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1 IntroductionZero-knowledge (ZK) proofs have �rst been proposed in 1985 by Goldwasser,Micali and Racko� [14]. Those proofs are interactive protocols between a proverwho wants to convince a veri�er that an object belongs to a language (proof ofmembership) or that he knows a secret information (proof of knowledge), with-out revealing anything about his secret knowledge. Such proofs have practicalapplications since they allow to solve many cryptographic problems such as ZKidenti�cation [9], digital signature [25] or robust distributed cryptography [26].Many ZK proof systems have been published so far that are related to the pre-sumably intractable problems on which public key cryptography is based, suchas the computation of discrete logarithms [25], of square roots [9] and of ethroots [15] modulo a composite integer.In this paper, we consider the most popular such problem: the factorizationof integers, i.e. how to prove to a veri�er that one's knows some prime num-bers whose product is a public number without giving any information aboutthis decomposition. Proofs of knowledge for the factorization of an integer havebeen known for a long time. But, even if they are claimed e�cient according tocomplexity theoretical arguments, none of them can be considered practical formany applications because of their signi�cant communication complexity: theproof is much longer than the object it deals with.Previously known proofs of knowledge for the factorization of an integer nare closely related to the property that n has less than a prescribed number of



prime factors. Van de Graaf and Peralta [29] and Galil et al. [11] �rst providede�cient proofs that a given integer is of the form prqs. Then Boyar et al. [4]proposed a protocol to prove that an integer is square-free. The combination ofthose two protocols typically allows to prove that an integer is an RSA modulus.Those results have recently been enhanced with protocols which prove that thefactors are quasi-safe primes [12], have about the same size [16] or are exactlysafe primes [5].All the above protocols are based on the basic observation that, modulo agiven integer n, a random number has a square root with probability 2��, where� is the number of di�erent prime factors of n, and that such a square root canbe e�ciently computed only when the factorization of n is known. A veri�er canask for square roots of randomly chosen numbers and count the proportion ofcorrect answers of the prover. This allows to prove that a number has less than� di�erent prime factors but the basic round has to be repeated many times inorder to reach a su�cient level of security and con�dence.A derived protocol to prove the knowledge of the factorization of n has beenproposed by Tompa and Woll [28]. It is based on ZK proofs for quadratic residu-osity that come from [14] and which can be interpreted as proofs of membershipof an integer x to the set of the quadratic residues modulo an integer n oras proofs of knowledge of a square root of x modulo n. According to Tompaand Woll, the veri�er �rst randomly chooses an element r in Zn and sendsx = r2 mod n to the prover. Then he proves that x is a quadratic residue mod-ulo n. Once the prover is convinced that the veri�er knows a square root of x,himself computes a square root s of x and proves that he also knows a squareroot of x.The completeness of such a protocol is based on the existence of a polynomialtime algorithm for computing square roots modulo n when the factorization ofn is known. Furthermore, this scheme is zero-knowledge since the view of anyprover can be easily simulated using the simulator of the proof for quadraticresiduosity proposed in [14]. This explains why the veri�er needs to prove thathe knows a square root of x; otherwise, he would learn whether x is a quadraticresidue or not and the protocol would not be zero-knowledge. Finally, the schemehas error probability smaller than 7/8 but greater than 3/4. Consequently, it hasto be repeated many times in order to reach a high level of security. For realisticparameters, this implies Giga-bytes of communication. From a theoretical pointof view, let k be a security parameter such that the cheating probability issmaller than 1=2k. We can prove that the complexity for both computationand communication is �(k � jnj2) where jnj denotes the number of digits in thebinary expansion of n. Even if some optimizations can be added, it does notseem possible to go under �(k � jnj).Notice that Boudot and Traor�e [3] have recently proposed a scheme that doesnot need to prove that n has less than a prescribed number of prime factors.The idea, somehow comparable with what we do in this paper, is to prove theknowledge of a common discrete logarithm d of g1 and g2, two randomly chosenintegers, in basis ge1 and ge2, where d is such that e� d = 1 mod �(n).



1.1 Our resultsWe propose an interactive proof of knowledge for the factorization of any pub-lic integer n whose prime factors cannot be found by simple trial division. Itis statistical zero-knowledge. The protocol is a proof of knowledge of a smalldiscrete logarithm of zn mod n for a few randomly chosen elements z modulon. Consequently, it is related to variants of the Schnorr proof of knowledge fordiscrete logarithms.Our scheme is very e�cient. When suitably optimized, its communicationcomplexity is only O(k+ jnj) bits. In this setting, the size of our proof is similarto the size of the integer n. The improvement in comparison with the previ-ously known schemes can therefore be compared with the di�erence of e�ciencybetween the Fiat-Shamir scheme and the Schnorr one. Furthermore, the com-putational complexity is proved to be O((jnj + k) � k) multiplications modulon both for the prover and the veri�er but we provide strong heuristic evidenceto show that O((jnj + k) � k= log k) is enough. This might appear a small im-provement but it has drastic consequences in practical terms: only three modularexponentiations both for the prover and the veri�er are needed to obtain a veryhigh level of security.In section 2 we state results of independent interest on the probability to gen-erate the multiplicative group Zpe� with few elements (complete proofs appear inthe appendix A). Those results are used in the security analysis of the interactiveproof of knowledge we describe in section 3. We also propose a communicatione�cient variant (section 3.3) and a non-interactive version (section 3.4). In sec-tion 4 we give heuristic arguments to improve the computational e�ciency ofthe scheme and, in section 5, we show the practical e�ciency of those proofs inactual applications. Finally, in section 6, we propose a variant suggested by AdiShamir in order to make the proof work even when n has a small prime factors.1.2 Notations and De�nitionsFor any integer n,{ we use Zn to denote the set of the integers modulo n,{ we use Zn� to denote the multiplicative group of invertible elements of Zn,{ we use '(n) to denote the Euler totient function, i.e. the cardinality of Zn�,{ we use �(n) to denote Carmichael's lambda function de�ned as the largestorder of the elements of Zn�.It is well known that if the prime factorization of an odd integer n is �Yi=1 qifithen '(n) = �Yi=1 qifi�1(qi � 1) and �(n) = lcmi=1::� �qifi�1(qi � 1)�.If (gi)i2[1;K] is a K-tuple of (Zn�)K , we use D(gi)i2[1;K]E to denote the sub-group of Zn� that is generated by the gis, i.e.



D(gi)i2[1;K]E = (x 2 Zn� 9(�1; :::�K) x = KYi=1 g�ii mod n)In the following, pi is the ith prime number (p1 = 2, p2 = 3,...). For any �niteset S, Card(S) denotes the number of elements of S. We �nally denote by �(K)the Riemann Zeta function de�ned by �(K) =P+1d=1 1dK for any integer K � 2.2 On the generation of Zpe�We state known facts about the generation of the cyclic multiplicative groupZpe� where p is an odd prime number and e � 1. Using generators it is possibleto precisely estimate the probability to generate the full group Zpe� by a singlerandomly chosen element.Theorem 1 For any prime number p � 7, for any e � 1,Prg2Zpe� fhgi = Zpe�g = '('(pe))'(pe) > 17 ln ln pNext, we generalize this result when K elements are randomly chosen insteadof one. We obtain the following lower bound, independent of p and e:Theorem 2 For any odd prime number p, for any e � 1, for any K � 2,Prfgigi2[1;K]2(Zpe�)K nD(gi)i2[1;K]E = Zpe�o > 1�(K) > 1� K + 1K � 1 � 12KFinally, we obtain a lower bound for the probability thatK elements generatea large subgroup of Zpe�, i.e. a subgroup of size greater than Card (Zpe�) =C fora �xed parameter C:Theorem 3 For any odd prime number p, for any e � 1, C � 1 and K � 2,with P = Prfgigi2[1;K]2(Zpe�)K �CardD(gi)i2[1;K]E � Card (Zpe�)C �
P > 1�(K) � CXd=1 1dK > 1� 1(K � 1)CK�1�(K)All the proofs appear in appendix A.



3 Proofs of knowledge for factoring3.1 DescriptionLet k be a security parameter. Let n be an integer whose number of digits in itsbinary expansion is denoted jnj. Let A, B, ` and K be integers which dependa priori on k and jnj. Let z1,...zK be K elements randomly chosen in Zn�. Wedescribe an interactive proof of knowledge for the factorization of n.A round of proof (see �gure 1) consists for the prover in randomly choosing aninteger r in [0; A[ and computing, for i = 1::K, the commitments xi = zri mod n.Then he sends the xis to the veri�er who answers a challenge e randomly chosenin [0; B[. The prover computes y = r + (n � '(n)) � e (in Z) and sends it tothe veri�er who checks 0 � y < A and, for i = 1::K, zy�n�ei = xi mod n. Acomplete proof consists in repeating ` times the elementary round.Prover Veri�err 2R [0; A[xi = zri mod n, for i = 1::K (xi)i2[1;K]����������!e ���������� e 2R [0; B[y = r + (n� '(n))� e y����������! check 0 � y < A andzy�nei ?= xi mod n, for i = 1::KFig. 1. Interactive proof of knowledge for factoring (elementary round)This scheme is a variant of the Schnorr proof of knowledge of discrete loga-rithms. It consists in proving the knowledge of small discrete log, namely n�'(n),of zni mod n, for K randomly chosen integers zi in Zn�. In the following section,we prove that it is a statistical ZK proof of knowledge of the factorization of n.3.2 Security proofsIn order to prove the security of the protocol, we follow the approach of Feige,Fiat and Shamir [8], �rst proving completeness, then soundness and, �nally, thezero-knowledge property. In order to simplify the notations, we do not writethe dependencies on k but when we say that an expression f is negligible, thismeans that f depends on k and that, for any constant c and for large enough k,f(k) < 1=kc. Our computing model is the probabilistic polynomial time Turingmachine (Pptm), whose running time is a polynomial in k and jnj.Theorem 4 (Completeness) The execution of the protocol between a proverwho knows the factorization of n and a veri�er is successful with overwhelmingprobability if (n� '(n))`B=A is negligible.



Proof: At the end of each round, the veri�er obtains xi = zri mod n and y =r + (n � '(n)) � e which can be easily computed by the prover if he knowsthe factorization of n. From Euler's theorem, we know that z'(n)i = 1 mod n sozyi = zr+(n�'(n))ei = xi � znei mod n. Consequently, zy�n�ei = xi mod n.If the prover follows the protocol, the proof fails only if y � A at some roundof the proof. The probability of failure of such an event taken over all possiblechoices of r is smaller than (n � '(n))B=A. Consequently the execution of theprotocol is successful with probability � �1� (n�'(n))BA �` � 1 � (n�'(n))`BA .Thus, if (n�'(n))`B=A is negligible, the probability of success is overwhelming.utThe proof of soundness consists in proving that, if the veri�er accepts theproof, then, with overwhelming probability, the prover must know the factoriza-tion of n. Intuitively, after the commitment of the xis, if the prover is acceptedwith probability > 1=B, he must be able to answer two di�erent questions eand e0 with y and y0 smaller than A such that zy�nei = xi = zy0�ne0i mod n fori = 1::K. Let �0 = j(y � y0)� n(e� e0)j; this integer is such that, for i = 1::K,z�0i = 1 mod n. The following lemma formally states those ideas, where " isimplicitly assumed to depend on k and jnj:Lemma 1 Assume that some Pptm adversary eP is accepted with probability"0 = 1=B` + ", " > 0 and that A < n. Then there exists an algorithm which,with probability > "2=(6"02), outputs �0 2]0; A + nB] such that, for i = 1::K,z�0i = 1 mod n. The expected running time is < 2="� � , where � is the averagerunning time of an execution of the proof.Proof: Assume that some Pptm adversary eP (!), running on random tape!, is accepted with probability "0 = 1=B` + ". We write Succ(!; (e1; :::e`)) 2ftrue; falseg the result (successful of not) of the identi�cation of eP (!) when thechallenges e1; :::e` are used.We consider the following algorithm (largely inspired from [25]):Step 1. Pick a random tape ! and a tuple e of ` integers e1; :::e` in f0; ::B� 1guntil Succ(!; e). Let u be the number of probes.Step 2. Probe up to u random `-tuples e0 di�erent from e until Succ(!; e0). Ifafter the u probes a successful e0 is not found, the algorithm fails.Step 3. Let j be one of the indices such that ej 6= ej 0; we note yj and yj 0 therelated correct answers of eP . The algorithm outputs �0 = j(yi�yi0)�n(ei�ei0)j.If this algorithm does not fails, the prover is able to correctly answer twochallenges ej and ej 0 for the same commitment xj with the answers yj and yj 0.This means that zyj�n�eji = xj = zyj 0�n�ej 0i mod n for all i = 1::K so theinteger �0 is such that z�0i = 1 mod n. Furthermore, �0 is smaller than A+ nBbecause �0 = j(yi � yi0)� n(ei � ei0)j for integers yi and yi0 smaller than A andintegers ei and ei0 smaller than B. Finally, since A < n, �0 = 0 would implyei = ei0 so �0 > 0.We now analyze the complexity of the algorithm. By assumption, the proba-bility of success of eP is "0 so the �rst step �nds ! and e with the same probability.



The expected number E of repetitions is 1="0 and the number u of probes is equalto N with probability "0 � (1� "0)N�1.Let 
 be the set of random tapes ! such that Pre fSucc(!; e)g � "0 � "=2 =1=B` + "=2. The probability for the random tape ! found in step 1 to be in 
conditioned by the knowledge that Succ(!; e) = true can be lower bounded:Pr!;e f! 2 
jSucc(!; e)g = 1� Pr!;e f! 62 
jSucc(!; e)g= 1� Pr!;e fSucc(!; e)j! 62 
g � Pr!;e f! 62 
gPr!;e fSucc(!; e)g� 1�� 1B` + "2�� 1="0 = "2� "0With probability > "=(2"0), the random tape ! is in 
 and in this case, byde�nition of the set 
, the probability for a tuple of challenges e0 6= e to leadto success is � "=2. The probability to obtain such a tuple e0 after less than Nprobes is � 1� (1� "=2)N .Consequently, the probability to obtain a random tape ! in 
 and to �nd e0is greater than"2"0 � +1XN=1 (1� "0)N�1 � "0 � �1� (1� "2)N� = "24"0("0 + "=2� "� "0=2) > "26"02In conclusion, the algorithm �nds �0 with probability > "2=(6"02) and thetotal expected number of executions of the proof between eP and a veri�er issmaller than 2="0. utTheorem 5 (Soundness) Assume that some Pptm adversary eP is acceptedwith non-negligible probability. If `� logB = �(k), K = �(k + log(jnj)), log(A)is a polynomial in k and jnj and A < n, there exists a Pptm which factors nwith overwhelming probability.Proof: Let �(k) is the probability of success of eP . If �(k) is non-negligible, thereexists an integer d such that �(k) � 1=kd for in�nitely many values k.Let n =Q�j=1 qejj be the prime factorization of n. Notice that � is the numberof di�erent prime factors of n. Let us consider the K randomly chosen elementszi; from theorem 2, we know that, modulo qejj , they generate Zqejj � with proba-bility greater than 1� (K + 1)=(K � 1)� 1=2K . Consequently, the zis generatemultiplicative groups modulo qejj for j = 1::� with probability greater than1� � � (K + 1)=(K � 1)� 1=2K.The probability for eP to be accepted while the zis generate all groups Zqejj �is larger than �(k)���(K+1)=(K�1)�1=2K. The number � of di�erent primefactors of n is less than log2(n) = jnj so, if K = �(k + log(jnj)), for in�nitelymany values k, � � (K + 1)=(K � 1)� 1=2K � 1=3kd.



Furthermore, for k large enough, 1=B` < 1=3kd if `� logB = �(k). So, taking" = �(k)=3 in lemma 1 we conclude that it is possible to obtain �0 2]0; A+nB]in polynomial time O(1=") = O(kd).Then, for i = 1::K, z�0i = 1 mod n so, for any j = 1::�, z�0i = 1 mod qejj .Let z be any element of Zn�; since the zis generate Zqejj � for a �xed j, z can bewritten as a product QKi=1 z�i;ji modulo qejj and consequently z�0 = 1 mod qejj .Using the Chinese remainder theorem, we obtain that z�0 = 1 mod n for anyz in Zn�. This means that �0 is a non-zero multiple of the Carmichael lambdafunction of n. It is well known that knowledge of a multiple of �(n) allows tofactor n in time O(��log�0) modular multiplications using the Miller's factoringalgorithm [18] which we recall in appendix B.Finally, we obtain the factorization of n in time O(jnj�log(A+nB)) modularmultiplications modulo n. utTheorem 6 (Zero-Knowledge) The protocol is statistically zero-knowledge if(n� '(n))`B=A is negligible and `�B is a polynomial in k.Proof: We �rst remind that the zero-knowledge property is veri�ed if the viewof any veri�er considered as a random variable is perfectly approximable by theoutput of a Pptm which does not know the factorization of n. A protocol is onlystatistically zero-knowledge if the view and the output of the Pptm are onlystatistically indistinguishable. We refer the reader to [14] for more details.We describe the polynomial time simulation of the communication betweena prover P and a dishonest veri�er eV . We assume that, in order to try to ob-tain information about the factorization of n, eV does not randomly choose thechallenges. If we focus on the jth round of identi�cation, eV has already obtaineddata, noted Dataj , from previous interactions with P . Then the prover sendsthe commitments Xj = (x1; ::xK) and eV chooses, possibly using Dataj and Xj ,the challenge ej(Dataj ; Xj).Here is a simulation of the jth round of identi�cation: choose random valuesej 0 2 [0; B[ and yj 0 2 [0; A[, compute, for i = 1::K, xi 0 = zyj 0�nej 0i mod n.If ej(Dataj ; (x10; ::xK 0)) 6= ej 0 then try again with another pair (ej 0; yj 0), elsereturn ((x10; ::xK 0); ej 0; yj 0).We observe that a good triplet ((x10; ::xK 0); ei0; yi0) is obtained with proba-bility 1=B. Consequently, the expected time complexity of the all simulation isO(`B).Furthermore, it can be formally proved that such a simulation is statisticallyindistinguishable from the transcript of a real proof if (n�'(n))`B=A is negligi-ble. Therefore, a veri�er with in�nite computation power cannot learn signi�cantinformation after a polynomial number of authentications. utNote. This theorem shows that if we choose ` = 1 and B exponential in thesecurity parameter k, we cannot prove the zero-knowledge property. Notice thatthere is exactly the same problem with the Schnorr scheme.



Choice of the parameters and Complexity of the scheme. The choice ofthe parameters ` and B must be such that ` � logB = �(k) in order to makethe protocol sound. The choice of A is a bit more di�cult; A must be muchlarger than (n�'(n))`B to guarantee the completeness and the zero-knowledgeproperty but A must also be smaller than n to guarantee the soundness. Con-sequently, n must verify (n� '(n)) � 2k � n. The proof we propose cannot beused with any integer n but we can notice that the previous equation is veri�edby all the integers which does not have small prime factors. More precisely, ifn = Q�i=1 qeii , we can prove that 1q1 < n�'(n)n = 1 �Q�i=1 �1� 1qi� <P�i=1 1qi .Consequently, if (n� '(n))� 2k � n, all the prime factors of n must be � 2k.If all the prime factors of n are greater than a bound F (k), we know that(n � '(n))=n < �=F (k) so we require F (k) � � � 2k. Anyway, in practicalapplications, such a proof is used to prove the knowledge of integers like RSAmodulus with large prime factors; if n has small prime factors, the proof is notzero-knowledge but n can not be considered as a good modulus! Informally, thismeans that the proof is correct and zero-knowledge if the factorization of n isintractable. Notice that a prover cannot try to cheat choosing an integer n withsmall factors since the soundness is guaranteed by A < n.The execution of the protocol requires the transmission of exactly `� (K �jnj + jBj + jAj) bits. If we assume that ` � logB = �(k), K = �(k + log jnj)and jAj = �(jnj) (with A < n), we obtain a communication complexity equal to�(`� (k+ log jnj)� jnj). From the computational point of view, both the proverand the veri�er need to compute K exponentiations modulo n with jAj-bitsexponents.3.3 Optimized versionIn the interactive proof of knowledge we have described is section 3.1, we canobserve that the largest part of the communication concerns the commitmentsxi. Using an idea of Fiat and Shamir whose security has been formalized byGirault and Stern in [13], we can replace those commitments by the hash valueH(x1; ::; xK) where H is an appropriate collision-free hash function. We obtaina new scheme (see �gure 2), much more e�cient in term of communication thanthe initial one. An important consequence is that the communication complexityof the modi�ed protocol is independent of the parameterK and is the same thanfor the Schnorr scheme, i.e. O(k + jnj).We can �nally observe that the commitments can be precomputed in or-der to reduce the on-line computation to a very simple non-modular arithmeticoperation (like in [23]).In practical applications, an important point is the choice of the zis. Theyneed to be randomly chosen in order to make the proof sound. A �rst solutionconsists in using a mutually trusted source of random bits by the prover and theveri�er. Such a strategy is used in non-interactive zero-knowledge proofs [2]. Inpractice, zi can be pseudo-randomly generated from a seed of the form h(n; i)where h is a hash function such as SHA-1 [19].



Prover Veri�err 2R [0; A[X = H �(zri mod n)i=1::K� X����������!e ���������� e 2R [0; B[y = r + (n� '(n))� e y����������! check 0 � y < A andH ��zy�nei mod n�i=1::K� ?= XFig. 2. Optimized interactive proof of knowledge for factoring3.4 Non-interactive proof of knowledge for factoringThe interactive proof can be made non-interactive using the Fiat-Shamir heuris-tic [8, 9]. The veri�er's challenge e is replaced with the hash value of the com-mitment X = H(x1; ::; xk) and of the public data using a collision-resistant hashfunction H 0. The size of such a proof, < k + jnj bits, is very small:A non-interactive proof of knowledge of the factorization of n isa pair (e; y) with 0 � e < B, 0 � y < A ande = H 0(n; z1; ::; zK ; H(zy�ne1 mod n; ::; zy�neK mod n)It is widely believed that such a transformation guarantees an accurate levelof security as soon as H is random enough. Furthermore, the security of thisapproach can be formalized using the random oracle model [1, 20, 21] even ifsuch analysis cannot be considered as an absolute proof of security [6].The important di�erence between the interactive and the non-interactivesetting is that in the second case we do not have to care about dishonest veri�erssince the hash function H 0 is assumed to produce random challenges. It is easyto modify the proof of theorem 6 in order to demonstrate that if ` = 1 andB = 2k, the protocol is honest-veri�er statistically zero-knowledge :Theorem 7 The protocol is honest-veri�er statistically zero-knowledge if (n �'(n))`B=A is negligible.Then the so-called forking lemma technique described by Pointcheval andStern [20, 21] can be applied in order to prove the security of the non-interactiveversion of the scheme, in the random oracle model, even when ` = 1.4 Heuristic e�ciency improvementsWe have seen in the previous section that the proof of knowledge we proposehas a communication complexity independent of the number K of integers zi.Furthermore, for security reasons (theorem 5), K must be approximately equalto the security parameter k. In order to reduce the computational complexity



of the protocol, we now show how to reduce K to a very small value such as 3in practice. The underlying idea is to increase the work load of the extractor oftheorem 5 by a factor pC in order to reduce K by a factor logC. Unfortunately,the algorithm we propose is based on well known techniques such as the Pollard'srho method whose complexity can only be analyzed using heuristic arguments.Theorem 8 Assume that some adversary is accepted with non-negligible proba-bility ". If `� logB = �(k) and K = ��k + log(jnj)logC �, there exists an algorithmwhich, heuristically, factors n in time O(1=" + pC � jnj � log(A + nB)) withnon-negligible probability.If C is a polynomial in the security parameter k, this proves that we canchoose K = �((k + log jnj)= log k).Let us �rst remind two algorithms.Floyd's cycle-�nding algorithmLet f be a random function from a set S to S. Let x0 be a random elementof S and consider the elements xi recursively de�ned by xi+1 = f(xi). Such asequence consists of a tail of expected length p�Card(S)=8 followed by a cycleof the same expected length (see for example [10]). This immediately leads toan algorithm able to �nd a collision xi = xj in time O(pCard(S)) and withmemory O(pCard(S)) (see [17] for more details).The previous algorithm can be improved in order to use just a constantamount of memory. Floyd's cycle-�nding algorithm consists in starting with thepair (x1; x2) and iteratively computing (xi; x2i) from (xi�1; x2i�2) until xm =x2m. It can be proved that the expected running time of this algorithm is alsoO(pCard(S)) while the memory needed is constant since no values have to bestored in memory.This algorithm can still be improved in order to �nd indexes i and j suchthat xi = xj but xi�1 6= xj�1. The idea consists in �nding in a �rst step anindex m such that xm = x2m with Floyd's algorithm. Then, we iteratively test ifxi = xi+m for increasing values of i. The time complexity is alwaysO(pCard(S))and the memory needed is still constant.Pollard's rho factoring algorithmFloyd's algorithm can be used to factor integers. The Pollard's rho algorithm [22]consists in choosing S = Zn and f(x) = x2+1 mod n. We do not search collisionsxi = xj mod n but only indexes i and j such that gcd(xi � xj ; n) > 1, i.e. acollision modulo a prime factor of n. Since this gcd is equal to n with negligibleprobability, we obtain a non trivial factor of n. A recursive use of the algorithmallows to completely factor n.If we assume that f(x) = x2 + 1 mod p behaves like a random function, thecomputational complexity required to �nd a factor p of n is O(pp) modularmultiplication. As a consequence, this algorithm allows to �nd small factorsmuch more e�ciently than with trial division.



Proof of theorem 8We now describe the algorithm announced in theorem 8. The procedure weexplain allows to break the integer n in two factors. A complete factorization ofn is obtained by using it recursively.We have proved in section 2 that the zis generate large subgroups moduloeach prime power factor of n with overwhelming probability, even for small valuesof K, but we do not have any similar result modulo n. We note G the multiplica-tive group of the integers z�0 mod n for z 2 Zn�. We know that Cardfz s.t. z�0 =1 mod ng � Card G = '(n). Consequently, Prz2Zn� �z�0 = 1 mod n	 = 1=Card G.Two cases may occur:{ if Card G is a small set, a multiple of �(n) can be computed from �0. Thiscan be done using a Floyd's algorithm to compute the order of x�0 modn for a randomly chosen elements x of Zn�. Such an algorithm succeedsin expected time O(p�(n)= gcd(�0; �(n))). Then we can use the Miller'sfactoring algorithm to factor n with a multiple of �(n).{ otherwise, �0 does not have enough common factors with �(n) to make theCarmichael's lambda function of n easy to compute so we use the followingalgorithm to overcome the problem.First, it is easy to test if the modulus n has more than � prime factors usingthe elliptic curve factoring algorithm or just the Pollard's rho factoring algorithmas soon as the size of the factors are small enough. For example, for 1024 bitsmodulus, � = 16 is reasonable.Let n = Q�j=1 qejj be the prime factorization of the modulus n. From the-orem 3, we know that, modulo qejj , the K elements z1; :::zK generate a sub-group of Zqejj � which size is greater than '(qejj )=C with probability greaterthan 1 � ((K � 1)CK�1�(K))�1. Consequently, with probability greater than1 � � � ((K � 1)CK�1�(K))�1, the zis generate large subgroups modulo eachqejj . For example, with � = 16, K = 3 and C = 242, this probability is largerthan 1� 1=280.We now use a variant of Pollard's rho algorithm to factor n. Let z be arandomly chosen element of Zn�. We de�ne a sequence of elements modulo n byw0 = z�0 mod n and wi+1 = �w2i + 1��0 mod n. Then we look for indexes i andj such that gcd(wi � wj ; n) 6= 1 and gcd(wi�1 � wj�1; n) = 1 using the Floyd'scycle-�nding algorithm.Heuristically, since the cycles modulo each factor qejj are not too small, wi 6=wj mod n. In this case, gcd(wi � wj ; n) is a non-trivial factor of n.If we consider this algorithm modulo qejj , we see that it is a Floyd's cycle-�nding algorithm in a space of size smaller than C. Consequently, cycles aresearched in parallel for all the factors qejj of n and the solution is found inaverage time O(pC) exponentiations to the power �0 modulo n using a �xed(small) amount of memory. It is important to notice that we just need that thezi generate large subgroups modulo each factor of n and not necessarily a largesubgroup of Zn�.



Other method. A. Joux suggested a di�erent analysis based on Pollard's p� 1factoring method and that leads to the same conclusions about the choice of K.5 PerformancesLet us consider the following typical application: a prover wishes to generatea non-interactive proof of knowledge of the factorization of a 1024-bit integern (jnj = 1024). In order to reach a high level of security, we choose k = 80,` = 1 and B = 2k = 280 in order to obtain a probability of success for adishonest prover smaller than 1=280 (lemma 1). The choice of A is directed bythe results of theorems 4, 5 and 7 on the completeness, soundness and zero-knowledge property. We have to take A much larger than (n � '(n))`B andsmaller than n, e.g. A = 21024. Finally, the choice of C = 242 allows to takeK = 3 according to theorem 8.We can only consider integers n with less than 16 prime factors. The proto-col is secure for the prover if all the factors are much more than 84-bits long,e.g. 128-bits long. For numbers with smaller factors, a dishonest prover couldnot cheat but a (possibly dishonest) veri�er could learn non negligible informa-tion about the factorization of n. Notice that for any cryptographic applicationwhich requires composite integers to perform secure computations, we cannotreasonably assume the intractability of the factorization of an integer with primefactors shorter than 2128.With this choice of parameters, a proof requires 3 exponentiations modulon for the prover and for the veri�er. The proof is very short (80 + 1024 = 1104bits long) and of about the same size than the integer n.6 A variant to prove the knowledge of the factorizationof any integerAs we previously said, our protocol can only be used with integers n such that(n � '(n)) � 2k � n, i.e. integers without small prime factors. Adi Shamirsuggested an interesting variant to deal with such numbers:Let a, b, ` and K be integers. Let z1,...zK be K elements randomly chosen inZn�. A round of proof consists for the prover in randomly choosing an integer rin [0; 2a[ and computing, for i = 1::K, the commitments xi = zri mod n. Then hesends the xis to the veri�er who answers a challenge e randomly chosen in [0; 2b[.The prover computes an answer y 2 [0; 2a[ such that y = r+c�'(n)�e�2a fora suitable value of c. He sends it to the veri�er who checks 0 � y < 2a and, fori = 1::K, zy+e�2ai = xi mod n. A complete proof consists in repeating ` timesthe elementary round.This scheme is based on the ability to compute an integer y equal to r modulo'(n), with its b leading bits �xed to e, when '(n) is known. The correctness issatis�ed as soon as 2a � '(n) so we impose 2a � n. The proof of soundnessis similar to the proof of theorem 5. Finally, the protocol is also statisticallyzero-knowledge when 2a � n.
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It can be noted that this probability can be small. For example, if p is suchthat p � 1 is the product of the �rst � prime numbers (p � 1 = Q�i=1 pi),the probability to generate Zp� with a single element is '(p � 1)=(p � 1) =Q�i=1(1 � 1=pi) �= e�ln(� ln�) where  is Euler's constant (see for example [24]).For � = 55, p is 340 bits long and this probability is about 1=10. This meansthat we need to try more than 500 elements in order to �nd a generator withprobability very close to 1 such as 1� 1=280.More precisely, the following fact proved in [24] allows to lower bound theprobability of fact 2:Fact 3 For all integers x � 5, '(x)x > 16 ln lnx but there does not exist anyconstant C such that '(x) > C � x for any integer x.Theorem 1 For any prime number p � 7, for any e � 1,Prg2Zpe� fhgi = Zpe�g = '('(pe))'(pe) > 17 ln ln pProof: The probability for a randomly chosen element g of Zpe� to generate theall group is greater than '(p � 1)=p so, using the previous fact, if p � 7 theprobability is larger than (1� 1=p)� 1=(6 ln ln(p� 1)) > 1=(7 ln ln p). utA.2 Generation of Zpe� with K randomly chosen elementsA natural question is how the probability of fact 2 is modi�ed if we chooseK elements g1; :::gK of Zpe� instead of one. To answer this problem, we �rstgeneralize the Euler totient function and de�ne 'K for all integers K � 1 by:{ If p is prime and e � 1, then 'K(pe) = pKe � pK(e�1){ If gcd(m;n) = 1 then 'K(m� n) = 'K(m)� 'K(n) (implies 'K(1) = 1)We note that for K = 1, '1 = '.Lemma 2 If n = qe11 � qe22 � :::� qekk is the prime factorization of n, then'K(n) = nK ��1� 1qK1 ��1� 1qK2 � :::�1� 1qKk �The functions 'K allow to generalize fact 2 to the case of K generators:Lemma 3 The number of K-tuples of (Zpe�)K that generate Zpe� is 'K('(pe)).Proof: Let (g1; :::gK) be a K-tuple of (Zpe�)K . Let g be a generator of Zpe�; fori = 1; :::K, we de�ne �i 2 Z'(pe) by the relation g�i = gi mod pe.We �rst notice that (g1; :::gK) generatesZpe� if and only if the ideal generatedby �1, �2, ... �K in the ring Z'(pe) is the entire ring. Bezout equality shows thatthis occurs i� gcd(�1; :::�K ; '(pe)) = 1.



Let us count the number of K-tuples (�1; :::�K) 2 �Z'(pe)�K such thatgcd(�1; :::�K ;'(pe)) = 1. Let Qti=1 qfii be the prime factorization of '(pe). We know thatgcd(x; tYi=1 qfii ) = 1, 8i � t gcd(x; qfii ) = 1, 8i � t gcd(x mod qfii ; qfii ) = 1Using the Chinese remainder theorem, the problem reduces to counting thenumber of K-tuples (�1; :::�K) of �Zqfii �K such that gcd(�1 mod qf11 ; :::�K modqfKK ; qfii ) = 1 for i = 1; :::t. The K-tuples that do not verify this relation for a�xed index i are of the form (qi1; :::qiK) where (1; :::K) 2 �Zqfi�1i �K andthere are exactly qK(fi�1)i such K-tuples.Finally there are Qti=1 qKfii � qK(fi�1)i K-tuples of �Z'(pe)�K such thatgcd(�1; :::�K ;Qti=1 qfii ) = 1 and this is equal to Qti=1 'K(qfii ) = 'K('(pe)) since 'K is mul-tiplicative. utTheorem 2 For any odd prime number p, for any e � 1, for any K � 2,with P = Prfgigi2[1;K]2(Zpe�)K nD(gi)i2[1;K]E = Zpe�oP = 'K('(pe))'(pe)K > 1�(K) > 1� K + 1K � 1 � 12KProof: Let us �rst introduce a notation: for any integer x, let Sx be the set ofthe indices i such that pi is a factor of x.From the previous lemma, we know that the probability for a K-tuple of(Zpe�)K to generate Zpe� is P = 'K('(pe))'(pe)K . Lemma 2 shows that P is equal tothe productQi2S'(pe) 1� 1pKi . The inverse of each term 1�1=pKi can be expandedin power series: (1� 1=pKi )�1 =P+1j=0 (1=pKi )j . The probability P is a productof series with positive terms, P = 0@ Yi2S'(pe) +1X�i=0 1p�i�Ki 1A�1 so we can distributeterms and obtain that P�1 is the sum of 1=dK where d ranges over integerswhose prime factors are among pis, i 2 S'(pe). This sum is smaller than theunrestricted sum P+1d=1 1=dK = �(K). Finally, we obtain P > 1=�(K).The Riemann Zeta function is bounded by the following integral: �(K) =P+1d=1 1=dK < 1 + 1=2K + R +12 dx=xK = 1 + K+1K�1 � 12K . Since for all x > �1,1=(1 + x) � 1� x, 1=�(K) > 1� K+1K�1 � 12K . utThis result provides a lower bound independent of p and e. This is quitesurprising since for K = 1, theorem 1 proves that such a non-zero bound doesnot exist.



A.3 Generation of a large subgroup of Zpe� with K randomlychosen elementsAnother statement of theorem 2 is that we need to randomly choose K elementsin Zpe� in order to to generate the group with probability greater than 1�1=2K.For a probability very close to one such that 1�1=280,K becomes quite large evenif experiments show that a few randomly chosen elements always generate verylarge subgroups of Zpe�. We now make this observation precise by establishinga lower bound of the probability PCK(pe) that K elements generate a subgroupof size greater than Card (Zpe�) =C. We �rst generalize lemma 3 for subgroupsof Zpe�.Lemma 4 For any divisor d of '(pe), the number of K-tuples of (Zpe�)K thatgenerate a subgroup of Zpe� of order d is 'K(d).Proof: Let (g1; :::gK) be a K-tuple of (Zpe�)K and g be a generator of Zpe�; fori = 1; :::K we de�ne �i 2 Z'(pe) by the relation g�i = gi mod pe. The K-tuple(g1; :::gK) generates a subgroup of Zpe� of order d if and only if the size of theideal generated by the �is in the ring Z'(pe) is d. Bezout equality shows thatthis is equivalent to gcd(�1; :::�K ; '(pe)) = '(pe)=d.Let us factor '(pe) and d: '(pe) =Qti=1 qfii and d =Qti=1 qdii with fi � di �0. The number of K-tuples (�1; :::�K) of �Zqfii �K such that gcd(�1; :::�K ; qfii ) =qfi�dii is equal to the number of K-tuples of �Zqdii �K whose gcd with qdii is 1,i.e. 'K(qdii ). The total number of K-tuples of (Zpe�)K that generate a subgroupof Zpe� of order '(pe)=d is consequently Qti=1 'K(qdii ) = 'K(d). utLet K and C be two integers � 1; we notePCK(n) = Prfgigi2[1;K]2(Zn�)K �CardD(gi)i2[1;K]E � Card (Zn�)C �Theorem 3 For any C � 1 and K � 2,PCK(pe) > 1�(K) � CXd=1 1dK > 1� 1(K � 1)CK�1�(K)Proof: The probability PCK(pe) isX��'(pe)=C Prfgigi2[1;K]2(Zn�)K nCardD(gi)i2[1;K]E = �o!Lemma 4 shows that this sum is equal to X�j'(pe);��'(pe)=C 'K(�)'(pe)K and this ex-pression can also be written Xd0j'(pe);d0�C 1dK0 � 'K('(pe)=d0)'(pe)=d0K if we replace � by'(pe)=d0.



Let us calculatePCK(pe)� �(K) = Xd0j'(pe);d0�C 1dK0 � Yi2S'(pe)=d0 �1� 1pKi �� �(K)In the Riemann Zeta function �(K) = P+1�=1 1=�K the index � can be writtenas the product of two integers, d1 which is relatively prime with '(pe)=d0 andd2 whose factors are among the pis for i 2 S'(pe)=d0 . As in the proof of theorem2, we note that the sumP 1=dK2 is equal to the inverse ofQi2S'(pe)=d0 �1� 1pKi �so we obtain that PCK(pe)� �(K) =Pd0j'(pe);d0�C � 1dK0 �Pgcd(d1;'(pe))=1 1dK1 �.Finally let us observe that all the integers smaller than C can be uniquely de-composed in the product of a divisor d0 of '(pe) smaller than C and of an integerd1 relatively prime with '(pe). As a consequence, PCK(pe)� �(K) is greater thanPCd=1 1=dK .The end of the proof is a consequence of calculus techniques for comparingintegrals and series:PCK(pe) > PCd=1 1dK�(K) = �(K)� +1Xd=C+1 1dK�(K)> 1� 1�(K) � Z +1C dxxK = 1� 1(K � 1)CK�1�(K) utB Miller's factoring algorithmLet n be an integer whose factorization has to be found and L = 2s � r, with ran odd integer, a multiple of �(n). We can �rst assume that n is odd because ifL is a multiple of �(2�n) = lcm(�(2�); �(n)) it is still a multiple of �(n). Thefollowing algorithm is due to Miller [18]:Algorithm Fact(n;L)1. choose w at random in [1; n� 1]2. if 1 < gcd(w; n) < n then return gcd(w; n)3. compute v = wr mod n4. if v = 1 mod n then return Fail5. while v 6= 1 mod n do v0 = v and v = v2 mod n6. if v0 = �1 mod n then return Fail else return gcd(v0 + 1; n)This algorithm allows to �nd a non-trivial factor of n, i.e. a factor di�erentfrom 1 and n. It can be recursively used to completely factor n.



Lemma 5 Let n be a k-bit integer and L < X be a multiple of �(n). ThenFact(n;L) outputs the factorization of n in expected time O(�� logX) modularmultiplications, where � is the number of distinct prime factors of n.Proof: Let Q�i=1 peii be the prime factorization of n. We �rst prove that thealgorithm Fact(n;L) returns a non-obvious factor of n with probability > 1 �1=2�, after at most O(logX) arithmetical operations. The underlying idea is thesame as in the Rabin-Miller primality test; if w is an element of Zn�, wL =1 mod n so if we �nd � such that w2�r 6= �1 and w2�+1r = 1, we obtain (w2�r+1)(w2�r � 1) = 0 mod n and thus gcd(n;w2�r + 1) is a non-trivial factor of n.The proof generalizes the one presented in [27, chapter 4] when n is anRSA modulus. We �rst need the following notations in order to analyze thealgorithm: �(peii ) = '(peii ) = pei�1i (pi � 1) = 2�ip0i with p0i odd, P = Q�i=1 p0i,� = minf�i; 1 � i � �g, gi is a generator of the cyclic group Zpeii �, ui is suchthat w = gui mod peii and 0 � ui < �(peii ).Let us count the number of w for which the algorithm fails. This happensif wr = 1 mod n or w2tr = �1 mod n for an integer t in [0; s[. Because of theChinese remainder theorem, wr = 1 mod n is equivalent to 8i; wr = 1 mod peii .It can be seen that wr = 1 mod peii if and only if there exists �i in [0; p0i[ suchthat ui = �i2�i . So wr = 1 mod n has Q�i=1 p0i = P solutions.Using same ideas, w2tr = �1 mod n is equivalent to w2tr = �1 mod peii forall i = 1::�. The latter equation has no solution if t � �i and it has �(pi)=(2�2�i�t�1) = 2tp0i solutions if t < �i. So w2tr = �1 mod peii as no solution ift � � and 2�tP solutions if t < �. Finally, the number of values w for whichthe algorithm fails is less than P +P��1t=0 2�tP . We can easily prove that thisis less than n=2��1. The algorithm succeeds with probability > 1� 1=2��1 andperforms less than s + 1 � log2X � log2 L modular multiplications. If we usethe algorithm until we �nd a non trivial factor of n, the expected number ofexecutions if smaller than 1=(1� 1=2��1) � 2.Fact can be used to recursively factor n. With this aim, we also need a primepower detection algorithm such as the one proposed in [7, page 41] and whichis also based on Rabin-Miller ideas. If we want to factor an integer n, we �rsttest if n is a prime power and if not we call Fact(n;L) as long as it fails. Afterabout two tries, we obtain n = n0 � n00 and we recursively call the factorizationprocedure. Notice that a multiple L of �(n) is also a multiple of �(n0) if n0 is afactor of n. The proposed algorithm needs on average less than 2� calls to Factso �nally we can factor n with O(� � logX) modular multiplications. ut


