
Compiling C for Vectorization, Parallelization, and Inline Expansion

Randy Allen
Steve Johnson

Ardent Computer Corporation
880 West Maude Avenue

Sunnyvale, California 94086

Abstract
Practicalimplementationsofreallanguagesareoftenanexcellent
way of testing the applicability of theoretical principles. Many
stresses and strains arise from fitting practicalities, such as per-
formance and standard compatibility, to theoretical models and
methods. These stresses and strains are valuable sources of new
research and insighs as well as an oft-needed check on the egos
of theoreticians.

architectures in existence. As a result, more of the optimizing
burden is placed on the compiler for these architectures.

Unfortunately, optimizing C is difficult when vector and parallel
architectures are involved. To summarizebriefly just a few of the
problems involved:

1.

Two fertile areas that are often explored by implementations are

1. Places where tractable models fail to match practice. This
canleadtonewmodels, andmay alsoaffectpractice(e.g,the
average programming language has become more context
free over the last several decades).

2.
2. Places where existing algorithms fail to deal with practical

problems effectively, frequently because the problems are
large in some dimension that has not been much explored.

The present paper discusses the application of a much studied
body of algorithms and techniques [Alle 83. KKLW 80. Bane76.
Wolf 78, Wolf 82, Kenn 80, Lamp 74, Huso 821 for vectorizing
and optimizing Fortran to the problem of vectorizmg and opti-
mizing C. In the course of this work some algorithms were
discarded, others invented, and many were tuned and modified.
The experience gave us insight into the strengths and weaknesses
of the current theory, as well as into the strong and weak points
of C onvector/parallel machines. This paper attempts to commu-
nicate some of those insights.

3.

1. Introduction
The programming language C has often been called a “typed as-
semblylanguage,“because thestatements andtheoperatorsinthe
language are very close to typical machine architectures. For
“standard”scalar architectures, aknowledgable programmer can
produce close-to-optimal C programs by careful coding and by
using well-known coding practices (e.g. using register pointer
variables). With vector and parallel architectures, however, this
is no longer true. C does not contain any explicit parallel or vector
operators; even if it did, it is hard to see how such operators could
be used effectively across the wide variety of parallel and vector

4.

5.

6.

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commcrclal advantage.

the ACM copyright notice and the title of the publication and its date appear,

and notice is given that copying is by permission of the Association for

Computing Machmery. To copy otherwise. or to republish. requires a fee and/

or specific permlwon.

0 1988 ACM O-89791-269-1/88/0006/0241 $1.50

Language Design and Implementatton
Atlanta, Georgia, June 22-24, 1988

241

C programs rarely use matrices, and those that are used are
often obtained from dynamic memory and addressed using
pointer variables rather than explicit subscripts. As a result,
determining when two statements reference independent
sections of memory (a determination critical to the success
of vectorization and parallelization) is extremely difficult.

Embedded assignments, operators with side effects (e.g.
++), and conditional operators (e.g. && and ?:) map very
naturally and efficiently to sequential hardware. However,
the sideeffects associatedwith these operators aggravate the
information-gathering process necessary to optimize a pro-
gram. Additionally, these operations are inherently sequen-
tial; successful vectorization requires removal or trans-
formation of these operators.

Thefir statement in C is considerably less constrained than
the Fortrsn DO loop, making vectorization considerably
more difficult. The loop bounds and increment may change
within the loop; branches can legally enter loops; and for
loops almost universally contain operators with side effects
to increment the loop variable (if there even is a loop
variable).

C encourages the use of small functions. Function calls
generally inhibit vectorization of any loop containing them.
Additionally, the calls hide information necessary for opti-
mization.

Unhie ANSI Fortran, C imposes no constraints on subrou-
tine argument abasing.

BecauseC is commonlyusedforlow-leveloperatingsystem
code, it contains a number of constructs that are difficult to
optimize. For instance, ANSI C contains the notion of a
volatilevariable to represent quantities such as status regis-
ters whose values may change outside of the context of the
program. To give a concrete example, the following loop

keyboard-status = 0;
while(!keyboard-status);

appears as though it will loop forever. If keyboard-status is
declared volatile, this loop represents a legitimate (and com-
mon) program fragment. Obviously, variables that are de-

&red volatile need special treatment at almost every phase
of code generation and optimization.

7. The address operator (&) permits modification of variables
in subtle ways, thereby increasing the analysis necessary for
vectorization and optimization.

These problems are inherent to C and are very difficult to handle
in general. However, a large percentage of the problems are di-
rectly attributable to the number of function calls, and can be re-
moved by inlining procedure calls judiciously [AllC 721. Some of
the barriers removed include:

1. The hidden effects of procedure calls. When the body of the
called Procedure is revealed in the calling procedure, the op-
tinnier can work based on the real effects of the procedure,
rather than assuming the worst case.

2. The problems of argument aliasing become less onerous,
and many pointer problems are removed.

3. Since procedure calls cannot in general be executed in vec-
tor, inlining procedure calls contained in loops may increase
opportunities for vectorization.

This paper describes the implementation of a C compiler focused
on the generation of high-quality code for a multi-processor
vector machine. For the reasons given above, it was felt that in-
lining would be an essential part of this compiler. The desire for
vectorization, parallelization, and inlining led to a somewhat un-
usual compiler for C; similarly, the peculiarities of C led to some
new strategies in vectorization and parallelization. Section 2 de-
scribes the strategy of compilation, detailing the goals we had for
the compiler. Section 3 discusses the intermediate form used to
represent C programs and the reasons for its choice. Section 4
details the unique features of the C front end that were required
to generate the intermediate language. Section 5 describes the
processing necessary to make C programs amenable to vector-
ization; section 6 shows how the same analysis benefits non-
vector codes. The implementation of inlining is outlined in sec-
tion 7. while section 8 will describe special optimizations that
become extremely important in the presence of inlining. The
conclusion presents an example that illustrates not only the dif-
ficulty of compiling C for advanced architectures, but also some
of the new insights gained in vectorization by compiling C.

2. Strategy of Compilation

The C compiler described in this paper was targeted for the Titan
a machine whose architecture provides a number of challenges
and opportunities for the compiler. Briefly summarized, the Titan
is a multiple vector processor machine. One processor on a Titan
is comprised of

1. A high speed RISC integer processor.

2. A highly pipelined floating point unit. This unit performs all
scalar floating point instructions and all vector instructions
(both integer and floating point).

3. A very large vector register fde, which serves as a source of
operands and targets for the floating point unit. The vector
registers can be addressed starting at any location using any
vector length and any stride, so that the register set can be
viewed (in the extremes) as a collection of 8 196 scalar reg-
isters, or as four vector registers of length 2048.

A Titan can consist of up to four processors, all of which are
connected to a shared memory by a high speed bus. While there
are a number of mechanisms that processors can use to commu-
nicate, the primary communication/synchronization mechanism
is through the shared memory.

In this architecture, the most fruitful optimizations the compiler
can perform are:

1. Vectorizing statements in loops to fully utilize the floating
point unit. While the segmented nature of the floating unit
permits overlap of scalar operations, in practice vector in-
structions are necessary to keep the pipeline full.

2. Applying multiple processors to a program. Spreading loop
iterations among multiple processors can provide signifi-
cant speedups in many programs.

3. Exploiting low level parallelism. Since the integer and
floating point units are completely separate, it is possible to
overlap integer and floating point instructions. Similarly,
the path to memory from each processor is highly pipelined.
As a result, changing the instruction order so that integer and
floating point instructions overlap and so that memory
access and computation overlap can provide a significant
speedup in many programs.

To summarize, the key to efficient execution on the Titan is uti-
lizing parallelism and minimizing memory overhead. Memory
overhead can be minimized in two ways: doing good register
allocation and “regularizing” memory accesses by using vector
operations.

Procedure calls dismptbothvectorization and register allocation.
The Titan is intended to be a computation-intensive engine with
high quality graphics, so programs running on the machine need
frequent access to math libraries and graphics libraries. As a re-
sult, the compiler needs an effective strategy for handling proce-
dure calls efficiently. The approach we chose was to allow
automatic inlining of procedure calls, with a focus on making the
inlining process easy for libraries. Designing this capability into
the compiler from the beginning also provided a number of other
benefits regarding the size programs that could be compiled and
the way in which debugging is accomplished.

3. Choice of C IL

Because C is such a low level language, and because it is often
used in contexts where optimization is not important (and often
even undesirable!), low level intermediate languages have been
the norm for C compilers [GibM 86, John 781. These intennedi-
ate languages are typically very close to a sequential machine
architecture, allowing an almost direct mapping from the inter-
mediate representation to machine instructions. Low level repe-
sentations have also been common in Fortran compilers and
vectorizing compilers [Lamp 74, Scar 861. In fact, many Fortran
compilers have translated source programs directly into the PCC
intermediate representation-in effect, translating Fortran into
C.

For a number of reasons, we departed from the traditional low
level representation.

1. Primarily, we did not wish to commit to an instruction sc-
quence toa quickly. Normally, C compilers save compile
time by lowering the representation immediately. The loss
in execution time is small on most scalar architectures,
because little global scope is necessary to determine nearly

242

optimal instruction sequences. With vector and parallel
instruction sets, the necessary scope increases dramatically;
large sections of codemustbe analyzed before one statement
can be scheduled in vector or in parallel. As a result, the
penalty for lowering the representation too quickly can be
great.

Low level representations greatly increase the difficulty of
ferreting out important optimization information. For in-
stance, loops are usually translated directly into goto’s and
subscripts are mapped directly into pointers. A vectorizer
lives or dies by its ability to analyze loops and subscripts; an
explicit representation eases the task of vectorization im-
mensely.

With a low level representation, volatile information is usu-
ally lost or hidden. An optimizer cannot work on such a rep-
resentation unless it can be assured that it is not incorrectly
optimizing volatile variables.

Givenmanyof theoptimizations weanticipated, ahighlevel
representation appeared more efficient in terms of compile
time. When inlining is applied, many optimizations that are
useless in real programs (unreachable code elimination, for
instance) are suddenly very important. Dead code is com-
mon, andconstantpropagationisessential(andoftencreates
more dead or unreachable code!). These optimizations are
more efficient when invoked on a high level representation,
since one node may represent many machine instructions.

4. Implementation of C Front End

The front end of our compiler is based on the PCC2 compiler
distributed by AT&T, with anumber of ANSI C features (such as
function prototypes) added. The common code between our C
and Fortran environments includes not only a vectorizer. opti-
mizer, and code generator, but also the type system, a set of
routines for building and investigating the IL data structures, and
a set of symbol table management routines.

A major change arose in the treatment of C expressions. A C ex-
pression is a very potent entity; many side effects are possible,
inchiding changes in the flow of control. The vectorizer was
vastly simplified by forcing all operations that caused the value
of amemory location to change to be madeexplicit as statements.
Thus, the intermediate language has an assignment statement, but
no assignment operator; the C operators ?, :, &&, and II are not
representable in expressions.

Consequently, the C front end represents C expressions as a pair:
the fist element is a sequence of IL statements, typically assign-
ments, while the second element is an IL expression. All of the
operators had to be recast to take expressions of this form. For
example,

WI , E, > + Wi v E,) =’ W, ; SL, , E, + E2 1

Assignments are more interesting:

(SL, , E,) = (SL2, E,) => (SL, ; SL, ; E, = E, , E,)

is the basic idea, but the actual implementation is much more
subtle. For example, this transformation, when applied to

W, . E,) = W2 t E, 1 = W, , E, >

yields (since = associates to the right)

(SL,;SL,;SL,;E, = E,;E, =E,,E,)

which looks reasonable. However, if E, has a side effect (for
example, a functioncall or areference to a volatilevariable) then
E, is in fact invoked twice, which is illegal.

A partial way out of this dilemma is offered by a seemingly un-
related feature of the compiling system-global register alloca-
tion. This makes it possible to generate temporary variables with
a fair amount of impunity, and to expect that most will be
allocated to the sameregister as their generation, so no additional
cost will be incurred. Thus, the actual compilation of assignments
looks more like

(SL, , E,) = (Sr, , E,) => (SL1 ; SL, ; t=E2 ; E,=t, t)

where I is a temporary of the same type as E,.

This implementation has turned up numerous semantic problems
in the Draft ANSI C Standard (ANSI g6), most notably in the
notion of volatile. If v is a volatile variable, and a and b are or-
dinary variables of the same type, then the ANSI standard does
not specify the semantics of

a=v=b;

Using the transformation described here, the effect is that v is
written once, and never read. The ambiguities that arise are suf-
ficiently numerous and painful to call the whole notion of volatile
into question.

C expressions used in conditional contexts also need great care.
For example,

while((SL.E))
ssss

must be rewritten as

SL;
while(E)
(

ssss;
SL;

1

In this case, the list of statements is duplicated. Since this list is
in practice, very short, the cost is low. Also, since this list is almost
entirely assignment statements, they too tend to be optimized
away. In fact, the contexts for the two appearances of SL are
sufficiently different that they may experience totally different
forms of optimization.

5. Processing C for Vectorization

5.1. Overview

Effectivelyvectorizing C requires anumber of enhancements not
normally present in vectorizing Fortran compilers. While there
are a number of subtle enhancements throughout the compiler,
there are two major changes that are worthy of discussion:

1. Special analysis to convert while loops into Fortran DO
loops. Since Cfor loops are converted to whiie loops by the
front end, this transformation is essential to success. While
the conversion of while loops to iterative loops may seem
straightforward, there are a surprising number of intricacies
involved in the process.

243

2. Significant enhancement of induction variable substitution.
Standard C programming practices encourage a style of pro-
gramming in which many auxiliary induction variables are
associated with a loop, and the variables are quite often in a
form that cannot be easily handled. Uncovering and re-
moving these variables efficiently required a compromise
between theoretical elegance and pragmatic codmg.

The following sections discuss these conversions in more detail.

5.2. Conversion of While Loops

The Cfor loop is one of many C entities which are easily mapped
into good instruction sequences on serial architectures, but which
are difficult to treat well on vector and parallel architectures. The
for loop is relatively unconstrained: the termination and incre-
ment conditions can have unusual side effects (particularly if
volatiIe variables are involved); bounds and strides can vary
during loop execution (if there even are explicit bounds and
strides); and branches can enter and leave the loop at will. Given
this lack of regularity, we saw little value in having an explicit
representation offor loops in our intermediate form. Instead, the
C front end representsfor loops as while loops-something it can
do straightforwardly without sophisticated analysis.

Of course, while loops are not generally as well optimized as
Fortran DO loops are, and since manyfor loops are DO loops cast
in a different guise, converting while loops to DO loops is an
important transformation for the compiler. Given the ways in
which for loops can differ from DO loops, a significant amount
of information is necessary to effect the conversion:

1. In order to determine whether branches are entering the
loop, control flow information is necessary. The most effi-
cient way to evaluate this condition is using the control flow
graph built for scalar analysis.

2. Variation of bounds and strides within the loop is most eas-
ily determined by examining the use-def chains built during
scalar analysis.

Both of these facts argue that conversion of while loops should
occur during scalar optimization. Moreover, since the primary
motivation is to utilize vector hardware forfor loops where pos-
sible, the conversion of while loops must come early in the scalar
optimization process. Iffor loops are to reap the full benefit of the
analysis applied to DO loops, then they must be converted before
all the phases which simplify DO loops-induction variable sub-
stitution, constant propagation, and dead code elimination. Given
these restrictions, the proper place to convert whiZe loops is
immediately after use-def chains have been constructed.

This placement is not without problems. In particular, converting
a while loop to a DO loop changes the use-def chains, thereby
requiring the transformation to incrementally reconstruct the
chains that correspond to the transformed code. This is not an
entirely straightforward task, as the following simple example
illustrates:

i = n; i=n;
while(i) (DO dummy = n, 1, -s

.
temp = i; temp = i;
i=temp-s; i=temp-s;

1 ENDDO

When the while loop is transformed, the updated chains must re-
flect proper definition points for the variables R and s used in the

DO loop conditions. In this example, the updating is not difficult,
and simply involves a transitive transfer from the locations
identified as the sources for the initial value and the increment
value. In general, the problem is much more difficult, particularly
because graphics code is one of the main benefactors of vectori-
zation. Graphics code typically transforms 4x4 matrices with
operations that can be beneficially vectorized. Knowing that the
vector length in such loops is small enough that a strip loop is not
required is very important and is often difficult, depending on the
exact way in which the for loop is coded.

As an aside, the Titan compiler also has plans for optimizing
whiZe loops that are truly while loops, and not merely iterative
loops lurking in disguise. A prime example of such a loop is code
that operates on a linked list. Such a loop cannot be vectorized
with any benefit, but it can be spread across multiple processors
by pulling the code for moving to the next element into the
serialized portion of the paralIe1 loop. There are also a number of
cases in which the condition of a loop is necessary only to
compute the termination point. In such cases, computing the
termination criteria can often be pulled into a separate loop. The
resulting bound can then be used in iterative loops representing
the major portion of the computation, which can then be vec-
torized [AllK 851.

5.3. Induction Variable Substitution

Inductionvariable substitution takes code that has been strength-
reduced by hand and makes it more amenable for vector hard-
ware.Forinstance, theloopontheleftcannotbedirectlyexecuted
in vector:

IV=N
DOI= l,N DOI=l,N

A(IV)=A(IV)+B(I) A(N-I+l)=A(N-I+l)+B(I)
IV=IV-1

ENDDO ENDDO

The reason is that the way in which A varies with the DO loop
index is implicit, rather than explicit. Induction variable substi-
tution applied to this loop will produce the loop on the right,
where the variance is explicit and vectorization is trivial.

In Fortran, inductionvariable substitution is useful primarily be-
cause many users have programming habits based on Fortran 66
(which limited the forms that subscripts and loops could take) and
because many users fom-red the habit of strength reducing sub-
scripts by hand to substitute forpoor optimizing compilers. In this
context, relatively straightforward schemes are able to uncover
virtually all of the auxiliary induction variables that appear in
practice [Wolf 78, AllK 811. However, C presents a more chal-
lenging situation.

Because the C front end does not do a sophisticated analysis for
side effects on expressions that appear with ++ expressions, the
intermediate code it generates is ripe with opportunities for in-
duction variable substitution. To give a simple example, source
code such as

while(n) (
*a++ = *b++;
n--;

I

is translated by the C front end into the following:

while(n) (
temp-1 = a;

244

a = temp-l + 4;
temp-2 = b;
b=temp-2+4;
* temp-1 = *temp-2;
temp-3 = n;
n=temp-3 - 1;

I

This loop can be straightforwardly vectorized (it is, after all, only
a vector copy) once all the garbage is cleared away. Before it can
be vectorized, the key assignment must be converted into a form
similar to

*(a + 4*i) = *(b + 4*i)

where i is assumed to be the DO loop induction variable. The
problem is that this form can be created only by substituting the
assignment to temp-1 and temp-2 forward into the star assign-
ment. This substitution cannot be correctly made, however, until
the updates to a and b are moved forward. As a result, straight-
forward techniques cannot handle this loop.

There is a clear theoretical solution to this problem. Stzaightfor-
ward extensions of Morel and Renvoise’s work on partial re-
dundancies can be used to uncover andremove general classes of
induction variables [MoRe 79, Chow 83, Lich 871. For many
pragmaticreasons,wechosenottoutilizethetheoreticalsolution:

1. Foremost was space considerations. Scalar dataflow infor-
mation commonly eats up large amounts of memory; were
we to take this approach, we would have to compute extra
dataflow attributes solely for induction variable substitu-
tion. We felt that this might require more memory than we
could give it.

2. Secondary was graph reconstruction. Induction variable
substitution is only one of many transformations that are
driven off scalar dataflow information. By necessity, it must
occur early in the optimization process; as a result, dataflow
information must be updated to reflect the changes imparted
by the substitution. We knew we could accomplish this in-
crementally (and thereby efficiently) with standard tech-
niques. We were not certain that we could incrementally
update the information based on partial redundancies, and
we felt that reconstructing the graph from scratch would be
far too expensive.

3. Finally, we were able to derive a heuristic solution that is ef-
fective and efficient on codes encountered in practice. In the
worst case, this solution is extremely inefficient, requiring n
passes over a loop (where n is the number of statements in
the loop). However, in practice we have never seen this be-
havior; the average case requires the same simple pass over
the loop that is needed in the straightforward algorithm.

The heuristic solution employed in the Titan compiler is fairly
simple: when a statement is rejected for substitution only because
a later statement redefines a variable used by that statement, the
later statement is marked as “blocking” the first statement. When
a blocking statement is substituted forward, all the statements it
blocks are reexamined for substitution. In this approach, back-
tracking is never done unless it is guaranteed to give some
substitution. Furthermore, most of the analysis necessary to
substitute the statement need not be repeated. As a result, the
backtracking is rarely invoked, and is extremely efficient when it
is invoked.

In the example above, backtracking substitutes the assignments
to temp-1 and temp-2 after the assignments to a and b have been
substituted. As a result, the loop is converted to a form that is
trivially vectorized.

6. Dependence-Driven Optimizations

ThereareprobablyfarmoreCprogramsthatdonotvectorizethan
do, even when the vectorizer is specifically tuned for C. However,
the dependence graph used in vectorization can be used to
optimize in other contexts. Some of the ways in which the Titan
compiler uses its dependence graph to optimize “non-vector”
programs include:

1. Register allocation. The dependence graph used in vector-
ization has a dual nature that permits it to be an effective
basis for register allocation as well as for vectorizing. A data
dependence between two statements implies that their ex-
ecution order must be fixed in some way. When restructur-
ing a program, the desire is to have as few dependences as
possible, to provide the maximum freedom for reordering
execution. The duality arises from the fact that two state-
ments can be data dependent only if they access a common
memory location. As a result, datadependences pinpoint the
memory locations that aremost frequently accessed, provid-
ing amechanism for exploiting the memory hierarchy of the
Titan.

2. Instruction scheduling. The array dependence graph accu-
rately indicates all the execution constraints involving array
references. This information permits far more levity in
instruction scheduling, since most array references are usu-
ally independent and instruction scheduling normally oc-
curs at a level where this fact is difficult to determine.
Information from the dependence graph is passed back to the
code generation to allow better overlap of integer and float-
ing point computations, and also to allow better overlap of
memory access and computation.

3. Strengthreduction. Because classic vectorizing transforma-
tions such as induction variable substitution deoptimize
programs that do not vectorize, strength reduction is a very
important optimization in the Ardent compiler. Our algo-
rithm is unique in that it utilizes the array dependence graph
to simultaneously reduce expensive operations, remove
loop invariant expressions, and eliminate common
subexpressions. The reduction algorithm must be very care-
ful of the parallelism present in a program, sincestrengthre-
duced operations are by their very nature sequential.

Details of these optimizations are available elsewhere [AU, 881.
To illustrate their power, consider the following sample loop:

p = &x[l];
q = &x[O];
for(i=O; iar-2; i++)

p[il = W * W - dil);

This loop, which is a typical loop used in backsolving linear
S)W3nS, CannOt be coma3ly run in vector or parallel because the
array q uses values stored into p on previous iterations. This use
is quite regular, however; theTitanvectorizer is able to recognize
this regularity and pull the values up into registers. By doing so,
it eliminates some memory access constraints on instruction
scheduling, thereby allowing the instruction scheduler to com-
pletely overlap the integer and floating point instructions in the
loop ami also the stores of x to memory with the computation.
Finally, strength reduction is able to eliminate all the integer

245

multiplications within the loop. The resulting intermediate code
is:

f-regl = x[O]
temp-z = &z;
temp_y = &y;
temp-x = &x + 4;
for(i=O; ien-2; itt) (

f-regl = *tempz * (*temp-y - f-regl)
*temp-x = f-reg 1;
temp-x = temp-x + 4;
temp-y = tempJ + 4;
temp-z = temp-z + 4;

1

When the original loop is compiled with only scalar optimization
ontheTitan. itexecutes atO.5 megaflops. Whenthevectorization
information is used to produce the second form, the execution rate
is 1.9 me&lops, which is within 5% of the best possible code for
this loop.

7. Implementation of Inlining

As stated previously, there were motivations for inhning in the
Titan C compiler:

1. Efficient inlining of small static functions common in C.

2. Effective code generation in the presence of calls to math (or
other) libraries. For instance, it was very desirable that a C
call to a low level linear algebra routine (such as DAXPY)
generate the fastest code possible, since a user who writes
such a call is probably expecting good performance.

The first goal is not very difficult, because all the information
necessary for inlining and compilation is available in one file at
one tune. A number of compilers are able to inline functions of
this form. The second goal is more difficult, however, and re-
quires careful design throughout the compiler.

In order to inline functions horn other files, the intermediate rep-
resentation for functions must be saved in an easily accessible
form. To permit this, we eliminated all hard pointers from the lL.
This allowed us to to “page” tables if necessary, to compile very
large files, and to save the parsed form of procedures in catalogs.
As a result, math libraries can be “compiled” into databases and
used as a base for inlining, much as include directories are used
as a source for header files.

Using databases of parsed procedures requires significant in-
formation gathering and some program transformations. For in-
stance, static variables inside a procedure stored in a database
must be made externally known, so that values are correctly
maintained regardless of whether the procedure is called nor-
mally or through inlining. Because external variables are not op-
timized as well as other variables, this makes the detection of
static variables that can be safely moved to automatic storage an
important optimization. Also, since C permits recursion (which
can lead to infinite inlining if care is not taken), and since inlined
functions may inline other functions, order is very important.

While the use of relocatable data structures caused some prob-
lems throughout the compiler, it had a number of unexpected
benefits. The debugger, for instance, works directly on the same
symbol table that the compiler builds during compilation.

8. Special Inlining Optimizations

Many optimizing techniques are virtually useless to invoke on
code written by programmers, because intelligently written code
will never contain any opportunities for their use. For instance,
code written by a programmer should never contain unreachable
code; if it does, it is usually an error (and flagged as such by many
compilers). When inlining is invoked, this situation changes
dramatically. Inlining tailors a procedure designed to handle
many cases to a specific invocation; as a result, large amounts of
dead and unreachable code result.

Not only does inlining shift the focus of optimizations. it affects
the order in which optimizations are done. Consider, for instance,
detection of unreachable code. Typically, unreachable code is
detected at the time basic blocks are constructed; if a block has no
predecessors, it is unreachable. This approach is not effective
with inlined procedures, however, because constant propagation
is necessary to realize that code is unreachable. Consider, for
instance, the following example.

daxpy(*x, y. 0.0. z):
. . .

void daxpy(float *x, float y, float a, float z)
I

if (a == 0.0)
return;

*x=y+a*z;
1

When inlined, this becomes

in-x = x;
in_r=y;
in-a = 0.0;
in-z = z;

if (in-a == 0.0)
goto lb-l;

*in-x = ins + in-a * in-z;
goto lb-l;

lb-l :;

In this somewhat contrived example, the floating point assign-
ment will never be executed, because the first branch to lb-l will
always be taken. This fact cannot be detected until constant
propagation reveals that in-a is always equal to 0.0. This example
illustrates a general Point: the information provided by the spe-
cific parameters at a call site permits a large amount of optimiza-
tion.

Whileunreachablecode does not affect the program speed, it does
affect the program space. From a theoretical point of view, there
are at least three obvious methods for detecting and eliminating
unreachable code:

1. Perform IF conversion [AKPW 831 on the whole program;
any statement whose guard is false is unreachable.

2. Rebuild basic blocks after optimization. Any block with no
predecessors (with some accommodation for loops) is un-
reachable.

246

3. Employ a constant propagation technique specifically de-
signed to accommodate constant propagation withunreach-
able code elimination, such as Wegman-Zadeck [WegZ 851.

We rejected the first two possibilities on the grounds of effi-
ciency. Not only did both techniques require reanalyzing the en-
tire program, but IF conversion could also introduce some inef-
ficiency into the generated code. After some thought, we also
rejected the third approach as being infeasible for our implemen-
tation. There were a number of reasons for this decision:

1. We drive a number of optimizations off the use-def graph,
notjustconstantpropagationandunreachablecodeelimina-
tion. It was not clear that the’modifications necessary to the
data structures would permit us to drive these other optimi-
zations.

2. More specifically, induction variable substitution and while
loop conversion are complicated by the presence of identity
assignments. While both transformations can be done in this
context, the transformations themselves tend to remove
identity assignments, thereby undoing much of the analysis
that is actually needed later during constant propagation.

3. In hindsight, the memory requirements of inserting identity
assignments at birthpoints would probably have been intol-
erable for a production compiler. The vectorizer inserts
identity assignments at a number of birthpoints in order to
determine which variables must be allocated to local mem-
ory withinparallelloops. Even this limiteduseof identityas-
signments tends to increasetbenumber ofnodes in the graph
(and thereby the graph size) to an unacceptable level. The
extent to which this transformation is applied has had to be
limited several times due to large memory requirements.

Rather than adopt any of these approaches, we implemented an
heuristic solution to the problem which turns out to be extremely
effective in practice. During constant propagation, the compiler
eliminates code that is detected as unreachable due to if condi-
tions being simplified to false or true, loops which are detected as
having zero iterations, etc. When a statement is eliminated as
being unreachable, all statements that its definition reaches are
added to a list. All constant assignments whose definitions can
reach any statement in this list are then added to the heap for an-
other round of possible propagation. This approach tends to pick
up almost all constants whosedefinitions are blocked by unreach-
able definitions; it does not eliminate all unreachable code that
arises in practice. In particular, code immediately following
branches that are always taken is difficult to uncover as unreach-
able during constant propagation. The vectorizer has a separate
postpass that is invoked when inlining is enabled to eliminate this
kind of unreachable code. The postpass is a quick heuristic and is
not as effective as reconstructing basic blocks. On the other hand,
it is very effective in practice and requires less compile time.

One other transformation is useful in the context of inlining.
Array rows passed by reference into a procedure lead to sub-
scripted references whose base arrays are also subscripted refer-
ences. Such references are perfectly legitimate, but are virtually
impossible to successfully analyze in a vectorizer. The inlining
phase contains a special pass to “promote” such references into a
standardized form that is easy to recognize and handle.

9. An Example

In order to illustrate the difficulties involved in compiling C for
advancedarchitectures, wepresentanexample.Theexamplealso

illustrates how the techniques described in this paper work
together to compile difficult loops into good code.

float a[lOO], b[lOO], c[1001;
daxpy(a,b,c,l.O.lOO);

1

void daxpy(float *x, float*y, float *z,
float alpha, int n)

(:
if (n <= 0)

return;
if (alpha == 0)

return;

for(;n; n-)
*x++ = *y+t + alpha * *z++;

1
The routine daxpy is a C analog of the Fortran BLAS routine; it
adds a scalar multiple of one vector to another. This coding does
differ from the BLAS routine in that it can place the results in a
different vector. This is quite obviously a vector function; such a
routine coded in Fortran would be trivially compiled as such by
a good vectorizing compiler. This C routine cannot be safely
vectorized, because C imposes no restrictions on argument
aliasing. x, y, and z could be pointers into the same array,
invalidating the analogous vector operation.

This routine can be automatically vectorized by adding in a
pragma stating that the loop is safe to vectorize or by invoking a
compiler option that states that pointer parameters have Fortran
semantics-stores into anyparameterdo not affect values fetched
from a different parameter. However, we can also inline duxpy,
producing the following intermediate representation:

main0
(

float a[lOO],b[lOO],c[lOO];
float *in x _ , *in-y, *in-z, float in-alpha,

*m-1, *m-2, *m-3, *m-4;
int in-n;

in-x = &a;
inJ = &b;
in-z = &c;
in-alpha = 1 .O,
in-n = 100;

if (in-n <= 0)
goto lb-l:

if (in-alpha == 0.0)
goto lb-l;

while (in-n)
i

in-2 = in-x;
in-x = in-2 + 4;
k-3 = in_y;
in-y = in-3 + 4;
in-4 = in-z;
in-z=in 4+4,
*in-2 = *-in-3 + in-alpha * *m-4;

in-l = in-n;
in-n = in-l - 1;

1

247

lb-l : ;
1

Although inlining has eliminated the aliasing problem, that fact
is masked by the profusion of temporaries that are necessary to
preserve the semantics of C (for instance, a variable such as n
could be a function call). Induction variable substitution and
while loop conversion simplify the problem considerably, yield-
ing the following code:

main0
(

float a[lOO],b[lOO],c[lOO];
float *in-x. *my, *in-z, float in-alpha;
int in-n;

in-x = &a;
iny = &b;
in-2 = &c;
in-alpha = 1-O;
in-n = 100;

if (in-n <= 0)
goto lb-l;

if (in-alpha == 0.0)
goto lb-l;

do fortran temp-i = 0, n-l, 1
i

*(in-x + 4*tempj) = *(ins + 4*temp-i) +
in

I -
alpha * *(in-z + 4 * temp-i);

in-x = in-x + 400;
iny=iny+400;
in-z = in-z f 400;
in-n=in-n- 100;

lb-l:;
1

After constant propagation and dead (not unreachable) code
elimination, this becomes:

main0
I

float a[lOO],b[lOO],c[lOO];
int temp-i;

do fortran temp-i = 0,99, 1
(

*(&a + 4*temp-i) = *(&b + 4*temp-i) +
*(&cc + 4*temp-i);

1
I

At this point, the code is in a form that the vectorizer can handle.
While the implicit representation of subscripts as star operations
is not difficult to handle, it did require some special tuning in the
vectorizer. In this form, the Titan vectorizer is able to recognize
that the references are independent and produce the following
vectorized code (the colon notation indicates vector operations
and the do parallel indicates that the vector operations may be
done in parallel):

main0

float a[lOO],b[lOO],c[lOO];
int vi, vr;

do parallel vi = 0,99,32
(

vr = min(99, vi+3 1);
a[vi:vr:l] = b[vi:vr: l] + c[vi:vr:l];

1
1

Gn a two processor Titan, this code executes 12 times faster than
the scalar version of the same routine.

10. Current Status and Future Work

At present, the Titan C compiler provides a good balance between
compile time and optimization. The compiler has compiled all of
UNDP’ , several benchmarks, and a large graphics package
called Don?** (Dynamic Object Rendering Environment). Of
these packages, Dork has provided the most interesting experi-
ences. Major pieces of Dare have been compiled with full
vectorization and parallelism, and have achieved impressive
speedups. The one deficiency which we uncovered in vectorizing
Dare was arrays embedded within structures. We originally did
not put much effort into handling this kind of construct, since we
did not think it would arise very often. Given the prevalence with
which this appears within graphics code, our decision was poor.
It does not take much additional effort to correctly handle this
type of array, although the notion of what exactly is the array
becomes a little unsettled.

In the future, we plan to enhance this effort in at least two ways.
First, we plan to enhance the parallelization to include list and
graph structures, as described earlier in the paper. This en-
hancement is not that difficult, although it does require an as-
sumption that each motion down a pointer goes to independent
storage. Parallelizing this type of code will enable a wider range
of programs to utilize the multiple processors in the Titan.

Second, we plan to integrate the inlining and vectorization fea-
tures into languages similar to C++. where concepts such as
classes can provide valuable information regarding the safety of
many transformations-information which is not always avail-
able in C itself.

11. Conclusions

This paper has attempted to convey threelessons. Atone level, we
have attempted to demonstrate, primarily by example, the careful
balance necessary between the theoretical and the practical to
build a successful compiler. The lesson that we have tried to
convey is that a firm theoretical basis is important for an opti-
mization, but it is also important to recognize that theory almost
always bends somewhat to satisfy pragmaticism.

Second, we have tried to illustrate the importance of balancing the
work of analyzing a program among various phases of the
compiler. The C front end is fairly quick and simple, because it is
able to generate straightforward code, secure in the knowledge
that good register allocation and scalar optimization will cleanup
the any glaring mistakes. Similarly, the vector&r is safe in
propagating address constants and in performing induction vari-
able substitution because it knows that strength reduction and
subexpressionelimination will undo any damage ithas done. This
philosophy of spreading the analysis among the phases that are
most apt to perform it has turned out to be an enormous win in our
compiler.

’ Unix is a registered trademark of AT&T.
* Doti is a trademark of Ardent Computer Corporation.

248

Finally, we have tried to espouse a different philosophy toward
compiling C. C is a language that was designed with the intent of
providing a mechanism by which programmers could access
features of hardware efficiently from a relatively high level.
Because of this natural mapping, compilers for C have tended to
immediately map an inputprogram to arepresentation that is very
close to hardware. Cur compiler has a different philosophy:
representing the program in a form which allows for intelligent
analysis before deciding upon a machine level execution. We be-
lieve that this is a viable way of compiling C. and that as ar-
chitectures tend to move more toward parallelism, this approach
will produce a better mapping from programs to hardware.

12. References

[AllC 721
Allen, F.E. and Cocke, J., “A catalogue of optimizing
transformations,” Design and Optimization of Compilers,
R. Ruskin, ed., Prentice-Hall Englewood Cliffs, N.J. 1971,
l-30.

[AKPW 831
Allen, J.R., Kennedy, K., Porterfield, C., and Warren, J.,
“Conversion of control dependence to data dependence,”
Conference Record of the Tenth Annual Symposium on
Principles of Programming Languages, Austin TX., Jan.
1983, pp. 177-189.

[Alle 831
Allen, J.R., “Dependence analysis for subscriptedvariables
and its application to program transformations.” PhD dis-
sertation, Department of Mathematical Sciences, Rice Uni-
versity, Houston, TX., April, 1983.

[AllK 82]
Allen, J.R. and Kennedy, K., “PFC: a program to convert
Fortran to parallel form.” MASC TR82-6, Department of
Mathematical Sciences, Rice University. Houston, TX.,
March, 1982. Reprinted in Supercomputers: Design and
Applications, K. Hwang, editor, IEEE Computer Society
Press (1985), pp. 186-205.

[AllK 861
Allen, J.R. and Kennedy, K., “Programming Environments
for Supercomputers,” in Supercomputers: Algorithms,
Architectures, andScientific Computation, F.A. Matsen and
T. Tajima, ed., University of Texas Press (1986). pp. 19-38.

[AllL 881
Allen, J.R. and Lew, S., “Why Even Scalar Machines Need
Vector Compilers,“, Technical Report, Ardent Computer,
Jan., 1988.

[ANSI 861
“Draft Proposed American National Standard Program-
ming LanguageC”,X3.159-198x, AmericanNationalStan-
dard Committee X3J11, October, 1986.

[Bane 761
Banerjee, U., “Data dependence in ordinary programs,”
Report 76-837, Dept. of Computer Science, University of
Illinois at Urbana-Champaign, Urbana, Illinois, November
1976.

[Chow 831
Chow, F., “A portable machine-independent global op-
timizer-design and measurements,“, Technical Report 83-
254, Dept. of ElectricalEngineering andComputer Science,
Stanford University, Dec. 1983.

[GibM 761
Gibbons, P.B. and Muchnick, S.S., “Efficient instruction
scheduling for a pipelined architecture,” Proceedings of the
SIGPLAN 86 Symposium on Compiler Construction, Palo
Alto, Ca., June, 1986, pp 11-16.

[Huso 821
Huson, C.A., “An m-line subroutine expander for
Parafrase,” M.S. Thesis, University of Illinois at Urbana-
Champaign, 1982.

[John 781
Johnson, S.C. “A portable compiler: theory and practice,”
Proceedingsof the Fifth AnnualSymposium on Principles of
ProgrammingLanguages,Tucson,AZ., Jan., 1978,97-104.

[Kerm 801
Kennedy, K., “Automatic Translation of Fortran Programs
to Vector Form,” Tech Report, Department of Computer
Science, Rice University, October, 1980.

[KKLP 8 I]
Kuck, D.J., Kuhn, R.H., Leasure. B., Padua, D.A., and
Wolfe, M.. “Compiler transformation of dependence
graphs,” Conf Record of the Eighth ACM Symposium on
PrinciplesofProgrammingLanguages, Williamsburg, Va.,
January 1981.

[KKLW 801
Kuck, D.J., Kuhn, R.H., Lcasure, B.. and Wolfe, M., ‘The
Structure of an advanced vectorizer for Pipelined
Processors,“Proc. IEEE Computer Society Fourth Interna-
tional Computer Software and Applications Conf.., IEEE,
Chicago, October 1980.

[Lamp 741
LamporS L., “Theparallel execu tionof DO loops,” Commu-
nications of the ACM, Vol 17. No. 2, pp. 83-93, February,
1974.

[Leas 761
Leasure, B.R., “Compiling serial languages for parallel
machines,” Report-76-805, Dept. of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, Illi-
nois, November 1976.

[Lich 861
Lichnewsky, A., private wmmunication. _ _

[MoRe 791
Morel, E. and Renvoise, C., “Global optimization by sup-
pression of partial redundancies,” Comm. ACM 22,2 (Feb.
1979).

[Scar 861
Scarborough, R.G. and Kolsky, H-G., “A vectorizing
FORTRAN compiler,” IBM Journal of Research and De-
velopment, March, 1986.

[Weti 851
Wegman, M., and Zadeck, F.K., “Constant propagation
with conditional branches,” Twelfth POPL. New Orleans,
La., Jan., 1985.

[wolf 781
Wolfe, M.J., ‘Techniques for improving the inherent paral-
lelism in programs,” Report 78-929, Dept. of Computer
Science, University of Illinois at Urbana-Champaign, Ur-
bana, Illinois, July 1978.

Dyolf 821
Wolfe, M-J., “Optimizing Supercompilers for Superwm-
putcrs,” PhD Dissertation, University of Illinois at Urbana-
Champaign, October, 1982.

249

