
A T E C H N I Q U E F O R P R O V I N G LIVENESS
OF C O M M U N I C A T I N G FINITE S T A T E M A C H I N E S

WITH E X A M P L E S

M. G. Gouda and C. K. Chang

Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

A B S T R A C T

Consider a network of communicating finite state machines tha t exchange messages over unbounded,
FIFO channels. Each machine in this network has a finite number o'f states (called nodes), and state tran-
sitions (called edges), and can be defined by a labelled directed graph. A node in one of the machines is said
to be "live" iff it is reached by its machine infinitely often during the course of communication, provided
that the machines behave in some "fair" fashion. We discuss a technique to verify tha t a given node is live
in such a network. This technique can be automated, and is effective even if the network under considera-
tion is unbounded (i.e. has an infinite number of reachable states). We use our technique to establish the
liveness of three distributed solutions to the mutual exclusion problem.

1. Introduct ion
Consider a network of some finite state machines

that communicate exclusively by exchanging messages
via connecting channels. There are two one-directional,
unbounded, FIFO channels between any two machines
in the network. Each machine has a finite number of
states and state transitions, and each state transition is
accompanied by either sending a message to one of the
machine's output channels, or receiving a message from
one of the machine's input channels.

Networks of communicating finite state machines are
useful in modeling [3], analysis [1,2,12], and synthesis
[3,7,13,23] of communication protocols, and distributed
systems. The analysis problem for these networks can
be stated as follows: "Given an arbitrary network of
communicating finite state machines, prove that the
communications within the network will satisfy some
desirable properties." Most of the work to solve this
problem has concentrated so far on properties such as
boundedness [22], freedom of deadlocks [20,21] and un-
specified receptions [11]. These are all safety properties
[18]; i.e. they merely guarantee that nothing bad will
happen during the course of communication. In order
to guarantee tha t something good will happen (infinitely

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-143-1/84/008,0038 $00.75

often), we need to establish some liveness properties for
the given network. In this paper, we identify some live-
ness properties for networks of communicating finite
state machines, and present techniques to prove these
properties for such networks.

The pioneering works of Pnueli [19], Owicki and
Lamport [18l, Misra and Chandy [16,17], and Hailpern
and Owicki [14] have established the foundations for
defining and proving general liveness properties of con-
current programs and distributed systems. Pnueli [19]
has introduced a version of temporal logic as a tool to
specify and verify properties of concurrent programs.
Owicki and Lamport [18] have used Pnueli's temporal
logic to define "proof lattices", tha t are both rigorous
and easy to understand, to verify liveness properties of
concurrent programs. Later, Hailperu and Owicki [14]
have used the same temporal logic in a modular
verification methodology for distributed systems, where
the intended system's assertions are verified using the
assertions of the different processes in the system.

Misra and Chandy [16,17] have introduced a novel
and modular verification methodology for distributed
systems, tha t is not based on temporal logic. In their
methodology, safety and liveness properties of any
process in the system are defined by three assertions.
Applying a "theorem of hierarchy", the process' asser-
tions can be used to verify the safety and liveness
properties of the whole system (which are also defined
by three assertions).

38

The above approaches outline general frameworks
where many types of liveness properties can be defined
and verified for general systems. In this paper, we
restrict our at tention to defining and proving liveness
for networks of communicating finite state machines.
This is a significant restriction. For instance, under this
restriction, there is no need for a general purpose tem-
poral logic to define the required liveness properties of
these networks. In fact, we feel tha t only one property
needs to be defined and verified for any such network,
namely that some state(s) in some machine(s) in the net-
work will be reached infinitely often during the course
of communication under some fairness assumption.
These restrictions and simplifications have led to suf-
ficient conditions that can be checked algorithmically
for any given network, and if established for a network,
can ensure the liveness of that network.

The paper is organized as follows: Networks of com-
municating finite state machines are defined in Section
2. The notions of "fairness" and "liveness" are defined
in terms of "fair communication sequences" in Section
3. In Section 4, we discuss a sufficient condition that
can be used to prove node liveness. In Section 5, we ap-
ply our technique to establish the liveness for a variety
of solutions to the mutual exclusion problem. Conclud-
ing remarks are in Section 6.

All the results in this paper are applicable to net-
works with any number of communicating machines.
But for the sake of clarity, we carry most of the discus-
sion on networks with only two machines. Later in Sec-
tion 5, we discuss examples with more than two
machines to illustrate how to apply our results in this
e ~ e .

2. N e t w o r k s o f C o m m u n i c a t i n g Fini te
State Mach ines
A communicating finite state machine M is a

directed labelled graph with two types of edges, namely
sending and receiving edges. A sending (or receiving)
edge is labelled -g (or +g, respectively) for some mes-
sage g in a finite set G of messages. One of the nodes in
M is identified as its initial node, and each node in M is
reachable by a directed path from the initial node. For
convenience, each node in M has at least one outgoing
edge, and the outgoing edges of the same node must
have distinct labels. A node in M whose outgoing edges
are all sending (or all receiving) edges is called a send-
ing (or receiving, respectively) node; otherwise it is
called a mired node.

Let M and N be two communicating finite state
machines with the same set G of messages; the pair
(M,N) is called a network of M and N. A state of net-
work (M,N) is a four-tuple [v,w,x,y], where v and w are
two nodes in M and N respectively, and x and y are two
strings over the messages in G. Informally, a state
[v,w,x,y] means that the executions of M and N have
reached nodes v and w respectively, while the input

channels of M and N have the message strings x and y
respectively.

The initial state of network (M,N) is [v0,w0,E,E]

where v 0 and w 0 are the initial nodes in M and N
respectively, and E is the empty string.

Let s=[v,w,x,y] be a state of network (M,N); and let
e be an outgoing edge of node v or w. A state s' is said
to follow s over e iff one of the following four con-
ditions is satisfied:

i. e is a sending edge, labelled -g, from v to v'
in M, and s'-----[v',w,x,y.g], where "." is the
concatenation operator.

ii. e is a sending edge, labelled -g, form w to w'
in N, and s '=[v,w' ,x.g,y].

iii. e is a receiving edge, labelled +g, from v to
v' in M, and s '=[v ' ,w,x ' ,y] , where x=g .x ' .

iv. e is a receiving edge, labelled +g, from w to
w' in N, and s '=[v,w' ,x ,y '] , where y = g . y ' .

Let s and s' be two states of network (M,N), s' fol-
lows s iff there is a directed edge e in M or N such tha t
s ' follows s over e.

Let s and s' be two states of (M,N), s' is reachable
from s iff s = s ' or there exist states Sl,...,s r such that

S=Sl , s ' = s r and si+ 1 follows s i for i= l , . . . , r -1 .

A state s of network (M,N) is said to be reachable iff
it is reachable from the initial state of (M,N).

The communication of a network (M,N) is said to be
bounded iff there exists a nonnegative integer K such
that for any reachable state [v,w,x,y] of (M,N), Ixl__K
and [y l ~ K where Ixl is the number of messages in
string x. If there is no such K, then the communication
is unbounded.

In this paper, we characterize the notion of liveness
for networks of communicating finite state machines. In
particular, we argue tha t the liveness of such a network
should guarantee tha t "something good" will "occur in-
finitely often" during the course of communication.
This is bet ter explained by an example.

E x a m p l e 1. C handy and Misra's Solut ion to the
Mutua l Exc lus ion P r o b l e m :

Consider two user processes that share a common
resource and synchronize their activities by exchanging
messages via two one-directional, unbounded, FIFO
channels. Occasionally, each user enters its critical sec-
tion to access the common resource. The problem is to
devise a synchronization mechanism such tha t at any in-
stant, at most one user is in its critical section. Many
solutions to this problem appear in the literature. In
this example, we follow the solution proposed by
Chandy and Misra in [4] . (Other solutions to this

39

problem are discussed in Section 5.)

The solution of Chandy and Mists [4] is based on the
following rules:

i. Initially, exactly one user has the r ight to its
critical section.

ii. If a user has the r ight to its critical section,
then it can enter its critical section any
number of t imes provided t ha t it frequently
examines its input channel from the other
user to check whether it has a request mes-
sage. If it finds a request message, it sends
an acknowledgement message to the other
user, thus giving up the r ight to the critical
section to the other user. If it finds no re-
quest, it keeps the r ight to its critical sec-
tion.

iii. If a user has no r ight to its critical section, it
can send a request message to the other user
asking for it. Then, when it ~eceives an ack-
nowledgement, it has the r ight to its critical
section.

The network (U0, UI) in Figure l a models the above
system, where the two communicat ing finite s ta te
machines U 0 and U 1 model the two user processes.

Machine U i (i----0,1) has the r ight to its critical section
iff it is a t its node 3. This implies t ha t a t the initial
s tate of the network, machine U 0 has no r ight to its
critical sect ion, and U 1 has the r ight to its critical sec-

tion.

In i t i a l - N ~ t0 " N ~ t l

+ N o r q s t 1 + N o r q s t 0

U o UI

F i g u r e l a . N e t w o r k (U0,U1) for a so lu t ion to

t h e m u t u a l exclus ion p r o b l e m .

The exchanged messages between U 0 and U 1 have
the following meaning:

Rqst i denotes a request message sent by U i.

Ack i denotes an acknowledgement sent by U i.

Norqst i denotes a "vir tual message" sent by U i to
indicate tha t no Rqst i message is sent

recently by U i.

The liveness requirement of this network can be
s ta ted by requiring tha t bo th nodes 3 in machines U 0

and U 1 be "reached infinitely often" dur ing the course
of communicat ion. Unfortunately, this is not t rue in
general. For instance, if U 0 persists on ignoring the re-

quest message Rqst I in its input channel, then U 1 will
not be able to reach node 3 infinitely often.

Therefore, to ensure t ha t both nodes 3 in U 0 and U 1
will be reached infinitely often, it is impor tan t to as-
sume tha t both U 0 and U 1 will behave in some fair fash-
ion. The notion of fairness for networks of com-
municat ing finite s tate machines is discussed in the next
section.

D

3. Liveness Propert ies
A communication sequence of a network (M,N) is a,

possibly infinite, sequence < s 0 , s l , . . . > of reachable

s tates of (M,N) such t ha t s o is the initial s tate of (M,N),

and si+ 1 follows si, i=0,1, If a communicat ion se-
quence has a s tate tha t cannot be followed by any o ther
state, then the sequence is finite, otherwise it is infinite.

A network (M,N) is called safe iff the following two
conditions hold:

i. Each communicat ion sequence of (M,N) is in-
finite.

ii. If any communicat ion sequence < s 0 , s l , . . . >
of (M,N) has a s tate s i=[v,w,x,y] such t ha t
v(w} is a receiving node and x(y) = E (the
empty string), then this sequence must also
have a subsequent s ta te sj-----[v',w',x',y']
where x '(y ') = g, and g is one of the ex-
pected messages at node v(w).

The second condition implies t ha t if a machine
reaches a receiving node where it mus t receive some
message to progress fur ther then this message will ap-
pear in its input channel in a finite t ime, and so the
machine can progress. Therefore, a network is safe iff
each machine can "progress infinitely of ten" . A net-
work can be proven safe using the technique of closed
covers [9], as discussed later in Section 4.

Let (M,N) be a safe network. A node v in machine
M is said to accur infinitely often in a communicat ion
sequence <s0,s l , . . . :> of (M,N) iff for any integer i there
exists an integer j such t ha t j > i and sj is of the form
[v,w,x,y], for some w, x, and y. Similarly, we can define
t ha t a node in machine N occurs infinitely often in a
communicat ion sequence of (M,N)."

4 0

Let (M,N) be a safe network. An edge e in machine
M is said to occur in f in i te ly often in a communication
sequence < s 0 , s l , . . . > of (M,N) iff for any integer i there

exists an integer j such tha t j > i and sj+ 1 follows sj

over e. Similarly, we can define tha t an edge in N oc-
curs infinitely often in a communication sequence of
(M,N).

Based on the above definitions, we can state that
something "good" will occur infinitely often in a safe
network (M,N) by stating that a node in M or in N
(identified as being "good" or "useful" by the network
designer) is guaranteed to occur infinitely often in every
communication sequence of (M,N). In fact, the node
needs not to occur infinitely often in every sequence. In
particular, based on the assumption tha t both machines
will progress fairly, the node needs not to occur in any
sequence where one machine progresses in unfair fash-
ion. Next we define the fair sequences.

A communication sequence q of a safe network
(M,N) is called fa ir iff the following two conditions are
satisfied for any node u, in M or N, that occurs in-
finitely often in q:

i. Each outgoing sending edge of u must occur
infinitely often in q.

ii. If there is an infinite number of states of the
form [u,wi,xi,Yi] (or [vi,u,xi,Yi]) in q where
message g is the head message in x i (or Yi),

and if u has an outgoing receiving edge e,
labelled +g, then edge e must occur in-
finitely often in q.

Informally, a fair sequence is one where each machine is
forced to execute infinitely often each edge that it can
execute infinitely often. The following theorem states
that every safe network must have fair sequences.

Theorem 1 : Let (M,N) be a safe network. (M,N)
must have at least one fair sequence.

P r o o f : Since (M,N) is safe, (M,N) must have a com-
munication sequence q=s0,sl ,s2, . . , that can be con-
structed as follows:

a. First, the initial state s o of (M,N) is added to
q.

b. After adding a state s=[v,w,x,y] to q, one of
the outgoing edges, say e, of v or w should
be selected for execution; then the state s'
tha t follows s over e should be added to q. If
such an s' exists, then e is said to be ex-
ecuted; otherwise, e cannot be executed at
this time.

c. To decide which of the outgoing edges
should be selected for execution, the follow-
ing priority scheme is adopted. Let k e be

the number of times an edge e in M or N is
executed so far along q, on reaching a state

[v,w,x,y] along q, the outgoing edge e of ¢ or
w with the smallest k e is selected for execu-

tion. If e cannot be executed at this time,
then the outgoing edge e' of v or w with the
next smallest k e, is selected, and so on. This

scheme guarantees tha t if an edge can be ex-
ecuted infinite times along q, then it will be
executed infinite times along q, i.e. q is fair.

D

Based on the above definition of fair communication
sequences, we can now present the definition of node
iiveness.

Let (M,N) be a safe network, and let u be a node in
machine M or N. Node u is said to be live in (M,N) iff
u occurs infinitely often in every fair sequence of (M,N).

Other types of node liveness are discussed in [10],
and in [5], we show tha t the problem of "whether a
node u is live in a safe network (M,N)" is undecidable in
general, we also characterize some special classes of net-
works for which the problem becomes decidable. In the
current paper, we are interested in developing tech-
niques to prove a positive answer for many instances of
the problem. In other words, we are interested in suf-
ficient conditions which can be checked easily and
which, if satisfied by any instance of the problem,
guarantee that indeed node u is live in (M,N).

4 . P r o v i n g L i v e n e s s U s i n g C l o s e d C o v e r s

The technique of closed covers is presented in [9] to
prove that a network is safe. One advantage of this
technique is tha t it can be used with networks whose
communications are unbounded. (No other technique
seems to be successful with such networks.) In this sec-
tion, we extend this technique to prove node liveness.
But first, a brief presentation of closed covers is in or-
der.

A closed cover C for a network (M,N) is a set of
states of (M,N) tha t satisfies the following four con-
ditions:

i. The initial state of (M,N) is in C.

ii. Each directed cycle in the directed graph of
M or N must have at least one node
referenced in some state in C.

iii. The aeyclie verMon AM of M with respect
to C can be constructed from M by par-
titioning each node v, which is referenced in
some state in C, into two nodes: One node,
called the input version of v, has all the out-
put edges of v and no input edges; the other
node, called the output version of v, has all
the input edges of v and no output edges.
Similarly, the aryclic version AN of N with
respect to C can be defined. The third con-
dition can now be defined in terms of these
acyclie versions. If the network {AM.AN)

41

s tar ts a t a s tate s 1 in C and if it reaches a

s tate s 2 after which no other s tate is reach-

able, then s tate s 2 must also be in C.

iv. The following condition should be satisfied
for any s tate [v,w,x,y] in C, and for any two
paths p and q, in the acyclie versions AM
and AN, t ha t s ta r t with the input versions
of v and w respectively, and te rminate at the
ou tpu t versions of some nodes: Let s i {ri} be

the sequence of sent (received} messages
along pa th i, where i-----p,q; then

either [{X.Sq-<rp) and (y.sp<rq}],
or [not(X.Sq~rp} and not(y .sp~rq)] ,

where
" ." denotes the s tr ing concatenat ion
operator , and
" -<" denotes "is a proper prefix of".

A proof for the following theorem is in [9].

Theorem 2 : If a network has a closed cover, then it
is safe.

[]

Example 1 (Continues) : We show tha t the set C
----- {[1,3,E,E],[3,1,E,EI} is a closed cover for the network

(U0,UI} in Figure la:

i. First, the initial s tate [I,3,E,E] of (Uo,U1) is
in C.

ii. Since nodes 1 and 3 in U 0 and U 1 are
referenced in C, every directed cycle in U 0

or U 1 has one node referenced in C.

iii. The acyclic versions AU 0 and AU 1 of U 0 and
U 1 (respectively} with respect to C are
shown in Figure lb. If the network

(AU0,AUI} s tar ts at s tate [1,3,E,E], it must
end its communicat ion at [I,3,E,E l or at
[3,1,E,E]; both are in C. Similarly, if

(AUo,AUI} s tar ts at s tate [3,1,E,E], it must
end at ei ther [I,3,E,E] or [3,1,E,E].

iv. Each s tate [v,w,x,y] in C is such t ha t
x = y = E . Also, any path in AU 0 or AU1,
t ha t s tar ts with the input version of some
node and terminates at the ou tpu t version of
some node, has exactly the same number of
sending and receiving edges. Therefore, for
any two such paths p and q in AU 0 and AU 1
respectively, we have

not{Sq-<rp and not{sp-<rq}
where

" -<" denotes "is a proper prefix of", and
si(ri} is the sequence of messages sent
(received} along path i, for i = p , q .

A U o

A U 1

F i g u r e l b . Acycl ic ve r s ions A U 0 a n d A U 1 of U 0 and

U 1 in F i g u r e l a w i t h r e spec t to {[1,3,E,E], [3,1,E,E]}.

This completes the proof t ha t C is a closed cover of

(U0,U1), and so (U0,UI} is safe (by Theorem 2). Notice
t ha t the communicat ion of this network is unbounded;
hence, there is no other known systematic technique to
prove it safe.

[]

A closed cover C for a network (M,N) can be
represented by a directed labelled graph G, called the
closed cover graph of C, as follows:

i. Each s tate s in C is represented as a vertex,
also labelled s, in G.{Not ice tha t the
"nodes" of G are called "vert ices" to distin-
guish them from the "nodes" of machines M
and N. For the same reason, the directed
edges in G are called "arcs".}

ii. Let AM and AN be respectively the acyclic
versions of M and N with respect to C. If
the network (AM,AN) can reach from state s
in C to s tate s' in C over a finite sequence

<e0 ,e l , . . . , e r> of directed edges in M or
N. (In other words, there exists a finite sub-
sequence <s0 ,S l , . . . ,S r+ l> of states of

(AM,AN) such tha t s = s 0 , s ' = S r + l , and si+ 1
follows s i over el, i=0,1, . . . , r .}.) Then there
is a directed arc from the vertex labelled s to
the vertex labelled s' in G; this arc is

42

labelled with the set of edges {e0,el,...,er.)

iii. No multiple arcs with identical labels are al-
lowed in G.

Example 1 (Continues) : Figure lc shows the closed
cover graph G of the closed cover C--{[I,3,E,E],
[3,1,E,E]} for network (U0,U1) in Figure la. Notice

that each directed edge e in U 0 or U 1 is defined in G by

a tuple (i, j, k), where i is the source node of e, j is the
label of e, and k is the destination node of e. Each arc
in G is labelled {e0,el,...,er}.

[]

Ini t ia l Ve r t ex

Q.~__.~.13,I,E,E1)

List of labels in t he closed cover g raph
.

A---- {(1,-Norqst0,1)U0,(3,+Norqst0,3)U1 }

B--~ {(1,-Rqst0,2)U0,(3,+Rqst0,4)Ul,

(4 , 'Ack 1 ,1)u l , (2 ,+Ackl ,3)u0}

C--~ { (1 , 'Norqs t 1 ,1)Ul , (3 ,+Norqs t 1,3)U0}

D = { (1 , - R q s t 1 ,2)Ul , (3,+Rqst l ,4)U0,

(4,-Ack0,1)U0,(2,+Ack0,3)U1 }

F igu re lc . A closed cover g raph G for t he
closed cover {[I ,3,E,E], [3,1,E,E]}.

Let C be a closed cover for a network (M,N), and let
G be the closed cover graph of C. The vertex in G
labelled with the initial state of (M,N) is called the in-
i t ial ver tez of G. A vertex (arc or directed cycle) in G
is called reachable iff there is a directed path from the
initial vertex of G to this vertex (arc or directed cycle).
As an example, the vertex [1,3,E,E] in G of Figure lc is
its initial vertex; also each vertex, arc, and directed
cycle in this G is reachable.

Let C be a closed cover for a network (M,N), and let
G be the closed cover graph of C, also let u be a node in
M or N, and e be a directed edge in M or N. Node u is
said to occur in an arc of G iff the finite set that labels
the arc contains an ingoing or outgoing edge of node
u. Edge e is said to occur in an arc of G iff the finite
set that labels the arc contains e. Node u or edge e is
said to occur in a directed path (or cycle) in G iff it oc-
curs in at least one arc in the path (or cycle). Node u
or edge e is said to occur i n f i n i t e l y o f t en in an infinite

path in G iff it occurs in an infinite number of arcs in
the path.

In order to state a sufficient condition for liveness,
we need first to define basic and composite cycles in
closed cover graphs and to introduce the concept of a
message being sent in a composite cycle. This is done
next.

Let C be a closed cover for a network (M,N), and let
G be the closed cover graph of C. A reachable directed
cycle L in G is called basic iff each vertex in G occurs
at most once in L. Cycle L is called composi te iff it
consists of one or more distinct basic cycles. For ex-
ample, referring to the closed cover graph in Figure lc,
the self-loop at vertex [1,3,E,E] is basic. Also, the
directed cycle that consists of:

1. the arc from vertex [1,3,E,E] to vertex
[3,1,E,E],

2. the self-loop at vertex [3,1,E,E], and

3. the arc from vertex [3,1,E,E] to vertex
[1,3,E,E]

is composite, since it consists of two basic cycles.

Let C be a closed cover for a network (M,N), and let
G be the closed cover graph of C, and L be a composite
cycle in G. A message g is said to be sent by 2~¢(N) in L
iff one of the following two conditions holds,

i. There exists a sending edge labelled -g, in
M(N), tha t occurs in L.

ii. One of the vertices in L is labelled with a
state [v,w,x,y] where g is in y(x).

Based on these concepts, we can now state Theorem
3.

T h e o r e m 3 : Let (M,N) be a safe network, and let C
be a closed cover for (M,N) and G be the closed cover
graph of C. Also let u be a node in M or N. u is live in
(M,N), if for each reachable directed composite cycle L
in G, one of the following two conditions holds:

i. u occurs in L.

ii. There is a node in M or N, tha t occurs in L,
but one of its outgoing sending edges does
not occur in L.

P r o o f : Assume that each reachable directed com-
posite cycle in G satisfies either i or ii above, we show
tha t u must occur infinitely often in every fair sequence
of (M,N). Let q be any fair sequence of (M,N}. Since q
is fair, it corresponds to two infinite directed paths P
and Q in machines M and N respectively such that
every node occurrence in P or Q must also be in q, and
vice versa. The two paths P and Q correspond to one
infinite directed path p in G, such that p starts with the
initial vertex in G, and every node occurrence in P or Q

43

must also be in p, and vice versa. It follows tha t any
node in M or N occurs infinitely often in path p iff it
occurs infni tely often in sequence q.

Since p is an infinite path in a finite graph G, a
finite number of basic cycles in C must occur infinitely
often in p, let these basic c:,cles be L1, L2, ..., L m. Let

Lma x be any composite cycle that consists of LI, L2, ...,
and Lm; it is straightforward to show tha t a node (or an

edge) in M or N occurs in Lma x iff it occurs infinitely

often in path p (and in ~equence q).

There are two cases to consider:

a. u occurs in Lmax, in which ease u occurs in-
finitely often in sequence q.

b. u does not occur in Lma x and Lm~ x satisfies
condition ii. "I here is a node, say v, in M or
N which occurs in Lmax, but one of its cut-

going sending edges does not occur in Lma x.

Therefme, v occur,~ infinitely often in q, but
one of its outgoing sending edges does not
occur infinitely oRen in q. This contradicts
the assumption that q is a fair sequence.

[]

E x a m p l e I (C o n t i n u e s) : Let us apply Theorem 3 to
establish the liveness of nodes 3 in machines U 0 and U 1

in the network of Figure la. Referring to the closed
cover graph G of this network in Figure lc, we observe
the following:

i. To show that node 3 i~ U 0 is live in (Uo,U1)
by Theorem 3, we follow the next steps:

a. Remove from G all the arcs where
node 3 in U 0 occurs.

b. This leaves only the self-loop at vertex
[1,3,E,E]; it i,J a basic cycle that
satisfies condition ii in Theorem 3,
since node 1 in U 0 occurs in this cycle

but its outgoing sending edge labelled

-Rqst 0 does not occur in this cycle.

ii. To show tha t node 3 in U 1 is live in (U0,U1)
by Theorem 3, we follow the same steps:

a Remove from G all arcs where node 3
in U 1 occurs.

b. This leaves only the self-loop at vertex
[3,1,E,E]; it is a basic cycle tha t
satisfies condition ii in Theorem 3.

[]

The closed cover condition in Theorem 3 is ap-
plicable even if the considered closed cover C for net-
work (M,N) is infinite, i.e. C contains an infinite num-
ber of states of (M,N}. However, in this case the closed
cover must have a finite representation so that its

closed cover graph remains finite as required by the
proof of Theorem 3. One finite representat ion of an in-
finite closed cover is as follows:

C----{[Vl,WI,X1,Y1] [vr,Wr,Xr,Yr] } where

v i (i= l , . . . , r) is a node in machine M,

w i (i= l , . . . , r) is a node in machine N,

X i (i= l , . . . , r) is a (possibly infinite} set of message
strings, and

Yi (i~ l , . . . , r) is a (possibly infinite} set of messag,-

strings.

Each four-tuple [vi,wi,Xi,Yi], called a s tate schema of
(M,N}, represents a (possibly infinite) set of states of
(M,N), each state is of the form [vi,wi,xi,Yi] where x i is a
string in set X i and Yi is a string in set Yi" In this case,

each vertex in the corresponding closed cover graph G
represents one state schema in C. Therefore, G is finite
(i.e. has r vertices) and Theorem 3 is still applicable.
(An example is discussed in [10].)

5. E x a m p l e s

In this section, we use our technique to prove the
liveness of two more solutions for the mutual exclusion
problem mentioned in Example 1. Both solutions allow
the user processes to communicate via shared memory.
There are three objectives of this exercise: The first ob-
jective is to show how to use communicating finite state
machines to model and verify systems where com-
munication is via shared memory. Our second objective
is to illustrate tha t our technique is applicable to net-
works with more than two machines. The third objec-
tive is to apply our technique to prove a system tha t
has been proven earlier by the more general technique
of temporal logic [18], thus give the reader an oppor-
tuni ty to compare both techniques.

Example 2. Dijkstra and Knuth's Solution to
the Mutual Exclusion Problem:

The solution of Dijkstra [8] and Knuth [15] is based
on the following rules:

i. A common memory is shared by the two
users in the system. The shared memory
contains a "register" whose value at any in-
s tant indicates the one user who has the
right to its critical section at this instant.

ii. Whenever a user U i (i~0 ,1) wants to enter

its critical section, it checks the shared
register. If the register indicates tha t U i has

the right to its critical section, U i can enter

r ight away. Otherwise, U i waits until the
other user is not trying to enter the critical
section, then changes the value of the
register to indicate U i and enters its critical

section.

iii. Whenever a user exits from its critical see-

4 4

tion, it changes the value of the register to
indicate the other user. (This last rule is
due to Knuth [15].)

This system can be modeled as a network (U0,UI,M)
of three communicating finite state machines (Figure
2a). Machines U 0 and U 1 model the two user processes,
and machine M models the process that hosts the shared
register and contains the information indicating which
one of the users currently has the right to its cr;tical
section (figure 2b).

Figu:e 2a. Network (Uo,UI,M)

Initial Node

" N ° r q s t i ~ ~ R q s t i

-D°nei ~ ~ + A c k i

U i (i=0,1)

J~ +Norqstl -~

+ R q s ~ Rqstl

+Done 0 +l)one I

M

Figure 2b. Machines U i (i~-0,1) and M.

The exchanged messages in this network have the
following meaning:

Rqst i is a message sent by U i to M to indicate
that U i wants to enter its critical section.

Norqst i i3 a virtual message sent by tJ i to M to
indicate that no Rqst i message is sent
recently by U i.

Ack i is a message sent by M to U i to indicate
that U i can enter its critical section.

Done i is a message sent by U i to M to indicate
that U i is done with its critical section.

To prove the liveness of this solution, it is sufficient
to prove that both nodes 3 of machines U 0 and U 1 are
live in the network (U0,U1,M). The proof is as follows:

A state of this network is of the form:

[v0.vl,w,x0,xl,Y0,Yl] , where

v i is a node in machine Ui, i=0,1,
w is a node in machine M,
x i is the content of the channel from M to Ui,

i=0,1, and
Yi is the content of the channel from U i to M,

i=0,1.

It is straightforward to check that the following set
is a closed cover for this network: C={[1,1,1,E,E,E,E]}.
The closed cover graph G of C is shown h~ Figure 2c,
where the arc labels are as follows: (Notice C t each arc
label is a set of machine edges; each edge e is defined as
(i,j,k)M , where i(k) is the source (destination) node of e,
j is the label of e, and M is the machine that has e.)

Initial Vertex

Figure 2c. A closed cover graph G for the closed cover
{[1,1,I,E,E,E,E]}.

A = {(1,-Norqst0,1)U0,(1,+Norqst0,2) M,
(l,-Norqst 1,1)U l,(2,+Norqst 1,1) M }

B ~ {(1,-Norqst0,1)U0,(1,+Norqst0,2)M,
(1,-Rqst 1,2)U l,(2,+Rqst 1,4) M,
(4,-hckl,O)M,(2,+hck i ,3)UI,
(3,-Donel,1)Ul,(6,+Donel,l)M}

C ~ {(1,-Rqsr0,2)U0,(1,+Rqst0,3)M,
(1,-Norqst 1,1)U l,(3,-Ack0,5) M ,
(2,+Ack0,3)U0,(3,-D°ne0,1)U0,

45

(5,+Done0,2)M,(2,+ Norqst 1,1)M}

D = {(1,-Rqst0,2)V0,(l ,+Rqst0,3)M ,

(1,-Rqst 1,2)U 1,(3,-Ack0,5)M ,

(2,+Aek0,3)U0,(3,-Done0,1)U0,
(5,+Done0,2)M,(2,+Rqst 1,4) M,

(4,-hck 1,6)M,(2,+hck 1,3)U1,
(3,-Donel , l)Ul,(6,+Donel ,1)M}

From this closed cover graph, it is s t ra ightforward
to use Theorem 3 to prove tha t both nodes 3 in U 0 and
U 1 are live.

The network described above actually models
Knuth ' s solution [15]. To model Oijkstra 's solution [8],
the two nodes 1 and 2 in machine M should be merged
into one node, and all the edges labelled +(-)Norqst i

should be removed from U0, U1, and M. We could not

construct a closed cover for the result ing network;
therefore, we cannot use Theorem 3 to establish its live-
uess. For tunately , this network is bounded (i.e. has a
finite number of reachable states), and so its liveness
can be established by examining its finite reachabil i ty
graph.

The liveness of our model of Dijkstra 's solution can
be dis turbing at first glance, since his solution is known
to be "non-live". However, one should remember t ha t
the established liveness is based on the assumption t ha t
M behaves fairly, and so whenever a user U i sends a

Rqst i message to M, M must receive and approve this
request in a finite time. Indeed, Dijkstra 's solution is
live under this fairness assumption.

Example 3. Owlckl and Lamport's Solution to
the M u t u a l E x c l u s i o n P r o b l e m :

The solution of Owicki and Lampor t [18] is based on
the following rules. (These rules favor user U 0

whenever both U 0 and U 1 compete for their critical
sections.)

i. Each user U i owns a binary flag F i t ha t it
can update, and the o ther user can only
read. Whenever the value of F i is true, it

indicates (to the other user) tha t U i wants to
enter its critical section. Initially, the value
of both flags F 0 and F 1 is false.

ii. Whenever U 0 wants to enter its critical sec-
tion, it flips its flag F 0 to true, and reads the

other flag F 1. If F 1 = false, U 0 ent.ers its
critical section, and at the end flips its flag

F 0 back to false. If F 1 = true, then U 0
waits and reads F 1 later, and so on. This

continues, until U 0 sees tha t F l ~ false; it
then enters its critical section, and at the
end flips its flag F 0 to false.

iii. Whenever U i wants to enter its critical sec-

tion, it flips its flag F 1 to true and reads F 0.

If F 0 ~ false, then U 1 enters its critical sec-
tion, and at the end flips its flag F 1 to false.
If F 0 ~--- true, then U 1 flips its flag F 1 back
to false and waits for a finite t ime before it
tries to enter its critical section again.

This system can be modeled as a network

(U0,U1,Po,P1) of four communicat ing finite s ta te
machines (Figure 3a), where machines U 0 and U 1
(Figure 3b) model the two user processes, and machines

P0 and PI (Figure 3c) model processes tha t host the two

flags F 0 and FI, respectively. The exchanged messages
in this network have the following meaning:

I~10 f] i P0 ' ~ ~ N ° r q s t 1

- - ~ A e k l ' N a k l ' ~

Rqst0 , N rqso t 0 ~ F1 ~ F l iP1 , N o f l i p l

F i g u r e 3a. N e t w o r k (U0, UI , P0, P1)"

Flip i

Rqst i

Noflip i

Norqst i

Ack i

is a message sent by U i to Pi to change the

value of the flag F i e i ther from false to
to true or from true to false.

is a message sent by U i to P(i+ l rood 2) to
inquire about the value of the flag

F(i+l mod 2)

is a vir tual message sent by U i to Pi to
indicate t ha t no FliPi message is sent
recently by U i.

is a vir tual message sent by U i to

P(i+l mod 2) to indicate tha t no Rqst i
message is sent recently by U i.

is a message sent by P(i+ l mod 2) to U i
to indicate tha t the current value of the flag
in P(i+ l mod 2} is false.

Nak i is a message sent by P(i+l mod 2) to U i
to indicate tha t the current value of the flag
in P(i+l mod 2} is true.

To prove the liveness of this solution to the mutual
exclusion problem, it is sufficient to prove tha t node 6
in machine U 0 and node 11 in U 1 are both live in the
network (U0,U1,P0,PI). The proof is next.

A state of this network is of the form:

[v0,v l,W0,W l,X0,X l,Y00,Y01,Yl0,Yl 1], where

46

Initial Node

_ f

-Flip 0
-Norqst 0

- R u s t 0

~ -Nofli Nak o

"FliP0

-Norqst.

I-Ack o

-Norqst 1

U o

-Flip 1

(~ "Rqstl

= ~ N a k 1

G
! i

-FliPl ~ -Rqstl ~ Flipl

+Nak 1 /-Noflip 1
+Ack 1 N ~

rqst 1

+Ack 1

U1

Figure 3b. Machines U 0 and U 1.

v i is a node in machine Ui, i=0,1,
w i is a node in machine Pi, i=0,1,

x i is the content of the channel from P(i+l rood 2)
to Ui, i=0,1,

Yij is the content of the channel from U i to Pj,
i=0,1 and j----0,1.

Initial Node

~] +FliPi

+ F i i ~ ~ N ~ k i + l

Pi (i=O,1)

Figure 3c. Machines P0 and P1.
(+ is mod 2)

It is straightforward to check that the following set
is a closed cover for this network:

C= {[1,1,1,1,E,E,E,E,E,E],
[l,11,1,5,E,E,E,E,E,E],
[6,1,5,1,E,E,E,E,E,E],
[5,5,5,5,E,E,E,E,E,E],
[6,8,5,1,E,E,E,E,E,E],
[1,9,1,1,E,E,E,E,E,E],
[5,11,5,5,E,E,E,E,E,E] }

The closed cover graph G of C is shown in Figure
3d, where the arc labels are as follows:

A
Initial (~
Vertex D
[.~ [1 , 1 , 1 , 1 , . .] k -"-([5,5,5,5,..])

M L

(I5,11,5,5,..1)~ ~ 11,9,1,1,..1)
[v,w,x,y,..l stands for [v,w,x,y,E,E,E,E,E,EI

where E is the empty string

Figure 3d. A closed cover graph G.

47

A = {(1,-NofliP0,2)U0,(1,+ NofliP0,2)p0,
(1,-NofliPl,2)Ul,(1,+ NofliPl,2)p 1,
(2,-Norqsto,1)VO,(2,+Norqst0,1)p 1,
(2,-Norqst 1,1)Ul,(2,+Norqst 1,1)eo}

B ~ {(1,-NofliP0,2)UO,(1,+ NofliPo,2)po,
(1,-FliPl,3)Ul,(1,+FliPl,4)pl,
(2,-Norqsto,1)UO,(4,+Norqsto,5)p 1,
(3,-Rqst 1,4)Ul,(2,+Rqst 1,3)p0,
(3,-Ackl,1)po,(4,+iCkl,ll)u1 }

C~- {(1,-FliP0,3)U0,(1 ,+FliP0,4)p0,
(l, 'NofliPl,2)Ul,(l,+NofliPl,2)p 1,
(3,'Rqst0,4)V0,(2,+Rqst0,3)p 1,
(2,-Norqst 1,1)Ul,(4,+Norqst 1,5)p0,
(3,'Ack0,1)p 1,(4,+Ack0,O)U0}

D~-- {(1,-FliP0,3)U0,(1 ,+FliPo,4)p0,
(l,-FliPl,3)U1, (l ,+Flipl ,4)Pl,
(3,-Rqst0,4)V0,(4,+Rqst0,6)p 1,
(3,-Rqst 1,4)Ul,(4,+Rqst 1,6)eO,
(6,-Nak0,5)e l,(4,+Nak0,5)U0,
(6,-Nakl,5)p0,(4,+Nakl,5)U1 }

E ~ {(1,-NofliPo,2)U0,(1,+ NofliPo,2)po,
(l 1,-FliPI,12)UI,(5,+FliPl,2)p1,
(2,-Norqsto,l)u0,(2,+Norqsto,1)el,
(12,-Norqst 1,1)Ul,(2,+Norqstl,l)e0}

F-~ {(1,-FliPo,a)U0,(l,+FliPo,4)po,
{11,-FliPl,12)U1,(5,+FliPl,2)pl,
(3,-Rqsto,4)U0,(2,+Rqsto,3)e 1,
(12,-Norqst l , l)ul ,(4,+Norqst 1,5)e0,
(3,-Ack0,1)pl,(4,+Ack 0,6)U0}

G~-- {(6,-FliP0,7)U0,(5,+FliP0,2)p0,
(1,-NofliPl,2)Ul,(1,+NofliPl,2)p 1,
(7,-Norqst0,1)C0,(2,+Norqsto,1)p 1,
(2,-Norqst 1,I }Cl,(2,+Norqstl,1)po}

H-~ {(O,-FliPo,7)U0,(5,+FiiP0,2 }po,
(1,-FliPl,3)UI,(1,+FliPl,4)p 1,
(7,-Norqsto,1)U0,(4,+Norqst0,5)pl,
(3,-Rqst 1,4)Ul,(2,+Rqst 1,3)p0,
(3,-Ackl,1)p0,(4,+Ackl,11 }U1}

{(5,-NofliP0,3)U0,(5,+ NofliPo,4)p0,
(5,-Flip 1,6)UI,(5,+Flip 1,2)pl,
(3,-Rqsto,4)U0,(2,+Rqsto,3}p 1,
(6,-Rqst 1,7)Ul,(4,+Rqst 1,6)po,
(6,-Nakl,5}p0,(7,+ Nakl,8)Ul,
(3'-Acko,1)P l,(4,+Ack0,6)UO}

J~- { (6,-FliP0,7)U0,(5,+FliPo,2)po,
(8,-NofliPl,O)U 1,(1,+Noflip 1,2)P 1,
(7,-Norqst0,1)U0'(2,+N°rqsto,l)pl'
(6,-Rqst 1,7)Ul,(2,+Rqst 1,3)po,

(3,-Aekl,1)p0,(7,+Ackl,9)U1}

K = {(1,-NofliP0,2)U0,(1,+NofliP0,2)p0,
(9,-FllPl,10)UI,(1,+FliPl,4)p1,
(2,-Norqst0,1)U0,(4,+Norqsto,5)p 1,
(lO,-Norqst l , l l)ul , (2,+Norqst 1,1)p0 }

L = {(1,-FliP0,3)U0,(1,+FliP0,4)p0,
(9,-FliPl,10)Ul,(1,-I-FliPl,4)p 1,
(3,-Rqst0,4)U0,(4,+Rqst0,6)p 1,
(10,-Norqst 1,11)Ul,(4,+Norqst 1,5)p0,
(6,-Nak0,5)p 1,(4,+Nak0,5)U0}

M = {(5,-NofliP0,3)U0,(5,+NofliP0,4)p0,
(11,-FIiPl,12)UI,(5,+FliPl,2)p1,
(3,-Rqst0,4)U0,(2,÷Rqst0,3)p 1,
(12,-Norqst 1,1)Wl,(4,+Norqst 1,5)p0,
(3,-Acko,1)p 1,(4,+Ack0,6)UO}.

From this closed cover graph, it is straightforward
to use Theorem 3 to prove that both node 6 in U 0 and
node 11 in U 1 are live.

In [18], Owicki and Lamport prove the liveness of U 0
using temporal reasoning. They also prove the liveness
of U 1 under the assumption that U 0 remains forever in
its noncritical section. This assumption is needed be-
cause in their solution, U 1 can be blocked from entering
its critical section by a "greedy" U 0 who enters its criti-
cal section too often. By contrast, in our model,
whenever a user U 0 (UI) exits from its critical section,
its flag machine P0 (PI) will wait to receive either a
Rqst or Norqst message from the other user before wait-
ing to receive from its user again. Moreover, a user
that fails to enter its critical section in the first trial will
keep on sending Rqst messages to the other flag
machine until it succeeds. This guarantees that a user
who wants to enter its critical section cannot be blocked
forever, thus both U 0 and U 1 are live in our model as
our proof indicates.

It is possible to change our model slightly to reach
the same results as those of Owicki and Lamport's.
Simply add a directed edge, labelled -Norqstl, from
node 6 to node 1 in machine U I. In this case, node 6 in
U 0 is still live while node 11 in U 1 is no longer live. To
show that node 11 in U 1 is not live, one needs only to
define a fair sequence in which node 11 in U 1 does not
occur infinitely often; we leave the details to the reader.

6. Concluding Remarks
The node liveness discussed in this paper is based on

the notion of fair sequences. In [10], we identify two
more types of fair sequences (named "weakly fair" and
"strongly fair" sequences), and bascd on them we define
two other degrees of node liveness (named "strongly
live" and "weakly live", respectively). Also in [10], we
extend the technique diseusscd in the current paper to

48

prove all three degrees of node liveness. The extended
technique is used to prove the liveness of some real com-
munication protocols, and some other solutions
(including probabilistic ones) to the mutual exclusion
problem [6].

R E F E R E N C E S

1. Brand, D. and P. Zafiropulo, "On com-
municating finite-state machines," Journal
ACM, Vol. 30, No. 2, April 1983, pp.
323-342.

2. Bochmann, G.V., "Finite state description
of communication protocols," Computer
Networks, Vol. 2, 1978, pp. 361-371.

3. Bochmann, G. V. and C. Sunshine, "Formal
methods in communication protocol design,"
IEEE Trans. on Commun., April 1980,
pp.624-631.

4. Chandy, K. M. and J. Mists, "The drinking
philosophers problem," TR LCS-8402, Dept.
of Computer Sciences, Univ. of Texas at
Austin, Feb. 1984.

5. Chang, C.K., M.G. Gouda, and L.E.
Rosier, "Deciding liveness for special classes
of communicating finite state machines," In
preparation.

6. Chang, C. K, "Proving liveness properties
for communicating machines," Ph.D. Thesis,
Univ. of Texas at Austin, In preparation.

7. Chow, C. H., M. G. Gouda, and S. S. Lain,
"An exercise in constructing multi-phase
communication protocols," In Proc. of
SIGCOMM'8$ Symposium, June 1984.

8. Dijkstra, E .W. , "Solution of a problem in
concurrent programming control," Comm.
ACM, Vol. 8, No. 9, Sept. 1965, pp. 569.

9. Gouda, M.G., "Closed covers: to verify
progress for communicating finite state
machines," TR-191, Dept. of Computer
Sciences, Univ. of Texas at Austin, Jan.
1982. Revised Jan. 1983. To appear in
IEEE Trans. on Software Engineering.

10. Gouda, M.G. and C. K. Chang, "Proving
liveness for networks of communicating
finite state machines," TR-84-4, Dept. of
Computer Sciences, Univ. of Texas at Aus-
tin, Jan. 1984.

11. Gouda, M.G., E.G. Manning, and Y.T.
Yu, "On the progress of communication bet-
ween two finite state machines," TR-200,
Dept. of Computer Sciences, Univ. of Texas
at Austin, May 1982. Revised Oct. 1983.

12. Gouda, M.G. and Y.T. Yu, "Protocol
validatior: by maximal progress state
exploration," IEEE Trans. on C'ommun.,

Vol. COM-32. No. 1, Jan. 1984, pp. 94-97.

13. Gouda, M. G. and Y. T. Yu, "Synthesis of
communicating finite state machines with
guaranteed progress", TR-179, Dept. of
Computer Sciences, Univ. of Texas at Aus-
tin, June 1981. Revised Jan. 1983. Revised
Oct. 1983. To appear in IEEE Trans. on
Commun., July 1984.

14. Hailpern, B. T. and S. S. Owicki, "Modular
verification of computer communication
protocols," IEEE Trans. on Commun., Vol.
COM-31, No. 1, Jan. 1983, pp. 56-68.

15. Knuth, D.E., "Additional comments on a
problem in concurrent programming
control," Comm. ACM, Vol. 9, No. 5, May
1966, pp. 321-322.

10. Misra, J. and K. M. Chandy, "Proof of net-
works of processes," IEEE Tran. on
Software Eng., Vol. SE-7, No. 4, July 1981.

17. Misra, J., K.M. Chandy and T. Smith,
"Proving safety and liveness of communicat-
ing processes with examples," in Proc ACM
SIGACT-SIGOPS Symposium on Prin-
ciples of Distributed Computing, Aug.
1982, pp. 18-20.

18. Owicki, S. and L. Lamport, "Proving live-
ness properties of concurrent programsi"
ACM Trans. on Programming Languages
and Syst., Vol. 4, No. 3, July 1982, pp.
455-495.

19. Pnueli, A., "The temporal semantics of con-
current programs," Theoretical Computer
Science, Vol. 13, 1981, pp. 45-60.

20. Rosier, L.E. and M. G. Gouda, "Deciding
progress for a class of communicating finite
state machines," TR-83-2g, Dept. of Com-
puter Sciences, Univ. of Texas at Austin,
Oct. 1983. Submitted for publication.

21. Yu, Y.T. and M.G. Gouda, "Deadlock
detection for a class of communicating finite
state machines," IEEE Trans. on Commun.
, Dec. 1982, pp. 2514-2519.

22. Yu, Y.T . and M.G. Gouda,
"Unboundedness detection for a class of
communicating finite-state machines," In-
formation Processing Letters, Vol. 17, Dec.
1983, pp. 235-240.

23. Zafiropulo, P., C.H. West, H. Rudin,
D. Brand, and D. Cowan, "Towards analyz-
ing and synthesizing protocols," IEEE
Trans. on Commun., Vol. COM-28, No. 4,
April 1980, pp. 651-661.

49

