
A General Data Dependence Test for Dynamic, Pointer-Based

Data Structures

Joseph Hummer Laurie J. Hendrent Alexandru Nicolau*

U. of California, Irvine McGill University U.of California, Irvine

Abstract

Optimizing compilers require accurate dependence
testing to enable numerous, performance-enhancing
transformations. However, data dependence testing
is a difficult problem, particularly in the presence of
pointers. Though existing approaches work well for
pointers to named memory locations (i.e. other vari-

ables), they are overly conservative in the case of point-
ers to unnamed memory locations. The latter occurs
in the context of dynamic, pointer-based data struc-
tures, used in a variety of applications rangin from

8system software to computational geometry to -body
and circuit simulations.

In this paper we present a new technique for perform-
ing more accurate data dependence testing in the pres-
ence of dynamic, pointer-based data structures. We
will demonstrate its effectiveness by breaking false de-
pendence that existing approaches cannot, and pro-
vide results which show that removing these depen-
dence enables significant parallelization of a real ap-
plication.

1 Introduction and Motivation

High-performance architectures rely upon powerful

optimizing and parallelizing compilers to increase pro-

gram performance. One of the critical features of

such compilers is accurate data dependence analysis

[Ken90]. A good deal of work has been done in the

area of array analysis (see [PW86, ZC90, Ban93] for

extensive references), with notable success. However,

*Please direct correspondence to jhumrnel@ics.uci. edu. This

work supported in part by an ARPA Research Assistantship in

Parallel Processing administered by the Institute for Advanced

Computer Studies, University of Maryland.
t This work supported in part by FCAR, NSERC, and the

McGill Faculty of Graduate Studies and Research.
$T& work supported in part by NSF grant CCR8704367 -d

ONR grant NOO01486K0215.

Permission to co y without fee all or part of this material is
“J’granted prowd that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

SiGPLAN 94-6/94 Orlando, Florida USA
0 1994 ACM 0-89791 -662-x/94/0006.. W.5O

much less work has been done in the area of pointer

analysis, and with varying degrees of success.

This paper is concerned with developing an accu-

rate data dependence test in the presence of dynamic,

pointer-based data structures. This is a problem which

continues to grow in import ante, for two principal rea-

sons, Firstly, there is an increasing use of languages
which support pointers, in particular C, C++, Ada,

and FORTRAN 90. Secondly, pointers and dynamic

data structures are important tools for achieving good

performance. For example, oc-trees are important data

structures in computational geometry [Sam90] and N-

body simulations [App85, BH86, WS92], as are sparse

matrices in circuit simulations [Kun86, SWG91] and

many other applications.

Existing techniques are either overly conservative in

the presence of dynamic data structures, or work well

for only a small set of structures (linked-lists and trees).

In this paper we present a new, general dependence

test which can yield accurate results for a wide range

of data structures, from simple tree-like structures to

complex cyclic structures. Our test is based on theorem

proving, using axioms which describe uniform proper-

ties of the data structure. The test is general since its

accuracy grows with the accuracy of the axioms, and

it supports any data structure which possesses some

form of regularity. The test can be used to disprove de-

pendence between two statements in a sequence, be-

tween loop iterations, and between statement blocks.

As a result, our dependence test can enable fine-grain,
loop-level, and block-level transformations, potentially

yielding significant improvements in performance. It

is important to note that theorem proving in this con-

text is decidable. The power and general applicability

of theorem proving is well known, as is its general un-

decidability, Thus, a more subtle contribution of our

work is the application of theorem proving in a power-

ful yet decidable manner.

The format of this paper is as follows. In the next

section we discuss the problem in more detail, and

present related work. In Section 3 we introduce our

218

approach by way of example, followed by a more for-

mal present ation of our dependence test in Section 4.

We then discuss the results of applying our test to a

real application in Section 5, and present our conclu-

sions in Section 6.

2 Related Work

Before discussing related work, it will be helpful to

first clarify the problem we are trying to solve.

q = malloc(...);

P = &i; i.nsert(head, q);
. . .

s: ““”= 10;*p q = head;
while ,,, <. . .

T: i = 20;
u: q->f = funo;

q = q->link;

>

Figure 1: The two different pointer problems.

2.1 Problem Clarification

The problem of dependence testing in the presence

ofpointers is better understood (and attacked) ifsepa-

rated into two, largely-distinct subproblems. The first

concerns pointers to named memory locations (typi-

cally stack-based variables), the flavor of which is cap-

tured by the left code fragment of Figure 1. In this ex-

ample, there is an output dependence from statement

S to statement T iflp points to .i at S.

The second subproblem involves pointers to un-

named memory locations, which arise from building

data structures out of dynamically-allocated, heap-

based memory. The right code fragment of Figure 1

depicts a common instance. In this case, there exists

a loop-carried output dependence from the statement

U to itself 28 q from one iteration points to the same

memory location as a q from a later iteration. Note

that we are unable to refer to these memory locations

by name.

We shall refer to the latter subproblem as the

pointer data structure dependence problem (PDSDP),

and the former as the pointer target dependence prob-

lem (PTDP). This paper is concerned solely with

PDSDPl .

2.2 Solution Components

Any accurate solution to the pointer data structure

dependence problem must consist of at least three com-

ponents, whose relationship is shown in Figure 2. In

1~ c one ~u~t ~so consider pointers to dynamic ways ~d

multi-dimensional arrays construct ed using pointers. Since the
programmer’s intent is a well-understood data structure (the ar-

ray) for which numerous dependence tests already exist, we view

this as a special case of PDSDP and feel it should be handled as
such.

particular, it is important to note that the dependence

tester haa two inputs, each of which is distinct and

can be obtained in various ways. Typically this in-

formation is obtained via automatic analysis of the

program; in this case, two different analyses are nec-

essary, When appropriate, we shall refer to these aa

data structure analysis and memory reference analysis,
respectively. It should be noted that these forms of

analysis are often tightly intertwined. This becomes

obvious when a data structure is under modification

structurally; maintaining accurate memory references

requires an understanding of the data structure and

how it is being changed.

t
Yes I No I Maybe

Figure 2: Solution components to PDSDP.

2.3 Extending Solutions to PTDP

There exist numerous approaches to the pointer tar-

get dependence problem [COU86, HPR89, LMSS91,

LR92, CBC93, MLR+93, EGH94], all of which fol-

low a similar analysis and dependence testing frame-

work: the program is analyzed (perhaps interprocedu-

rally), and at each program point the set of aliased

variables is computed. Dependence testing is then

performed by simply intersecting the appropriate sets.

This scheme works well in PTDP since pointers gen-

erally refer to named memory locations—i.e. variables.

However, such store-based approaches [Deu92] do not

extend well to the domain of dynamic, pointer-based

data structures, for the simple reason that pointers may

now refer to a seemingly infinite number of memory lo-

cations, while the dependence test is designed for a

fixed number of memory locations.

The typical solution is to retain the dependence test

from PTDP, and adopt a k-limited data structure anal-

ysis [J M82]. Given a set of dynamically-allocated mem-

ory locations, this haa the effect of assigning k unique

names to the first k memory locations, and a sin-

gle summary name to all remaining memory locations.

This quickly becomes overly conservative-consider a
loop, for example. Even though each iteration may

write to a different memory location (suppose the loop

is updating a linked-list), at best the dependence test

will prove that only the first k iterations are indepen-

219

dent. It should be noted that the conservativeness of

such k-limited approaches has been addressed to some

degree by the work of Chase et. al. [CWZ90], and later

improved upon by Plevyak et. al. [P CK94]. However,

these techniques do not propose a more accurate depen-

dence test, but rather a more accurate data structure

analysis which extends the k-limited scheme to provide

better information in the case of linked-lists and trees.

2.4 PDSDP Only

These approaches are based on a more powerful nam-

ing scheme, designed specifically for the pointer data

structure dependence problem. The general idea is to

name memory locations by relation to one another, and

then test for intersecting relations. Given the poten-

tial complexity and number of such relations, the diffi-

culty is designing an accurate dependence test. These

approaches are sometimes referred to as store less ap-

proaches [Deu92].

Larus et. al. [LH88] presented a technique for nam-

ing memory locations using path expressions. Viewing

a data structure as a directed graph where edges are la-

beled with the names of their respective pointer fields,

each vertex is labeled with a regular expression denot-

ing a path through the data structure starting from a

particular vertex v. Dependence testing is performed

by intersecting path expressions, in particular the lan-

guages denoted by the corresponding regular expres-

sions. If the intersection is empty, a dependence does

not exist. Path expressions are computed during data

structure analysis and stored in alias graphs. Mem-

ory reference analysis, however, collects access paths,

which denote actual traversals of the data structure by

the program. Thus, the dependence tester is employed

by mapping the given access paths to their appropriate

path expressions, using the alias graphs.

For trees, the dependence test of Larus et, al. is a

precise one. However, for DAGS and graphs the results

are overly conservative. The problem lies in the use of

intersection, which forces an overly conservative map-

ping from access path to path expression. For exam-

ple, consider the leaf-linked binary tree shown in Figure

3. Since the access paths root,LLNN and root.LRN

lead to the same vertex, their corresponding path ex-

pressions must produce a non-empty intersection (note

that the intersection of LLNN and LRN would be
empty, which is incorrect). Thus, to obtain correct

results, these access paths are mapped to more conser-

vative path expressions (e.g. (L IR)+ N+). The result is

that very similar access paths, such u root,LLN and

root .LRN, are likewise mapped, resulting in a non-

empty intersection even though it can be proven that

these access paths will never lead to the same vertex

(see Section 3.3). It should be noted that more accu-

rate mapping strategies may in fact exist; Larus et. al.

did not address this (we explored the idea, but found

our solutions to be inadequate),

Hendren et. al. [HN90] discussed a similar technique

for naming memory locations, in this case using a sim-

pler form of paths. Paths are collected in a path ma-

trix such that all paths between memory locations of

interest are known. This approach is potentially less

expensive than that of Larus, yet also precise for trees.

However, it fails to present a general dependence test,

and does not handle cyclic data structures. The notion

of access paths is also used by Deutsch [Deu92]. He

discusses a method of aliaa analysis based on a new, po-

tentially more powerful form of data structure analysis.

However, a general dependence test is not presented.

Finally, Guarna [Gua88] took a different approach and

used syntax trees as a naming scheme, These trees are

then intersected to detect dependence. Though his

technique was applicable to both PTDP and PDSDP,

in the latter domain it is limited to tree-like structures

only.

2.5 Other Work

There has been substantial work done on program

analysis in regards to dynamic allocation. Such anal-

ysis is useful in many related problems, e.g. reference

counting and memory lifetimes [Hud86, ISY88, RM88,

Har89, Bak90, WH92] as well as memory placement

[Har89, HA93]. In particular, Harrison [Har89] per-

forms extensive analysis of dynamically allocated mem-

ory; this work has been extended in [HA93]. From this

analysis it is possible to discover various properties of

a data structure (e.g. its treeness), and thus prove that

certain dependence are not possible. However, a gen-

eral technique of dependence testing which exploits this

information is not presented.

Neirynck et. al. [NPD89] developed an abstract in-

terpretation approach capable of coarse-grain depen-

dence testing on higher-order applicative programs.

The eflect system [LG88] is a language-based approach

in which the effect of a statement must be explic-

itly associated with a region of memory; this enables

the compiler e.g. to perform coarse-grain dependence

testing. Klappholz et, al. [KKK90] discuss another

language-based approach in which dependence testing

relies upon programmer-supplied partition statements

and software tagging.

3 Overview of Our Approach

Our approach is most similar to that of Larus et.
al. [L H88], since we also base our naming scheme on

regular expressions. Regular expressions allow more
accurate naming than k-limited schemes, possess im-

portant theoretical properties such as decidability, and

fit naturally into a standard analysis framework (the

effect of a statement sequence can be summarized us-

ing concatenation, selection through alternation, and

220

type LLBi.naryTree_t

{ integer d;
LLBi.naryTree-t *L;
LLBinaryTree-t *R;

A

R
LLBinaryTree-t *H; }

where AXIOUS are
Al: Vp, p.L<>p.R,
A2: V p <> q, p.(L[R) <> q.(LIR),
A3: V p <> q, p.N <> q.N, AA

A4: Vp, p.(LIRllV)+ <>p.~; 0+0+0+0
Figure 3: A leaf-linked binary tree: type declaration, example data structure.

iteration via kleene star). Unlike Larus et. al., our de-

pendence testeris based ontheorem proving, providing

a more powerful and accurate test.

The critical inputs to our dependence tester are two-

fold: (1) axioms which define various aliasing proper-

ties of the data structure, and (2) access paths for the

two memory locations being referenced. The depen-

dence tester then applies the axioms directly to the

supplied access paths in an attempt to prove that no de-

pendence is possible. If a proof exists, the dependence

tester will find it and return NO. Otherwise, the tester

halts and either returns yes (a dependence definitely

exists) or Maybe (a dependence possibly exists). Theo-

rem proving is applied in a completely general manner,

allowing more accurate results given more accurate in-

puts.

In this first part of this section we define our notions

of aliasing axioms and access paths. We then briefly

overview the framework necessary to support our de-

pendence tester. Finally, we present our test by way of

example. A more formal discussion of our work follows

in Section 4.

3.1 Aliasing Axioms and Access Paths

Aliasing axioms define alissing properties which hold

uniformly throughout a given data structure. An ax-

iom can take one of three forms:

1. V p, p.REl <> p.RE2,

2. V p <> q, p.REl <> q,RE2, and

3. V p, p.REl = p,RE2.

Viewing a data structure as a directed graph where
edges are labeled with their corresponding pointer field

names, the variables p and q refer to any vertex in the

graph. The regular expressions RE1 and RE2 denote

sets of paths through the data structure. Thus, the

access path p,REl denotes the set of vertices reached
by starting at vertex p and traversing any path in REI.

The semantics of an aliasing axiom are straightfor-

ward. Given an axiom V p, p.REl <> p,RE2, this

states that V vertices p, the access path p.REl never

refers to the same vertex as the access path p.RE2. In

other words, p,REl (1 p.RE2 == 0. Axioms of the form

V p <> q, p.REl <> q.RE2 are defined similarly. Fi-

nally, axioms of the form V p, p.REl = p,RE2 imply

the opposite: V vertices p, the sets p.REl and p.RE2

are equivalent. This latter form is useful for describing

cycles in a cyclic data structure.

As an example, consider the leaf-linked binary tree

shown in Figure 3. Four axioms are supplied as part of

the type declaration and define the critical properties

of this data structure. The first two axioms define the

treeness of the substructure consisting of L and R fields:

Al states that L and R lead to different vertices from the

same vertex, while A2 adds that these fields never lead

back to the same vertex from different vertices. Note

these axioms alone do not completely describe a tree

however, since they allow the possibility of a cyclic edge

from a leaf back to the root. A3 conveys that the sub-

structure formed by the N fields is a linked-list, since

it states that different vertices will never lead to the

same node via M—forcing M-1abeled edges into a linear

ordering. Note that this axiom does not completely

describe a linked-list, since it allows a cyclic edge from

the last node in the list to the first, Finally, A4 defines

the acyclicness of the data structure, in particular stat-

ing that L and R form a true tree and that M forms an

acyclic linked-list. For completeness, note that since

the axioms do not say otherwise, it is assumed that

the L, R, and M fields form a DAG, which they do.

Though exceedingly simple in nature, a set of alias-

ing axioms is able to describe quite complicated data

structures, such as sparse matrices (see Section 5) and
tw~dimensional range trees (a leaf-linked tree of leaf-

linked trees, used in computational geometry [PS85]),

See [HHN94] for a more complete discussion.

3.2 Supporting Framework

As pictured in Figure 2 (and discussed in Section

2.2), an accurate dependence test for PDSDP requires

two types of information: information about the data

structure, and information about the referenced mem-

ory locations. In the case of our dependence test, the

221

~

[LH88,
HN90,Deu92]

1 I

\/

9Theorem
Prover

Yes /No / Maybe

Figure 4: Our solution components.

former is supplied by way of the axioms, and the lat-

ter through access paths. This information can be col-

lected in various ways, as depicted in Figure 4. Axioms

can be collected automatically (using many of the tech-

niques discussed in Section 2), or supplied by the pro-

grammer (and perhaps automatically verified). In the

latter case, note that axioms can be specified indirectly

using a higher level of abstraction, e.g. the ADDS data

structure description language [HHN92] or graph types

[KS93]. Access paths are straightforward to collect,

since standard flow analysis techniques map nicely (and

accurately) into regular expressions. Various forms of

path collection are discussed in [LH88, HN90, Deu92].

3.3 An Example

We consider an example involving leaf-linked trees, a

data structure used e.g. in N-body simulations [BH86].

In our case we consider binary trees, an instance of

which is shown in Figure 3. Also shown in the figure are

a set of axioms which we assume hold at the start of our

example. Access paths will be collected and presented

in the form of access path matrices (APM). There exists

an APM at each program point, where each entry in an

APM denotes a path (or set of paths) which may have

been traversed up to (but not including) that point in
the program. Note that an APM does not summarize

all possible paths between vertices in a data structure,

only paths explicitly traversed by the program. The

key observation is that whenever possible, access paths

should be collected in reference to fixed vertices in the

data structure (Larus et. al. [LH88] collected access

paths in this manner). We will refer to these vertices as

bandies. Handles are associated with pointer variables,

and a new handle -hp is created each time its associated

pointer variable p is assigned to. The one exception is

when p is assigned a value relative to itself, in which

case a new handle is not created; this is important e.g.

when p is an induction variable for a loop (as will be

the case in Section 5). Existing handles are destroyed

when they are no longer needed, i.e. they no longer

anchor any access path.

subr (LLBi.naryTree_t *root)

{ LLBinaryTree_t *p, *q;

root = root->L;

P = root->L;
p = p->N;

s: p->d = 100;

p = root;

I: q = root->R

q = q->~;

T: return q->d;

3

Consider the code fragment shown above. The ques-
tion is whether or not statement T is dependent on

statement S. When the analysis reaches S, we have the

following APM:

I ApJ’f root

E!E1343
There are two handles and three access paths; for ex-

ample, the vertex denoted by p can be reached via the

handle-based access path hroot ,LLN. Continuing, we

obtain the following APM at statement I:

Notice that a new handle Ap2 was added due to the

assignment of root to p, and that the handle Jp is

no longer of use and can be destroyed. Eventually, we

obtain the following APM at statement T:

Is there a dependence from S to T? We scan the

APMs at statements S and T, looking for a handle com-

mon to both p and q (though a common handle is not

required by the dependence test, it generally leads to

more accurate results). Finding one in _hroot, we re-

place p at S with the access path _hroot .LLN, and q

at T with -hoot .LRN. Note that since none of the

pointer fields in the data structure have been modified

between S and T, we know that p’s access path is still

valid at T. Assuming that all four axioms of Figure 3

222

were valid at the start of subr, we also know that these

axioms are valid when T is reached.

There is no dependence if it can be proven that for

all possible roots, and across all possible data struc-

tures under which these axioms hold, the access paths

can never lead to the same vertex. Thus, the theorem

prover constructs the following theorem of no depen-

dence, and then attempts to prove this theorem:

Theorem: T is not dependent on S if V ver-
tices tioot, &-oot .LLN <> Jmoot .LRN.

The following paraphrsaed proof is derived automati-

cally:

Proof

●

●

●

Applying A3, theorem is true if
_hroot.LL <> -hroot.LR.

Since both paths start from the same
vertex and begin with L, reduces to
showing that _hroot’.L <> Jmootl.R.

Applying Al, this holds. ❑

The dependence test thus returns No, and we can con-

clude that no dependence exists from S to T.

3.4 Impact of Structural Modifications

When a data structure undergoes structural modifi-

cation, i.e. one or more of its pointer fields is updated,

this can invalidate both access paths and axioms. For

example, inserting a new vertex may lengthen an ac-

cess path, while the insertion process itself may tem-

porarily break any “treeness” axioms. It is the job of

the analyzer to identify and understand such structural

changes, and adjust its information accordingly. This is

a difficult and common problem in all forms of pointer

analysis. On a more positive note however, we have

found that many applications contain large portions

of structurally read-only code, since the code which

performs structural modifications is often localized for

maintainability.

In our case, suppose we have a statement M which

modifies a pointer field. If a dependence test is per-

formed across M, then the access path moved ovet M

may need to be adjusted. Likewise, the set of valicl

axioms may also need to be updated. As access paths
are collected, the set of axioms valid after M must be

recorded. If a dependence test is then given an access

path whose construction occurs across M, the set of

axioms to supply is thus the intersection of the axiom

sets valid before and after M.

4 An Axiom-based Pointer Test

First we present the algorithm behind our depen-

dence test, then a discussion of its time and space com-

plexity.

4.1 Algorithm

APT, an Axiom-bssed Pointer Test, is a theorem

proving system involving axioms specified using reg-

ular expressions, Pointer values are expressed as ac-

cess paths, which are also based on regular expressions.

APT is most appropriate for tests involving data struc-

tures, since the axioms can describe properties of the

data structure, while the access paths can denote paths

through the structure.

We assume the existence of two statement execu-
tions S and T, where S precedes T and each accesses

a single field relative to some pointer (we assume that

expressions involving multiple fields have already been

simplified into this format [HDE+93]):

s: . . . p->f .. . ;

T: . . . q->g . . . ;

Furthermore, either S performs a write to p-z~, T per-

forms a write to q->g, or both, with no intervening

write to the memory location denoted by p->f. There

exists a data dependence from S to T, denoted S j T,

iff p-> f and q->g denote overlapping memory regions.

The input to the dependence test consists of a set

d of applicable axioms, two expressions ES and ET

(corresponding to p->.f and q-zg respectively), and

two valid access paths APP and APq (corresponding

to HP .PathP and Hg .Pat hq respectively). The depen-

dence test returns NO if it can be proven that no data

dependence exists from S to T (with respect to the

given expressions), or Yes if it can be proven that a

data dependence definitely exists. Otherwise, the de-

pendence test returns Uaybe.

deptest(d, Es, ET, APP, APq)
begin

if p and q are different types
then return MO;

if ~ and g do not overlap
then return MO;

assert (HP = Hq);

if PathP = Pathq and \PathP\ = 1
then return Yes;

if proveDisj(A, Pathp, Pathq, ~, C)

then return MO;

return Maybe;
end dept est;

The first step is to check for the possibility of a data de-

pendence. We assume that pointers are not cast freely
between data structure types, and that pointers to a

vertex v point to the start of v in memory and not

elsewhere. These are quite reasonable smumptions,

since a compiler will assume such when generating code

La

(1)

Figure 5: The two cases of proveDisj.

to access fields relative to a pointer. Though safe in

ANSI C, these assumptions are not necessarily true in

older K&R C. In this csse special checks are needed to

guarantee validity of the above assumptions. If these

checks fail, then the first two tests in the dependence

algorithm should be skipped. We also assume that ac-

cess paths share a common handle; the test for differ-

ent handles is nearly identical, although its accuracy

depends on knowing the relationship between the two

handles as well.

There is a definite dependence if the access paths are

guaranteed to reach the same vertex; this is true if the

paths PathP and Pathg are identical and the cardinal-

ity of these sets is one. In this csse the dependence

test returns yes, Otherwise, we attempt to prove the

opposite, that a dependence is impossible.

The core of the dependence test is a general theorem

proving system. The axioms are applied in all possible

combinations in an attempt to prove that the access

paths cannot lead to the same vertex. The idea is to

apply the axioms to ever-increasing suffixes of Pat hP

and Pathq, in an attempt to prove that these suffixes

cannot lead to the same vertex. Since the distinct-

ness of the vertices visited along each access path is

unknown, a proof must consider two cases: (1) suffixes

may originate from the same vertex, and (2) suffixes

may originate from distinct vertices. The situation is
shown in Figure 5, where SP and S~ denote the suffixes

and PP and Pg the resulting prefixes. Note the direct

correlation between the two principle forms of axioms

(“vp... ” and “V p <> q . . .“) and the format of these

two csses.

The core of our dependence test, proveDisj, thus

begins as follows:

proveDisj(d, P;, P;, S~, S:)

begin
if new suffixes do not exist

then return False;

let SP = a longer suffix of path P; + S;;

let PP = new prefix given choice of SP;

let S’g = a longer suffix of path P; + S;;

let Pq = new prefix given choice of S’g;

A: let T1 = result of trying to prove:
V vertices z, z.SP <> x.Sg;

B: let T2 = result of trying to prove:
V vertices x <> y, x.SP <> y.Sq;

if TI = True and T2 = True

then return True;

< remainder of proveDis j to follow; >

The results T1 and T2 are obtained by direct applicw

tion of a single axiom a from A. For example, consider

the calculation of T1. For all axioms a of the form

“V p, p.REl <> p. RE2,” the dependence tester tries

to show that either SP & REI and Sq ~ RE2, or vice

versa. If either case is true, then the proof of step A

succeeds and T1 becomes True. Otherwise the proof

fails and T1 is set to False. The question of subset can

be answered using some general theory of regular ex-

pressions. Given two regular expressions R1 and R2,

RI ~ R2 if All n complement (lvf2) = 0, where Ml

and M2 are the DFAs constructed from R1 and R2,

respectively. The algorithmic details are discussed in

[HU79, DDQ78].

However, if only T1 or T2 is true, it may still be

possible to prove no dependence. Consider Figure 5

once again:

C: if T1 and can prove HP.PP = Hq.Pq

then return True;

D: if T2 and can prove HP .PP <> Hq .Pq

then return True;

E: < alternative, kleene star processing; >

F: return proveDisj(A, F’P, Pq, Sp, S9);
end proveDisj;

Step C corresponds to case (1) and is true if the access

paths HP .Pp and Hq .Pq denote a definite dependence,

Step D corresponds to case (2) and can be answered

recursively: proveD is j (A, PP, Pq, e, e), If these at-

tempts at a proof fail, the algorithm continues recur-

sively in search of new suffixes and a successful proof

(steps E and F). Eventually, the algorithm will either

find a proof and succeed, or if no such proof exists,

halt and fail. This completes the core of the depen-

dence testing algorithm.

224

Two issues remain, however. Firstly is the algorithm

behind suffix generation. A regular expression consists

of zero or more components, where each component is

either c, a single field name2 ~, two alternative compo-

nents a/b, a kleene star component a*, or a parenthe-

sized component (a). Suffixes are selected by starting

with the original paths Pat hP and Pat hq and generat-

ing three sets of suffixes:

(1$1)’ ‘~’= ~=t ~omponent of pat~last component of Path and

(1,0): Spq=last component of PathP ‘&d Sq =Z c,
(0,1): SP = ~ and S, = last component of Pathq.

This process is then repeated recursively for case (1,1).

For cases (1,0) and (0,1), only cases (1,0) and (0,1),

respectively, are repeated. This approach generates the

exact set of all possible suffixes.

Secondly is the handling of parenthesized, alterna-

tive, and kleene star components: if the current prefix

ends in one of these components, how is a new suillx

generated? In the case of parenthesized components,

the parentheses are simply stripped before suffix gen-

eration. For an alternative component a lb, it is first

treated as a single component (in the hope of find-

ing a proof more quickly) and processed as before by

proveD is j. However, if the proof fails, we then split

the alternatives and attempt to prove each csse sep-

arately. The difference is that both alternatives must

result in a successful proof in order for the original

proof to succeed.

Finally, given a kleene star component, at first it is

treated as a single component. If the proof fails, then

induction is employed. Suppose that only one of the

prefixes ends in a kleene component, denoted by a*. An

inductive proof requires three cases, each emphasizing

a replacement for a*:

1. replace with c,
2. replace with a,
3. assume a“a and replace with a* aa.

If the inductive step (3) cannot be proven directly from

the inductive hypothesis, the theorem prover proceeds

recursively in search of a proof (note that the replace-

ment string cent ains a*). This will require the proof

of additional base cases, and may even require further

recursion. Eventually however, the process terminates

since the original proof will either succeed (and thus

halt) or fail on some base case due to the finite num-

ber of axioms (and thus halt). If both prefixes end in

kleene components, the resulting proof contains four

major cases, summarized as follows (we use kleene ‘+’

to simplify the presentation, and we assume that PP

ends in a* and Pg ends in b“):

zFor ~impficity we ~~we that arrays of pointers do not exist~

and that field names are unique across type declarations. Lifting
these restrictions is simply more detail.

1. replace with (c, e),

2, replace with (c, b+),

3. replace with (a+, .s),

4. replace with (a+, b+),

This last case is handled inductively via four sub-cases:

4.1 replace with (a, b),

4.2 replace with (a+, b),

4.3 replace with (a, b+),

4.4 assume (a+, b+) and replace with (a+a, b+ b).

Thus, a total of seven cases are required when both

prefixes end in kleene components.

4.2 Complexity

The algorithm will either find a proof (if one exists),

or halt with failure (if one does not)3. However, this

may require an exponential amount of time in the worst

case. Suppose the original paths PathP and Pathq con-

tain n components. There exist 0(n2) sets of suffixes

which must be checked, and thus 0(n2) different proofs

to be explored (this assumes that the results of inter-

mediate proofs are cached so that a proof attempt is

never repeated, and that the cache is maintained and

searched efficiently). We shall refer to this set of proofs

as P.

Now we consider the cost of exploring one proof in

P, which corresponds to an execution of proveD is j.
If the paths do not contain alternative nor kleene star

components, the cost of this proof is based on two fac-

tors. Firstly, step D may cause an intermediate proof.

However, this intermediate proof is in P, so we pay this

cost only once-either now or later. Hence we ignore

it here. Secondly, steps A and B require searching A

for an applicable axiom to use in the proof, Each such

search requires a subset operation, which is dominated

by the time it takes to convert the two regular expres-

sions into equivalent DFAs. In the worst case, this

conversion process may produce DFAs of size 0(2n).

With m axioms, the time cost of steps A and B be-

comes 0(rn2n). Therefore, in the worst case, the cost

of exploring a single proof is exponential in terms of

both time and space.

If a proof in p involves a kleene component and ini-

tially fails (i.e. steps A-D fail), the cost of induction

(step E) is a constant number of intermediate proofs

(most of which are not in P). This constant depends

on the number of base cases that are ultimately re-

quired, and is a function of the axioms. However, in

the worst case, each intermediate proof may in turn in-

volve kleene star components, This has a multiplicative

3Note that the problem of static analysis in the presence of

pointers has been shown to be undecidable [Lan92]. In relation

to our work, this undecidabllity result corresponds to the prob-

lem of performing accurate data structure and memory reference
analysis (seeFigure 2).

225

effect, resulting in a proof with a worst-case exponen-

tial time complexity of O(c”). Worst-case space com-

plexity is also exponential due to the DFA construction

process.

The same holds true if a proof in P involves an alter-

native component. In this case however, an exponen-
tial number of axioms is required to force worst-case

exponential time.

In practice we have found that paths are relatively

short (n is on the order of ten) and relatively simple

(few kleene and alternative components). This is a

consequence of both the analysis (with its numerous

handles) and the nature of typical applications (which

feature well-structured code and highly-regular data

structures). Proof times thus become dominated by

the RE to DFA conversion process, which generally

runs in 0(n2) time and space complexity. Thus, we

have found that in practice, our dependence algorithm

requires 0(n4) time and 0(n2) space. Of course, the

proof process can be pruned heuristically and cutoff

points set, allowing a tradeoff between accuracy and

efficiency. This may even be user controllable, e.g. via
a compiler option.

5 Results

To demonstrate the effectiveness of our dependence

test, a prototype was implemented and applied in a re-

alistic situation—sparse matrices as used e.g. in circuit

simulations [Kun86].

Sparse matrices are often implemented using orthog-

onal iists [St a80], an example of which is shown in

Figure 6 (along with suitable type declarations). The

fundamental operations performed on sparse matrices

are scaling, factoring, and solving; in terms of execu-

tion time, scaling and solving are linear in the size of

the data structure, whereas factoring is quadratic. We

shall focus on factorization here.

Gaussian elimination is used to factor the matrix,

where the crucial consideration is minimizing jillins (el-

ements added to the matrix as a direct result of the

factorization process). Good pivot selection is one of

the keys to reducing the number of fillins, and thus

considerable effort is spent in selecting the best possi-

ble pivot element at each factorization step. Here is a

high-level overview off act or:

factor(ftl)
begin

for each successive row R k M

{

end

let SM = submatrix[l?+ 1.. IV, R + 1..IV];
compute fillin heuristic for each elem in SM;

search SM for best pivot p;
adjust M to bring p into pivot position;
add fillins to SM;

perform elimination on each row of SM; }

factor;

Notice that for each row of the matrix, four of the five

steps operate on the entire submatrix. Thus, each such

step executes in a row-by-row (or column-by-column)

fashion, something akin to:

let r := p-XmowE;
Ll: while r != NULL

{ let e := r->ncolE;
L2: while e ! = NULL

{ yet ;..

:= e->ncolE; }

let r := r->nrowE;

}

It turns out that in each step, the effect of statement S

is either local to the element e or the row r, revealing

a good deal of parallelism in both the outer and inner

loops.

The problem is exploiting this parallelism in the pres-

ence of a complex, pointer-based data structure. We

shall consider parallelizing the the outer loop Li; simi-

lar logic can be applied to the inner loop L2. Consider

the first iteration of LI. The elements accessed are sum-

marized by the path expression Jr.ncolE(ncolE)*.

The elements accessed in subsequent iterations are thus

summarized by Jm. (nrowE)+nco/E(nco/E)*. In fact,

since r is the induction variable for LI, these two paths

expressions hold for any two iteration executions i and

j (i < j). This leads to the following theorem of no

dependence:

Theorem T’: s is not loop-carried depen-
dent on itself at the level of LI if V vertices
-hr, Jur.ncolE+ <> Jm.nrowE+ncolE+.

Since the sub-structure formed by the fields ncolE and

nrowE is a DAG and not a tree, T cannot be proven

by simply intersecting the given path expressions (see

Section 2.4). Instead, the intersection of two, more

conservative path expressions must be performed, re-

sulting in a non-empty intersection and thus an unsuc-

cessful proof. K-limited approaches will likewise fail to

find a proof.

However, the theorem prover we have outlined in

Section 4 will be able to derive a proof automatically,

assuming it is given enough information. At the very

least, the theorem prover must know that: (1) rows

form linked-lists (not DAGs), (2) the end of a row or
column does not lead to the start of a different row

or column, and (3) the sub-structure is acyclic. This
information can be conveyed by the following three ax-

ioms, respectively:

Al: V p <> q, p.ncolE <> q.ncolE,

A2: V p, p.ncolE~ <> p,nrowE~, and
A3: V p, p.(ncolE~nrowE)~ <> p.c.

These axioms can either be supplied by the program-

mer (note that a single axiom along the lines of The-

226

type Sparse14atrix.t

{ Rovllclr-t *rous;
ColIidr-t *COIS; };

type RowHdr_t
{ Elexaent-t *relems;

RowHdr_t *nrowH;];

type ColHdr.t

{ Element-t *celems;
ColHdr_t *ncolH; 3;

type Element-t
{ real value;

Element_t *nrowE;
Element_t *ncolE; };

‘“F‘“’”’n‘t’-?’””’
nrowH nrowE

,~-->: v ‘r/r

o

0
v

‘o

Figure 6: A sparse matrix: type declarations and example data structure.

orem T will also suffice), or obtained using automatic

data structure analysis techniques (although current

approaches appear too limitedto derive these axioms

automatically). Regardless, these axioms are sufficient

forourtheoremproyer to proveT, thus breaking acriti-

cal false dependence and revealing asignificant amount

of parallelism to the compiler. The proof has been

omitted due to its length (there are four initial cases

since each access path ends in ‘+’, and many of these

contain multiple sub-cases); the complete set of axioms

for a sparse matrix are given in Appendix A.

The importance ofbreaking these false dependences

is demonstrated by the speedup figures shown in Fig-

ure 7. To collect these results, we manually applied

loop-level transformations and ran the resulting code

on an8-PE Sequent multiprocessor. Given the discus-

sion in Section 3.4, we collected two types of results.

Firstly, we assumed a simplistic analysis which only col-

lected access paths for structurally read-only portions

of the code, These are the partially parallel results.

Secondly, we assumed a more sophisticated analysis ca-

pable of handling modifications to the structure of the

sparse matrices. These are the fully parallel results.

Inthepartial caee, the speedups aregoodbutnotlin-

ear. The fully parallel case comes nmch closer to linear

speedup, However, it remains sub-linear since one of

the factorization steps (“adjust &l to bring p into pivot

position”) is inherently sequential.

6 Conclusion

We have presented anew dependence test (APT)
appropriate for dynamic, pointer-based data struc-

tures. It is more accurate than existing approaches,

and supports any data structure

form of regularity. Our test is a

which possesses some

general one based on

1000X1OOO,N=1O, 000 2 PE s 4 PES 7 PES

Factor only partial) 1.7 2.5 3.1
Scale, Factor, Solve (partml) 1.7 2.4 3.0

Factor only (full) 1.8 3.3 5.2
Scale. Fact or. Solve (full) 1.8 3.3 5.2

Figure 7: Sparse matrix speedup results.

theorem proving, allowing it to produce more accurate

results given more accurate information. This informa-

tion is supplied in the form of axioms, which describe

uniform properties of the data structure, and access

paths, which denote the memory locations in question.

In essence, the dependence tester applies the axioms

to the access paths in an attempt to prove that these

paths will never refer to the same memory location. Ac-

cess paths are easily collected using standard analysis

techniques, and axioms can be obtained in a number of

ways. Hence APT is not dependent on any particular

form of data structure analysis.

For the expected case, our approach is practical. Its

use can break false dependence between statements in

a sequence, iterations of a loop, or blocks of st atements.

This in turn can enable the application of performance-

enhancing transformations at the statement, loop, and

block level. The effectiveness of our test was demon-

strated using a real example, namely sparse matrices.

References

[App85] Andrew W, AppeL An efficient program for

many-body simulation. SIAM J. Sci. Stat.

Comput., 6(1):85-103, 1985.

[Bak90] H. Baker. Unify and conquer (garbage, updat-
ing, aliasing, . ..) in functional languages. In Pro-

227

[Ban93]

[BH86]

[CBC93]

[COU86]

[CWZ90]

[DDQ78]

[Deu92]

[EGH94]

[Gua88]

[HA93]

[Har89]

[HDE+93]

ceedings of the ‘9o ACM Conference on LISP
and Functional Programming, June 1990.

U. Banerjee. Loop Trans~ormations for Restruc-
turing Compilers: The Foundations. Kluwer,
1993.

Josh Barnes and Piet Hut. A hierarchical

O(NlogN) force-calculation algorithm. Nature,

324:446-449, 4 December 1986. The code can

be obtained from Prof. Barnes at the University

of Hawaii, or from jhummel@ics.uci. edu.

J. Choi, M, Burke, and P, Carini, Efficient

flow-sensitive interprocedural computation of

pointer-induced aliases and side-effects. In Pro-
ceedings of the ACM 20th Symposium on Prin-
ciples of Programming Languages, pages 232-
245, January 1993.

D. Coutant. Retargetable high-level alias anal-
ysis. In Proceedings o.f the ACM Symposium
on Principles of Progmmming Languages, pages

110-118, January 1986.

D.R. Chase, M. Wegman, and F.K. Zadek.
Analysis of pointers and structures, In Pro-
ceedings of the SIGPLA N 190 Conference on
Progmmming Language Design and Implemen-
tation, pages 296–310, 1990.

P. Denning, J. Dennis, and J. Qualitz. Ma-

chines, Languages, and Computation. Prentice-
Hall, 1978.

A. Deutsch. A storeless model of aliasing and
its abstractions using finite representations of
right-regular equivalence relations. In Proceed-
ings of the IEEE 199.2 International Confer-

ence on Computer Languages, pages 2–13, April
1992.

M. Emami, R. Ghiya, and L. Hendren. Context-
sensitive interprocedural points-to anrdysis in
the presence of function pointers. In Proceed-
ings of the ACM SIGPLAN Conference on Pro-
gmmming Language Design and Implementa-
tion, June 1994.

Vincent A. Guarna Jr. A technique for ana-
lyzing pointer and structure references in par-
allel restructuring compilers. In Proceedings of

the International Conference on Parallel Pro-
cessing, volume 2, pages 212–220, 1988,

W. Ludwell Harrison III and Z. Ammarguellat,
A program’s eye view of Miprac. In U. Baner-
jee, D. Gelernter, A. Nicolau, and D. Padua,
editors, Fifth International Workshop on Lan-

guages and Compilers for Parallel Computing,
volume 757 of Lecture Notes in Computer Sci-
ence, pages 512–537. Springer-Verlag, 1993.

W. Ludwell Harrison III. The interprocedu-

raJ analysis and automatic parallelization of

Scheme programs. Lisp and Symbolic Compu-
tation, 2(3/4):179-396, 1989,

L. Hendren, C. Donawa, M. Emami, G. Gao,
Justiani, and B. Sridharan. Designing the Mc-
CAT compiler based on a family of structured
intermediate e representations. In U. Banerjee,

D. Gelernter, A. Nicolau, and D. Padua, editors,
Fifth International Workshop on Languages and

Compilers for Parallel Computing, volume 757

[HHN92]

[HHN94]

[HN90]

[HPR89]

[HU79]

[Hud86]

[ISY88]

[JM82]

[Ken90]

[KKK90]

[KS93]

[Kun86]

[Lan92]

[LG88]

of Lecture Notes in Computer Science, pages
406–420. Springer-Verlag, 1993.

L. Hendren, J. Hummel, and A. Nicolau. Ab-
stractions for recursive pointer data structures:
Improving the analysis and transformation of
imperative programs, In Proceedings o,f the SIG-
PLAN ’92 Conference on Programming Lan-

guage Design and Implementation, pages 249-
260, June 1992.

J. Hummel, L. Hendren, and A. Nicolau. A lan-

guage for conveying the aliasing properties of
dynamic, pointer-based data structures. In Pro-
ceedings of the 8th International Parallel Pro-
cessing Symposium, April 1994,

Laurie J, Hendren and Alexandru Nicolau. Par-

allelizing programs with recursive data struc-
tures. IEEE Tkans. on Parallel and Distributed
Computing, 1(1):3547, January 1990.

Susan Horwitz, Phd Pfeiffer, and Thomas Reps.
Dependence analysis for pointer variables. In

Proceedings of the SIGPLAN ’89 Conference on
Programming Language Design and Implemen-
tation, pages 28-40, June 1989.

J. Hopcroft and J. Unman. Introduction to Au-
tomata Theory, Languages, and Computation.

Addison-Wesley, 1979.

P. Hudak. A semantic model of reference count-

ing and its abstraction. In Proceedings of the
1986 ACM Conference on LISP and Functional
Progmmming, 1986.

K. Inoue, H. Seki, and H. Yagi. Analysis of
functional programs to detect run-time garbage
cells. ACM TOPLAS, 10(4):555–578, October
1988.

N. D. Jones and S. Muchnick. A flexible ap
preach to interprocedural data flow analysis and
programs with recursive data structures. In 9th
ACM Symposium on Principles of Programming
Languages, pages 66-74, 1982.

K. Kennedy. Foreword of Supercompi/ers for
Parallel and Vector Computers, 1990. The text
is written by Hans Zima with Barbara Chap

man, available from the ACM Press.

David Klappholz, Apostolos D. Kallis, and Xi-
angyun Kang. Refined C: An update, In
David Gelernter, Alexandru Nicolau, and David
Padua, editors, Languages and Compilers for

Pamllel Computing, pages 331-357. The MIT
Press, 1990.

N. Klarlund and M. Schwartzbach. Graph
types. In Proceedings of the ACM 20th Sympo-
sium on Principles of Programming Languages,
pages 196–205, January 1993.

K. Kundert. Sparse matrix techniques. In

A. Ruehli, editor, Circuit Analysis, Simulation
and Design, pages 281-324. Elsevier Science
Publishers B.V. (North-Holland), 186.

W. Landi. Undecidability of static analysis.
ACM Letters on Programming Languages and
Systems, 1(4), December 1992.

J. M. Lucaesen and D. K. Gifford. Polymor-

phic effect systems. In Proceedings 15th ACM
Symposium on Principles of Progmmming Lan-

guages, pages 47-57, 1988.

228

[LH88]

[LMSS91]

[LR92]

James R. Larus and Paul N, Hilfinger. De-
tecting conflicts between structure accesses. In

Proceedings of the SIGPLAN ’88 Conference on

Programming Language Design and Implemen-
tation, pages 21–34, June 1988.

J. Loeliger, R. Metzger, M. Seligman, and
S. Stroud. Pointer target tracking - an empiri-
cal study. In Proceedings of Supercomputing ’91,
pages 14–23, November 1991.

W. Landi and B. Ryder. A safe approximation
algorithm for interprocedural pointer alissing,
In Proceedings of the SIGPLAN ’92 Conference

on Programming Language Design and Imple-
mentation, pages 235-248, June 1992.

[MLR+931 T. Marlowe, W. Landi, B. Ryder, J. Choi.

M. Burke, and P. Carini.’ Pointe~-induced ali~

[NPD89]

[PCK94]

[PS85]

[PW86]

[RM88]

[Sam90]

[Sta80]

[SWG91]

[WH92]

[WS92]

[ZC90]

ing: A clarification. ACM SIGPLAN Notices,
28(9):67-70, September 1993.

A. Neirynck, P. Panangaden, and A. J. De-
mers. Effect analysis in higher-order languages.
International Journal of Pamllel Programming,

18(1):1-37, 1989.

J, Plevyak, A. Chien, and V. Karamcheti. Anal-

ysis of dynamic structures for efficient paral-
lel execution. In U. Banerjee, D. Gelernter,
A. Nicolau, and D. Padua, editors, Sizth .lnter-
national Workshop on Languages and Compil-
ers for Parallel Computing, volume 768 of Lec-

ture Notes in Computer Science, pages 37-56.

Springer-Verlag, 1994.

F. Preparata and M. Shames. Computational
Geometry: An Introduction. Springer-Verlag,
1985.

David A. Padua and Michael J. Wolfe. Ad-
vanced compiler optimization for supercomput-
ers. Communications of the ACM, 29(12), De-
cember 1986.

C. Ruggieri and T. P. Murtagh. Lifetime anal-
ysis of dynamically allocated objects. In Pro-

ceedings of the 15th ACM Symposium on .Prin-
ciples of Progmmming Languages, pages 285–
293, 1988.

Hanan Samet. Applications of Spatial Data
Structures: Computer Graphics, Image Procew-
ing, and GIS. Addison-Wesley, 1990.

Thomas A. Standish. Data Structure Tech-
niques. Addison-Wesley, 1980.

J. Singh, W. Weber, and A. Gupta. SPLASH:
Stanford parallel applications for shared-

memory. Technical Report CSL-TR-91-469,
Stanford University, 1991. FTP to mo-
jave.st anford.edu.

E. Wang and P. Hilfinger. Analysis of recursive
types in LISP-like languages. In Proceedings o.f

the ’92 ACM Conference on LISP and Func-
tional Programming, pages 216-225, June 1992.

M. Warren and J. Salmon. Astrophysical n-
body simulations using hierarchical tree data

structures. In Proceedings of Supercomputing
1992, pages 570–576, November 1992.

Hans Zima and Barbara Chapman. Supercom-

pilers for Pamllel and Vector Computers. ACM
Press, 1990.

Appendix A: Sparse Matrix Axioms

The following twelve axioms can be used to accu-

rately describe a sparse matrix. Due to space limita-

tions we merely present the axioms here; for a more

detailed discussion see [HHN94]. Note that some ax-

ioms are inferred since pointer fields of different types

should lead to different vertices,

We develop the axioms bottom-up, starting from the

perspective of the matrix elements and finishing with

the root of the sparse matrix. Firstly, we convey that

the rows and columns form linked-lists, and that from

any element of the matrix the next row and column

elements are distinct:

V p<>q, p.nrowE <> q.nrowE,

‘d p<>% p.ncolE <> q.ncolE,

V p, p.nrowE <> p.ncolE.

Next, we state directly that rows are disjoint, likewise

for columns:

V p, p.ncolE” <> p.nrowE~ncolE*,

V p, p.nrowE* <> p.ncolEfnrowE”.

We also say that row and column headers form linked-

lists:

V p<>q, p.nrowH <> q.nrowH,

V p<>q, p.ncolH <> q,ncolH.

Once again we state the disjointness of the rows

(columns), this time from the perspective of the row

(column) headers:

V p<>q, p.relern(ncolE)* <> q.relem(ncolE)*,

V p<>q, p.celem(nrowE)* <> q.celem(nrowE)*.

Since the root vertex always refers to the first row (col-

umn) header, we view the root vertex as part of the

row (column) header linked-list:

V p<>q, prows <> q.nrowH,
V p<>q, p.cols <> q.ncolH.

Finally, we state that a sparse matrix is acyclic:

V p, p.(rowslcolslrelemslcelemslnrowH[ncolHl

nrowE[ncolE)+ <> p.c.

As an aside, note that since since a sparse matrix

has only one root vertex, we can easily state the dis-

jointness of sparse matrices:

v p<>q,
p.(rowslcols)(relems lcelernsl

nrowH lncolHlnrowElncolE)* <>

q.(rows[cols)(relems lcelems]
nrowH\nco/H lnrowE[nco/E)*.

229

