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A B S T R A C T  

Consider a network of communicating finite state machines tha t  exchange messages over unbounded, 
FIFO channels. Each machine in this network has a finite number o'f states (called nodes), and state tran- 
sitions (called edges), and can be defined by a labelled directed graph. A node in one of the machines is said 
to be "live" iff it is reached by its machine infinitely often during the course of communication, provided 
that  the machines behave in some "fair" fashion. We discuss a technique to verify tha t  a given node is live 
in such a network. This technique can be automated, and is effective even if the network under considera- 
tion is unbounded (i.e. has an infinite number of reachable states). We use our technique to establish the 
liveness of three distributed solutions to the mutual exclusion problem. 

1. Introduct ion  
Consider a network of some finite state machines 

that  communicate exclusively by exchanging messages 
via connecting channels. There are two one-directional, 
unbounded, FIFO channels between any two machines 
in the network. Each machine has a finite number of 
states and state transitions, and each state transition is 
accompanied by either sending a message to one of the 
machine's output channels, or receiving a message from 
one of the machine's input channels. 

Networks of communicating finite state machines are 
useful in modeling [3], analysis [1,2,12], and synthesis 
[3,7,13,23] of communication protocols, and distributed 
systems. The analysis problem for these networks can 
be stated as follows: "Given an arbitrary network of 
communicating finite state machines, prove that  the 
communications within the network will satisfy some 
desirable properties." Most of the work to solve this 
problem has concentrated so far on properties such as 
boundedness [22], freedom of deadlocks [20,21] and un- 
specified receptions [11]. These are all safety properties 
[18]; i.e. they merely guarantee that  nothing bad will 
happen during the course of communication. In order 
to guarantee tha t  something good will happen (infinitely 
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often), we need to establish some liveness properties for 
the given network. In this paper, we identify some live- 
ness properties for networks of communicating finite 
state machines, and present techniques to prove these 
properties for such networks. 

The pioneering works of Pnueli [19], Owicki and 
Lamport [18l, Misra and Chandy [16,17], and Hailpern 
and Owicki [14] have established the foundations for 
defining and proving general liveness properties of con- 
current programs and distributed systems. Pnueli [19] 
has introduced a version of temporal logic as a tool to 
specify and verify properties of concurrent programs. 
Owicki and Lamport [18] have used Pnueli's temporal 
logic to define "proof lattices", tha t  are both rigorous 
and easy to understand, to verify liveness properties of 
concurrent programs. Later, Hailperu and Owicki [14] 
have used the same temporal logic in a modular 
verification methodology for distributed systems, where 
the intended system's assertions are verified using the 
assertions of the different processes in the system. 

Misra and Chandy [16,17] have introduced a novel 
and modular verification methodology for distributed 
systems, tha t  is not based on temporal logic. In their 
methodology, safety and liveness properties of any 
process in the system are defined by three assertions. 
Applying a "theorem of hierarchy", the process' asser- 
tions can be used to verify the safety and liveness 
properties of the whole system (which are also defined 
by three assertions). 
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The above approaches outline general frameworks 
where many types of liveness properties can be defined 
and verified for general systems. In this paper, we 
restrict  our at tention to defining and proving liveness 
for networks of communicating finite state machines. 
This is a significant restriction. For instance, under this 
restriction, there is no need for a general purpose tem- 
poral logic to define the required liveness properties of 
these networks. In fact, we feel tha t  only one property 
needs to be defined and verified for any such network, 
namely that  some state(s) in some machine(s) in the net- 
work will be reached infinitely often during the course 
of communication under some fairness assumption. 
These restrictions and simplifications have led to suf- 
ficient conditions that  can be checked algorithmically 
for any given network, and if established for a network, 
can ensure the liveness of that  network. 

The paper is organized as follows: Networks of com- 
municating finite state machines are defined in Section 
2. The notions of "fairness" and "liveness" are defined 
in terms of "fair communication sequences" in Section 
3. In Section 4, we discuss a sufficient condition that  
can be used to prove node liveness. In Section 5, we ap- 
ply our technique to establish the liveness for a variety 
of solutions to the mutual exclusion problem. Conclud- 
ing remarks are in Section 6. 

All the results in this paper are applicable to net- 
works with any number of communicating machines. 
But for the sake of clarity, we carry most of the discus- 
sion on networks with only two machines. Later in Sec- 
tion 5, we discuss examples with more than two 
machines to illustrate how to apply our results in this 
e ~ e .  

2. N e t w o r k s  o f  C o m m u n i c a t i n g  Fini te  
State  Mach ines  
A communicating finite state machine M is a 

directed labelled graph with two types of edges, namely 
sending and receiving edges. A sending (or receiving) 
edge is labelled -g (or +g, respectively) for some mes- 
sage g in a finite set G of messages. One of the nodes in 
M is identified as its initial node, and each node in M is 
reachable by a directed path from the initial node. For 
convenience, each node in M has at least one outgoing 
edge, and the outgoing edges of the same node must  
have distinct labels. A node in M whose outgoing edges 
are all sending (or all receiving) edges is called a send- 
ing (or receiving, respectively) node; otherwise it is 
called a mired node. 

Let M and N be two communicating finite state 
machines with the same set G of messages; the pair 
(M,N) is called a network of M and N. A state of net- 
work (M,N) is a four-tuple [v,w,x,y], where v and w are 
two nodes in M and N respectively, and x and y are two 
strings over the messages in G. Informally, a state 
[v,w,x,y] means that  the executions of M and N have 
reached nodes v and w respectively, while the input 

channels of M and N have the message strings x and y 
respectively. 

The initial state of network (M,N) is [v0,w0,E,E ] 

where v 0 and w 0 are the initial nodes in M and N 
respectively, and E is the empty string. 

Let s=[v,w,x,y] be a state of network (M,N); and let 
e be an outgoing edge of node v or w. A state s' is said 
to follow s over e iff one of the following four con- 
ditions is satisfied: 

i. e is a sending edge, labelled -g, from v to v' 
in M, and s'-----[v',w,x,y.g], where "." is the 
concatenation operator. 

ii. e is a sending edge, labelled -g, form w to w'  
in N, and s '=[v,w' ,x.g,y].  

iii. e is a receiving edge, labelled +g, from v to 
v' in M, and s '=[v ' ,w,x ' ,y] ,  where x=g .x ' .  

iv. e is a receiving edge, labelled +g, from w to 
w'  in N, and s '=[v,w' ,x ,y ' ] ,  where y = g . y ' .  

Let s and s' be two states of network (M,N), s' fol- 
lows s iff there is a directed edge e in M or N such tha t  
s '  follows s over e. 

Let s and s' be two states of (M,N), s' is reachable 
from s iff s = s '  or there exist states Sl,...,s r such that  

S=Sl ,  s ' = s  r and si+ 1 follows s i for i= l , . . . , r -1 .  

A state s of network (M,N) is said to be reachable iff 
it is reachable from the initial state of (M,N). 

The communication of a network (M,N) is said to be 
bounded iff there exists a nonnegative integer K such 
that  for any reachable state [v,w,x,y] of (M,N), Ixl__K 
and [ y l ~ K  where Ixl is the number of messages in 
string x. If there is no such K, then the communication 
is unbounded. 

In this paper, we characterize the notion of liveness 
for networks of communicating finite state machines. In 
particular, we argue tha t  the liveness of such a network 
should guarantee tha t  "something good" will "occur in- 
finitely often" during the course of communication. 
This is bet ter  explained by an example. 

E x a m p l e  1. C handy  and Misra's  Solut ion to the  
Mutua l  Exc lus ion  P r o b l e m  : 

Consider two user processes that  share a common 
resource and synchronize their activities by exchanging 
messages via two one-directional, unbounded, FIFO 
channels. Occasionally, each user enters its critical sec- 
tion to access the common resource. The problem is to 
devise a synchronization mechanism such tha t  at any in- 
stant,  at most one user is in its critical section. Many 
solutions to this problem appear in the literature. In 
this example, we follow the solution proposed by 
Chandy and Misra in [4] .  (Other solutions to this 
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problem are discussed in Section 5.) 

The solution of Chandy and Mists  [4] is based on the  
following rules: 

i. Initially, exactly one user has the r ight  to its 
critical section. 

ii. If a user has the  r ight  to its critical section, 
then it can enter  its critical section any 
number  of t imes provided t ha t  it frequently 
examines its input  channel  from the  other  
user to check whether  it has a request  mes- 
sage. If it finds a request  message, it sends 
an acknowledgement  message to the  other  
user, thus  giving up the r ight  to the  critical 
section to the  other  user. If it finds no re- 
quest, it keeps the  r ight  to its critical sec- 
tion. 

iii. If a user has no r ight  to its critical section, it 
can send a request  message to the other  user 
asking for it. Then,  when it ~eceives an ack- 
nowledgement,  it has the  r ight  to its critical 
section. 

The  network (U0, UI)  in Figure l a  models the  above 
system, where the  two communicat ing finite s ta te  
machines U 0 and U 1 model the two user processes. 

Machine U i (i----0,1) has the r ight  to its critical section 
iff it is a t  its node 3. This  implies t ha t  a t  the  initial 
s tate of the  network,  machine U 0 has no r ight  to its 
critical sect ion,  and U 1 has the r ight  to its critical sec- 

tion. 

In i t i a l  - N ~  t0 " N ~  t l  

+ N o r q s t  1 + N o r q s t  0 

U o UI 

F i g u r e  l a .  N e t w o r k  (U0,U1) for a so lu t ion  to  

t h e  m u t u a l  exclus ion p r o b l e m .  

The  exchanged messages between U 0 and U 1 have 
the  following meaning: 

Rqst i denotes a request  message sent  by U i. 

Ack i denotes an acknowledgement sent  by U i. 

Norqst i denotes a "vir tual  message" sent by U i to 
indicate tha t  no Rqst i message is sent 

recently by U i. 

The  liveness requirement  of this  network can be 
s ta ted by requiring tha t  bo th  nodes 3 in machines U 0 

and U 1 be "reached infinitely often" dur ing the  course 
of communicat ion.  Unfortunately,  this is not  t rue in 
general. For  instance, if U 0 persists on ignoring the  re- 

quest message Rqst I in its input  channel,  then  U 1 will 
not be able to reach node 3 infinitely often. 

Therefore,  to  ensure t ha t  both  nodes 3 in U 0 and U 1 
will be reached infinitely often, it is impor tan t  to as- 
sume tha t  both  U 0 and U 1 will behave in some fair fash- 
ion. The  notion of fairness for networks of com- 
municat ing finite s tate  machines is discussed in the  next 
section. 

D 

3. Liveness Propert ies  
A communication sequence of a network (M,N) is a, 

possibly infinite, sequence < s 0 , s l , . . . >  of reachable 

s tates  of (M,N) such t ha t  s o is the  initial s tate  of (M,N), 

and si+ 1 follows si, i=0,1, . . .  . If a communicat ion se- 
quence has a s tate  tha t  cannot  be followed by any o ther  
state,  then  the  sequence is finite, otherwise it is infinite. 

A network (M,N) is called safe iff the  following two 
conditions hold: 

i. Each communicat ion sequence of (M,N) is in- 
finite. 

ii. If any communicat ion sequence < s 0 , s l , . . . >  
of (M,N) has a s tate  s i=[v,w,x,y ] such t ha t  
v(w} is a receiving node and x(y) = E ( the 
empty  string), then this sequence must  also 
have a subsequent s ta te  sj-----[v',w',x',y'] 
where x '(y ')  = g, and g is one of the  ex- 
pected messages at  node v(w). 

The  second condition implies t ha t  if a machine 
reaches a receiving node where it mus t  receive some 
message to progress fur ther  then  this  message will ap- 
pear in its input  channel  in a finite t ime, and so the  
machine can progress. Therefore,  a network is safe iff 
each machine can "progress infinitely of ten" .  A net- 
work can be proven safe using the  technique of closed 
covers [9], as discussed later  in Section 4. 

Let (M,N) be a safe network.  A node v in machine 
M is said to accur infinitely often in a communicat ion 
sequence <s0,s l , . . . :>  of (M,N) iff for any integer i there  
exists an integer j such t ha t  j > i  and sj is of the  form 
[v,w,x,y], for some w, x, and y. Similarly, we can define 
t ha t  a node in machine N occurs infinitely often in a 
communicat ion sequence of (M,N)." 
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Let (M,N) be a safe network. An edge e in machine 
M is said to occur in f in i te ly  often in a communication 
sequence < s 0 , s l , . . . >  of (M,N) iff for any integer i there 

exists an integer j such tha t  j > i  and sj+ 1 follows sj 

over e. Similarly, we can define tha t  an edge in N oc- 
curs infinitely often in a communication sequence of 
(M,N). 

Based on the above definitions, we can state that  
something "good" will occur infinitely often in a safe 
network (M,N) by stating that  a node in M or in N 
(identified as being "good" or "useful" by the network 
designer) is guaranteed to occur infinitely often in every 
communication sequence of (M,N). In fact, the node 
needs not to occur infinitely often in every sequence. In 
particular, based on the assumption tha t  both machines 
will progress fairly, the node needs not to occur in any 
sequence where one machine progresses in unfair fash- 
ion. Next we define the fair sequences. 

A communication sequence q of a safe network 
(M,N) is called fa ir  iff the following two conditions are 
satisfied for any node u, in M or N, that  occurs in- 
finitely often in q: 

i. Each outgoing sending edge of u must occur 
infinitely often in q. 

ii. If there is an infinite number of states of the 
form [u,wi,xi,Yi] (or [vi,u,xi,Yi] ) in q where 
message g is the head message in x i (or Yi), 

and if u has an outgoing receiving edge e, 
labelled +g, then edge e must  occur in- 
finitely often in q. 

Informally, a fair sequence is one where each machine is 
forced to execute infinitely often each edge that  it can 
execute infinitely often. The following theorem states 
that  every safe network must  have fair sequences. 

Theorem 1 : Let (M,N) be a safe network. (M,N) 
must have at least one fair sequence. 

P r o o f  : Since (M,N) is safe, (M,N) must  have a com- 
munication sequence q=s0,sl ,s2, . . ,  that  can be con- 
structed as follows: 

a. First,  the initial state s o of (M,N) is added to 
q. 

b. After adding a state s=[v,w,x,y] to q, one of 
the outgoing edges, say e, of v or w should 
be selected for execution; then the state s' 
tha t  follows s over e should be added to q. If 
such an s'  exists, then e is said to be ex- 
ecuted; otherwise, e cannot be executed at 
this time. 

c. To decide which of the outgoing edges 
should be selected for execution, the follow- 
ing priority scheme is adopted. Let k e be 

the number of times an edge e in M or N is 
executed so far along q, on reaching a state 

[v,w,x,y] along q, the outgoing edge e of ¢ or 
w with the  smallest k e is selected for execu- 

tion. If e cannot be executed at this time, 
then the outgoing edge e' of v or w with the 
next smallest k e, is selected, and so on. This 

scheme guarantees tha t  if an edge can be ex- 
ecuted infinite times along q, then it will be 
executed infinite times along q, i.e. q is fair. 

D 

Based on the above definition of fair communication 
sequences, we can now present the definition of node 
iiveness. 

Let (M,N) be a safe network, and let u be a node in 
machine M or N. Node u is said to be live in (M,N) iff 
u occurs infinitely often in every fair sequence of (M,N). 

Other  types of node liveness are discussed in [10], 
and in [5], we show tha t  the problem of "whether  a 
node u is live in a safe network (M,N)" is undecidable in 
general, we also characterize some special classes of net- 
works for which the problem becomes decidable. In the 
current  paper, we are interested in developing tech- 
niques to prove a positive answer for many instances of 
the problem. In other words, we are interested in suf- 
ficient conditions which can be checked easily and 
which, if satisfied by any instance of the problem, 
guarantee that  indeed node u is live in (M,N). 

4 .  P r o v i n g  L i v e n e s s  U s i n g  C l o s e d  C o v e r s  

The technique of closed covers is presented in [9] to 
prove that  a network is safe. One advantage of this 
technique is tha t  it can be used with networks whose 
communications are unbounded. (No other technique 
seems to be successful with such networks.) In this sec- 
tion, we extend this technique to prove node liveness. 
But first, a brief presentation of closed covers is in or- 
der. 

A closed cover C for a network (M,N) is a set of 
states of (M,N) tha t  satisfies the following four con- 
ditions: 

i. The initial state of (M,N) is in C. 

ii. Each directed cycle in the directed graph of 
M or N must have at least one node 
referenced in some state in C. 

iii. The aeyclie verMon AM of M with respect 
to C can be constructed from M by par- 
titioning each node v, which is referenced in 
some state in C, into two nodes: One node, 
called the input version of v, has all the out- 
put  edges of v and no input edges; the other 
node, called the output  version of v, has all 
the input edges of v and no output  edges. 
Similarly, the aryclic version AN of N with 
respect to C can be defined. The third con- 
dition can now be defined in terms of these 
acyclie versions. If the network {AM.AN) 
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s tar ts  a t  a s tate  s 1 in C and if it reaches a 

s tate  s 2 after which no other  s tate  is reach- 

able, then s tate  s 2 must  also be in C. 

iv. The following condition should be satisfied 
for any s tate  [v,w,x,y] in C, and for any two 
paths p and q, in the acyclie versions AM 
and AN, t ha t  s ta r t  with the input  versions 
of v and w respectively, and te rminate  at  the  
ou tpu t  versions of some nodes: Let s i {ri} be 

the  sequence of sent  (received} messages 
along pa th  i, where i-----p,q; then 

either [ {X.Sq-<rp) and (y.sp<rq}], 
or [ not(X.Sq~rp} and not(y .sp~rq)] ,  

where 
" ."  denotes the s tr ing concatenat ion 
operator ,  and 
" -<"  denotes "is a proper  prefix of". 

A proof for the  following theorem is in [9]. 

Theorem 2 : If a network has a closed cover, then  it 
is safe. 

[] 

Example 1 (Continues) : We show tha t  the set C 
----- {[1,3,E,E],[3,1,E,EI} is a closed cover for the  network 

(U0,UI} in Figure la:  

i. First,  the initial s tate  [I,3,E,E] of (Uo,U1) is 
in C. 

ii. Since nodes 1 and 3 in U 0 and U 1 are 
referenced in C, every directed cycle in U 0 

or U 1 has one node referenced in C. 

iii. The acyclic versions AU 0 and AU 1 of U 0 and 
U 1 (respectively} with respect  to C are 
shown in Figure lb.  If the  network 

(AU0,AUI} s tar ts  at  s tate  [1,3,E,E], it must  
end its communicat ion at  [I,3,E,E l or at  
[3,1,E,E]; both are in C. Similarly, if 

(AUo,AUI} s tar ts  at  s tate  [3,1,E,E], it must  
end at ei ther [I,3,E,E] or [3,1,E,E]. 

iv. Each s tate  [v,w,x,y] in C is such t ha t  
x = y = E .  Also, any path  in AU 0 or AU1, 
t ha t  s tar ts  with  the input  version of some 
node and terminates  at  the  ou tpu t  version of 
some node, has exactly the  same number  of 
sending and receiving edges. Therefore,  for 
any two such paths  p and q in AU 0 and AU 1 
respectively, we have 

not{Sq-<rp and not{sp-<rq} 
where 

" -<"  denotes "is a proper  prefix of", and 
si(ri} is the  sequence of messages sent 
(received} along path  i, for i = p , q .  

A U  o 

A U  1 

F i g u r e  l b .  Acycl ic  ve r s ions  A U  0 a n d  A U  1 of U 0 and  

U 1 in F i g u r e  l a  w i t h  r e spec t  to  {[1,3,E,E],  [3,1,E,E]}. 

This completes the  proof t ha t  C is a closed cover of 

(U0,U1), and so (U0,UI} is safe (by Theorem 2). Notice 
t ha t  the  communicat ion of this network is unbounded;  
hence, there  is no other  known systematic technique to 
prove it safe. 

[] 

A closed cover C for a network (M,N) can be 
represented by a directed labelled graph G, called the 
closed cover graph of C, as follows: 

i. Each s tate  s in C is represented as a vertex, 
also labelled s, in G.{Not ice  tha t  the  
"nodes" of G are called "vert ices" to distin- 
guish them from the "nodes" of machines M 
and N. For the same reason, the  directed 
edges in G are called "arcs".} 

ii. Let AM and AN be respectively the  acyclic 
versions of M and N with respect  to C. If 
the network (AM,AN) can reach from state  s 
in C to s tate  s' in C over a finite sequence 

<e0 ,e l , . . . , e r>  of directed edges in M or 
N. (In other  words, there  exists a finite sub- 
sequence <s0 ,S l , . . . ,S r+ l>  of states of 

(AM,AN) such tha t  s = s 0 ,  s ' = S r + l ,  and si+ 1 
follows s i over el, i=0,1, . . . , r .}.)  Then  there  
is a directed arc from the vertex labelled s to 
the  vertex labelled s' in G; this arc is 
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labelled with the set of edges {e0,el,...,er. ) 

iii. No multiple arcs with identical labels are al- 
lowed in G. 

Example 1 (Continues) : Figure lc shows the closed 
cover graph G of the closed cover C--{[I,3,E,E],  
[3,1,E,E]} for network (U0,U1) in Figure la. Notice 

that  each directed edge e in U 0 or U 1 is defined in G by 

a tuple (i, j, k), where i is the source node of e, j is the 
label of e, and k is the destination node of e. Each arc 
in G is labelled {e0,el,...,er}. 

[] 

Ini t ia l  Ve r t ex  

Q.~__.~.13,I,E,E1 ) 

List  of  labels in t he  closed cover  g raph  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

A---- {(1,-Norqst0,1)U0,(3,+Norqst0,3)U1 } 

B--~ {(1,-Rqst0,2)U0,(3,+Rqst0,4)Ul,  

(4 , 'Ack 1 ,1 )u l , (2 ,+Ackl ,3 )u0}  

C--~ { (1 , 'Norqs t  1 ,1)Ul , (3 ,+Norqs t  1,3)U0} 

D = { ( 1 , - R q s t  1 ,2)Ul , (3,+Rqst l ,4)U0,  

(4,-Ack0,1)U0,(2,+Ack0,3)U1 } 

F igu re  lc .  A closed cover  g raph  G for t he  
closed cover  {[I ,3,E,E],  [3,1,E,E]}. 

Let C be a closed cover for a network (M,N), and let 
G be the closed cover graph of C. The vertex in G 
labelled with the initial state of (M,N) is called the in-  
i t ial  ver tez  of G. A vertex (arc or directed cycle) in G 
is called reachable iff there is a directed path from the 
initial vertex of G to this vertex (arc or directed cycle). 
As an example, the vertex [1,3,E,E] in G of Figure lc is 
its initial vertex; also each vertex, arc, and directed 
cycle in this G is reachable. 

Let C be a closed cover for a network (M,N), and let 
G be the closed cover graph of C, also let u be a node in 
M or N, and e be a directed edge in M or N. Node u is 
said to occur in an arc of G iff the finite set that  labels 
the arc contains an ingoing or outgoing edge of node 
u. Edge e is said to occur in an arc of G iff the finite 
set that  labels the arc contains e. Node u or edge e is 
said to occur in a directed path  (or cycle) in G iff it oc- 
curs in at least one arc in the path (or cycle). Node u 
or edge e is said to occur i n f i n i t e l y  o f t en  in an infinite 

path in G iff it occurs in an infinite number of arcs in 
the path.  

In order to state a sufficient condition for liveness, 
we need first to define basic and composite cycles in 
closed cover graphs and to introduce the concept of a 
message being sent in a composite cycle. This is done 
next. 

Let C be a closed cover for a network (M,N), and let 
G be the closed cover graph of C. A reachable directed 
cycle L in G is called basic iff each vertex in G occurs 
at most once in L. Cycle L is called composi te  iff it 
consists of one or more distinct basic cycles. For ex- 
ample, referring to the closed cover graph in Figure lc, 
the self-loop at vertex [1,3,E,E] is basic. Also, the 
directed cycle that  consists of: 

1. the arc from vertex [1,3,E,E] to vertex 
[3,1,E,E], 

2. the self-loop at vertex [3,1,E,E], and 

3. the arc from vertex [3,1,E,E] to vertex 
[1,3,E,E] 

is composite, since it consists of two basic cycles. 

Let C be a closed cover for a network (M,N), and let 
G be the closed cover graph of C, and L be a composite 
cycle in G. A message g is said to be sent  by 2~¢(N) in L 
iff one of the following two conditions holds, 

i. There exists a sending edge labelled -g, in 
M(N), tha t  occurs in L. 

ii. One of the vertices in L is labelled with a 
state [v,w,x,y] where g is in y(x). 

Based on these concepts, we can now state Theorem 
3. 

T h e o r e m  3 : Let (M,N) be a safe network, and let C 
be a closed cover for (M,N) and G be the closed cover 
graph of C. Also let u be a node in M or N. u is live in 
(M,N), if for each reachable directed composite cycle L 
in G, one of the following two conditions holds: 

i. u occurs in L. 

ii. There is a node in M or N, tha t  occurs in L, 
but one of its outgoing sending edges does 
not occur in L. 

P r o o f  : Assume that  each reachable directed com- 
posite cycle in G satisfies either i or ii above, we show 
tha t  u must occur infinitely often in every fair sequence 
of (M,N). Let q be any fair sequence of (M,N}. Since q 
is fair, it corresponds to two infinite directed paths P 
and Q in machines M and N respectively such that  
every node occurrence in P or Q must  also be in q, and 
vice versa. The two paths P and Q correspond to one 
infinite directed path p in G, such that  p starts  with the 
initial vertex in G, and every node occurrence in P or Q 
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must also be in p, and vice versa. It follows tha t  any 
node in M or N occurs infinitely often in path  p iff it 
occurs infni tely often in sequence q. 

Since p is an infinite path in a finite graph G, a 
finite number of basic cycles in C must  occur infinitely 
often in p, let these basic c:,cles be L1, L2, ..., L m. Let 

Lma x be any composite cycle that  consists of LI, L2, ..., 
and Lm; it is straightforward to show tha t  a node (or an 

edge) in M or N occurs in Lma x iff it occurs infinitely 

often in path p (and in ~equence q). 

There are two cases to consider: 

a. u occurs in Lmax, in which ease u occurs in- 
finitely often in sequence q. 

b. u does not occur in Lma x and Lm~ x satisfies 
condition ii. "I here is a node, say v, in M or 
N which occurs in Lmax, but  one of its cut- 

going sending edges does not occur in Lma x. 

Therefme,  v occur,~ infinitely often in q, but 
one of its outgoing sending edges does not 
occur infinitely oRen in q. This contradicts 
the assumption that  q is a fair sequence. 

[] 

E x a m p l e  I ( C o n t i n u e s )  : Let us apply Theorem 3 to 
establish the liveness of nodes 3 in machines U 0 and U 1 

in the network of Figure la. Referring to the closed 
cover graph G of this network in Figure lc, we observe 
the following: 

i. To show that  node 3 i~ U 0 is live in (Uo,U1) 
by Theorem 3, we follow the next steps: 

a. Remove from G all the arcs where 
node 3 in U 0 occurs. 

b. This leaves only the self-loop at vertex 
[1,3,E,E]; it i,J a basic cycle that  
satisfies condition ii in Theorem 3, 
since node 1 in U 0 occurs in this cycle 

but its outgoing sending edge labelled 

-Rqst 0 does not occur in this cycle. 

ii. To show tha t  node 3 in U 1 is live in (U0,U1) 
by Theorem 3, we follow the same steps: 

a Remove from G all arcs where node 3 
in U 1 occurs. 

b. This leaves only the self-loop at vertex 
[3,1,E,E]; it is a basic cycle tha t  
satisfies condition ii in Theorem 3. 

[] 

The closed cover condition in Theorem 3 is ap- 
plicable even if the considered closed cover C for net- 
work (M,N) is infinite, i.e. C contains an infinite num- 
ber of states of (M,N}. However, in this case the closed 
cover must  have a finite representation so that  its 

closed cover graph remains finite as required by the 
proof of Theorem 3. One finite representat ion of an in- 
finite closed cover is as follows: 

C----{[Vl,WI,X1,Y1] . . . . .  [vr,Wr,Xr,Yr] } where 

v i ( i= l , . . . , r )  is a node in machine M, 

w i ( i= l , . . . , r )  is a node in machine N, 

X i ( i= l , . . . , r )  is a (possibly infinite} set of message 
strings, and 

Yi ( i~ l , . . . , r )  is a (possibly infinite} set of messag,- 

strings. 

Each four-tuple [vi,wi,Xi,Yi], called a s tate  schema of 
(M,N}, represents a (possibly infinite) set of states of 
(M,N), each state is of the form [vi,wi,xi,Yi] where x i is a 
string in set X i and Yi is a string in set Yi" In this case, 

each vertex in the corresponding closed cover graph G 
represents one state schema in C. Therefore, G is finite 
(i.e. has r vertices) and Theorem 3 is still applicable. 
(An example is discussed in [10].) 

5.  E x a m p l e s  

In this section, we use our technique to prove the 
liveness of two more solutions for the mutual exclusion 
problem mentioned in Example 1. Both solutions allow 
the user processes to communicate via shared memory. 
There are three objectives of this exercise: The first ob- 
jective is to show how to use communicating finite state 
machines to model and verify systems where com- 
munication is via shared memory. Our second objective 
is to illustrate tha t  our technique is applicable to net- 
works with more than  two machines. The third objec- 
tive is to apply our technique to prove a system tha t  
has been proven earlier by the more general technique 
of temporal  logic [18], thus give the reader an oppor- 
tuni ty  to compare both techniques. 

Example  2. Dijkstra and Knuth's  Solution to 
the Mutual Exclusion Problem: 

The solution of Dijkstra [8] and Knuth  [15] is based 
on the following rules: 

i. A common memory is shared by the two 
users in the system. The shared memory 
contains a "register" whose value at any in- 
s tant  indicates the one user who has the 
right to its critical section at this instant.  

ii. Whenever a user U i ( i~0 ,1)  wants to enter  

its critical section, it checks the shared 
register. If the register indicates tha t  U i has 

the right to its critical section, U i can enter  

r ight away. Otherwise, U i waits until the 
other  user is not trying to enter the critical 
section, then changes the value of the 
register to indicate U i and enters its critical 

section. 

iii. Whenever a user exits from its critical see- 
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tion, it changes the value of the register to 
indicate the other user. (This last rule is 
due to Knuth [15].) 

This system can be modeled as a network (U0,UI,M) 
of three communicating finite state machines (Figure 
2a). Machines U 0 and U 1 model the two user processes, 
and machine M models the process that hosts the shared 
register and contains the information indicating which 
one of the users currently has the right to its cr;tical 
section (figure 2b). 

Figu:e 2a. Network (Uo,UI,M) 

Initial Node 

" N ° r q s t i ~ ~ R q s t  i 

-D°nei ~ ~ + A c k i  

U i (i=0,1) 

J~ +Norqstl  -~ 

+ R q s ~  Rqstl  

+Done 0 +l)one I 

M 

Figure 2b. Machines U i (i~-0,1) and M. 

The exchanged messages in this network have the 
following meaning: 

Rqst i is a message sent by U i to M to indicate 
that U i wants to enter its critical section. 

Norqst i i3 a virtual message sent by tJ i to M to 
indicate that no Rqst i message is sent 
recently by U i. 

Ack i is a message sent by M to U i to indicate 
that U i can enter its critical section. 

Done i is a message sent by U i to M to indicate 
that U i is done with its critical section. 

To prove the liveness of this solution, it is sufficient 
to prove that both nodes 3 of machines U 0 and U 1 are 
live in the network (U0,U1,M). The proof is as follows: 

A state of this network is of the form: 

[v0.vl,w,x0,xl,Y0,Yl] , where 

v i is a node in machine Ui, i=0,1, 
w is a node in machine M, 
x i is the content of the channel from M to Ui, 

i=0,1, and 
Yi is the content of the channel from U i to M, 

i=0,1. 

It is straightforward to check that the following set 
is a closed cover for this network: C={[1,1,1,E,E,E,E]}. 
The closed cover graph G of C is shown h~ Figure 2c, 
where the arc labels are as follows: (Notice C t each arc 
label is a set of machine edges; each edge e is defined as 
(i,j,k)M , where i(k) is the source (destination) node of e, 
j is the label of e, and M is the machine that has e.) 

Initial Vertex 

Figure 2c. A closed cover graph G for the closed cover 
{[1,1,I,E,E,E,E]}. 

A =  {(1,-Norqst0,1)U0,(1,+Norqst0,2) M, 
(l,-Norqst 1,1)U l,(2,+Norqst 1,1 ) M } 

B ~  {( 1,-Norqst0,1)U0,(1,+Norqst0,2)M, 
(1,-Rqst 1,2)U l,(2,+Rqst 1,4) M, 
(4,-hckl,O)M,(2,+hck i ,3)UI, 
(3,-Donel,1)Ul,(6,+Donel,l)M} 

C ~  {(1,-Rqsr0,2)U0,(1,+Rqst0,3)M, 
( 1,-Norqst 1,1)U l,(3,-Ack0,5) M , 
(2,+Ack0,3)U0,(3,-D°ne0,1)U0, 
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(5,+Done0,2)M,(2,+ Norqst 1,1)M} 

D =  {(1,-Rqst0,2)V0,(l ,+Rqst0,3)M , 

(1,-Rqst 1,2)U 1,(3,-Ack0,5)M , 

(2,+Aek0,3)U0,(3,-Done0,1)U0, 
(5,+Done0,2)M,(2,+Rqst 1,4) M, 

(4,-hck 1,6)M,(2,+hck 1,3)U1, 
(3,-Donel , l )Ul,(6,+Donel ,1)M} 

From this closed cover graph, it is s t ra ightforward 
to use Theorem 3 to prove tha t  both  nodes 3 in U 0 and 
U 1 are live. 

The  network described above actually models 
Knuth ' s  solution [15]. To model Oijkstra 's  solution [8], 
the two nodes 1 and 2 in machine M should be merged 
into one node, and all the  edges labelled +(-)Norqst  i 

should be removed from U0, U1, and M. We could not 

construct  a closed cover for the result ing network; 
therefore, we cannot  use Theorem 3 to establish its live- 
uess. For tunately ,  this  network is bounded (i.e. has a 
finite number  of reachable states), and so its liveness 
can be established by examining its finite reachabil i ty 
graph. 

The liveness of our model of Dijkstra 's  solution can 
be dis turbing at first glance, since his solution is known 
to be "non-live".  However, one should remember  t ha t  
the established liveness is based on the assumption t ha t  
M behaves fairly, and so whenever  a user U i sends a 

Rqst i message to M, M must  receive and approve this  
request in a finite time. Indeed, Dijkstra 's  solution is 
live under  this fairness assumption. 

Example 3. Owlckl  and Lamport's Solution to 
the M u t u a l  E x c l u s i o n  P r o b l e m :  

The solution of Owicki and Lampor t  [18] is based on 
the following rules. (These rules favor user U 0 

whenever both  U 0 and U 1 compete for their  critical 
sections.) 

i. Each user U i owns a binary flag F i t ha t  it 
can update,  and the o ther  user can only 
read. Whenever  the value of F i is true, it 

indicates (to the  other  user) tha t  U i wants  to 
enter  its critical section. Initially, the value 
of both flags F 0 and F 1 is false. 

ii. Whenever  U 0 wants to enter  its critical sec- 
tion, it flips its flag F 0 to true, and reads the 

other  flag F 1. If F 1 = false, U 0 ent.ers its 
critical section, and at  the end flips its flag 

F 0 back to false. If F 1 = true, then U 0 
waits and reads F 1 later, and so on. This 

continues, until  U 0 sees tha t  F l ~ false; it 
then enters  its critical section, and at  the 
end flips its flag F 0 to false. 

iii. Whenever  U i wants  to enter  its critical sec- 

tion, it flips its flag F 1 to true and reads F 0. 

If F 0 ~ false, then U 1 enters  its critical sec- 
tion, and at the end flips its flag F 1 to false. 
If F 0 ~--- true, then  U 1 flips its flag F 1 back 
to false and waits for a finite t ime before it 
tries to enter  its critical section again. 

This system can be modeled as a network 

(U0,U1,Po,P1) of four communicat ing finite s ta te  
machines (Figure 3a), where machines U 0 and U 1 
(Figure 3b) model the two user processes, and machines 

P0 and PI  (Figure 3c) model processes tha t  host the two 

flags F 0 and FI,  respectively. The  exchanged messages 
in this network have the following meaning: 

I~10 f ] i P0 ' ~ ~ N ° r q s t  1 

- - ~  A e k l '  N a k l ' ~  

Rqst0 ,  N rqso t 0 ~  F1 ~ F l iP1 ,  N o f l i p l  

F i g u r e  3a. N e t w o r k  (U0, UI ,  P0,  P1)" 

Flip i 

Rqst i 

Noflip i 

Norqst i 

Ack i 

is a message sent  by U i to Pi to change the  

value of the flag F i e i ther  from false to 
to true or from true to false. 

is a message sent by U i to P( i+ l  rood 2) to 
inquire about  the value of the  flag 

F( i+l  mod 2) 

is a vir tual  message sent  by U i to Pi to 
indicate t ha t  no FliPi message is sent  
recently by U i. 

is a vir tual  message sent by U i to 

P( i+l  mod 2) to indicate tha t  no Rqst i 
message is sent recently by U i. 

is a message sent  by P( i+ l  mod 2) to U i 
to indicate tha t  the current  value of the flag 
in P( i+ l  mod 2} is false. 

Nak i is a message sent by P(i+l  mod 2) to U i 
to indicate tha t  the  current  value of the flag 
in P( i+l  mod 2} is true. 

To prove the liveness of this solution to the  mutual  
exclusion problem, it is sufficient to prove tha t  node 6 
in machine U 0 and node 11 in U 1 are both live in the 
network (U0,U1,P0,PI). The  proof is next. 

A state  of this network is of the form: 

[v0,v l,W0,W l,X0,X l,Y00,Y01,Yl0,Yl 1], where 
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Initial Node 

_ f  

-Flip 0 
-Norqst 0 

- R u s t  0 

~ -Nofli Nak o 

"FliP0 

-Norqst. 

I-Ack o 

-Norqst 1 

U o 

-Flip 1 

( ~  "Rqstl 

= ~ N a k  1 

G 
! i 

-FliPl ~ -Rqstl ~ Flipl 

+Nak 1 /-Noflip 1 
+Ack 1 N ~  

rqst 1 

+Ack 1 

U1 

Figure 3b. Machines U 0 and U 1. 

v i is a node in machine Ui, i=0,1, 
w i is a node in machine Pi, i=0,1, 

x i is the content of the channel from P(i+l rood 2) 
to Ui, i=0,1, 

Yij is the content of the channel from U i to Pj, 
i=0,1 and j----0,1. 

Initial Node 

~ ]  +FliPi 

+ F i i  ~ ~ N ~ k i + l  

Pi (i=O,1) 

Figure 3c. Machines P0 and P1. 
(+ is mod 2) 

It is straightforward to check that the following set 
is a closed cover for this network: 

C= {[1,1,1,1,E,E,E,E,E,E], 
[l,11,1,5,E,E,E,E,E,E], 
[6,1,5,1,E,E,E,E,E,E], 
[5,5,5,5,E,E,E,E,E,E], 
[6,8,5,1,E,E,E,E,E,E], 
[1,9,1,1,E,E,E,E,E,E], 
[5,11,5,5,E,E,E,E,E,E] } 

The closed cover graph G of C is shown in Figure 
3d, where the arc labels are as follows: 

A 
Initial ( ~  
Vertex D 
[.~ [ 1 , 1 , 1 , 1 , . . ] k  -"-([5,5,5,5,..]) 

M L 

(I5,11,5,5,..1)~ ~ 11,9,1,1,..1 ) 
[v,w,x,y,..l stands for [v,w,x,y,E,E,E,E,E,EI 

where E is the empty string 

Figure 3d. A closed cover graph G. 
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A =  {(1,-NofliP0,2)U0,(1,+ NofliP0,2)p0, 
(1,-NofliPl,2)Ul,(1,+ NofliPl,2)p 1, 
(2,-Norqsto,1)VO,(2,+Norqst0,1 )p 1, 
(2,-Norqst 1,1 )Ul,(2,+Norqst 1,1)eo} 

B ~  {(1,-NofliP0,2)UO,(1,+ NofliPo,2)po, 
(1,-FliPl,3)Ul,(1,+FliPl,4)pl, 
(2,-Norqsto,1)UO,(4,+Norqsto,5)p 1, 
(3,-Rqst 1,4)Ul,(2,+Rqst 1,3)p0, 
(3,-Ackl,1)po,(4,+iCkl,ll)u1 } 

C~- {(1,-FliP0,3)U0,(1 ,+FliP0,4)p0, 
(l, 'NofliPl,2)Ul,(l,+NofliPl,2)p 1, 
(3,'Rqst0,4)V0,(2,+Rqst0,3)p 1, 
(2,-Norqst 1,1)Ul,(4,+Norqst 1,5)p0, 
(3,'Ack0,1)p 1,(4,+Ack0,O)U0} 

D~-- {(1,-FliP0,3)U0,(1 ,+FliPo,4)p0, 
(l,-FliPl,3)U1, ( l ,+Flipl ,4)Pl,  
(3,-Rqst0,4)V0,(4,+Rqst0,6)p 1, 
(3,-Rqst 1,4)Ul,(4,+Rqst 1,6)eO, 
(6,-Nak0,5)e l,(4,+Nak0,5)U0, 
(6,-Nakl,5)p0,(4,+Nakl,5)U1 } 

E ~  {(1,-NofliPo,2)U0,(1,+ NofliPo,2)po, 
(l 1,-FliPI,12)UI,(5,+FliPl,2)p1, 
(2,-Norqsto,l)u0,(2,+Norqsto,1)el, 
(12,-Norqst 1,1)Ul,(2,+Norqstl,l)e0} 

F-~ {(1,-FliPo,a)U0,(l,+FliPo,4)po, 
{11,-FliPl,12)U1,(5,+FliPl,2)pl, 
(3,-Rqsto,4)U0,(2,+Rqsto,3)e 1, 
(12,-Norqst l , l)ul ,(4,+Norqst 1,5 )e0, 
(3,-Ack0,1)pl,(4,+Ack 0,6)U0} 

G~-- {(6,-FliP0,7)U0,(5,+FliP0,2)p0, 
(1,-NofliPl,2)Ul,( 1,+NofliPl,2)p 1, 
(7,-Norqst0,1)C0,(2,+Norqsto,1)p 1, 
(2,-Norqst 1,I }Cl,(2,+Norqstl,1 )po} 

H-~ {(O,-FliPo,7)U0,(5,+FiiP0,2 }po, 
(1,-FliPl,3)UI,(1,+FliPl,4)p 1, 
(7,-Norqsto,1)U0,(4,+Norqst0,5)pl, 
(3,-Rqst 1,4)Ul,(2,+Rqst 1,3)p0, 
(3,-Ackl,1)p0,(4,+Ackl,11 }U1} 

{(5,-NofliP0,3)U0,(5,+ NofliPo,4)p0, 
(5,-Flip 1,6)UI,(5,+Flip 1,2)pl, 
(3,-Rqsto,4)U0,(2,+Rqsto,3}p 1, 
(6,-Rqst 1,7)Ul,(4,+Rqst 1,6)po, 
(6,-Nakl,5}p0,(7,+ Nakl,8)Ul, 
(3'-Acko,1)P l,(4,+Ack0,6)UO} 

J~- { (6,-FliP0,7)U0,(5,+FliPo,2)po, 
(8,-NofliPl,O)U 1,(1,+Noflip 1,2)P 1, 
(7,-Norqst0,1)U0'(2,+N°rqsto,l)pl' 
(6,-Rqst 1,7)Ul,(2,+Rqst 1,3)po, 

(3,-Aekl,1)p0,(7,+Ackl,9)U1} 

K =  {(1,-NofliP0,2)U0,(1,+NofliP0,2)p0, 
(9,-FllPl,10)UI,(1,+FliPl,4)p1, 
(2,-Norqst0,1)U0,(4,+Norqsto,5)p 1, 
(lO,-Norqst l , l l )ul , (2,+Norqst  1,1)p0 } 

L =  {(1,-FliP0,3)U0,(1,+FliP0,4)p0, 
(9,-FliPl,10)Ul,(1,-I-FliPl,4)p 1, 
(3,-Rqst0,4)U0,( 4,+Rqst0,6)p 1, 
(10,-Norqst 1,11)Ul,(4,+Norqst 1,5)p0, 
(6,-Nak0,5)p 1,(4,+Nak0,5)U0} 

M =  {(5,-NofliP0,3)U0,(5,+NofliP0,4)p0, 
(11,-FIiPl,12)UI,(5,+FliPl,2)p1, 
(3,-Rqst0,4)U0,(2,÷Rqst0,3)p 1, 
(12,-Norqst 1,1 )Wl,(4,+Norqst 1,5)p0, 
(3,-Acko,1)p 1,(4,+Ack0,6)UO}. 

From this closed cover graph, it is straightforward 
to use Theorem 3 to prove that both node 6 in U 0 and 
node 11 in U 1 are live. 

In [18], Owicki and Lamport prove the liveness of U 0 
using temporal reasoning. They also prove the liveness 
of U 1 under the assumption that U 0 remains forever in 
its noncritical section. This assumption is needed be- 
cause in their solution, U 1 can be blocked from entering 
its critical section by a "greedy" U 0 who enters its criti- 
cal section too often. By contrast, in our model, 
whenever a user U 0 (UI) exits from its critical section, 
its flag machine P0 (PI) will wait to receive either a 
Rqst or Norqst message from the other user before wait- 
ing to receive from its user again. Moreover, a user 
that fails to enter its critical section in the first trial will 
keep on sending Rqst messages to the other flag 
machine until it succeeds. This guarantees that a user 
who wants to enter its critical section cannot be blocked 
forever, thus both U 0 and U 1 are live in our model as 
our proof indicates. 

It is possible to change our model slightly to reach 
the same results as those of Owicki and Lamport's. 
Simply add a directed edge, labelled -Norqstl, from 
node 6 to node 1 in machine U I. In this case, node 6 in 
U 0 is still live while node 11 in U 1 is no longer live. To 
show that node 11 in U 1 is not live, one needs only to 
define a fair sequence in which node 11 in U 1 does not 
occur infinitely often; we leave the details to the reader. 

6. Concluding Remarks  
The node liveness discussed in this paper is based on 

the notion of fair sequences. In [10], we identify two 
more types of fair sequences (named "weakly fair" and 
"strongly fair" sequences), and bascd on them we define 
two other degrees of node liveness (named "strongly 
live" and "weakly live", respectively). Also in [10], we 
extend the technique diseusscd in the current paper to 
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prove all three degrees of node liveness. The extended 
technique is used to prove the liveness of some real com- 
munication protocols, and some other solutions 
(including probabilistic ones) to the mutual exclusion 
problem [6]. 
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