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Abstract 
Practicalimplementationsofreallanguagesareoftenanexcellent 
way of testing the applicability of theoretical principles. Many 
stresses and strains arise from fitting practicalities, such as per- 
formance and standard compatibility, to theoretical models and 
methods. These stresses and strains are valuable sources of new 
research and insighs as well as an oft-needed check on the egos 
of theoreticians. 

architectures in existence. As a result, more of the optimizing 
burden is placed on the compiler for these architectures. 

Unfortunately, optimizing C is difficult when vector and parallel 
architectures are involved. To summarizebriefly just a few of the 
problems involved: 

1. 

Two fertile areas that are often explored by implementations are 

1. Places where tractable models fail to match practice. This 
canleadtonewmodels, andmay alsoaffectpractice(e.g,the 
average programming language has become more context 
free over the last several decades). 

2. 
2. Places where existing algorithms fail to deal with practical 

problems effectively, frequently because the problems are 
large in some dimension that has not been much explored. 

The present paper discusses the application of a much studied 
body of algorithms and techniques [Alle 83. KKLW 80. Bane76. 
Wolf 78, Wolf 82, Kenn 80, Lamp 74, Huso 821 for vectorizing 
and optimizing Fortran to the problem of vectorizmg and opti- 
mizing C. In the course of this work some algorithms were 
discarded, others invented, and many were tuned and modified. 
The experience gave us insight into the strengths and weaknesses 
of the current theory, as well as into the strong and weak points 
of C onvector/parallel machines. This paper attempts to commu- 
nicate some of those insights. 

3. 

1. Introduction 
The programming language C has often been called a “typed as- 
semblylanguage,“because thestatements andtheoperatorsinthe 
language are very close to typical machine architectures. For 
“standard”scalar architectures, aknowledgable programmer can 
produce close-to-optimal C programs by careful coding and by 
using well-known coding practices (e.g. using register pointer 
variables). With vector and parallel architectures, however, this 
is no longer true. C does not contain any explicit parallel or vector 
operators; even if it did, it is hard to see how such operators could 
be used effectively across the wide variety of parallel and vector 

4. 

5. 

6. 
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C programs rarely use matrices, and those that are used are 
often obtained from dynamic memory and addressed using 
pointer variables rather than explicit subscripts. As a result, 
determining when two statements reference independent 
sections of memory (a determination critical to the success 
of vectorization and parallelization) is extremely difficult. 

Embedded assignments, operators with side effects (e.g. 
++), and conditional operators (e.g. && and ?:) map very 
naturally and efficiently to sequential hardware. However, 
the sideeffects associatedwith these operators aggravate the 
information-gathering process necessary to optimize a pro- 
gram. Additionally, these operations are inherently sequen- 
tial; successful vectorization requires removal or trans- 
formation of these operators. 

Thefir statement in C is considerably less constrained than 
the Fortrsn DO loop, making vectorization considerably 
more difficult. The loop bounds and increment may change 
within the loop; branches can legally enter loops; and for 
loops almost universally contain operators with side effects 
to increment the loop variable (if there even is a loop 
variable). 

C encourages the use of small functions. Function calls 
generally inhibit vectorization of any loop containing them. 
Additionally, the calls hide information necessary for opti- 
mization. 

Unhie ANSI Fortran, C imposes no constraints on subrou- 
tine argument abasing. 

BecauseC is commonlyusedforlow-leveloperatingsystem 
code, it contains a number of constructs that are difficult to 
optimize. For instance, ANSI C contains the notion of a 
volatilevariable to represent quantities such as status regis- 
ters whose values may change outside of the context of the 
program. To give a concrete example, the following loop 

keyboard-status = 0; 
while(!keyboard-status); 

appears as though it will loop forever. If keyboard-status is 
declared volatile, this loop represents a legitimate (and com- 
mon) program fragment. Obviously, variables that are de- 



&red volatile need special treatment at almost every phase 
of code generation and optimization. 

7. The address operator (&) permits modification of variables 
in subtle ways, thereby increasing the analysis necessary for 
vectorization and optimization. 

These problems are inherent to C and are very difficult to handle 
in general. However, a large percentage of the problems are di- 
rectly attributable to the number of function calls, and can be re- 
moved by inlining procedure calls judiciously [AllC 721. Some of 
the barriers removed include: 

1. The hidden effects of procedure calls. When the body of the 
called Procedure is revealed in the calling procedure, the op- 
tinnier can work based on the real effects of the procedure, 
rather than assuming the worst case. 

2. The problems of argument aliasing become less onerous, 
and many pointer problems are removed. 

3. Since procedure calls cannot in general be executed in vec- 
tor, inlining procedure calls contained in loops may increase 
opportunities for vectorization. 

This paper describes the implementation of a C compiler focused 
on the generation of high-quality code for a multi-processor 
vector machine. For the reasons given above, it was felt that in- 
lining would be an essential part of this compiler. The desire for 
vectorization, parallelization, and inlining led to a somewhat un- 
usual compiler for C; similarly, the peculiarities of C led to some 
new strategies in vectorization and parallelization. Section 2 de- 
scribes the strategy of compilation, detailing the goals we had for 
the compiler. Section 3 discusses the intermediate form used to 
represent C programs and the reasons for its choice. Section 4 
details the unique features of the C front end that were required 
to generate the intermediate language. Section 5 describes the 
processing necessary to make C programs amenable to vector- 
ization; section 6 shows how the same analysis benefits non- 
vector codes. The implementation of inlining is outlined in sec- 
tion 7. while section 8 will describe special optimizations that 
become extremely important in the presence of inlining. The 
conclusion presents an example that illustrates not only the dif- 
ficulty of compiling C for advanced architectures, but also some 
of the new insights gained in vectorization by compiling C. 

2. Strategy of Compilation 

The C compiler described in this paper was targeted for the Titan 
a machine whose architecture provides a number of challenges 
and opportunities for the compiler. Briefly summarized, the Titan 
is a multiple vector processor machine. One processor on a Titan 
is comprised of 

1. A high speed RISC integer processor. 

2. A highly pipelined floating point unit. This unit performs all 
scalar floating point instructions and all vector instructions 
(both integer and floating point). 

3. A very large vector register fde, which serves as a source of 
operands and targets for the floating point unit. The vector 
registers can be addressed starting at any location using any 
vector length and any stride, so that the register set can be 
viewed (in the extremes) as a collection of 8 196 scalar reg- 
isters, or as four vector registers of length 2048. 

A Titan can consist of up to four processors, all of which are 
connected to a shared memory by a high speed bus. While there 
are a number of mechanisms that processors can use to commu- 
nicate, the primary communication/synchronization mechanism 
is through the shared memory. 

In this architecture, the most fruitful optimizations the compiler 
can perform are: 

1. Vectorizing statements in loops to fully utilize the floating 
point unit. While the segmented nature of the floating unit 
permits overlap of scalar operations, in practice vector in- 
structions are necessary to keep the pipeline full. 

2. Applying multiple processors to a program. Spreading loop 
iterations among multiple processors can provide signifi- 
cant speedups in many programs. 

3. Exploiting low level parallelism. Since the integer and 
floating point units are completely separate, it is possible to 
overlap integer and floating point instructions. Similarly, 
the path to memory from each processor is highly pipelined. 
As a result, changing the instruction order so that integer and 
floating point instructions overlap and so that memory 
access and computation overlap can provide a significant 
speedup in many programs. 

To summarize, the key to efficient execution on the Titan is uti- 
lizing parallelism and minimizing memory overhead. Memory 
overhead can be minimized in two ways: doing good register 
allocation and “regularizing” memory accesses by using vector 
operations. 

Procedure calls dismptbothvectorization and register allocation. 
The Titan is intended to be a computation-intensive engine with 
high quality graphics, so programs running on the machine need 
frequent access to math libraries and graphics libraries. As a re- 
sult, the compiler needs an effective strategy for handling proce- 
dure calls efficiently. The approach we chose was to allow 
automatic inlining of procedure calls, with a focus on making the 
inlining process easy for libraries. Designing this capability into 
the compiler from the beginning also provided a number of other 
benefits regarding the size programs that could be compiled and 
the way in which debugging is accomplished. 

3. Choice of C IL 

Because C is such a low level language, and because it is often 
used in contexts where optimization is not important (and often 
even undesirable!), low level intermediate languages have been 
the norm for C compilers [GibM 86, John 781. These intennedi- 
ate languages are typically very close to a sequential machine 
architecture, allowing an almost direct mapping from the inter- 
mediate representation to machine instructions. Low level repe- 
sentations have also been common in Fortran compilers and 
vectorizing compilers [Lamp 74, Scar 861. In fact, many Fortran 
compilers have translated source programs directly into the PCC 
intermediate representation-in effect, translating Fortran into 
C. 

For a number of reasons, we departed from the traditional low 
level representation. 

1. Primarily, we did not wish to commit to an instruction sc- 
quence toa quickly. Normally, C compilers save compile 
time by lowering the representation immediately. The loss 
in execution time is small on most scalar architectures, 
because little global scope is necessary to determine nearly 
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optimal instruction sequences. With vector and parallel 
instruction sets, the necessary scope increases dramatically; 
large sections of codemustbe analyzed before one statement 
can be scheduled in vector or in parallel. As a result, the 
penalty for lowering the representation too quickly can be 
great. 

Low level representations greatly increase the difficulty of 
ferreting out important optimization information. For in- 
stance, loops are usually translated directly into goto’s and 
subscripts are mapped directly into pointers. A vectorizer 
lives or dies by its ability to analyze loops and subscripts; an 
explicit representation eases the task of vectorization im- 
mensely. 

With a low level representation, volatile information is usu- 
ally lost or hidden. An optimizer cannot work on such a rep- 
resentation unless it can be assured that it is not incorrectly 
optimizing volatile variables. 

Givenmanyof theoptimizations weanticipated, ahighlevel 
representation appeared more efficient in terms of compile 
time. When inlining is applied, many optimizations that are 
useless in real programs (unreachable code elimination, for 
instance) are suddenly very important. Dead code is com- 
mon, andconstantpropagationisessential(andoftencreates 
more dead or unreachable code!). These optimizations are 
more efficient when invoked on a high level representation, 
since one node may represent many machine instructions. 

4. Implementation of C Front End 

The front end of our compiler is based on the PCC2 compiler 
distributed by AT&T, with anumber of ANSI C features (such as 
function prototypes) added. The common code between our C 
and Fortran environments includes not only a vectorizer. opti- 
mizer, and code generator, but also the type system, a set of 
routines for building and investigating the IL data structures, and 
a set of symbol table management routines. 

A major change arose in the treatment of C expressions. A C ex- 
pression is a very potent entity; many side effects are possible, 
inchiding changes in the flow of control. The vectorizer was 
vastly simplified by forcing all operations that caused the value 
of amemory location to change to be madeexplicit as statements. 
Thus, the intermediate language has an assignment statement, but 
no assignment operator; the C operators ?, :, &&, and II are not 
representable in expressions. 

Consequently, the C front end represents C expressions as a pair: 
the fist element is a sequence of IL statements, typically assign- 
ments, while the second element is an IL expression. All of the 
operators had to be recast to take expressions of this form. For 
example, 

WI , E, > + Wi v E, ) =’ W, ; SL, , E, + E2 1 

Assignments are more interesting: 

(SL, , E, ) = (SL2, E, ) => (SL, ; SL, ; E, = E, , E, ) 

is the basic idea, but the actual implementation is much more 
subtle. For example, this transformation, when applied to 

W, . E, ) = W2 t E, 1 = W, , E, > 

yields (since = associates to the right) 

(SL,;SL,;SL,;E, = E,;E, =E,,E,) 

which looks reasonable. However, if E, has a side effect (for 
example, a functioncall or areference to a volatilevariable) then 
E, is in fact invoked twice, which is illegal. 

A partial way out of this dilemma is offered by a seemingly un- 
related feature of the compiling system-global register alloca- 
tion. This makes it possible to generate temporary variables with 
a fair amount of impunity, and to expect that most will be 
allocated to the sameregister as their generation, so no additional 
cost will be incurred. Thus, the actual compilation of assignments 
looks more like 

(SL, , E, ) = (Sr, , E, ) => (SL1 ; SL, ; t=E2 ; E,=t, t ) 

where I is a temporary of the same type as E,. 

This implementation has turned up numerous semantic problems 
in the Draft ANSI C Standard (ANSI g6), most notably in the 
notion of volatile. If v is a volatile variable, and a and b are or- 
dinary variables of the same type, then the ANSI standard does 
not specify the semantics of 

a=v=b; 

Using the transformation described here, the effect is that v is 
written once, and never read. The ambiguities that arise are suf- 
ficiently numerous and painful to call the whole notion of volatile 
into question. 

C expressions used in conditional contexts also need great care. 
For example, 

while( (SL.E) ) 
ssss 

must be rewritten as 

SL; 
while( E ) 
( 

ssss; 
SL; 

1 

In this case, the list of statements is duplicated. Since this list is 
in practice, very short, the cost is low. Also, since this list is almost 
entirely assignment statements, they too tend to be optimized 
away. In fact, the contexts for the two appearances of SL are 
sufficiently different that they may experience totally different 
forms of optimization. 

5. Processing C for Vectorization 

5.1. Overview 

Effectivelyvectorizing C requires anumber of enhancements not 
normally present in vectorizing Fortran compilers. While there 
are a number of subtle enhancements throughout the compiler, 
there are two major changes that are worthy of discussion: 

1. Special analysis to convert while loops into Fortran DO 
loops. Since Cfor loops are converted to whiie loops by the 
front end, this transformation is essential to success. While 
the conversion of while loops to iterative loops may seem 
straightforward, there are a surprising number of intricacies 
involved in the process. 
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2. Significant enhancement of induction variable substitution. 
Standard C programming practices encourage a style of pro- 
gramming in which many auxiliary induction variables are 
associated with a loop, and the variables are quite often in a 
form that cannot be easily handled. Uncovering and re- 
moving these variables efficiently required a compromise 
between theoretical elegance and pragmatic codmg. 

The following sections discuss these conversions in more detail. 

5.2. Conversion of While Loops 

The Cfor loop is one of many C entities which are easily mapped 
into good instruction sequences on serial architectures, but which 
are difficult to treat well on vector and parallel architectures. The 
for loop is relatively unconstrained: the termination and incre- 
ment conditions can have unusual side effects (particularly if 
volatiIe variables are involved); bounds and strides can vary 
during loop execution (if there even are explicit bounds and 
strides); and branches can enter and leave the loop at will. Given 
this lack of regularity, we saw little value in having an explicit 
representation offor loops in our intermediate form. Instead, the 
C front end representsfor loops as while loops-something it can 
do straightforwardly without sophisticated analysis. 

Of course, while loops are not generally as well optimized as 
Fortran DO loops are, and since manyfor loops are DO loops cast 
in a different guise, converting while loops to DO loops is an 
important transformation for the compiler. Given the ways in 
which for loops can differ from DO loops, a significant amount 
of information is necessary to effect the conversion: 

1. In order to determine whether branches are entering the 
loop, control flow information is necessary. The most effi- 
cient way to evaluate this condition is using the control flow 
graph built for scalar analysis. 

2. Variation of bounds and strides within the loop is most eas- 
ily determined by examining the use-def chains built during 
scalar analysis. 

Both of these facts argue that conversion of while loops should 
occur during scalar optimization. Moreover, since the primary 
motivation is to utilize vector hardware forfor loops where pos- 
sible, the conversion of while loops must come early in the scalar 
optimization process. Iffor loops are to reap the full benefit of the 
analysis applied to DO loops, then they must be converted before 
all the phases which simplify DO loops-induction variable sub- 
stitution, constant propagation, and dead code elimination. Given 
these restrictions, the proper place to convert whiZe loops is 
immediately after use-def chains have been constructed. 

This placement is not without problems. In particular, converting 
a while loop to a DO loop changes the use-def chains, thereby 
requiring the transformation to incrementally reconstruct the 
chains that correspond to the transformed code. This is not an 
entirely straightforward task, as the following simple example 
illustrates: 

i = n; i=n; 
while(i) ( DO dummy = n, 1, -s 

. . . . . . 
temp = i; temp = i; 
i=temp-s; i=temp-s; 

1 ENDDO 

When the while loop is transformed, the updated chains must re- 
flect proper definition points for the variables R and s used in the 

DO loop conditions. In this example, the updating is not difficult, 
and simply involves a transitive transfer from the locations 
identified as the sources for the initial value and the increment 
value. In general, the problem is much more difficult, particularly 
because graphics code is one of the main benefactors of vectori- 
zation. Graphics code typically transforms 4x4 matrices with 
operations that can be beneficially vectorized. Knowing that the 
vector length in such loops is small enough that a strip loop is not 
required is very important and is often difficult, depending on the 
exact way in which the for loop is coded. 

As an aside, the Titan compiler also has plans for optimizing 
whiZe loops that are truly while loops, and not merely iterative 
loops lurking in disguise. A prime example of such a loop is code 
that operates on a linked list. Such a loop cannot be vectorized 
with any benefit, but it can be spread across multiple processors 
by pulling the code for moving to the next element into the 
serialized portion of the paralIe1 loop. There are also a number of 
cases in which the condition of a loop is necessary only to 
compute the termination point. In such cases, computing the 
termination criteria can often be pulled into a separate loop. The 
resulting bound can then be used in iterative loops representing 
the major portion of the computation, which can then be vec- 
torized [AllK 851. 

5.3. Induction Variable Substitution 

Inductionvariable substitution takes code that has been strength- 
reduced by hand and makes it more amenable for vector hard- 
ware.Forinstance, theloopontheleftcannotbedirectlyexecuted 
in vector: 

IV=N 
DOI= l,N DOI=l,N 

A(IV)=A(IV)+B(I) A(N-I+l)=A(N-I+l)+B(I) 
IV=IV-1 

ENDDO ENDDO 

The reason is that the way in which A varies with the DO loop 
index is implicit, rather than explicit. Induction variable substi- 
tution applied to this loop will produce the loop on the right, 
where the variance is explicit and vectorization is trivial. 

In Fortran, inductionvariable substitution is useful primarily be- 
cause many users have programming habits based on Fortran 66 
(which limited the forms that subscripts and loops could take) and 
because many users fom-red the habit of strength reducing sub- 
scripts by hand to substitute forpoor optimizing compilers. In this 
context, relatively straightforward schemes are able to uncover 
virtually all of the auxiliary induction variables that appear in 
practice [Wolf 78, AllK 811. However, C presents a more chal- 
lenging situation. 

Because the C front end does not do a sophisticated analysis for 
side effects on expressions that appear with ++ expressions, the 
intermediate code it generates is ripe with opportunities for in- 
duction variable substitution. To give a simple example, source 
code such as 

while(n) ( 
*a++ = *b++; 
n--; 

I 

is translated by the C front end into the following: 

while(n) ( 
temp-1 = a; 
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a = temp-l + 4; 
temp-2 = b; 
b=temp-2+4; 
* temp-1 = *temp-2; 
temp-3 = n; 
n=temp-3 - 1; 

I 

This loop can be straightforwardly vectorized (it is, after all, only 
a vector copy) once all the garbage is cleared away. Before it can 
be vectorized, the key assignment must be converted into a form 
similar to 

*(a + 4*i) = *(b + 4*i) 

where i is assumed to be the DO loop induction variable. The 
problem is that this form can be created only by substituting the 
assignment to temp-1 and temp-2 forward into the star assign- 
ment. This substitution cannot be correctly made, however, until 
the updates to a and b are moved forward. As a result, straight- 
forward techniques cannot handle this loop. 

There is a clear theoretical solution to this problem. Stzaightfor- 
ward extensions of Morel and Renvoise’s work on partial re- 
dundancies can be used to uncover andremove general classes of 
induction variables [MoRe 79, Chow 83, Lich 871. For many 
pragmaticreasons,wechosenottoutilizethetheoreticalsolution: 

1. Foremost was space considerations. Scalar dataflow infor- 
mation commonly eats up large amounts of memory; were 
we to take this approach, we would have to compute extra 
dataflow attributes solely for induction variable substitu- 
tion. We felt that this might require more memory than we 
could give it. 

2. Secondary was graph reconstruction. Induction variable 
substitution is only one of many transformations that are 
driven off scalar dataflow information. By necessity, it must 
occur early in the optimization process; as a result, dataflow 
information must be updated to reflect the changes imparted 
by the substitution. We knew we could accomplish this in- 
crementally (and thereby efficiently) with standard tech- 
niques. We were not certain that we could incrementally 
update the information based on partial redundancies, and 
we felt that reconstructing the graph from scratch would be 
far too expensive. 

3. Finally, we were able to derive a heuristic solution that is ef- 
fective and efficient on codes encountered in practice. In the 
worst case, this solution is extremely inefficient, requiring n 
passes over a loop (where n is the number of statements in 
the loop). However, in practice we have never seen this be- 
havior; the average case requires the same simple pass over 
the loop that is needed in the straightforward algorithm. 

The heuristic solution employed in the Titan compiler is fairly 
simple: when a statement is rejected for substitution only because 
a later statement redefines a variable used by that statement, the 
later statement is marked as “blocking” the first statement. When 
a blocking statement is substituted forward, all the statements it 
blocks are reexamined for substitution. In this approach, back- 
tracking is never done unless it is guaranteed to give some 
substitution. Furthermore, most of the analysis necessary to 
substitute the statement need not be repeated. As a result, the 
backtracking is rarely invoked, and is extremely efficient when it 
is invoked. 

In the example above, backtracking substitutes the assignments 
to temp-1 and temp-2 after the assignments to a and b have been 
substituted. As a result, the loop is converted to a form that is 
trivially vectorized. 

6. Dependence-Driven Optimizations 

ThereareprobablyfarmoreCprogramsthatdonotvectorizethan 
do, even when the vectorizer is specifically tuned for C. However, 
the dependence graph used in vectorization can be used to 
optimize in other contexts. Some of the ways in which the Titan 
compiler uses its dependence graph to optimize “non-vector” 
programs include: 

1. Register allocation. The dependence graph used in vector- 
ization has a dual nature that permits it to be an effective 
basis for register allocation as well as for vectorizing. A data 
dependence between two statements implies that their ex- 
ecution order must be fixed in some way. When restructur- 
ing a program, the desire is to have as few dependences as 
possible, to provide the maximum freedom for reordering 
execution. The duality arises from the fact that two state- 
ments can be data dependent only if they access a common 
memory location. As a result, datadependences pinpoint the 
memory locations that aremost frequently accessed, provid- 
ing amechanism for exploiting the memory hierarchy of the 
Titan. 

2. Instruction scheduling. The array dependence graph accu- 
rately indicates all the execution constraints involving array 
references. This information permits far more levity in 
instruction scheduling, since most array references are usu- 
ally independent and instruction scheduling normally oc- 
curs at a level where this fact is difficult to determine. 
Information from the dependence graph is passed back to the 
code generation to allow better overlap of integer and float- 
ing point computations, and also to allow better overlap of 
memory access and computation. 

3. Strengthreduction. Because classic vectorizing transforma- 
tions such as induction variable substitution deoptimize 
programs that do not vectorize, strength reduction is a very 
important optimization in the Ardent compiler. Our algo- 
rithm is unique in that it utilizes the array dependence graph 
to simultaneously reduce expensive operations, remove 
loop invariant expressions, and eliminate common 
subexpressions. The reduction algorithm must be very care- 
ful of the parallelism present in a program, sincestrengthre- 
duced operations are by their very nature sequential. 

Details of these optimizations are available elsewhere [AU, 881. 
To illustrate their power, consider the following sample loop: 

p = &x[l]; 
q = &x[O]; 
for(i=O; iar-2; i++) 

p[il = W * W - dil); 

This loop, which is a typical loop used in backsolving linear 
S)W3nS, CannOt be coma3ly run in vector or parallel because the 
array q uses values stored into p on previous iterations. This use 
is quite regular, however; theTitanvectorizer is able to recognize 
this regularity and pull the values up into registers. By doing so, 
it eliminates some memory access constraints on instruction 
scheduling, thereby allowing the instruction scheduler to com- 
pletely overlap the integer and floating point instructions in the 
loop ami also the stores of x to memory with the computation. 
Finally, strength reduction is able to eliminate all the integer 
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multiplications within the loop. The resulting intermediate code 
is: 

f-regl = x[O] 
temp-z = &z; 
temp_y = &y; 
temp-x = &x + 4; 
for(i=O; ien-2; itt) ( 

f-regl = *tempz * (*temp-y - f-regl) 
*temp-x = f-reg 1; 
temp-x = temp-x + 4; 
temp-y = tempJ + 4; 
temp-z = temp-z + 4; 

1 

When the original loop is compiled with only scalar optimization 
ontheTitan. itexecutes atO.5 megaflops. Whenthevectorization 
information is used to produce the second form, the execution rate 
is 1.9 me&lops, which is within 5% of the best possible code for 
this loop. 

7. Implementation of Inlining 

As stated previously, there were motivations for inhning in the 
Titan C compiler: 

1. Efficient inlining of small static functions common in C. 

2. Effective code generation in the presence of calls to math (or 
other) libraries. For instance, it was very desirable that a C 
call to a low level linear algebra routine (such as DAXPY) 
generate the fastest code possible, since a user who writes 
such a call is probably expecting good performance. 

The first goal is not very difficult, because all the information 
necessary for inlining and compilation is available in one file at 
one tune. A number of compilers are able to inline functions of 
this form. The second goal is more difficult, however, and re- 
quires careful design throughout the compiler. 

In order to inline functions horn other files, the intermediate rep- 
resentation for functions must be saved in an easily accessible 
form. To permit this, we eliminated all hard pointers from the lL. 
This allowed us to to “page” tables if necessary, to compile very 
large files, and to save the parsed form of procedures in catalogs. 
As a result, math libraries can be “compiled” into databases and 
used as a base for inlining, much as include directories are used 
as a source for header files. 

Using databases of parsed procedures requires significant in- 
formation gathering and some program transformations. For in- 
stance, static variables inside a procedure stored in a database 
must be made externally known, so that values are correctly 
maintained regardless of whether the procedure is called nor- 
mally or through inlining. Because external variables are not op- 
timized as well as other variables, this makes the detection of 
static variables that can be safely moved to automatic storage an 
important optimization. Also, since C permits recursion (which 
can lead to infinite inlining if care is not taken), and since inlined 
functions may inline other functions, order is very important. 

While the use of relocatable data structures caused some prob- 
lems throughout the compiler, it had a number of unexpected 
benefits. The debugger, for instance, works directly on the same 
symbol table that the compiler builds during compilation. 

8. Special Inlining Optimizations 

Many optimizing techniques are virtually useless to invoke on 
code written by programmers, because intelligently written code 
will never contain any opportunities for their use. For instance, 
code written by a programmer should never contain unreachable 
code; if it does, it is usually an error (and flagged as such by many 
compilers). When inlining is invoked, this situation changes 
dramatically. Inlining tailors a procedure designed to handle 
many cases to a specific invocation; as a result, large amounts of 
dead and unreachable code result. 

Not only does inlining shift the focus of optimizations. it affects 
the order in which optimizations are done. Consider, for instance, 
detection of unreachable code. Typically, unreachable code is 
detected at the time basic blocks are constructed; if a block has no 
predecessors, it is unreachable. This approach is not effective 
with inlined procedures, however, because constant propagation 
is necessary to realize that code is unreachable. Consider, for 
instance, the following example. 

daxpy(*x, y. 0.0. z): 
. . . 

void daxpy(float *x, float y, float a, float z) 
I 

if (a == 0.0) 
return; 

*x=y+a*z; 
1 

When inlined, this becomes 

in-x = x; 
in_r=y; 
in-a = 0.0; 
in-z = z; 

if (in-a == 0.0) 
goto lb-l; 

*in-x = ins + in-a * in-z; 
goto lb-l; 

lb-l :; 

In this somewhat contrived example, the floating point assign- 
ment will never be executed, because the first branch to lb-l will 
always be taken. This fact cannot be detected until constant 
propagation reveals that in-a is always equal to 0.0. This example 
illustrates a general Point: the information provided by the spe- 
cific parameters at a call site permits a large amount of optimiza- 
tion. 

Whileunreachablecode does not affect the program speed, it does 
affect the program space. From a theoretical point of view, there 
are at least three obvious methods for detecting and eliminating 
unreachable code: 

1. Perform IF conversion [AKPW 831 on the whole program; 
any statement whose guard is false is unreachable. 

2. Rebuild basic blocks after optimization. Any block with no 
predecessors (with some accommodation for loops) is un- 
reachable. 
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3. Employ a constant propagation technique specifically de- 
signed to accommodate constant propagation withunreach- 
able code elimination, such as Wegman-Zadeck [WegZ 851. 

We rejected the first two possibilities on the grounds of effi- 
ciency. Not only did both techniques require reanalyzing the en- 
tire program, but IF conversion could also introduce some inef- 
ficiency into the generated code. After some thought, we also 
rejected the third approach as being infeasible for our implemen- 
tation. There were a number of reasons for this decision: 

1. We drive a number of optimizations off the use-def graph, 
notjustconstantpropagationandunreachablecodeelimina- 
tion. It was not clear that the’modifications necessary to the 
data structures would permit us to drive these other optimi- 
zations. 

2. More specifically, induction variable substitution and while 
loop conversion are complicated by the presence of identity 
assignments. While both transformations can be done in this 
context, the transformations themselves tend to remove 
identity assignments, thereby undoing much of the analysis 
that is actually needed later during constant propagation. 

3. In hindsight, the memory requirements of inserting identity 
assignments at birthpoints would probably have been intol- 
erable for a production compiler. The vectorizer inserts 
identity assignments at a number of birthpoints in order to 
determine which variables must be allocated to local mem- 
ory withinparallelloops. Even this limiteduseof identityas- 
signments tends to increasetbenumber ofnodes in the graph 
(and thereby the graph size) to an unacceptable level. The 
extent to which this transformation is applied has had to be 
limited several times due to large memory requirements. 

Rather than adopt any of these approaches, we implemented an 
heuristic solution to the problem which turns out to be extremely 
effective in practice. During constant propagation, the compiler 
eliminates code that is detected as unreachable due to if condi- 
tions being simplified to false or true, loops which are detected as 
having zero iterations, etc. When a statement is eliminated as 
being unreachable, all statements that its definition reaches are 
added to a list. All constant assignments whose definitions can 
reach any statement in this list are then added to the heap for an- 
other round of possible propagation. This approach tends to pick 
up almost all constants whosedefinitions are blocked by unreach- 
able definitions; it does not eliminate all unreachable code that 
arises in practice. In particular, code immediately following 
branches that are always taken is difficult to uncover as unreach- 
able during constant propagation. The vectorizer has a separate 
postpass that is invoked when inlining is enabled to eliminate this 
kind of unreachable code. The postpass is a quick heuristic and is 
not as effective as reconstructing basic blocks. On the other hand, 
it is very effective in practice and requires less compile time. 

One other transformation is useful in the context of inlining. 
Array rows passed by reference into a procedure lead to sub- 
scripted references whose base arrays are also subscripted refer- 
ences. Such references are perfectly legitimate, but are virtually 
impossible to successfully analyze in a vectorizer. The inlining 
phase contains a special pass to “promote” such references into a 
standardized form that is easy to recognize and handle. 

9. An Example 

In order to illustrate the difficulties involved in compiling C for 
advancedarchitectures, wepresentanexample.Theexamplealso 

illustrates how the techniques described in this paper work 
together to compile difficult loops into good code. 

float a[lOO], b[lOO], c[ 1001; 
daxpy(a,b,c,l.O.lOO); 

1 

void daxpy(float *x, float*y, float *z, 
float alpha, int n) 

(: 
if (n <= 0) 

return; 
if (alpha == 0) 

return; 

for(;n; n-) 
*x++ = *y+t + alpha * *z++; 

1 
The routine daxpy is a C analog of the Fortran BLAS routine; it 
adds a scalar multiple of one vector to another. This coding does 
differ from the BLAS routine in that it can place the results in a 
different vector. This is quite obviously a vector function; such a 
routine coded in Fortran would be trivially compiled as such by 
a good vectorizing compiler. This C routine cannot be safely 
vectorized, because C imposes no restrictions on argument 
aliasing. x, y, and z could be pointers into the same array, 
invalidating the analogous vector operation. 

This routine can be automatically vectorized by adding in a 
pragma stating that the loop is safe to vectorize or by invoking a 
compiler option that states that pointer parameters have Fortran 
semantics-stores into anyparameterdo not affect values fetched 
from a different parameter. However, we can also inline duxpy, 
producing the following intermediate representation: 

main0 
( 

float a[lOO],b[lOO],c[lOO]; 
float *in x _ , *in-y, *in-z, float in-alpha, 

*m-1, *m-2, *m-3, *m-4; 
int in-n; 

in-x = &a; 
inJ = &b; 
in-z = &c; 
in-alpha = 1 .O, 
in-n = 100; 

if (in-n <= 0) 
goto lb-l: 

if (in-alpha == 0.0) 
goto lb-l; 

while (in-n) 
i 

in-2 = in-x; 
in-x = in-2 + 4; 
k-3 = in_y; 
in-y = in-3 + 4; 
in-4 = in-z; 
in-z=in 4+4, 
*in-2 = *-in-3 + in-alpha * *m-4; 

in-l = in-n; 
in-n = in-l - 1; 

1 
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lb-l : ; 
1 

Although inlining has eliminated the aliasing problem, that fact 
is masked by the profusion of temporaries that are necessary to 
preserve the semantics of C (for instance, a variable such as n 
could be a function call). Induction variable substitution and 
while loop conversion simplify the problem considerably, yield- 
ing the following code: 

main0 
( 

float a[lOO],b[lOO],c[lOO]; 
float *in-x. *my, *in-z, float in-alpha; 
int in-n; 

in-x = &a; 
iny = &b; 
in-2 = &c; 
in-alpha = 1-O; 
in-n = 100; 

if (in-n <= 0) 
goto lb-l; 

if (in-alpha == 0.0) 
goto lb-l; 

do fortran temp-i = 0, n-l, 1 
i 

*(in-x + 4*tempj) = *(ins + 4*temp-i) + 
in 

I - 
alpha * *(in-z + 4 * temp-i); 

in-x = in-x + 400; 
iny=iny+400; 
in-z = in-z f 400; 
in-n=in-n- 100; 

lb-l:; 
1 

After constant propagation and dead (not unreachable) code 
elimination, this becomes: 

main0 
I 

float a[lOO],b[lOO],c[lOO]; 
int temp-i; 

do fortran temp-i = 0,99, 1 
( 

*(&a + 4*temp-i) = *(&b + 4*temp-i) + 
*(&cc + 4*temp-i); 

1 
I 

At this point, the code is in a form that the vectorizer can handle. 
While the implicit representation of subscripts as star operations 
is not difficult to handle, it did require some special tuning in the 
vectorizer. In this form, the Titan vectorizer is able to recognize 
that the references are independent and produce the following 
vectorized code (the colon notation indicates vector operations 
and the do parallel indicates that the vector operations may be 
done in parallel): 

main0 

float a[lOO],b[lOO],c[lOO]; 
int vi, vr; 

do parallel vi = 0,99,32 
( 

vr = min(99, vi+3 1); 
a[vi:vr:l] = b[vi:vr: l] + c[vi:vr:l]; 

1 
1 

Gn a two processor Titan, this code executes 12 times faster than 
the scalar version of the same routine. 

10. Current Status and Future Work 

At present, the Titan C compiler provides a good balance between 
compile time and optimization. The compiler has compiled all of 
UNDP’ , several benchmarks, and a large graphics package 
called Don?** (Dynamic Object Rendering Environment). Of 
these packages, Dork has provided the most interesting experi- 
ences. Major pieces of Dare have been compiled with full 
vectorization and parallelism, and have achieved impressive 
speedups. The one deficiency which we uncovered in vectorizing 
Dare was arrays embedded within structures. We originally did 
not put much effort into handling this kind of construct, since we 
did not think it would arise very often. Given the prevalence with 
which this appears within graphics code, our decision was poor. 
It does not take much additional effort to correctly handle this 
type of array, although the notion of what exactly is the array 
becomes a little unsettled. 

In the future, we plan to enhance this effort in at least two ways. 
First, we plan to enhance the parallelization to include list and 
graph structures, as described earlier in the paper. This en- 
hancement is not that difficult, although it does require an as- 
sumption that each motion down a pointer goes to independent 
storage. Parallelizing this type of code will enable a wider range 
of programs to utilize the multiple processors in the Titan. 

Second, we plan to integrate the inlining and vectorization fea- 
tures into languages similar to C++. where concepts such as 
classes can provide valuable information regarding the safety of 
many transformations-information which is not always avail- 
able in C itself. 

11. Conclusions 

This paper has attempted to convey threelessons. Atone level, we 
have attempted to demonstrate, primarily by example, the careful 
balance necessary between the theoretical and the practical to 
build a successful compiler. The lesson that we have tried to 
convey is that a firm theoretical basis is important for an opti- 
mization, but it is also important to recognize that theory almost 
always bends somewhat to satisfy pragmaticism. 

Second, we have tried to illustrate the importance of balancing the 
work of analyzing a program among various phases of the 
compiler. The C front end is fairly quick and simple, because it is 
able to generate straightforward code, secure in the knowledge 
that good register allocation and scalar optimization will cleanup 
the any glaring mistakes. Similarly, the vector&r is safe in 
propagating address constants and in performing induction vari- 
able substitution because it knows that strength reduction and 
subexpressionelimination will undo any damage ithas done. This 
philosophy of spreading the analysis among the phases that are 
most apt to perform it has turned out to be an enormous win in our 
compiler. 

’ Unix is a registered trademark of AT&T. 
* Doti is a trademark of Ardent Computer Corporation. 
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Finally, we have tried to espouse a different philosophy toward 
compiling C. C is a language that was designed with the intent of 
providing a mechanism by which programmers could access 
features of hardware efficiently from a relatively high level. 
Because of this natural mapping, compilers for C have tended to 
immediately map an inputprogram to arepresentation that is very 
close to hardware. Cur compiler has a different philosophy: 
representing the program in a form which allows for intelligent 
analysis before deciding upon a machine level execution. We be- 
lieve that this is a viable way of compiling C. and that as ar- 
chitectures tend to move more toward parallelism, this approach 
will produce a better mapping from programs to hardware. 
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