Implementing Type Classes

John Peterson and Mark Jones
Department of Computer Science, Yale University,
P.O. Box 2158 Yale Station, New Haven, CT 06520-2158, USA.

Electronic mail: peterson-john@cs.yale.edu, jones-mark@cs.yale.edu

Abstract

We describe the implementation of a type checker for the
functional programming language Haskell that supports the
use of type classes. This extends the type system of ML to
support overloading (ad-hoc polymorphism) and can be used
to implement features such as equality types and numeric
overloading in a simple and general way.

The theory of type classes is well understood, but the prac-
tical issues involved in the implementation of such systems
have not received a great deal of attention. In addition
to the basic type checking algorithm, an implementation of
type classes also requires some form of program transforma-
tion. In all current Haskell compilers this takes the form
of dictionary conversion, using functions as hidden param-
eters to overloaded values. We present efficient techniques
for type checking and dictionary conversion. A number of
optimizations and extensions to the basic type class system
are also described.

1 Introduction

In the study of programming languages, the term
overloading is used to describe the ability of a single symbol
to have different interpretations as determined by the con-
text in which it appears. Standard examples of this include
the use of + to represent both addition of integers and addi-
tion of floating point quantities, or the use of == to compare
both character values and pointers. In each case, the in-
tended meaning of the overloaded symbol can be determined
from the types of the arguments to which it is applied.

One common approach is to completely resolve overloading
at compile time. The compiler installs type specific mean-
ings for all overloaded symbols, based either on type in-
formation attached to operands (the usual case) or some
more general overloading resolution mechanism. A signif-
icant drawback to this approach is that overloaded opera-
tions cannot be abstracted while retaining their overloaded
nature.

A more dynamic approach to overloading which preserves
the ability to abstract overloaded definitions is found in ob-

ject oriented languages. Here, resolution of overloaded oper-
ations occurs at run time. There are two particular problems
to be dealt with:

e How do we determine which interpretation of an over-
loaded operator should be used in any particular sit-
uation? There are many examples for which the ap-
propriate overloading cannot be determined at compile
time. For example, in a program that uses the func-
tion double = M.z + z to double both integer and
floating point values, there is no way to fix any single
interpretation for the + symbol.

o How do we ensure that overloaded values are only ever
used with appropriate arguments? For example, it
would probably not make sense to try to add two char-
acter values. As a result, we must also ensure that the
double function is never applied to a character value.

Standard ML uses two different approaches to overloading:

e The type of each arithmetic operator such as + must be
uniquely determined from its context, possibly by in-
serting an explicit type declaration. This compile time
resolution of overloaded operators is not able to pre-
serve the full overloading of + in the double function;
one specific implementation of + must be chosen.

e Standard ML introduces a notion of equality types to
deal with the typing of the equality function. This is
undesirable because it forces the programmer to ac-
cept a particular structural definition of equality — one
which tests for equality of representation rather than
equality of represented value. In addition, Appel [1]
reports that “Equality types add significant complex-
ity to the language and its implementation”.

An alternative approach to the treatment of overloading was
introduced by Wadler and Blott [11] based on the notion of
a type class and is intended to provide a uniform and gen-
eral framework for solving exactly these kinds of problems.
Type classes are most widely known for their use in the func-
tional programming language Haskell [6] where they are used
mostly to deal with standard primitive functions such as +
and ==. In addition, we have also found that type classes can
be useful in more specific application areas where they can
help to produce clear and modular programs [7]. We should
also mention that there does not appear to be any signif-
icant reason why the use of type classes should be limited
to non-strict, purely functional languages: in principle, any

language based on the basic Hindley/Milner/Damas type
system could be extended to support the use of type classes.

This paper is meant to serve as a practical guide for the im-
plementation of type classes. Previous work in this area has
concentrated on the typing rules and has culminated in a set
of syntax-directed typing derivations which are the basis for
our type checker. Here we will use the typing rules to create
a concrete algorithm which both type checks and transforms
the program. We hope to reveal the essential simplicity of
both the theory and implementation of type classes. Our
concerns are type checking programs efficiently, generating
the best possible code from the type checker, and introduc-
ing a number of simple extensions to type classes which can
be incorporated into our basic framework. This work is the
result of our experience implementing type classes in both
the Yale Haskell compiler and the Gofer interpreter.

2 Type classes — a summary

We begin by summarizing the main features of a system of
type classes for a very simple and well known example — the
definition of an equality operator, written as ==, that is:

e polymorphic: use of the operator is not restricted to
values of any single type.

e overloaded: the interpretation of equality is deter-
mined by the types of its arguments.

e extensible: the definition of equality can be extended
to include new datatypes.

Our example programs will be written using the concrete
syntax of Haskell with explanatory comments where neces-
sary. Further details may be found in [6]. We will also use
the following terms while describing the class system:

method A primitive overloaded operator such as == will be
called a method. Methods are found in expressions.

class A group of related methods is packaged into a class.
Each class has a name which is used in the type lan-
guage.

data type Type classes use the same sort of data types
used by the ML type system. A type constructor
names a data type in the type language while data
constructors create values in the expression language.

instance An instance binds a data type to operations which
implement the methods of a specified class for that

type.

The basic idea is to define a set of types Eq, known as a
type class in Haskell, that contains precisely those types for
which a suitable definition of equality has been given using
an instance declaration. The definition of the class Eq is as
follows:

class Eq a where
(==) :: a ->a -> Bool

The first line introduces a name for the class and indicates
that the type variable a will be used to represent an arbitrary
instance of the class in the following part of the definition.
(In the general case, we use an expression of the form C t

to represent the assertion that the type t is an instance of
the class C.) The remaining part of the declaration lists
a collection of method functions which are associated with
the class. In this particular example, there is only a single
method function, written as an infix operator, ==. The type
signature a -> a -> Bool indicates that, for each instance
a of Eq, the == symbol behaves like a function that takes two
arguments of type a and returns a value of type Bool.

A class declaration may also define a set of superclasses for
a given class. The use of superclasses does not significantly
complicate this type system and will be discussed later.

Using the notation of Haskell, the full type of == is written
as (Eq a) => a -> a -> Bool. Note the convention that
all free variables in a type expression are implicitly bound
by a universal quantifier at the outermost level. Thus == is
‘polymorphic’ in a, but the choice of types for a is restricted
to instances of Eq. Type class constraints like this are often
described as the context part of a type.

Even before we have defined a single instance of the class,
we can use the == operator, either indirectly or directly, to
define other values. The restriction to instances of Eq is
reflected in the types assigned to these values. For example:

member :: Eq a => a -> [a] -> Bool
member x [] = False
member x (y:ys) = x==y || member x ys

The first line of this definition gives the type of member. Note
that, in Haskell, [a] represents the type of lists of values
of type a. As in the basic ML type system, user supplied
type signatures are not actually required since they can be
inferred automatically by the type system. We provide such
signatures in our examples as documentation. The second
and third lines are typical of the way that functions are
defined in Haskell. In this example there are two equations,
using pattern matching on the left hand side to distinguish
between the two cases when the list argument to member is
empty, [], or non-empty, written (y:ys) where y and ys are
the head and tail, respectively, of the list.

The types which are members of a class are defined by a
collection of instance declarations which may be distributed
throughout the program, typically in different program mod-
ules where new datatypes are introduced. For built-in types,
the definition of equality may well be provided by a primitive
function:

instance Eq Int where
(==) = prinEqlnt

More generally, we can define instances of the class Eq for
any built-in and user-defined algebraic data types as in the
following definition of equality on lists:

instance Eq a => Eq [a] where
O == [] = True
(x:x8) == (y:ys) = x==y && xs==ys
- - = False

(The underscore character _ in the last line is used as a
wildcard; it indicates that, if neither of the first two cases
can be applied, the the equality test will produce a result
of False.) The expression Eq a => Eq [a] in the first line
indicates that the definition of equality on lists depends on
the definition of equality used for the elements held in the
list: if a is an instance of Eq, then so is [a].

The set of types defined by a finite collection of instance
declarations may be infinite (but recursively enumerable).
For example, the definitions given above describe the equal-
ity operator for integers, lists of integers, lists of lists of
integers and so forth.

3 Implementing Overloading

One standard technique used in the implementation of run-
time overloading is to attach some kind of tag to the con-
crete representation of each object. Overloaded functions
such as the equality operator described above can be imple-
mented by inspecting the tags of their arguments and dis-
patching the appropriate function based on the tag value.
Many schemes exist for the encoding of tags to make the
tag dispatch efficient. This is essentially the method used
to deal with the equality function in Standard ML of New
Jersey [2]. One of the benefits of static type checking is that
it provides a compile-time check which ensures that the the
equality function will never be applied to an object for which
there is no corresponding definition of equality.

Unfortunately, the use of tags as described above has a num-
ber of drawbacks. It can complicate data representation and
may not be well suited to the underlying hardware. Perhaps
more significantly, there are some forms of overloading that
cannot be implemented using this approach. In particular,
it is not possible to implement functions where the over-
loading is defined by the returned type. A simple example
of this is the read function used in Haskell to parse a string
as a value of any type that is an instance of the Text class,
the set of readable (and printable) types.

An elegant way to avoid these problems is to separate ob-
jects from their tags, treating tags as data objects in their
own right. For example, we can implement read as a func-
tion that takes an extra argument which gives the tag of
the result value. This amounts to passing type information
around at run-time but this is only necessary when over-
loaded functions are actually involved. This is potentially
more efficient than uniformly tagging every data object re-
gardless how it will be used.

Using this approach, the member function in the previous

section might be implemented by translating the original
definition to:

member’ (a -> a -> Bool) -> a -> [a] -> Bool
member’ eq x [] = False
member’ eq x (y:ys) = eq x y || member’ eq x ys

In other words, the implementation of member is simply pa-
rameterized by the appropriate definition of equality. The
tag in this case is the equality function itself.

In this example, we could evaluate member 2 [1,2,3] by
rewriting it as member’ primEqInt 2 [1,2,3] and evalu-
ating that expression instead. For a more interesting ex-
ample, if xs is a list of lists of integers, then we could
evaluate member [1] xs in a similar way, rewriting it as
member’ (eqlList primEqInt) [1] xs, where:

eqlist :: (a -> a -> Bool) -> [a] -> [a] -> Bool
eqlist eq []] = True

eqlist eq (x:xs) (y:ys) =eqxy &&

eqlist eq xs ys

False

eqlist eq _

The definition of eqList can be obtained directly from the
instance declaration on lists in Section 2 in much the same
way as the definition of member’ was obtained from that
of member. Type classes do not require a particular defi-
nition of equality for a data type; any function of the ap-
propriate type can by supplied by the user to check equal-
ity. As a convenience, Haskell allows the programmer to use
derived instances for some of the standard classes like Eq,
automatically generating appropriate instance definitions.
Note that this feature is not itself part of the underlying
type system.

One of our goals in the remainder of this paper is to describe
how these translations can be obtained automatically as part
of the type checking process.

4 Static Analysis

Before type checking, the compiler must assemble the com-
ponents of the static type environment. The data type,
class, and instance declarations (all top-level declarations
in Haskell) must be collected and processed. One constraint
on these declarations is that instances must be unique: only
one instance declaration for a particular combination of data
type and class is allowed. This ensures that the meaning of
overloaded operations with respect to parameter data types
is consistent throughout the program.

In the previous section we described how the member func-
tion can be implemented by parameterizing its definition
with respect to an implementation of the == method. In the
general case, a class may have several different methods and
it 1s sensible to parameterize the definitions of overloaded
functions using dictionary values; tuples containing imple-
mentations for each of the methods for a particular instance
of a class.

Static analysis generates a dictionary for each instance dec-
laration and these dictionaries themselves may be over-
loaded. When a dictionary contains overloaded functions,
as manifested in the context component of an instance dec-
laration, it will reference further subdictionaries when con-
structed. A dictionary containing eqList would need to be
overloaded to provide the eq argument to eqList. In our
implementation, this captured dictionary is stored by par-
tially applying eqList to just the eq argument when the
dictionary containing eqList is created.

Fach instance can be converted to a 4-tuple containing the
data type, the class, a dictionary, and the context associated
with the instance. A definition is inserted into the program
which binds the dictionary value, a tuple of method func-
tions, to a variable, the dictionary variable. The instance
context can be represented by a list of class constraints, one
class constraint for each argument to the data type defined
by the instance. A class constraint is the (possibly empty)
list of classes which must apply to the constituent type.

The instance declaration for list equality would create this
dictionary:

d-Eq-List = eqlList
and the declaration itself would be represented by:
(List,Eq,d-Eq-List, [[Eq]])

where List is the name of the list type data constructor.
Since this class has only one method a tuple is not needed;

normally a dictionary would be tuple containing a defini-
tion for each method. The context indicates that the first
argument to the List type constructor must be in the Eq
class.

Dispatching a method requires selection of the appropriate
function from a dictionary. Selector functions which retreive
a method from a dictionary are also defined as the static
type environment is processed. (In the previous example no
selectors are needed since there is no tuple in the dictionary.)
These simply extract a component of a dictionary tuple,
a constant time operation since each member function is
located at a specific place in the dictionary. Dictionaries are
only used where overloading cannot be resolved at compile
time. When the type associated with a method is known
at compile type the type specific version of the method is
called directly without using the dictionary.

5 Type Inference

We will separate the issues of type inference, in which each
program expression is assigned a (possibly overloaded) type,
and dictionary conversion, in which the program code is
transformed to explicitly extract method functions from dic-
tionaries.

The use and implementation of ML style type inference is
well documented and we will not repeat this here (see [4] for
example). Instead, we concentrate on the relatively minor
changes that are needed to extend ML style type inference
with support for type classes.

As in ordinary ML typechecking, type variables and unifi-
cation play a central role. Type variables are initially un-
bound, corresponding to ‘unknown’ types. As type checking
proceeds, various constraints on the values that can be as-
signed to type variables are exposed, for example by ensuring
that the argument type of a given function is the same as the
type of the value to which it 1s actually applied. These con-
straints are solved by instantiating unbound type variables
to more accurate types. Type classes require an additional
field in each uninstantiated type variable: the context, a set
(represented by a list) of classes.

Unification is affected in a very simple way: when a type
variable is instantiated, its class constraints must be passed
on to the instantiated value. If this is another type variable,
its context is augmented, using set union, by the context
of the instantiated variable. When a context is passed on
to a type constructor context reduction is required. Con-
text reduction uses the instance declarations in the static
type environment to propagate all class constraints to type
variables.

The type constructor being reduced by context reduction
must be an instance of the reducing class. If not, type
checking fails with an error that an attempt has been made
to use an overloaded operator at a type that is not an in-
stance of the corresponding class. If an instance declaration
is found linking the data type and the class, the context of
the instance declaration propagates to the type constructor
arguments. This process continues until contexts have been
propagated exclusively to type variables.

As an example, consider the unification of Eq a => a,
a type variable with an Eq context, and the type
[Integer]. The type variable is instantiated to
[Integer]. Before context reduction, the resulting type

is Eq [Integer] => [Integer]. The instance declaration
for class Eq over the list data type exists (otherwise a type
error occurs) and propagates the context Eq to the argu-
ment to the list type constructor. This leads to the type
Eq Integer => [Integer]. Now we can see that the pro-
gram must also include an instance declaration that makes
Integer an instance of the class Eq. Assuming that this is
true, and since the Integer type constructor does not take
any arguments, no further constraints can exist leaving only
[Integer] as the resulting type. Note, however, that the
unification would have failed if the required instance decla-
rations were not found in the static type environment. By
a similar process, unification of Eq a => a and [b] would
yield the type Eq b => [b]. Here, contexts remain attached
to the resulting type variables.

The following code implements type variable instantiation in
the presence of type classes. Each type variable has a value
field which is either null (uninstantiated) or contains an in-
staniated type. The context field is a list of classes attached
to uninstantiated type variables. The findInstanceContext
function searches the static type environment for an instance
with the selected class and data type. If not is found this
function signals a type error. It returns a list of contexts,
one for each argument to the data type.

instantiateTyvar(tyvar,type)
tyvar.value := type
propagateClasses (tyvar.context,type)

propagateClasses (classes, type)
if tyvar(type)
then type.context := union(classes,type.context)
else for each ¢ in classes
propagateClassTycon(c,type)

propagateClassTycon(class,type)
g = findInstanceContext (type.tycon,class)
for each classSet in s, typeArg in tycon.args
propagateClasses (classSet, typeArg)

One other minor change to ML type inference is required.
When a letrec is typechecked all variables defined by the
letrec share a common context. This will be discussed in
Section 8.3.

It is worth emphasizing that context reduction is the only
significant change to the ML type inference process neces-
sary to infer correct typings for Haskell programs involving
type classes. On the other hand, dictionary conversion, as
described in the following section (or some similar process),
must be carried out to implement overloading in the final
executable version of the type checked program.

6 Dictionary Conversion

Dictionary conversion affects the generated code in two
ways. First, overloaded definitions receive additional param-
eter variables to bind dictionaries. Second, a reference to an
overloaded definition must be passed dictionaries. Thus the
typechecker needs only two basic changes: when reference
to an overloaded definition (which is usually a function but
may be of any type) is type checked the hidden dictionary
parameters must be inserted. When a definition (either at
the top level or in a local definition using a let or letrec)

is typed hidden dictionary arguments are inserted to bind
any necessary dictionaries needed to resolve the overloading
at run time.

The relation between a type signature and dictionary pa-
rameters is simple: each element of the context corre-
sponds to a dictionary passed into or recieved by an over-
loaded definition. For example, a function with the type
(Eq a, Text b) => a -> b would require two dictionaries,
one for the class Eq and another for Text. The ordering of a
context is arbitrary; dictionaries can be passed in any order
so long as the same ordering is used consistently.

Adding dictionary passing code to the program during the
code walk performed by the standard ML typechecker is per-
haps the essential implementation issue addressed here. The
type associated with an expression may change due to uni-
fication as the type checker proceeds. Since types only sta-
blize at generalization the appropriate dictionaries needed
to resolve overloading cannot be determined until the entire
expression being generalized has already been walked over.
To avoid a second pass over the code after generalization, we
will hold onto the necessary bits of unresolvable code using
placeholders. A placeholder captures a type and an object
to be resolved based on that type. During generalization,
placeholders are replaced by the required type-dependent
code.

6.1 Inserting Placeholders

Placeholders are inserted when the type checker encounters
either an overloaded variable, a method, or a letrec bound
variable. Slightly different forms of placeholder are used in
each case.

Overloaded variables are rewritten as an application to
placeholders that will ultimately be replaced by the dic-
tionaries implied by the variable’s context. The fresh
type variables associated with the variable are cap-
tured in the placeholders. For example, if £ has type
(Num a, Text b) => a -> b, the type checker will first
freshly instantiate the type variables in £, yielding a typ-
ing of (Num t1,Text t2) => t1 -> t2. This fresh instan-
tiation of type variables is part of ordinary ML style type
checking. The value £ will be rewritten as an application:
f <Num,t1> <Text,t2> The <object, type> notation will be
used to represent placeholders. These placeholders become
additional arguments to £ which will be placed ahead of any
other arguments. The classes Text and Num which appear in
the placeholders indicate that the placeholder must resolve
to an expression yielding a dictionary for that class.

Method functions are converted directly to placeholders.
The type variable in the placeholder corresponds to the
type variable which defines the class in the class decla-
ration. For example, the == method in class Eq would
be typechecked by freshly instantiating its type, yield-
ing Eq t1 => t1 -> t1 -> Bool, and returning the place-
holder < == ,t1>. Since the object in the placeholder is a
method, it will be resolved to either a specific implementa-
tion of the method (if the type variable becomes instantiated
to a concrete type) or code to select a == function from an
Eq dictionary.

Recursively defined variables cannot be converted until their
type is known. References to such variables encountered
before they are generalized are simply replaced by a place-
holder until the correct context has been determined. For

example, in a simple recursive definition such as member,
the recursive call to member becomes a placeholder until its
type is generalized. After generalization, it is treated as an
ordinary overloaded variable.

6.2 Inserting Dictionary Parameters

Once a definition has been typed, any context associated
with the type variables in the definition is used to generate
dictionary parameter variables which will bind the dictio-
naries needed to resolve the overloading. This occurs during
the generalization portion of type inference. Generalization
gathers all uninstantiated type variables in the type of a
definition and creates a new dictionary variable for every
element of every context in these type variables. A lambda
which binds the dictionaries is wrapped around the body of
the definition and a parameter environment is created. This
environment 1s used to resolve placeholders created during
typechecking of the definition. This environment maps a
pair containing a class and type variable onto a dictionary
parameter variable.

As a simple example, if the inferred type of f is
(Num t1,Text t2) => t1 => t2, then the definition of f
is changed to £ = \dl1 d2 -> £’ where £’ is the original
definition of £. This creates the following parameter envi-
ronment: [((Num,t1),d1), ((Text,t2),d2)].

6.3 Resolving Placeholders

At generalization, placeholders inserted into a definition can
be resolved. A list of all placeholders, updated as each new
placeholder is created, can be used to avoid walking through
the code in search of placeholders. After dictionary param-
eters have been inserted, each placeholder is examined. For
placeholders associated with either methods or classes, the
type associated with the placeholder determines how it will
be resolved. There are four possibilities:

1. The type is a type variable in the parameter envi-
ronment. In this case, the mapping defines a vari-
able which will carry the dictionary at run-time. A
class placeholder is resolved to the dictionary param-
eter variable; a method placeholder requires a selector
function to be applied to the dictionary variable.

2. The type has been instantiated to a type construc-
tor. An instance declaration associated with this type
supplies either the method itself for a method place-
holder or a dictionary variable for a class placeholder.
Since dictionaries or methods themselves may be over-
loaded the type checker may need to recursively gener-
ate placeholders to resolve this additional overloading.

3. The type variable may still be bound in an outer type
environment. The processing of the placeholder must
be deferred to the outer declaration.

4. If none of the above conditions hold, an ambiguity
has been detected. The ambiguity may be resolved
by some language specific mechanism or simply signal
a type error.

Placeholders associated with recursive calls can be resolved
in two different ways. The simplest way is to generate an
overloaded variable reference which is no different than for

other overloaded variables. This can only be done after gen-
eralization since the context of the recursive call is unknown
until this time. However, since any dictionaries passed to a
recursive call remain unchanged from the original entry to
the function, the need to pass dictionaries to inner recursive
calls can be eliminated by using an inner entry point where
the dictionaries have already been bound. An example of
this is shown in section 7.

7 Examples

We will illustrate the operation of our type checker with
a couple of examples, each of which consists of three code
trees. The first code tree shows freshly instantiated type
variables (the t,') and inserted placeholders. The rules for
instantiating type variables and the type templates are the
same as for ML type checking. The second tree shows the
result of unification. Types are unified pairwise along the
lines in the diagrams. Finally, the result of generalization
and placeholder resolution will be shown. The actual type
checker performs unification continuously instead of after all
type variables have been instatuated; these steps are sepa-
rated here for clarity.

Rather than write the context associated with a type vari-
able each time it is mentioned all type variable context in-
formation will be shown at the side.

The following function f uses a method, +, and a recursive
call to itself.

class Num a where
(+) :: a->a->a

f=\x ->x+fx
Type variable instantiation and placeholder insertion pro-

duce the following expression tree. The @ nodes are curried
applications.

letrec f =
Context: Numt, h
L1,
\ X
t3
tG
@
-1 t, 5
-t -t t, ty
<+ t> X @
tg— 1ty tg
l:l l:2
<f ,t;> X

After unification, this becomes:

letrec f =
Context: Numt,
t,-t,
\ X
t2
@
oty t, t, t
<+ t> X @
t,-t, t
<f ,t,> X

The type in the placeholder associated with + is part of the
parameter environment. This indicates that a dictionary
passed into £ will contain the implementation of + appro-
priate for the parameter x. At execution time, the sel+
function will retrieve this addition function from the dictio-
nary.

This is the simplest translation in which the recursive call
passes the dictionary d unchanged. A better choice would
have been to create an inner entry to £ after d is bound and
use this for the recursive call to avoid passing d repeatedly.

letrec f =

The next example uses a previously defined overloaded func-
tion, length, with type [al -> Int. The necessary class
and instance declarations are included. We will use the con-
vention that dictionaries are named d-class—type.

class Text a where print :: a -> String

instance (Text a, Text b) => Text (a,b) where
print = print-tuple2

instance Text Int where
instance Text a => Text [a] where

= \x -> print (x,length x)

After placeholder insertion and type variable instantiation:

let g =

-t
Context: Text tg \ x
t2
t4

ty-t,
ts— String (te, t;)

<printt> 2-tuple

AT

| ength
[tel

t

X

After unification, this becomes:

let g =
[tgd -String ‘
Context: Text tg \ x
String
@

([t ,Int)-String /
([tg, I nt)

<print,([t],Int)>

2-tuple
[ta]/ \Int
l ength
|4

X

The placeholder is resolved to a specific printer for 2-tuples.

As this function is overloaded, further placeholder resolution

is required for the types associated with the tuple compo-
nents.

/
I \

print-tuple2 d- Text - I nt /\

/ \ X length

d- Text - Li st

8 Extensions

This implementation of type classes can be extended in a
number of ways to both improve the generated code and
increase the expressiveness of the type system.

8.1 Using a Class Hierarchy

In a Haskell class declaration, a set of classes may be de-
clared as superclasses of the defined class. For example, in
the declaration:

class Text a => Num a where

class Text 1s a superclass of Num. This implies that all
datatypes declared to be in class Num must also be declared
to be in Text. This superclass relation allows a type such as
(Num a, Text a) => a to be abbreviated as Num a => a.

Within the type checker, superclasses require few changes.
When class sets for type variables are constructed, contexts
implied by the superclass relation can be removed. This
compacts the class sets and requires fewer dictionary pa-
rameters. Superclasses also require that dictionaries contain
all superclass dictionaries. During dictionary conversion, a
dictionary may not be directly available if the associated
class has been absorbed as a superclass. In this case, the
dictionary or method must be fetched from an embedded
superclass dictionary. Dictionary representation affects the
speed of method selection. Deeply nested dictionaries can
be avoided by flattening dictionaries to include all methods
in both the associated class and in all superclasses at the top
level of the structure. This slows down dictionary construc-
tion but speeds up selection operations. The effect of this
tradeoff in real programs is not yet known. Optimizations

which avoid dictionary construction make flattening more
attractive.

8.2 Default Method Declarations

Class declarations may supply a default method to be used
when an instance declaration does not provide an imple-
mentation of a method in the class. This requires only that
this definition bound to a variable for use during dictionary
construction. This variable is placed into any dictionary in
which the method is not specified by the instance declara-
tion.

8.3 Typing Recursive Definitions

So far we have assumed that the letrec construct binds only
one variable. Mutually recursive definitions can be under-
stood as a tupling of functions. Mutually recursive functions
f and g could be defined as follows:

letrec (f,g) = (fbody,gbody) in ...

Here there is only a single recursive value, the tuple. Notice
that the context of £ and g are combined by this translation.
Although mutually recursive functions are not actually im-
plemented as tuples, they are type checked in this manner.

All functions defined by a single letrec share a common con-
text. This may create ambiguous functions when the type
of a letrec bound variable does not contain the full context
of the letrec. Such a function can be called within the letrec
but not from outside. This is not an error in itself but the
compiler provides a warning about such functions.

While 1t is easy for a single recursive function to use a local
entry point to avoid passing dictionaries to recursive calls,
this is harder to do for more than one function. It is simplest
to pass all dictionaries to each recursive call within the le-
trec. Otherwise, all outside entries into the recursive group
of functions needs to be funneled through a single lambda
binding all dictionaries and then some sort of switch is re-
quired to enter the proper function. Other approaches may
be possible but this does not seem to be a critical perfor-
mance issue.

8.4 Reducing Constant Dictionaries

Another source of inefficiency are local functions which are
inferred to have an overloaded type but are used at only one
overloading. These can be detected during optimization or
during type inference. During type inference, this involves
saving the type variables created by freshly instantiation of
the signature as it is referenced. If all of these variables are
instantiated to the same concrete type the dictionary can
be reduced to a constant. Flow analysis of the dictionaries
can accomplish this same task and is perhaps superior since
optimizations may remove some function calls which would
prevent a dictionary from being marked invariant.

8.5 Overloaded Methods

Haskell allows method functions to be overloaded in more
than the type variable defined by class. For example, a class

definition may contain:

class Foo a where
ml :: Bar b => a -> b
m2 :: a -> a

Here, m1 contains an extra overloading. A dictionary for
this class should have a type (Bar b => T -> b,T -> T)
for some type T in the class Foo. That is, the first com-
ponent should be an overloaded function with Bar in the
context while the second component is independent of Bar.
Unfortunately, this type signature is not valid since the con-
text will float outside the tuple. In implementation terms,
the tuple will attempt to bind a dictionary for Bar when the
dictionary is constructed instead of simply placing a function
which binds a Bar dictionary inside the tuple. This requires
the implementation of such dictionaries to go outside the
standard type class system when generating such dictionar-
ies. The cleanest solution to this problem would probably
involve existential types. The Yale compiler avoids this issue
using an internal construct similar to a type cast.

8.6 User Supplied Signatures

User supplied type signatures are a very necessary part of
the type system. They can be used to avoid unwanted over-
loading and are essential for efficiency. Unlike the ML type
system, user supplied signatures have a significant impact
on the generated code, possibly replacing higher order func-
tion calls (method selectors) with direct calls to instance
functions.

While there are numerous ways of implementing these sig-
natures, our system does this in a very clean way using read-
only type variables. Type variables in signatures are marked
as read-only to prevent type instantiation from violating the
signatures. A read-only type variable cannot be instantiated
or have its context augmented.

Another use of user-supplied signatures is to fix the ordering
of dictionaries during dictionary conversion. Haskell uses
interface files to support separate compilation. These in-
terfaces provide the signature of each definition in a mod-
ule. These interface signatures define a specific ordering
on the dictionaries passed to resolve overloading; at the im-
plementation level the types (Foo a,Bar b) => a -> band
(Bar b,Foo a) => a -> b are different in a very important
way. The compiler must be aware of any interface for the
module being compiled and use that signature to determine
the dictionary ordering during generalization.

8.7 The Monomorphism Restriction

The Haskell report [6] imposes a constraint known as the
monomorphism restriction on the generalization of over-
loaded variables. This is intended to avoid problems with
the loss of laziness that can occur when an overloaded vari-
able is translated to a function with one or more dictionary
parameters. Explicit type signatures can be used to avoid
the monomorphism restriction in those cases where over-
loading would otherwise be restricted. Regardless of how
the monomorphism issue is treated, it has a very simple im-
plementation. When this restriction applies to a variable,
type variables in its context must not be generalized: they
must remain in the type environment to avoid fresh instan-

tiation while the body of the defining let expression is type
checked.

8.8 Avoiding Unnecessary Dictionary Construction

Overloaded dictionaries are not constants and will be con-
structed dynamicly at run-time. The algorithm presented
here may repeatedly reconstruct identical copies of over-
loaded dictionaries if the underlying implementation is not
fully-lazy.

To illustrate how this problem can occur, consider the fol-
lowing implementation of the equality on lists in essentially
the same form given by [11]:

eqlist 4 []] = True
eqlist d (x:xs8) (y:ys) =eqd x vy &&

eq (eqDList d) xs ys
eqlist d _ _ = False

The eqDList function constructs a dictionary for equality on
lists of type [a] given a dictionary d for equality on values of
type a. The eq function denotes the selector which extracts
the method for == from a corresponding dictionary. As it is
written, many implementations of this definition will repeat
the construction of the dictionary eqDList d at each step
of the recursion. One simple way to avoid this is to rewrite
the definmition in the form:

eqlist d
= let eql = eq (eqDList d)
eqa = eq d
e [1 O = True
e (x:x8) (y:ys) = eqa x y &% eql xs ys
e _ - = False
in e

As a further example of the same thing, consider a func-
tion doOne of type C a => a -> Bool for some class C and
suppose that the definition of this function requires the con-
struction of a dictionary value. Note that this fact may well
be hidden from the compilation system if the definition of
doOne appears in an external module.

Now suppose that we define a function:

doList [] =1
doList (x:xs) = doOne x : dolist xs
A naive implementation of doList might use the definition:

doList d [] 1
doList d (x:xs) = doOne d x :

doList d xs

Any attempt to evaluate the complete list produced by an
application of this function will repeat the construction of
the redex doOne d (and hence repeat the dictionary con-
struction in doOne) for each element in the argument list.

Happily, the same observation also makes the solution to
this problem quite obvious; we need to abstract not just the
dictionaries involved but also the application of overloaded
operators to dictionaries, giving the translation:

doList d = doList’

where doList’ [] = [
doList’ (x:xs) doOne’ x :
doOne’ doOne d

doList’ xs

An additional benefit of this is that the garbage collector
can reclaim the storage used for dictionary values as soon
as the implementations of the required methods have been
extracted from it.

Note that these problems will not occur in an implemen-
tation that supports full laziness. Indeed, in each of the
examples above, the improved translation can be obtained
from the original version using a translation to fully-lazy
form as described in [9].

9 Performance Issues

How do type classes affect the compiler? Our observation is
that they increase compilation time only slightly. A minor
increase in the cost of unification and the placement and
resolution of placeholders make up the majority of the extra
processing required for type classes.

As far as program execution is concerned, type classes have
two costs: the extra level of indirection when dispatching a
method function and the time and space required to prop-
agate dictionaries through overloaded functions. The cost
of instance function dispatch is actually quite small since
this requires only a reference to a tuple element followed by
a function call. For all but the simplest method functions
this should be negligible. The cost of dictionary creation
and propagation is harder to pin down. Passing and storing
extra arguments to overloaded functions will incur slightly
more function call overhead. Only overloaded dictionaries
consume a non-constant amount of space. However, for code
which does not use overloaded functions (but still may use
method functions) the class system adds no overhead at all
since the specific instance functions are called directly. In
the case of a lazy language such as Haskell the overhead of
overloaded functions may be greater since overloading is im-
plemented using higher order functions. Higher order func-
tions may be much more expensive in Haskell than ML since
it is much harder to apply strictness or uncurrying optimiza-
tions. This is very noticable for very simple functions such as
basic arithmetic operators but for more complex functions,
such as in the 1/O system, the overhead of overloading is
not noticable.

It is possible to completely eliminate dynamic method dis-
patch within an overloaded function at specific overloadings
by creating type specific clones of overloaded function. This
could be implemented in a more general partial evaluation
context or be controlled through program annotations.

10 Conclusions and Related Work

While type classes are a relatively new addition to type the-
ory, we argue that they should no longer be considered ex-
otic or experimental. Type classes provide an elegant solu-
tion to a number of serious language design problems and
should be considered as an important tool in programming
language construction. Type classes provide a simple and
regular framework by which a program can be parameter-
ized. They do not provide the expressiveness of, for example,
the ML module system where the parameterization is ex-
plicit. On the other hand, they are particularly convenient
for some applications because the code needed to support
overloading is handled automatically by the compiler.

We have shown an implementation of type classes which

is relatively simple, requiring only a few extensions to the
basic ML type checking algorithms. The addition of type
classes does not severely impact either compiler or program
performance.

The basis for a translation from the Haskell syntax for
declaring and using type classes was set out by Wadler
and Blott [11] and some results from an early implemen-
tation based directly on these ideas have been presented by
Hammond and Blott [5]. Further ideas, mostly at a fairly
abstract level, were presented in the static semantics for
Haskell [10] and also, concentrating on the problems of re-
peated dictionary construction, in [8]. Some of the tech-
niques used to improve the performance of Haskell overload-
ing in the Chalmers Haskell compiler are described in [3].
In summary, experience with the use and development of
Haskell systems has done much to reduce the costs of type
class overloading.

11 Acknowledgments

This work was supported by grants from DARPA, contract
number N00014-91-J-4043, and from NSF, contract number
CCR-9104987.

References

[1] A.W. Appel. A critique of Standard ML. Princeton Uni-
versity CS-TR-364-92, February 1992.

[2] A.W. Appel. Compiling with continuations. Cambridge
University Press, 1992.

[3] L. Augustsson. Implementing Haskell overloading. To
appear in Conference on Functional Programming Lan-
guages and Computer Architecture, Copenhagen, Den-
mark, June 1993.

[4] L. Damas and R. Milner. Principal type schemes for
functional programs. In 8th Annual ACM Symposium
on Principles of Programming languages, 1982.

[5] K. Hammond and S. Blott. Implementing Haskell type
classes. Proceedings of the 1989 Glasgow Workshop
on Functional Programming, Fraserburgh, Scotland.
Workshops in computing series, Springer Verlag.

[6] P. Hudak, S.L. Peyton Jones and P. Wadler (eds.). Re-
port on the programming language Haskell, version 1.2.

ACM SIGPLAN notices, 27, 5, May 1992.

[7] M.P. Jones. Computing with lattices: An application of
type classes. Journal of Functional Programming, Vol-
ume 2, Part 4, October 1992.

[8] M.P. Jones. Qualified types: Theory and Practice. D.
Phil. Thesis. Programming Research Group, Oxford
University Computing Laboratory. July 1992.

[9] S.L. Peyton Jones and D. Lester. A modular fully-lazy
lambda lifter in Haskell. Software — Practice and Expe-
rience, 21(5), May 1991.

[10] S.L. Peyton Jones and P. Wadler. A static semantics for
Haskell (draft). Manuscript, Department of Computing
Science, University of Glasgow, February 1992.

[11] P. Wadler and S. Blott. How to make ad-hoc polymor-
phism less ad-hoc. In ACM Principles of Programming
Languages, 1989.

