
Implementing Type ClassesJohn Peterson and Mark JonesDepartment of Computer Science, Yale University,P.O. Box 2158 Yale Station, New Haven, CT 06520-2158, USA.Electronic mail: peterson-john@cs.yale.edu, jones-mark@cs.yale.edu.AbstractWe describe the implementation of a type checker for thefunctional programming language Haskell that supports theuse of type classes. This extends the type system of ML tosupport overloading (ad-hoc polymorphism) and can be usedto implement features such as equality types and numericoverloading in a simple and general way.The theory of type classes is well understood, but the prac-tical issues involved in the implementation of such systemshave not received a great deal of attention. In additionto the basic type checking algorithm, an implementation oftype classes also requires some form of program transforma-tion. In all current Haskell compilers this takes the formof dictionary conversion, using functions as hidden param-eters to overloaded values. We present e�cient techniquesfor type checking and dictionary conversion. A number ofoptimizations and extensions to the basic type class systemare also described.1 IntroductionIn the study of programming languages, the termoverloading is used to describe the ability of a single symbolto have di�erent interpretations as determined by the con-text in which it appears. Standard examples of this includethe use of + to represent both addition of integers and addi-tion of oating point quantities, or the use of == to compareboth character values and pointers. In each case, the in-tended meaning of the overloaded symbol can be determinedfrom the types of the arguments to which it is applied.One common approach is to completely resolve overloadingat compile time. The compiler installs type speci�c mean-ings for all overloaded symbols, based either on type in-formation attached to operands (the usual case) or somemore general overloading resolution mechanism. A signif-icant drawback to this approach is that overloaded opera-tions cannot be abstracted while retaining their overloadednature.A more dynamic approach to overloading which preservesthe ability to abstract overloaded de�nitions is found in ob-

ject oriented languages. Here, resolution of overloaded oper-ations occurs at run time. There are two particular problemsto be dealt with:� How do we determine which interpretation of an over-loaded operator should be used in any particular sit-uation? There are many examples for which the ap-propriate overloading cannot be determined at compiletime. For example, in a program that uses the func-tion double = �x :x + x to double both integer andoating point values, there is no way to �x any singleinterpretation for the + symbol.� How do we ensure that overloaded values are only everused with appropriate arguments? For example, itwould probably not make sense to try to add two char-acter values. As a result, we must also ensure that thedouble function is never applied to a character value.Standard ML uses two di�erent approaches to overloading:� The type of each arithmetic operator such as +must beuniquely determined from its context, possibly by in-serting an explicit type declaration. This compile timeresolution of overloaded operators is not able to pre-serve the full overloading of + in the double function;one speci�c implementation of + must be chosen.� Standard ML introduces a notion of equality types todeal with the typing of the equality function. This isundesirable because it forces the programmer to ac-cept a particular structural de�nition of equality { onewhich tests for equality of representation rather thanequality of represented value. In addition, Appel [1]reports that \Equality types add signi�cant complex-ity to the language and its implementation".An alternative approach to the treatment of overloading wasintroduced by Wadler and Blott [11] based on the notion ofa type class and is intended to provide a uniform and gen-eral framework for solving exactly these kinds of problems.Type classes are most widely known for their use in the func-tional programming language Haskell [6] where they are usedmostly to deal with standard primitive functions such as +and ==. In addition, we have also found that type classes canbe useful in more speci�c application areas where they canhelp to produce clear and modular programs [7]. We shouldalso mention that there does not appear to be any signif-icant reason why the use of type classes should be limitedto non-strict, purely functional languages: in principle, any



language based on the basic Hindley/Milner/Damas typesystem could be extended to support the use of type classes.This paper is meant to serve as a practical guide for the im-plementation of type classes. Previous work in this area hasconcentrated on the typing rules and has culminated in a setof syntax-directed typing derivations which are the basis forour type checker. Here we will use the typing rules to createa concrete algorithm which both type checks and transformsthe program. We hope to reveal the essential simplicity ofboth the theory and implementation of type classes. Ourconcerns are type checking programs e�ciently, generatingthe best possible code from the type checker, and introduc-ing a number of simple extensions to type classes which canbe incorporated into our basic framework. This work is theresult of our experience implementing type classes in boththe Yale Haskell compiler and the Gofer interpreter.2 Type classes { a summaryWe begin by summarizing the main features of a system oftype classes for a very simple and well known example { thede�nition of an equality operator, written as ==, that is:� polymorphic: use of the operator is not restricted tovalues of any single type.� overloaded: the interpretation of equality is deter-mined by the types of its arguments.� extensible: the de�nition of equality can be extendedto include new datatypes.Our example programs will be written using the concretesyntax of Haskell with explanatory comments where neces-sary. Further details may be found in [6]. We will also usethe following terms while describing the class system:method A primitive overloaded operator such as == will becalled a method. Methods are found in expressions.class A group of related methods is packaged into a class.Each class has a name which is used in the type lan-guage.data type Type classes use the same sort of data typesused by the ML type system. A type constructornames a data type in the type language while dataconstructors create values in the expression language.instance An instance binds a data type to operations whichimplement the methods of a speci�ed class for thattype.The basic idea is to de�ne a set of types Eq, known as atype class in Haskell, that contains precisely those types forwhich a suitable de�nition of equality has been given usingan instance declaration. The de�nition of the class Eq is asfollows:class Eq a where(==) :: a -> a -> BoolThe �rst line introduces a name for the class and indicatesthat the type variable awill be used to represent an arbitraryinstance of the class in the following part of the de�nition.(In the general case, we use an expression of the form C t

to represent the assertion that the type t is an instance ofthe class C.) The remaining part of the declaration listsa collection of method functions which are associated withthe class. In this particular example, there is only a singlemethod function, written as an in�x operator, ==. The typesignature a -> a -> Bool indicates that, for each instancea of Eq, the == symbol behaves like a function that takes twoarguments of type a and returns a value of type Bool.A class declaration may also de�ne a set of superclasses fora given class. The use of superclasses does not signi�cantlycomplicate this type system and will be discussed later.Using the notation of Haskell, the full type of == is writtenas (Eq a) => a -> a -> Bool. Note the convention thatall free variables in a type expression are implicitly boundby a universal quanti�er at the outermost level. Thus == is`polymorphic' in a, but the choice of types for a is restrictedto instances of Eq. Type class constraints like this are oftendescribed as the context part of a type.Even before we have de�ned a single instance of the class,we can use the == operator, either indirectly or directly, tode�ne other values. The restriction to instances of Eq isreected in the types assigned to these values. For example:member :: Eq a => a -> [a] -> Boolmember x [] = Falsemember x (y:ys) = x==y || member x ysThe �rst line of this de�nition gives the type of member. Notethat, in Haskell, [a] represents the type of lists of valuesof type a. As in the basic ML type system, user suppliedtype signatures are not actually required since they can beinferred automatically by the type system. We provide suchsignatures in our examples as documentation. The secondand third lines are typical of the way that functions arede�ned in Haskell. In this example there are two equations,using pattern matching on the left hand side to distinguishbetween the two cases when the list argument to member isempty, [], or non-empty, written (y:ys)where y and ys arethe head and tail, respectively, of the list.The types which are members of a class are de�ned by acollection of instance declarations which may be distributedthroughout the program, typically in di�erent program mod-ules where new datatypes are introduced. For built-in types,the de�nition of equality may well be provided by a primitivefunction:instance Eq Int where(==) = primEqIntMore generally, we can de�ne instances of the class Eq forany built-in and user-de�ned algebraic data types as in thefollowing de�nition of equality on lists:instance Eq a => Eq [a] where[] == [] = True(x:xs) == (y:ys) = x==y && xs==ys_ == _ = False(The underscore character _ in the last line is used as awildcard; it indicates that, if neither of the �rst two casescan be applied, the the equality test will produce a resultof False.) The expression Eq a => Eq [a] in the �rst lineindicates that the de�nition of equality on lists depends onthe de�nition of equality used for the elements held in thelist: if a is an instance of Eq, then so is [a].



The set of types de�ned by a �nite collection of instancedeclarations may be in�nite (but recursively enumerable).For example, the de�nitions given above describe the equal-ity operator for integers, lists of integers, lists of lists ofintegers and so forth.3 Implementing OverloadingOne standard technique used in the implementation of run-time overloading is to attach some kind of tag to the con-crete representation of each object. Overloaded functionssuch as the equality operator described above can be imple-mented by inspecting the tags of their arguments and dis-patching the appropriate function based on the tag value.Many schemes exist for the encoding of tags to make thetag dispatch e�cient. This is essentially the method usedto deal with the equality function in Standard ML of NewJersey [2]. One of the bene�ts of static type checking is thatit provides a compile-time check which ensures that the theequality function will never be applied to an object for whichthere is no corresponding de�nition of equality.Unfortunately, the use of tags as described above has a num-ber of drawbacks. It can complicate data representation andmay not be well suited to the underlying hardware. Perhapsmore signi�cantly, there are some forms of overloading thatcannot be implemented using this approach. In particular,it is not possible to implement functions where the over-loading is de�ned by the returned type. A simple exampleof this is the read function used in Haskell to parse a stringas a value of any type that is an instance of the Text class,the set of readable (and printable) types.An elegant way to avoid these problems is to separate ob-jects from their tags, treating tags as data objects in theirown right. For example, we can implement read as a func-tion that takes an extra argument which gives the tag ofthe result value. This amounts to passing type informationaround at run-time but this is only necessary when over-loaded functions are actually involved. This is potentiallymore e�cient than uniformly tagging every data object re-gardless how it will be used.Using this approach, the member function in the previoussection might be implemented by translating the originalde�nition to:member' :: (a -> a -> Bool) -> a -> [a] -> Boolmember' eq x [] = Falsemember' eq x (y:ys) = eq x y || member' eq x ysIn other words, the implementation of member is simply pa-rameterized by the appropriate de�nition of equality. Thetag in this case is the equality function itself.In this example, we could evaluate member 2 [1,2,3] byrewriting it as member' primEqInt 2 [1,2,3] and evalu-ating that expression instead. For a more interesting ex-ample, if xs is a list of lists of integers, then we couldevaluate member [1] xs in a similar way, rewriting it asmember' (eqList primEqInt) [1] xs, where:eqList :: (a -> a -> Bool) -> [a] -> [a] -> BooleqList eq [] [] = TrueeqList eq (x:xs) (y:ys) = eq x y &&eqList eq xs yseqList eq _ _ = False

The de�nition of eqList can be obtained directly from theinstance declaration on lists in Section 2 in much the sameway as the de�nition of member' was obtained from thatof member. Type classes do not require a particular de�-nition of equality for a data type; any function of the ap-propriate type can by supplied by the user to check equal-ity. As a convenience, Haskell allows the programmer to usederived instances for some of the standard classes like Eq,automatically generating appropriate instance de�nitions.Note that this feature is not itself part of the underlyingtype system.One of our goals in the remainder of this paper is to describehow these translations can be obtained automatically as partof the type checking process.4 Static AnalysisBefore type checking, the compiler must assemble the com-ponents of the static type environment. The data type,class, and instance declarations (all top-level declarationsin Haskell) must be collected and processed. One constrainton these declarations is that instances must be unique: onlyone instance declaration for a particular combination of datatype and class is allowed. This ensures that the meaning ofoverloaded operations with respect to parameter data typesis consistent throughout the program.In the previous section we described how the member func-tion can be implemented by parameterizing its de�nitionwith respect to an implementation of the == method. In thegeneral case, a class may have several di�erent methods andit is sensible to parameterize the de�nitions of overloadedfunctions using dictionary values; tuples containing imple-mentations for each of the methods for a particular instanceof a class.Static analysis generates a dictionary for each instance dec-laration and these dictionaries themselves may be over-loaded. When a dictionary contains overloaded functions,as manifested in the context component of an instance dec-laration, it will reference further subdictionaries when con-structed. A dictionary containing eqList would need to beoverloaded to provide the eq argument to eqList. In ourimplementation, this captured dictionary is stored by par-tially applying eqList to just the eq argument when thedictionary containing eqList is created.Each instance can be converted to a 4-tuple containing thedata type, the class, a dictionary, and the context associatedwith the instance. A de�nition is inserted into the programwhich binds the dictionary value, a tuple of method func-tions, to a variable, the dictionary variable. The instancecontext can be represented by a list of class constraints, oneclass constraint for each argument to the data type de�nedby the instance. A class constraint is the (possibly empty)list of classes which must apply to the constituent type.The instance declaration for list equality would create thisdictionary:d-Eq-List = eqListand the declaration itself would be represented by:(List,Eq,d-Eq-List,[[Eq]])where List is the name of the list type data constructor.Since this class has only one method a tuple is not needed;



normally a dictionary would be tuple containing a de�ni-tion for each method. The context indicates that the �rstargument to the List type constructor must be in the Eqclass.Dispatching a method requires selection of the appropriatefunction from a dictionary. Selector functions which retreivea method from a dictionary are also de�ned as the statictype environment is processed. (In the previous example noselectors are needed since there is no tuple in the dictionary.)These simply extract a component of a dictionary tuple,a constant time operation since each member function islocated at a speci�c place in the dictionary. Dictionaries areonly used where overloading cannot be resolved at compiletime. When the type associated with a method is knownat compile type the type speci�c version of the method iscalled directly without using the dictionary.5 Type InferenceWe will separate the issues of type inference, in which eachprogram expression is assigned a (possibly overloaded) type,and dictionary conversion, in which the program code istransformed to explicitly extract method functions from dic-tionaries.The use and implementation of ML style type inference iswell documented and we will not repeat this here (see [4] forexample). Instead, we concentrate on the relatively minorchanges that are needed to extend ML style type inferencewith support for type classes.As in ordinary ML typechecking, type variables and uni�-cation play a central role. Type variables are initially un-bound, corresponding to `unknown' types. As type checkingproceeds, various constraints on the values that can be as-signed to type variables are exposed, for example by ensuringthat the argument type of a given function is the same as thetype of the value to which it is actually applied. These con-straints are solved by instantiating unbound type variablesto more accurate types. Type classes require an additional�eld in each uninstantiated type variable: the context, a set(represented by a list) of classes.Uni�cation is a�ected in a very simple way: when a typevariable is instantiated, its class constraints must be passedon to the instantiated value. If this is another type variable,its context is augmented, using set union, by the contextof the instantiated variable. When a context is passed onto a type constructor context reduction is required. Con-text reduction uses the instance declarations in the statictype environment to propagate all class constraints to typevariables.The type constructor being reduced by context reductionmust be an instance of the reducing class. If not, typechecking fails with an error that an attempt has been madeto use an overloaded operator at a type that is not an in-stance of the corresponding class. If an instance declarationis found linking the data type and the class, the context ofthe instance declaration propagates to the type constructorarguments. This process continues until contexts have beenpropagated exclusively to type variables.As an example, consider the uni�cation of Eq a => a,a type variable with an Eq context, and the type[Integer]. The type variable is instantiated to[Integer]. Before context reduction, the resulting type

is Eq [Integer] => [Integer]. The instance declarationfor class Eq over the list data type exists (otherwise a typeerror occurs) and propagates the context Eq to the argu-ment to the list type constructor. This leads to the typeEq Integer => [Integer]. Now we can see that the pro-gram must also include an instance declaration that makesInteger an instance of the class Eq. Assuming that this istrue, and since the Integer type constructor does not takeany arguments, no further constraints can exist leaving only[Integer] as the resulting type. Note, however, that theuni�cation would have failed if the required instance decla-rations were not found in the static type environment. Bya similar process, uni�cation of Eq a => a and [b] wouldyield the type Eq b => [b]. Here, contexts remain attachedto the resulting type variables.The following code implements type variable instantiation inthe presence of type classes. Each type variable has a value�eld which is either null (uninstantiated) or contains an in-staniated type. The context �eld is a list of classes attachedto uninstantiated type variables. The findInstanceContextfunction searches the static type environment for an instancewith the selected class and data type. If not is found thisfunction signals a type error. It returns a list of contexts,one for each argument to the data type.instantiateTyvar(tyvar,type)tyvar.value := typepropagateClasses(tyvar.context,type)propagateClasses(classes,type)if tyvar(type)then type.context := union(classes,type.context)else for each c in classespropagateClassTycon(c,type)propagateClassTycon(class,type)s = findInstanceContext(type.tycon,class)for each classSet in s, typeArg in tycon.argspropagateClasses(classSet,typeArg)One other minor change to ML type inference is required.When a letrec is typechecked all variables de�ned by theletrec share a common context. This will be discussed inSection 8.3.It is worth emphasizing that context reduction is the onlysigni�cant change to the ML type inference process neces-sary to infer correct typings for Haskell programs involvingtype classes. On the other hand, dictionary conversion, asdescribed in the following section (or some similar process),must be carried out to implement overloading in the �nalexecutable version of the type checked program.6 Dictionary ConversionDictionary conversion a�ects the generated code in twoways. First, overloaded de�nitions receive additional param-eter variables to bind dictionaries. Second, a reference to anoverloaded de�nition must be passed dictionaries. Thus thetypechecker needs only two basic changes: when referenceto an overloaded de�nition (which is usually a function butmay be of any type) is type checked the hidden dictionaryparameters must be inserted. When a de�nition (either atthe top level or in a local de�nition using a let or letrec)



is typed hidden dictionary arguments are inserted to bindany necessary dictionaries needed to resolve the overloadingat run time.The relation between a type signature and dictionary pa-rameters is simple: each element of the context corre-sponds to a dictionary passed into or recieved by an over-loaded de�nition. For example, a function with the type(Eq a, Text b) => a -> b would require two dictionaries,one for the class Eq and another for Text. The ordering of acontext is arbitrary; dictionaries can be passed in any orderso long as the same ordering is used consistently.Adding dictionary passing code to the program during thecode walk performed by the standard ML typechecker is per-haps the essential implementation issue addressed here. Thetype associated with an expression may change due to uni-�cation as the type checker proceeds. Since types only sta-blize at generalization the appropriate dictionaries neededto resolve overloading cannot be determined until the entireexpression being generalized has already been walked over.To avoid a second pass over the code after generalization, wewill hold onto the necessary bits of unresolvable code usingplaceholders. A placeholder captures a type and an objectto be resolved based on that type. During generalization,placeholders are replaced by the required type-dependentcode.6.1 Inserting PlaceholdersPlaceholders are inserted when the type checker encounterseither an overloaded variable, a method, or a letrec boundvariable. Slightly di�erent forms of placeholder are used ineach case.Overloaded variables are rewritten as an application toplaceholders that will ultimately be replaced by the dic-tionaries implied by the variable's context. The freshtype variables associated with the variable are cap-tured in the placeholders. For example, if f has type(Num a, Text b) => a -> b, the type checker will �rstfreshly instantiate the type variables in f, yielding a typ-ing of (Num t1,Text t2) => t1 -> t2. This fresh instan-tiation of type variables is part of ordinary ML style typechecking. The value f will be rewritten as an application:f <Num,t1> <Text,t2>. The <object,type> notation will beused to represent placeholders. These placeholders becomeadditional arguments to f which will be placed ahead of anyother arguments. The classes Text and Num which appear inthe placeholders indicate that the placeholder must resolveto an expression yielding a dictionary for that class.Method functions are converted directly to placeholders.The type variable in the placeholder corresponds to thetype variable which de�nes the class in the class decla-ration. For example, the == method in class Eq wouldbe typechecked by freshly instantiating its type, yield-ing Eq t1 => t1 -> t1 -> Bool, and returning the place-holder < == ,t1>. Since the object in the placeholder is amethod, it will be resolved to either a speci�c implementa-tion of the method (if the type variable becomes instantiatedto a concrete type) or code to select a == function from anEq dictionary.Recursively de�ned variables cannot be converted until theirtype is known. References to such variables encounteredbefore they are generalized are simply replaced by a place-holder until the correct context has been determined. For

example, in a simple recursive de�nition such as member,the recursive call to member becomes a placeholder until itstype is generalized. After generalization, it is treated as anordinary overloaded variable.6.2 Inserting Dictionary ParametersOnce a de�nition has been typed, any context associatedwith the type variables in the de�nition is used to generatedictionary parameter variables which will bind the dictio-naries needed to resolve the overloading. This occurs duringthe generalization portion of type inference. Generalizationgathers all uninstantiated type variables in the type of ade�nition and creates a new dictionary variable for everyelement of every context in these type variables. A lambdawhich binds the dictionaries is wrapped around the body ofthe de�nition and a parameter environment is created. Thisenvironment is used to resolve placeholders created duringtypechecking of the de�nition. This environment maps apair containing a class and type variable onto a dictionaryparameter variable.As a simple example, if the inferred type of f is(Num t1,Text t2) => t1 -> t2, then the de�nition of fis changed to f = \d1 d2 -> f' where f' is the originalde�nition of f. This creates the following parameter envi-ronment: [((Num,t1),d1),((Text,t2),d2)].6.3 Resolving PlaceholdersAt generalization, placeholders inserted into a de�nition canbe resolved. A list of all placeholders, updated as each newplaceholder is created, can be used to avoid walking throughthe code in search of placeholders. After dictionary param-eters have been inserted, each placeholder is examined. Forplaceholders associated with either methods or classes, thetype associated with the placeholder determines how it willbe resolved. There are four possibilities:1. The type is a type variable in the parameter envi-ronment. In this case, the mapping de�nes a vari-able which will carry the dictionary at run-time. Aclass placeholder is resolved to the dictionary param-eter variable; a method placeholder requires a selectorfunction to be applied to the dictionary variable.2. The type has been instantiated to a type construc-tor. An instance declaration associated with this typesupplies either the method itself for a method place-holder or a dictionary variable for a class placeholder.Since dictionaries or methods themselves may be over-loaded the type checker may need to recursively gener-ate placeholders to resolve this additional overloading.3. The type variable may still be bound in an outer typeenvironment. The processing of the placeholder mustbe deferred to the outer declaration.4. If none of the above conditions hold, an ambiguityhas been detected. The ambiguity may be resolvedby some language speci�c mechanism or simply signala type error.Placeholders associated with recursive calls can be resolvedin two di�erent ways. The simplest way is to generate anoverloaded variable reference which is no di�erent than for



other overloaded variables. This can only be done after gen-eralization since the context of the recursive call is unknownuntil this time. However, since any dictionaries passed to arecursive call remain unchanged from the original entry tothe function, the need to pass dictionaries to inner recursivecalls can be eliminated by using an inner entry point wherethe dictionaries have already been bound. An example ofthis is shown in section 7.7 ExamplesWe will illustrate the operation of our type checker witha couple of examples, each of which consists of three codetrees. The �rst code tree shows freshly instantiated typevariables (the ti) and inserted placeholders. The rules forinstantiating type variables and the type templates are thesame as for ML type checking. The second tree shows theresult of uni�cation. Types are uni�ed pairwise along thelines in the diagrams. Finally, the result of generalizationand placeholder resolution will be shown. The actual typechecker performs uni�cation continuously instead of after alltype variables have been instatuated; these steps are sepa-rated here for clarity.Rather than write the context associated with a type vari-able each time it is mentioned all type variable context in-formation will be shown at the side.The following function f uses a method, +, and a recursivecall to itself.class Num a where(+) :: a -> a -> af = \x -> x + f xType variable instantiation and placeholder insertion pro-duce the following expression tree. The @ nodes are curriedapplications.
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The next example uses a previously de�ned overloaded func-tion, length, with type [a] -> Int. The necessary classand instance declarations are included. We will use the con-vention that dictionaries are named d-class-type.class Text a where print :: a -> Stringinstance (Text a, Text b) => Text (a,b) whereprint = print-tuple2instance Text Int where ....instance Text a => Text [a] where ....g = \x -> print (x,length x)After placeholder insertion and type variable instantiation:
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As this function is overloaded, further placeholder resolutionis required for the types associated with the tuple compo-nents.
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x8 ExtensionsThis implementation of type classes can be extended in anumber of ways to both improve the generated code andincrease the expressiveness of the type system.8.1 Using a Class HierarchyIn a Haskell class declaration, a set of classes may be de-clared as superclasses of the de�ned class. For example, inthe declaration:class Text a => Num a where...class Text is a superclass of Num. This implies that alldatatypes declared to be in class Num must also be declaredto be in Text. This superclass relation allows a type such as(Num a, Text a) => a to be abbreviated as Num a => a.Within the type checker, superclasses require few changes.When class sets for type variables are constructed, contextsimplied by the superclass relation can be removed. Thiscompacts the class sets and requires fewer dictionary pa-rameters. Superclasses also require that dictionaries containall superclass dictionaries. During dictionary conversion, adictionary may not be directly available if the associatedclass has been absorbed as a superclass. In this case, thedictionary or method must be fetched from an embeddedsuperclass dictionary. Dictionary representation a�ects thespeed of method selection. Deeply nested dictionaries canbe avoided by attening dictionaries to include all methodsin both the associated class and in all superclasses at the toplevel of the structure. This slows down dictionary construc-tion but speeds up selection operations. The e�ect of thistradeo� in real programs is not yet known. Optimizations



which avoid dictionary construction make attening moreattractive.8.2 Default Method DeclarationsClass declarations may supply a default method to be usedwhen an instance declaration does not provide an imple-mentation of a method in the class. This requires only thatthis de�nition bound to a variable for use during dictionaryconstruction. This variable is placed into any dictionary inwhich the method is not speci�ed by the instance declara-tion.8.3 Typing Recursive De�nitionsSo far we have assumed that the letrec construct binds onlyone variable. Mutually recursive de�nitions can be under-stood as a tupling of functions. Mutually recursive functionsf and g could be de�ned as follows:letrec (f,g) = (fbody,gbody) in ...Here there is only a single recursive value, the tuple. Noticethat the context of f and g are combined by this translation.Although mutually recursive functions are not actually im-plemented as tuples, they are type checked in this manner.All functions de�ned by a single letrec share a common con-text. This may create ambiguous functions when the typeof a letrec bound variable does not contain the full contextof the letrec. Such a function can be called within the letrecbut not from outside. This is not an error in itself but thecompiler provides a warning about such functions.While it is easy for a single recursive function to use a localentry point to avoid passing dictionaries to recursive calls,this is harder to do for more than one function. It is simplestto pass all dictionaries to each recursive call within the le-trec. Otherwise, all outside entries into the recursive groupof functions needs to be funneled through a single lambdabinding all dictionaries and then some sort of switch is re-quired to enter the proper function. Other approaches maybe possible but this does not seem to be a critical perfor-mance issue.8.4 Reducing Constant DictionariesAnother source of ine�ciency are local functions which areinferred to have an overloaded type but are used at only oneoverloading. These can be detected during optimization orduring type inference. During type inference, this involvessaving the type variables created by freshly instantiation ofthe signature as it is referenced. If all of these variables areinstantiated to the same concrete type the dictionary canbe reduced to a constant. Flow analysis of the dictionariescan accomplish this same task and is perhaps superior sinceoptimizations may remove some function calls which wouldprevent a dictionary from being marked invariant.8.5 Overloaded MethodsHaskell allows method functions to be overloaded in morethan the type variable de�ned by class. For example, a class

de�nition may contain:class Foo a wherem1 :: Bar b => a -> bm2 :: a -> aHere, m1 contains an extra overloading. A dictionary forthis class should have a type (Bar b => T -> b,T -> T)for some type T in the class Foo. That is, the �rst com-ponent should be an overloaded function with Bar in thecontext while the second component is independent of Bar.Unfortunately, this type signature is not valid since the con-text will oat outside the tuple. In implementation terms,the tuple will attempt to bind a dictionary for Bar when thedictionary is constructed instead of simply placing a functionwhich binds a Bar dictionary inside the tuple. This requiresthe implementation of such dictionaries to go outside thestandard type class system when generating such dictionar-ies. The cleanest solution to this problem would probablyinvolve existential types. The Yale compiler avoids this issueusing an internal construct similar to a type cast.8.6 User Supplied SignaturesUser supplied type signatures are a very necessary part ofthe type system. They can be used to avoid unwanted over-loading and are essential for e�ciency. Unlike the ML typesystem, user supplied signatures have a signi�cant impacton the generated code, possibly replacing higher order func-tion calls (method selectors) with direct calls to instancefunctions.While there are numerous ways of implementing these sig-natures, our system does this in a very clean way using read-only type variables. Type variables in signatures are markedas read-only to prevent type instantiation from violating thesignatures. A read-only type variable cannot be instantiatedor have its context augmented.Another use of user-supplied signatures is to �x the orderingof dictionaries during dictionary conversion. Haskell usesinterface �les to support separate compilation. These in-terfaces provide the signature of each de�nition in a mod-ule. These interface signatures de�ne a speci�c orderingon the dictionaries passed to resolve overloading; at the im-plementation level the types (Foo a,Bar b) => a -> b and(Bar b,Foo a) => a -> b are di�erent in a very importantway. The compiler must be aware of any interface for themodule being compiled and use that signature to determinethe dictionary ordering during generalization.8.7 The Monomorphism RestrictionThe Haskell report [6] imposes a constraint known as themonomorphism restriction on the generalization of over-loaded variables. This is intended to avoid problems withthe loss of laziness that can occur when an overloaded vari-able is translated to a function with one or more dictionaryparameters. Explicit type signatures can be used to avoidthe monomorphism restriction in those cases where over-loading would otherwise be restricted. Regardless of howthe monomorphism issue is treated, it has a very simple im-plementation. When this restriction applies to a variable,type variables in its context must not be generalized: theymust remain in the type environment to avoid fresh instan-



tiation while the body of the de�ning let expression is typechecked.8.8 Avoiding Unnecessary Dictionary ConstructionOverloaded dictionaries are not constants and will be con-structed dynamicly at run-time. The algorithm presentedhere may repeatedly reconstruct identical copies of over-loaded dictionaries if the underlying implementation is notfully-lazy.To illustrate how this problem can occur, consider the fol-lowing implementation of the equality on lists in essentiallythe same form given by [11]:eqList d [] [] = TrueeqList d (x:xs) (y:ys) = eq d x y &&eq (eqDList d) xs yseqList d _ _ = FalseThe eqDList function constructs a dictionary for equality onlists of type [a] given a dictionary d for equality on values oftype a. The eq function denotes the selector which extractsthe method for == from a corresponding dictionary. As it iswritten, many implementations of this de�nition will repeatthe construction of the dictionary eqDList d at each stepof the recursion. One simple way to avoid this is to rewritethe de�nition in the form:eqList d= let eql = eq (eqDList d)eqa = eq de [] [] = Truee (x:xs) (y:ys) = eqa x y && eql xs yse _ _ = Falsein eAs a further example of the same thing, consider a func-tion doOne of type C a -> a -> Bool for some class C andsuppose that the de�nition of this function requires the con-struction of a dictionary value. Note that this fact may wellbe hidden from the compilation system if the de�nition ofdoOne appears in an external module.Now suppose that we de�ne a function:doList [] = []doList (x:xs) = doOne x : doList xsA naive implementation of doList might use the de�nition:doList d [] = []doList d (x:xs) = doOne d x : doList d xsAny attempt to evaluate the complete list produced by anapplication of this function will repeat the construction ofthe redex doOne d (and hence repeat the dictionary con-struction in doOne) for each element in the argument list.Happily, the same observation also makes the solution tothis problem quite obvious; we need to abstract not just thedictionaries involved but also the application of overloadedoperators to dictionaries, giving the translation:doList d = doList'where doList' [] = []doList' (x:xs) = doOne' x : doList' xsdoOne' = doOne d

An additional bene�t of this is that the garbage collectorcan reclaim the storage used for dictionary values as soonas the implementations of the required methods have beenextracted from it.Note that these problems will not occur in an implemen-tation that supports full laziness. Indeed, in each of theexamples above, the improved translation can be obtainedfrom the original version using a translation to fully-lazyform as described in [9].9 Performance IssuesHow do type classes a�ect the compiler? Our observation isthat they increase compilation time only slightly. A minorincrease in the cost of uni�cation and the placement andresolution of placeholders make up the majority of the extraprocessing required for type classes.As far as program execution is concerned, type classes havetwo costs: the extra level of indirection when dispatching amethod function and the time and space required to prop-agate dictionaries through overloaded functions. The costof instance function dispatch is actually quite small sincethis requires only a reference to a tuple element followed bya function call. For all but the simplest method functionsthis should be negligible. The cost of dictionary creationand propagation is harder to pin down. Passing and storingextra arguments to overloaded functions will incur slightlymore function call overhead. Only overloaded dictionariesconsume a non-constant amount of space. However, for codewhich does not use overloaded functions (but still may usemethod functions) the class system adds no overhead at allsince the speci�c instance functions are called directly. Inthe case of a lazy language such as Haskell the overhead ofoverloaded functions may be greater since overloading is im-plemented using higher order functions. Higher order func-tions may be much more expensive in Haskell than ML sinceit is much harder to apply strictness or uncurrying optimiza-tions. This is very noticable for very simple functions such asbasic arithmetic operators but for more complex functions,such as in the I/O system, the overhead of overloading isnot noticable.It is possible to completely eliminate dynamic method dis-patch within an overloaded function at speci�c overloadingsby creating type speci�c clones of overloaded function. Thiscould be implemented in a more general partial evaluationcontext or be controlled through program annotations.10 Conclusions and Related WorkWhile type classes are a relatively new addition to type the-ory, we argue that they should no longer be considered ex-otic or experimental. Type classes provide an elegant solu-tion to a number of serious language design problems andshould be considered as an important tool in programminglanguage construction. Type classes provide a simple andregular framework by which a program can be parameter-ized. They do not provide the expressiveness of, for example,the ML module system where the parameterization is ex-plicit. On the other hand, they are particularly convenientfor some applications because the code needed to supportoverloading is handled automatically by the compiler.We have shown an implementation of type classes which
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