~w< ~~(p3 (n-1) v w) >) >>;fun iprod3 n = back2 (p3 n);Now let us observe the result of the �rst stage compu-tation.val f3 = iprod3 3;f3: <Vector -> <Vector -> int>> =<fn d1 =><fn d5 =>~(%add 3 (%nth d1 3) <d5>< ~(%add 2 (%nth d1 2) <d5>< ~(%add 1 (%nth d1 1) <d5><0>)>)>) >>This code is linear in the size of the vector; if we hadactually inlined the calls to add it would be exponential.This is why being able to have free variables (such asadd) in code is indispensable. Now let us observe theresult of the second stage computation:val f4 = (eval f3) [1,0,4];f4: <Vector -> int> =<fn d1 => (4 * (%nth d1 3)) + (%nth d1 1) + 0>Note that now only the multiplications that contributeto the answer are evident in the third stage program. Ifthe vector is sparse then this sort of optimization canhave dramatic e�ects.



10 Semantics of �MFigure 1 presents the static and dynamic semantics ofthe meta-lambda calculus, �M. This calculus is a mini-MetaML, which illustrates the relevant features of thestaging annotations on the semantics of MetaML.�M is a call by value lambda calculus which supportsintegers, functions, and code (int j t ! t j hti). Thesyntax of terms includes integer constants, variables,applications, abstractions (i j x j e e j �xt : e) andthe four staging annotations: meta brackets, escape, liftand run (<e> j ~ e j liftt e j run e). In addition,the constant operator (" v) allows us to injects a valueinto a term, and is crucial to the conciseness of ourimplementation of Cross-Stage Persistence. It is theseconstants that we print out as a % followed by a name.Note that users do not write programs with the con-stant operator; it is only introduced during reduction.Every shift in stage from a lower stage to a higher stageenriches the syntax passed to the higher stage with anew set of constants; the values of the previous stagethat could still be referenced in the future.10.1 Static SemanticsThe static semantics is expressed as a set of inferencerules that determine if a term is well-formed, and deter-mine its type. The judgement � � ǹ x : �1; �2 is readunder the context stack �, the type environment �, theterm x has type �1 at level n and may execute in thecontext with name �2.The intutition behind contexts, is that any expres-sion can only execute in a context which contains bind-ings for its free variables. The type inference algorithmassigns the same context name to expressions that mustexecute in the same context.The type assignment � maps variable to types andlevels and context names. Every variable is bound atsome particular level, namely, the level of the abstrac-tion in which it is bound (Abs rule). The role of n in thejudgement � ǹ x : � is to keep track of the level of theexpression being typed. The level of a subexpression isthe number of uncancelled surrounding brackets. Onesurrounding escape cancels one surrounding bracket.Hence, n is incremented for an expression inside meta-brackets (Bracket), and decremented for one inside anescape (Escape). Note that the rule Escape does not al-low escape to appear at level 0. In other words, escapemust appear inside uncancelled meta-brackets.There are three main kinds of errors related to stag-ing annotations that can occur at runtime:� A variable is used in a stage before it is available,or� Run or escape are passed values having a non-codetype, or� Run is passed a code-type value with free variables.This manifests itself in the type, where the nameof the context is constrained.The �rst kind of error is checked by the Var<n andVar=n rules. Because there is no rule for m > n en-forces Cross-Stage Persistence: Variables available in

the current stage (m) can be used in all future stages(n). The second kind of error is checked by the Runn and Esc n+1 rules. Detecting the third kind of erroris an important contribution of this paper, and is ac-complished by the free variable check in the rule Run n.Only code whose context is completely unconstrainedmy be run.For the standard part of the language, code (nowdenoted by h i for conciseness) is a normal type con-structor that needs no special treatment and the leveln is never changed. Similar type systems have beenidenti�ed and used by Gomard and Jones [11], Davies& Pfenning [6] and Davies [7].An important di�erence between these type systemsand the one in Figure 1 is that in all previous statically-typed multi-stage languages [25, 7, 6], only the followingmonolithic type rule is used for variables:Var (Monolithic): (� x) = �m� ǹ x : � when m = nWhereas we allow the more general condition m � n.This means any generated expressions may as well beevaluated in the empty environment since all well-typedterms are closed terms and cannot reference any freevariables. For example the expression:val lift like = fn x => <x>is accepted, because inside the meta-brackets, n = 1,and (� x) = �0. This expression is not accepted bythe monolithic variable rule. Note that while the wholefunction has type � ! h�i it does not provide us withthe functionality of lift, because the result of applyinglift like to any value always returns <%x>, and not aliteral expression denoting the value. But this exampledemonstrates that meta-brackets can be used to \lift"any value, including functions. This is explained in thedynamic semantics.The type system rejects the expressionfn a => <fn b => ~(a+b)>because, inside the escape, n = 0, and (� b) = �1, but1 > 0.10.2 Dynamic SemanticsThe dynamic semantics provides meaning to well-typedterms. Values are a subset of terms, and we denote themwith a small diamond superscript (i� j f�xt : eg� jhei�). The semantics given in Figure 1, when applied towell typed terms, maintains the invariant that no freevariables ever occur in code values which will later berun.The most important thing to notice about the dy-namic semantics is that it is broken into two sets ofrules, reduction and rebuilding. Reduction (� ` e ,!v) maps terms to values and rebuilding (� ` e n+1,! e)maps terms to terms and is indexed by a level n + 1.Rebuilding \reconstructs" terms under the environment�. The environment � binds a variable to a value. Bind-ings in environments come in two 
avors: real (Real(v))



Domains and Relationslevels n ! 0 j 1 j n+ 1 j n+ 2 j : : :integers i ! : : : j � 2 j � 1 j 0 j 1 j 2 j : : :types � ! int j � ! � j h�iterms e ! i j x j e e j �x� : e j <e> j ~e j run e j " vvalues v ! i� j f�xt : eg� j hei�bindings b ! Real(v) j Sym(x)tenvironments � ! � j �; x 7! b where (�; x 7! b)y � if x = y then b else � ytype environments � ! � j �; x 7! (�;�)n where (�; x 7! (�;�)n)y � if x = y then (�;�)n else � ycontext stacks � ! [ ] j �;�reduction � ` e ,! v rebuilding at level n � ` e n,! e term typing at level n � � ǹ e : �; �Static SemanticsInt n: � � ǹ i : int; � Var =0: � x = (�;�1)0� � ǹ x : �; �2 Var �n: � x = (�;�)i i 6= 0 ^ i � n� � ǹ x : �;�Br n: (�2; �) � n+1` e : �;�1� � ǹ <e> : h � i�1 ; �2 Abs n: � �; x 7! (�1; �)n ǹ e : �2; �� � ǹ �x�1 : e : �1 ! �2; � Esc n+1: � � ǹ e : h � i�1 ; �2(�2;�) � n+1` ~e : �;�1Run n: �2 62 FV (�; �)� � ǹ e : h � i�2 ; �1� � ǹ run e : �;�1 App n: � � ǹ e1 : �1 ! �;�� � ǹ e2 : �1; �� � ǹ e1 e2 : �;� Con n:: ?Never appears in source terms� � ǹ " v : ?The Dynamic SemanticsInt 0: � ` i ,! i� Int n+1: � ` i n+1,! iAbs 0: �; x 7! Sym(x0)� ` e 1,! e1� ` �x� : e ,! f�x0� : e1g� Abs n+1: �; x 7! Sym(x0)� ` e1 n+1,! e2� ` �x� : e1 n+1,! �x0� : e2App 0: � ` e1 ,! f�x� : eg�� ` e2 ,! v2�; x 7! Real(v2) ` e ,! v� ` e1 e2 ,! v App n+1: � ` e1 n+1,! e3 � ` e2 n+1,! e4� ` e1 e2 n+1,! e3 e4Var 0: � x = Real(v)� ` x ,! v SVar n+1: � x = Sym(x0)�� ` x n+1,! x0 RVar n+1: � x = Real(v)� ` x n+1,! " vEVar n+1: x =2 � `� ` x n+1,! xBracket 0: � ` e1 1,! e2� ` <e1> ,! he2i� Bracket n+1: � ` e1 n+1,! e2� ` <e1> n,! <e2>Escape 1: � ` e1 ,! he2i�� ` ~e1 1,! e2 Escape n+2: � ` e1 n+1,! e2� ` ~e1 n+2,! ~e2Run 0: � ` e ,! he1i� � ` e1 ,! v1� ` run e ,! v1 Run n+1: � ` e1 n+1,! e2� ` run e1 n+1,! run e2Constant 0: � ` " v ,! v Constant n+1: � ` " v n+1,! " vFigure 1: The Semantics of �M



and symbolic (Sym(x)t). The extension of the environ-ment with real values occurs only in the rule App 0.Such values are returned under reduction (Var 0), orinjected into constant terms (RVar n+1) under rebuild-ing.Several things about rebuilding should be noted.1. Rebuilding replaces all free variables with a con-stant expression (" v) where the v comes fromReal(v) bindings in � (RVar n+1).2. Rebuilding renames all bound variables. SymbolicSym(x0)t bindings occur in rules Abs 0 and Absn+1 where a term is rebuilt, and new names mustbe introduced to avoid potential variable capture.These new names are projected from the environ-ment in rule SVar n+1.3. Rebuilding executes escaped expressions to obtaincode to \splice" into the context where the escapedterm occurs (Escape 1).Without the staging annotations, rebuilding is sim-ply capture-free substitution of the symbolic variablesbound in �. Rebuilding is initiated in two places, inrule Abs 0 where it is used for capture-free substitution,and in rule Bracket 0 where it is applied to terms in-side dynamic brackets and it describes how the delayedcomputations inside a dynamic value are constructed.The type system ensures that in rule Abs 0, thereare no embedded escapes at level 1 that will be encoun-tered by the rebuilding process, so rebuilding actuallyimplements capture-free substitution as advertised.The rules Escape 1, Run 0, and Bracket 0 are at theheart of the dynamic semantics.In the rebuilding rule Escape 1, an escaped expres-sion at level 1 indicates a computation must produce acode valued result (he2i�), and rebuilding returns theterm e2.The reduction rule Bracket 0 describes how a codevalue is constructed from a meta-bracketed term <e1>.The embedded expression is rebuilt at level 1, and thereturned term is injected into the domain of values.The reduction rule Run 0 describes how a code val-ued term is executed. The term is reduced to a codevalued term, and the embedded term is then reducedin the empty environment to produce the answer. Theempty environment is su�cient because all free vari-ables in the original code valued term have been re-placed by constant expressions (" v).11 Optimizations11.1 Safe Beta ReductionTo write multi-stage programs e�ectively, one needs toobserve the programs produced, and these programsshould be as simple as possible. For this reason, ourimplementation performs automatic safe-beta reductionon constants and variables. A beta reduction is safe ifit does not change evaluation order, or e�ect termina-tion properties. There is one safe case which is par-ticularly easy to recognize, namely, Plotkin's �v rule[26]. Whenever an application is constructed where thefunction part is an explicit lambda abstraction, and the

argument part is a value, then that application can besymbolically beta reduced. In order to avoid duplicat-ing code we restrict our optimizations to constants orvariables (while Plotkin's �v rule also allows the valuesto be lambda expressions). For example in:val g = <fn x => x * 5>;val h = <fn x => (~g x) - 2>;The variable h evaluates to: <fn d1 => (d1 * 5) -2> rather than <fn d1 => ((fn d2 => d2 * 5) d1)- 2>.We realize of course that this might make it hardto understand why a particular program was generated.In our experience, the resulting smaller, simpler pro-grams, are easier to understand and make this tradeo�worthwhile.11.2 Nested EscapesWhen we �rst wrote programs with more than two levelswe observed that our programs took a long time to run.We traced this to rule Escape n+2 of our semantics.Consider the case where a deeply bracketed term e atlevel n is escaped all the way to level 0. In order toexecute this term (which escapes to level 0) it must berebuilt n times. Consider the reduction sequence belowfor the term run (run << ~~e >>), where e is boundin � to <5>, of which we show only the innermost run.e ,! h<5>i�~ e 1,! <5>~ ~ e 2,! ~ <5><~~ e> 1,! <~<5>><<~ ~ e>> ,! h<~ <5>>i� 5 1,! 5<5> ,! h5i�~<5> 1,! 5<~ <5>> ,! h5i�run <<~~ e>> ,! h5i�For two levels the term is rebuilt 2 times. For threelevels the term is rebuilt 3 times. A simple re�nementcan prevent this from happening. We change the re-building of escaped expressions at levels greater than 1by adding the rule Escape Opt n+2 in addition to therule Escape n+2.Escape Opt n+2: � ` e1 n+1,! <e2>� ` ~ e1 n+2,! e2Escape n+2: � ` e1 n+1,! e2� ` ~ e1 n+2,! ~ e2Thus a long sequence of escapes surrounded by an equalnumber of brackets gets rebuilt exactly one. This opti-mization is safe since there are no variables in a rebuiltterm. So rebuilding it more than once performs no use-ful work. This correctness of this optimization followsfrom the fact that under our semantics ~ <e> is alwaysequal to e.



Facility Example NN [25] GA [11] GB [9] Th [31] HG [12] �2 [7] �
 [6] �MStaging <�x.x> 2 2 + 2 + + + +Strong Typing Y 1 N N N Y Y YMonolithic Variables <�x.~(f <x>)> Y Y Y Y Y N Y YRe
ection run or eval N N N Y N Y N YLifting lift Y Y Y Y Y Ya Yb YX-Stage Persistance �f.<�x.f x> N N N N N N N YX-Platform Portability Y Y Y Y Y Y Y NaCan be expressed at each ground datatype manually.bCan be expressed at each ground datatype manually.Figure 2: Comparative feature set12 Discussion and Related WorksA summary of the distinguishing characteristics of otherwork on multi-stage languages is shown in �gure 2. Inthe �gure we list whether or not that work contains theproperties we believe to be important. Those propertiesare:� Staging: Staging can be expressed in all these lan-guages, in the sense that code representing expres-sions can be expressed, and that applications canbe delayed to future stages. In this row, \2" meanstwo stages are supported, and \+" means arbi-trary number of stages is supported.� Strong Typing: In a single stage language, strongtyping ensures that a well-typed program \cannotgo wrong" by applying functions to arguments ofthe wrong type. In addition, multi-stage programscan go wrong if a computation attempts to use avariable before it is available. A strongly typedmulti-stage language protects against both kindsof errors.� Monolithic Variables: Whether a variable fromonestage can be used in all reasonable ways at thatsame stage. In the example, f is applied to <x>,and hence f is acting as a \code transformer".� run or eval function: The languages also comewith di�erent set of multi-stage programming con-structs. In particular, not all the language allowre
ection in the form of a run or eval function.Most notably, even in the most recent work ofDavies, it was not known how eval could be in-cluded in the language [6].� Lifting: The ability to convert a value of groundtype into its representation as a literal.� Cross-Stage Persistence: This is the most distin-guishing feature of MetaML, and has been dis-cussed in detail in this paper. To our knowledge,this feature has not been proposed or incorpo-rated into any multi-stage programming language.In essence, cross-stage persistence means that theprogrammer can use a variable bound in any stagein an expression executed in any future stage. Al-ternatively, it allows us to stage expressions con-taining free variables, as long as the type system

is satis�ed that these variables are available beforethis expression is evaluated.� Cross-Platform Portability: The ability to printgenerated code as text. This allows code gener-ated on one machine to be compiled and run onother machines. If code embeds its own \local en-vironment" this becomes considerably more di�-cult. The loss of this ability is the price paid forcross stage persistence.In what follows is an historical perspective of thework highlighted in the table:� NN: Nielson and Nielson pioneered the investiga-tion of staged languages with their two-level func-tional language [25, 24]. They presented rules forthe well-formedness of the binding-times of expres-sions in the language, from which MetaML's typerules are derived. They also sketched guidelines fora multi-stage (\B-level") language. The two-levellanguage is widely used to describe binding-timeannotations in the partial evaluation literature.� GA: Gomard and Jones use a statically-typed two-stage language for partial evaluation of the un-typed �-calculus [11]. The language allows thetreatment of expressions containingmonolithic freevariables. They use a \const" construct only forconstants of ground type. Our treatment of vari-ables in the formal semantics is inspired by theirwork.� GB: Gl�uck and J�rgensen [9] present the novel ideaof multi-level BTA, as a very e�cient and e�ectivealternate to multiple self-application. An untypedmulti-level language based on Scheme is used forthe presentation. Our study of MetaML is at amore basic level: MetaML is an abstract calculus.It is also notable that all intermediate results in GJare printable, i.e., have an intensional representa-tion. In MetaML, cross-stage persistence allows usto have intermediate results (between stages) thatcontain constants for which no intentional repre-sentation is available. While this is very conve-nient for run-time code generation, it makes theproper speci�cation of MetaML more di�cult. Forexample, we can't use [9]'s \Generic Code Genera-tion functions" to de�ne the language. A latter pa-per [10] demonstrates the impressive e�ciency of



MBTA, and the use of constraints-solving methodsto perform the analysis. The MBTA is type-based,but underlying language is dynamically typed.� Th: Thiemann [31] studies a two-level languagewith eval, apply, and call/cc, in the context ofstudying the partial evaluation of a greater subsetof scheme than was done previously. A BTA basedon constraint-solving is presented. Although theproblems with eval and call/cc are highlighted,and unlike with MetaML, there is no explicit no-tion of partially static types, an so, the complex-ity of introducing eval into a multi-stage languagedoes not manifest itself. Thiemann also deals withthe issue of variable-arity functions, which is apractical problemwhen dealing with eval in Scheme.� HG: Hatcli� & Gl�uck studied a multi-stage 
ow-chart language called S-Graph-n, and thoroughlyinvestigated the issues involved in the implemen-tation of such a language [12]. The syntax ofS-Graph-n explicitly captures all the informationnecessary for specifying the staging of a compu-tation: each construct is annotated with a num-ber indicating the stage during which it is to beexecuted, and all variables are annotated with anumber indicating the stage of their availability.S-Graph-n is not statically typed, and the syntaxand formal semantics of the language are quitesizable. Programming in S-Graph-n requires theuser to annotate every construct and variable withstage annotations, and ensuring the consistencyof the annotations is the user's responsibility. Intheir work, Hatcli� & Gl�uck identi�ed language-independence of the internal representation of \code"as an important characteristic of any multi-stagelanguage.� �2: Davies & Pfenning presented the �rst statically-typed multi-stage language Mini-ML2 [6]. Thetype system is motivated by constructive modallogic, and a formal proof is presented for the equiv-alence of binding-time correctness and modal cor-rectness. In contrast, the MetaML type-systemwas motivated primarily by operational considera-tions. Despite the di�erent origins, the languageshave a lot in common: meta-brackets, escape, andrun roughly correspond to box, unbox, and eval re-spectively. Mini-ML2's 2 type constructor is alsosimilar to code. Interestingly, in Mini-ML2, evalis de�ned in terms of unbox, whereas in MetaML,neither run or escape can be de�ned in terms ofeach other. Also, while Mini-ML2 can simulatepersistance for code values, a stage-zero function,for example, cannot be made persistant. Finally,Mini-ML2 allows delaying only closed terms, andhence, functions like back are not expressible inthe language.� �
: The multi-stage language Mini-ML
 [6] ismotivated by a linear-time constructive modal logic.While the logic is more restricted than that behindMini-ML2, the language is more expressive, allow-ing staged expressions to contain monolithic freevariables. The two constructs of Mini-ML
; nextand prev, correspond quite closely to MetaML's

meta-brackets and escape. The type constructor
 also corresponds (roughly) to code. Unfortu-nately, eval is no longer expressible in the lan-guage. While Davies shows how lift can be de-�ned in terms of next and prev for a Succ/Zerorepresentation for naturals, it must be explicitlyprogrammed.Sheard has also investigated richer type systems formulti-staged programming. Sheard and Nelson investi-gated a two-stage language for the purpose of programgeneration [28]. The base language was statically typed,and dependent types were used to generate a wider classof programs than is possible by MetaML restricted totwo stages. Sheard and Shields [29] investigate a dy-namic type systems for multi-staged programs wheresome type obligations of staged computations can beput o� till run-time.The type rule for run presented in this paper is mo-tivated by the type system for runST [19].The back and forth functions are similar to multi-level �-expansion [5]. In MetaML, however, back andforth are not only meta-level concepts or optimiza-tions, but rather, �rst class functions in the language,and the user can apply them directly to values of theappropriate type.13 ConclusionWe have described an n-stage multi-stage programminglanguage which we call MetaML. MetaML was designedas a programming language. Our primary purpose wasto support the writing of multi-stage programs. Be-cause of this our design choices where di�erent fromthose of other multi-stage systems. We �nd the fol-lowing features essential when writing multi-stage pro-grams.� Cross stage persistence. The ability to usevariables from any past stage is crucial to writ-ing staged programs in the manner to which pro-grammers are accustomed. Cross stage persistenceprovides a solution to hygienic macros in a typedlanguage, i.e. macros which bind identi�ers in theenviroment of de�nition, which are \captured" inthe environment of use.� Multi-stage aware type system. The typechecker reports phase errors as well as type errorsis crucial when debugging multi-stage programs,thus ensuring Cross-Stage Safety.� Display of code. When debugging, it is impor-tant for users to observe the code produced bytheir programs. This implies a display mechanism(pretty-printer) for values of type code.� Display of Constants. Constants originatingfrom persistent variables are hard to identify. The% tags provide an approximation of where theseconstants came from. While potentially mislead-ing they are often quite useful.� The Isomorphismbetween <A,'c> -> <B,'c>and <A -> B,'c>. The isomorphism (which can



only be expressed because of cross-stage persis-tence), reduces, sometimes drastically, the num-ber of annotations needed to stage multi-stage pro-grams.� Lift. The lift annotation makes it possible to forcecomputation in a early stage and lift this valueinto a program to be incorporated at a later stage.While never necessary (because of cross-stage per-sistence) it helps produce code which is easier tounderstand, because constants become explicit.� Safe beta reduction. Safe beta reduction of theapplication of explicit abstractions to explicit vari-ables reduces the clutter in generated code.To further illustrate this we provide an extended ex-ample in Appendix A which stages a term rewritingsystem in which the the rewriting rules become knownin the �rst stage and the terms to be rewritten becomeknown only in later stages.14 Future WorkWe have built an implementation which was used toprogram the examples in this paper. Currently, theimplementation supports polymorphic type-inference sothat type information on bound variables is not neces-sary. We are currently extending this implementationto include all the features in core-ML.We are also actively pursuing a subject reductiontheorem for �M. The multi-level syntax makes thesyntactic approaches to type soundness [32] di�cult toapply, because reduction contexts may appear insidelambda expressions at levels greater than zero. We havealso found that the non-Hindley-Milner type judgementfor the run annotation complicates matters consider-ably.References[1] C. Consel and O. Danvy. For a better sup-port of static data 
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ection 96,pages 95{106, San Francisco, CA, USA, April 1996.[32] Wright and Felleisen. A syntactic approach to typesoundness. Information and Computation (for-merly Information and Control), 115, 1994.A TermRewriting: An Extended ExampleIn this section we provide an extended example whichillustrates multi-stage programming.Dershowitz [8] de�nes a term-rewriting system as aset of directed rules. Each rule is made of a left-handside and a right-hand side. A rule may be applied to aterm t if a subterm s of t matches the left-hand undersome substitution �. A rule is applied by replacing swith t0, where t0 is the result of applying the substitu-tion � to the right-hand side. We say \t rewrites (in onestep) to t0", and write t ) t0. The choice of which ruleto apply is made non-deterministically. As an example,here are the rules for a Monoid [8]:r1 : x+ 0 ! xr2 : 0 + x ! xr3 : x+ (y + z) ! (x+ y) + zVariables x, y, and z in the rules can each match anyterm. If a variable occurs more than once on the left-hand side of a rule, all occurrences must match identicalterms. We call this the compatibility condition. Theserules allow us to have derivations such as:(a+ b) + (0 + (d+ e))) by r2; � = [(d+ e)=x](a+ b) + (d+ e)) by r3; � = [(a+ b)=x; d=y; e=z]((a+ b) + d) + ewhere the subterm being rewritten (s) has been under-lined.Generally, the rules do not change over the life ofthe system. At the same time, the basic form of thematching function is a simultaneous traversal of a sub-ject term and the left-hand side of the rule it is beingmatched against. This o�ers an opportunity for stag-ing: We can \specialize" matching over the rules in a�rst stage, and eliminate the overhead of traversing theleft-hand side of the rules. Not only that, but as wewill see, we can also remove a signi�cant amount of ad-ministrative computations involved in constructing andapplying the substitution �. One would expect that thiswould signi�cantly speed up the rewriting system.Terms can be implemented using the followingMetaMLtype:datatype 'a T = Const of int| Var of string| Op of ('a * string * 'a);



The declaration introduces a type constructor T pa-rameterized by another type, 'a. The constructors ofthis type are Const, Var and Op representing one level ofan integer, variable, or in�x binary term, respectively.The following de�nitions will also be used:datatype Term = In of (term T);datatype 'a Maybe = Nothing of unit | Just of 'a;type Sub = ((string * term) List) Maybe;type Rule = (Term * Term);fun const x = In (Const x);fun var x = In (Var x);fun op x = In (Op x);fun out (In x) = x;where Term ties the recursive knot in T to repre-sent terms, and Sub is the type of substitutions, respec-tively. The Maybe type provides a mechanism to writefunctions that can fail to return a meaningful value byreturning Nothing () instead. Since pattern matchingmay fail the substitution type is a Maybe type. We rep-resent rules as an ordered pair of terms. Thus, r1 wouldbe (op(var "x","+",int "0"),var "x"). The func-tion out : Term -> Term T removes a term from therecursive type to the 1 level type.To simplify, we focus on match, a function that matchesa rule with the whole subject term, that is, the specialcase when s = t. We assume that a separate helperfunction applies match to all subterms of the subjectterm.Now, let us consider what the result of specializingmatch over a rule should look like. If we take r1 : x+0! x as an example, then an good result should havea form close to:fun rewriteR1 term =case (out term) ofOp (t1,s,t2) =>if streq(s,"+")then (case (out t2) ofConst n => if n=0 then t1 else term| _ => term)else term| _ => term;Here there is no interpretive overhead of traversing therule, and the substitution operation has also been com-puted in the �rst stage. In the rest of this section,we will see how far towards this goal we can go usingMetaML.A.1 An Implementation of matchFigure 3 presents the complete code for match, togetherwith a staged version. Note that if we erase the annota-tions from the staged version, we get the source versionback. The source match function takes a pattern termpat, a substitution msigma, a term term, and returns asubstitution. Recall that a substitution is a maybe typeand may be Nothing().Hence, the type of the match function is � ! � !�! �, where � � Term, and � � Sub.If match is passed an invalid substitution Nothing ()the outer case-statement propagates the failure. Other-wise, if the pattern term is a variable, the substitution is

extended appropriately after checking the compatibilitycondition. Similarly, if the pattern term is an operator,it must be checked that the subject term is also an op-erator with the same operation, and then the right- andleft-hand-sides of the pattern and the subject term arerecursively matched, extending the substitution. If thepattern term is an integer, then the subject term mustalso be an integer with the same value. In this casethe original substitution is returned. In all other cases,match returns Nothing (), indicating that match hasfailed.The staged match function has type �!< �; 'a >!<�; 'a >!< �; 'a >. The type indicates that the pat-tern term is inspected only in the �rst stage, and theresult is a specialized function that can be run in a fu-ture stage. We can also de�ne and annotate rewriteusing the helper function wrapper as follows:(* wrapper : Rule -> <Term> -> <Term> *)fun wrapper (lhs,rhs) term =let val ms = match lhs <Just []> termin< case (~ms) ofNothing () => ~term| Just (sigma) =>subst sigma rhs > end ;(* rewrite : Rule -> <Term -> Term> *)fun rewrite rule = <fn x => ~(wrapper rule <x>)>;In Figure 4 the code generated for r1 : x + 0 ! xappears. The traversal of the pattern term has beenperformed. Yet, compared with the code we derivedby hand, there are too many nested case-statements,and the calls to subst and compatible have not beenperformed.Careful inspection shows that it should, in fact, bepossible to reduce the nested case-statements by meaning-preserving transformations. If the outer case-statementscould be \pushed" through the inner ones, then wewould be able to simplify all the values at the leavesof the inner if-statements. In particular, in every casewhere we return Nothing (), the unchanged term t1would be returned, and where Just (�) is returnedthen the substitution subst � could be performed onrhs.Given that we were able to write the function rewriteR1by hand, it should be clear that values of Maybe-typeneed not appear in the generated code. Unfortunately,this cannot be achieved by using only the staging an-notations on the current program.In particular, the test of the compatibility conditionin match cannot be performed at generation time sincethe subject term is unknown. At the same time, this calldetermines whether Nothing or Just is returned. Thisimplies match must return a value of type < Maybealpha; 'a >. This means the generated code will con-tain values of Maybe type.Similarly, threading msigma through the recursivecalls to match stops us from being able to reduce thecalls to compatible and subst at generation time: Theresult of both of these functions depends on the sub-stitution list, but because we are forced to annotatemsigma to have type: <((string * Term)List)Maybe; 'a>and not((string * <Term; 'a >)List)Maybe, these two func-tions cannot \access" the list at generation time.



(* Source match: Term -> Sub -> Term -> Sub *)fun match pat msigma term =case (msigma) ofNothing () => Nothing ()| Just (sigma) =>(case (out pat) ofVar u =>if compatible u sigma termthen Just (cons((u,term),sigma))else Nothing ()| Op (t11,s1,t12) =>(case (out term) ofOp (t21,s2,t22) =>(if streq(s2,( s1))then (match t11(match t12 msigma t22)t21)else Nothing ())| _ => Nothing ())| Const n =>(case (out term) ofConst u => if u=nthen msigmaelse Nothing ()| _ => Nothing ()));
(* Annotated match: Term -> <Sub> -> <Term> -> <Sub> *)fun match pat msigma term =<case ~msigma ofNothing () => Nothing ()| Just (sigma) =>~(case (out pat) ofVar u =><if compatible u sigma ~termthen Just (cons((u,~term),sigma))else Nothing ()>| Op (t11,s1,t12) =><case (out ~term) ofOp (t21,s2,t22) =>(if streq(s2, ~(lift s1))then ~(match t11(match t12 msigma <t22>)<t21>)else Nothing ())| _ => Nothing ()>| Const n =><case (out ~term) ofConst u => if u= ~(lift n)then ~msigmaelse Nothing ()| _ => Nothing ()>)>;Figure 3: Normal and Annotated versions of the function match.<(fn t1 =>(case (case %out t1 ofOp(tl,op1,tr) =>if %streq (op1,"+")then (case (case %out tr ofConst n =>if %= (n,0) then Just(nil) else Nothing ()| Var s => Nothing ()| Op s => Nothing ()) ofNothing () => Nothing ()| Just s => if %compatible "x" s tl then Just (%cons (("x",tl),s)) else Nothing ())else Nothing ()| Const n => Nothing ()| Var s => Nothing ()) ofNothing () => t1| Just s => %subst s In Var "x"))>Figure 4: Code generated from rule r1 = x+ 0! x by function match.That our �rst attempt at staging our example wasonly partly successful, should not be too surprising.Users of partial evaluation systems restructure theirprograms to help BTA succeed all the time. Just be-cause binding-time annotations are placed manually shouldn'texempt us from this requirement. Because we can touch,see, and experiment with both the explicit annotationsand the code returned, it helps us understand and rea-son about what is going on. Using the type systemto �lter out obviously incorrectly phased programs wasalso extremely useful. The strength of MetaML is themental model it provides to reason about what is goingon.A.2 Continuation-Passing StyleOur solution needs to propagate the context (perform-ing a substitution over the right-hand side of the rule)

into the leaves of the nested case expressions. Thissuggests rewriting the source program in continuation-passing style (CPS). This has been found to be quiteuseful in partial evaluation systems [1].Figure 5 shows both a source version of match usingan explicit continuation and an annotated two stage ver-sion of the same function. The function takes a patternpat, a continuation k, a substitution msigma, and a termterm. This function actually has a rather polymorphictype since nothing constrains the value returned by thecontinuation k. In the �gure we have constrained thecontinuation to have type substitution to term. Thecontinuation should apply the substitution to the right-hand side of the rule, or return the term unchanged ifthe substitution is a failure. Thus the wrapper functioncould be written:fun wrapper (lhs,rhs) term =match lhs(fn Nothing () => term | Just s => subst rhs s)



(* Source *)type Cont = Sub -> Term(* match : Term -> Cont -> Sub -> Term -> Term *)fun match pat k msigma term =case (msigma) ofNothing () => k (Nothing())| Just (sigma) =>(case (out pat) ofVar u =>if compatible u sigma termthen k (Just (cons((u,term),sigma)))else k (Nothing ())| Op (t11,s1,t12) =>(case (out term) ofOp (t21,s2,t22) =>(if streq(s2,s1)then (match t11(fn s => match t12 k s t22)msigmat21)else k (Nothing ()))| _ => k(Nothing ()))| Const n =>(case (out term) ofConst u => if u=nthen k msigmaelse k (Nothing ())| _ => k(Nothing ())));
(* Annotated *)type Sub' = ((string * <Term>) List) Maybe;type Cont' = Sub' -> <Term>(* match : Term -> Cont' -> Sub' -> <Term> -> <Term> *)fun match pat k msigma term =case (msigma) ofNothing () => k (Nothing())| Just (sigma) =>(case (out pat) ofVar u =><if ~(compatible' u sigma term)then ~(k (Just (cons((u,term),sigma))))else ~(k (Nothing ()))>| Op (t11,s1,t12) =><case (out ~term) ofOp (t21,s2,t22) =>(if streq(~(lift s1),s2)then ~(match t11(fn s => match t12 k s <t22>)msigma<t21>)else ~(k (Nothing ())))| _ => ~(k(Nothing ()))>| Const n =><case (out ~term) ofConst u => if u= ~(lift n)then ~(k msigma)else ~(k (Nothing ()))| _ => ~(k(Nothing ()))>);Figure 5: Normal and Annotated versions of the CPS style match.(Just [])term;The annotated version is again remarkably similarto the original except for the annotations. The onlydi�erence is that we needed to write a staged version ofthe compatible function, since in the staged version asubstitution (Sub') maps a string to a piece of code withtype term, rather than a term. We call this functioncompatible'. It returns a piece of code with type bool.fun compatible' u sigma term =case find u sigma ofNothing() => <true>| Just w => <termeq ~w ~term>;Finally, the code generator can be constructed bysupplying a suitable substitution continuation. Thisfunction needs a annotated substitution function whichreturns a piece of code with type term rather than aterm, and is given below:fun subst' (In t) sig =case (t) ofVar v =>(case find v sig ofNothing _ => <In (Var ~(lift v))>| Just w => w)| Op (t1,s,t2) =><In (Op (~(subst' t1 sig),~(lift s),~(subst' t2 sig))) >| Const i => <In (Const ~(lift i))>;fun wrapper (lhs,rhs) term =match lhs(fn Nothing () => term | Just s => subst' rhs s)(Just [])

term;When this function is used to generate code for therule r1 = x+ 0! x the following is generated:<fn t =>(case %out t ofOp(tl,s,tr) =>if %streq ("+",s)then (case %out tr ofConst n => if %= (n,0) then tl else t| Var s => t| Op z => t)else t| Const n => t| Var z => t)>In addition to being compact and free of reduciblenested case-statements or calls to subst or compatible,this output is virtually identical to the idealized codewe presented for rewriteR1. We have observed thatthe code generated for a variety of other rules is equallyas compact.


