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ABSTRACT: This paper describes art application of Byzantine Agreement [DoSt82a, DoSt82c, LyFF82]  
to distributed transaction commit. We replace the second phase of one of the commit algorithms of 
[MoLi83 ] with Byzantine Agreement, providing certain trade-offs and advantages at the time of commit 
and providing speed advantages at the time of recovery from failure. The present work differs from 
that presented in [DoSt82b] by increasing the scope (handing a general tree of processes, and 
multi-cluster transactions) and by providing an explicit set of recovery algorithms. We also provide a 
model for classifying failures that allows comparisons to be made among various proposed distributed 
commit algorithms. The context for our work is the Highly Available Systems project at the IBM San 
Jose Research Laboratory [AAF-KM83 ]. 

INTRODUCTION 

In a distributed data base system, the actions of a transaction (an atomii: unit of consistency and 
recovery) may occur at more than one site. The purpose of a distributed commit algorithm is to insure 
the atomicity of distributed transactions, thereby insuring the consistency of the data bases involved. 
Consequently, a distributed commit algorithm must guarantee that either all or none of the actions of a 
transaction take effect, in spite of site and communication link failures. This guarantee can never be 
absolute (v. [Gray78 ]). Various proposed algorithms [Gray78, HaSh80, Lamp80, LSGGL80, MoLi83, 
Skee81, Skee82] offer the guarantee with varying degrees of reliability and varying efficiency. 

If we consider a distributed system model consisting of processors and communication links, we can 
give a gross measure of the reliability of a given algorithm by stating how many concurrent component 
failures of various types the algorithm can tolerate. We classify failures as failures of omission or 
commission depending on whether some action required by the algorithm was not taken or some action 
not specified by the algorithm was taken. Note that we count the number of component failures 
(processors or links), not the number of instances of failure. We say a commit algorithm tolerates a 
failure ff atomieity of transactions is preserved except, possibly, on failed processors and after detection 
of failure a failed processor can be brought to a consistent state by a recovery algorithm. These 
notions will be made more precise in the next section. A typical distributed commit algorithm tolerates 
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any number of failures of omission but cannot tolerate some single failures of commission (e.g. tel]ing 
some sites to commit the transaction and telling others to abort). 

Efficiency of a distributed commit algorithm may be measured by the number of messages sent, the 
time for completion of the commit processing, the level of parallelism permitted during the commit 
processing, the number of state transitions required, the time required for recovery from failures, the 
number of log records written, and the number of those log records that axe written synchronously to 
stable storage. Here, we distinguish between records that must be forced to stable storage befOre 
processing can continue and records that axe allowed to migrate asynchronously to stable storage. In 
general, these numbers are expressed as a function of the number of sites or processes involved in the 
execution of the distributed transaction. 

With respect to failure resiliency, an important characteristic of commit algorithms is their blocking 
property. A commit algorithm is said to be blocking ff the algorithm requires that a process that had 
consented to committing a transaction wait, after noticing the failure of its coordinator, until it can 
reestablish communication with its coordinator to determine the final outcome (commit or abort)  of the 
commit processing for that transaction. Depending on how fast the coordinator sit.e recovers, this wait 
period could be quite long. During this period the waiting process may hold locks on resources and 
prevent the completion of otherwise independent transactions. Skeen has observed that no non-blocking 
distributed commit algorithm can tolerate a number of failures of omission sufficient to partition the 
network [SkeeS1 ]. 

In this paper, we show how to trade increased message traffic, and (possibly) some delay in committing 
transactions, for improved failure recovery time, reductions in numbers of synchronous writes to stable 
storage, reductions in numbers of required acknowledgements, and removal of the blocking property 
(assuming that network partitioning is impossible). To achieve this, we use new efficient methods for 
guaranteed multicast of a message or Byzantine Agreement.  The goal of Byzantine Agreement algorithms 
is for a set of processors to agree on the contents of a message sent by one of them. Several different 
Byzantine Agreement algorithms have been developed to take advantage of trade-offs that exist between 
requirements on number of participants, number of phases, and number of messages [DFFLS82, 
DoSt82a, DoSt82c, LyFF82] .  The name Byzantine is applied because no assumption is made about the 
behavior of faulty components except to quantify the maximum number of independent failures handled. 
Failures of omission or commission are tolerated up to the maximum number. 

We describe a non-blocking algorithm for distributed commit that tolerates any number of failures of 
omission up to the number required to partition the network, and tolerates a similar number of failures 
of commission that occur sufficiently late in commit processing. We emphasize that we are not 
supplying Byzantine reliability for transaction processing as a whole, but axe only providing Byzantine 
reliability during commit processing. However, we will handle the case in which some processes axe told 
to commit while others are told to abort. Moreover our methods suggest ways in which greater 
Byzantine reliability (greater tolerance for even arbitrary failures of commission) may be provided for 
transaction processing as a whole. 

H I G H L Y  A V A I L A B L E  S Y S T E M S  E N V I R O N M E N T  

In this section we describe the context for our work. 

A loosely connected set of processors intended to provide high availability for dala base subsystems is 
called a cluster. The connectivity and communication bandwidth within a cluster are assumed to be 

high. In the Tandem NonStop TM architecture such a cluster is called a node [BorrS0]. We assume that 
our network is a connected collection of clusters. Some clusters may contain single processors but the 
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typical cluster contains three or more processors. The connectivity and communication bandwidth among 
different clusters are assumed to be low. 

For each distributed transaction, a tree of processes is created to do its work. This multi-level (not just 
two-level) tree-of-processes model of distributed transaction execution is the model adopted by the 
distributed data base systems R* [DSHLM82, HSBDL82, LHMW'Y83 ] and ENCOMPASS [Bert81]. Each 
process may access a different data base. Under normal circumstances a process executes on only one 
processor. More than one process in the tree may be located on the same processor. Initially, only the 
root of this tree, which is called the transaction coordinator process, exists. It is this process which is 
connected to the user at a terminal or an application program executing a transaction. The tree evolves 
as the transaction execution proceeds. The edges represent the superior/subordinate relationship between 
processes. Non-root, non-leaf nodes act as coordinators as well as subordinates, while leaf nodes act 
only as subordinates and the root node acts only as coordinator. Each process knows about and 
communicates directly with only its immediate neighbors (i.e., immediate descendents and ancestor, if 
any) in the tree. 

The cluster that contains the root of the tree of processes is called the root cluster of the transaction. 
All the other clusters spanned by the tree are called non-root clusters. Figure 1 shows an example 
process tree, in which C is the root, and C, B, F and G belong to the root cluster. 

In the Highly Available Systems (HAS) prototype at IBM San Jose Research Laboratory [AAFKM83 ], 
which provides the context for our work, each processor will run one or more data base (DB) 
subsystems, each managing a data base, as well a communication subsystem. A DB subsystem is 
completely responsible for managing its data base. Mirrored copies of the data base files are maintained. 
In case a DB subsystem fails, a backup subsystem in the same cluster is activated to take over the 
responsibilities of the failed system. The backup DB subsystem will also have access to the primary DB 
subsystem's files (including logs). 

We assume that each data base subsystem has a log in stable storage, which is used to recoverably 
record the data base or transaction state changes. We also assume the existence of a facility, 
independent of transaction processing, for reaching Byzantine Agreement. This facility includes, on each 
processor, an agreement log, which contains a history of recent agreements (accessible by their times of 
generation). Old agreements are assumed archived, and recent agreements are assumed to be held in 
virtual storage. The Byzantine Agreement algorithm, as used by our commit protocols, is performed by 
the communication subsystems of all the processors within a cluster; it is not performed between 
clusters. The agreement is not carried out across clusters for two reasons: (1) the inter-cluster 
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Figure 1: Example Process Tree with Root Cluster Processes Identified 
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connectivity is not likely to be high enough to provide good Byzantine reliability, and (2) the cost of 
system-wide agreement may be prohibitively high. When an agreement is reached, appropriate messages 
are delivered by each processor's communication subsystem to a list of mailboxes (local to the 
processor) that were included in the agreement message. The Byzantine reliability (number of 
independent faults tolerated by the modified commit algorithm) will be min(conn-l,card),  where corm is 
the connectivity of the root cluster, and card is the eardinality of the root cluster. 

DISTRIBUTED TRANSACTION COMMIT 

In this section we describe one of the R* commit protocols which we modify with Byzantine 
Agreement in the following section. 

The distributed commit algorithms referenced in the introduction are variations of what has come to be 
known as the two-phase commit algorithm [Gray78, LampS0]. In the latter, during the first (or 
prepare) phase, all the participating processes of the transaction are polled to determine whether they 
are willing to commit the transaction, by the sending of prepare messages, which are answered with 
yes~no vote messages. The poll is initiated by the transaction coordinator process. During the second (or 
commit) phase, a decision based on the votes received is propagated to all the relevant participants, by 
the sending of commit/abort messages, which may be acknowledged by the sending of aclc messages. 

The traditional two-phase commit algorithm has been extended to define two types of commit 
algorithms for R*. They are called Presumed Abort (PA) and Presumed Commit (PC) [MoLi83]. The 
two protocols differ in their message and log overhead costs. Both the algorithms permit individual 
processes of a transaction to unilaterally decide to abort the transaction, provided that the process 
making the abort decision has not already expressed its willingness to commit the transaction. 

If the user decides to abort (respectively commit) the transaction, then the root process receives the 
ABORT TRANSACTION (respectively COMMIT TRANSACTION) command. The root propagates the abort to 
its subordinates. They in turn propagate it to their subordinates, and so on. Abort messages sent under 
these circumstances are not acknowledged. 

If the root receives a COMltffl" TRANSACTION command, it initiates the commit algorithm by sending 
prepare messages to its subordinates. At that time the root can choose which algorithm it wants to 
follow: PA or PC. In both the algorithms, after receiving a prepare, a process forwards the prepare to 
its subordinates, if any. If PC is chosen, a collecting record, which contains the names of the 
immediate subordinates, is forced to s'table storage before the prepare messages are sent. For brevity, 
we will discuss and modify only PA. Application of our techniques to PC is straightforward. What 
follows is a pseudocode description of PA, Local procedure calls, which are synchronous, are 
distinguished from remote requests to perform procedures. Remote requests are made by sending 
messages to the remote processes, and the performance of the requested actions is asynchronous with 
respect to the requestor. 

/* User has requested COMMIT TRANSACTION for transaction T, for 
which C is transaction coordinator */ 

PA: PROCEDURE(T) AT SITE(C); 
BEGIN 

/* Phase 1 */ 
PERFORM PrepareTrans(T) AT SITE(C); /*  same site */ 
w A r r  UNTIL "reply is received "; 
IF "reply is <Vote yes on T > "  

THEN /* Phase 2 */ CALL CommitTrans(T); /* AT SITE(C) */ 
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END PA; 

/* For phase I o f  2-Phase Commit */ 
Prepa reTrans :  PROCEDURE(T) AT SITE(S); 
BEGIN 

IF  "S is not willlng to Commit T"  
THEN okay :-- FALSE 
ELSE BEGIN /* $ is willin 8 to Commit T */ 

okay :-- TRUE; 
FORALL S] IN Subordinates(S) DO 

SEND( <PERFORM PrepareTrans(T) ~>) TO SIt 
WHILE okay AND "some subordinate has not replied " DO 

BEGIN 
WAIT for a reply from some subordinate; 
IF  "reply is <Vote no on T > "  

THEN okay := FALSE; 
END; /*  while *1 

END; /* S is willing to Commit T */ 
IF  okay 

THEN BEGIN /*all subordinates willin 8 to commit */ 
Log( <Prepared T>)  and force record to stable storage; 
REPLY( <Vote yes on T:>); 

END 
ELSE BEGIN 

REPLY( <Vote no on T>) ;  
CALL AbortTrans(T); 

END; 
END Prepa reTrans  ; 

/* For phase 2 o f  2-Phase Commit */ 
CommitTrans:  PROCEDURE(T) AT SITE(S); 
BEGIN 

Log( <Committed T > )  and force record to stable storage; 
IF "S is the transaction coordinator, C" 

THEN Tell User that T was Committed 
ELSE REPLY(<Acknowledgc Commit of T>) ;  

FORALL SI IN Subordinates(S) DO 
SEND( <PERFORM CommitTrans(T) >)  TO SI; 

COMMIT T locally; 
WHILE "some subordinate has not replied " DO 

WAIT for a Commit Acknowledgement from some subordinate; 
Log( <Ended T>) ;  

END CommltTrans ; 

Abor tTrans :  PROCEDURE(T) AT SITE(S); 
BEGIN 

Log( <Abort  T:>); 
FORALL S1 IN Subordinates(S) DO 

IF *'S] d idn ' t  Vote no on T" 
THEN Send( <PERFORM AbortTrans(T) ~)  TO $1; 
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ABORT T locally; 
IF  "S is the coordinator, C" 

THEN Tell User that T was Aborted; 
END Abor tTrans  ; 

More detailed descriptions of the PA and PC protocols, the recovery algorithms and performance 
comparisons can be found in [MoLi83]. The phrase "COMMIT T locally" ("ABORT T locally") means 
"make all updates visible and free locked resources" ("dispense with all updates and free locked 
resources"). The logging of COMMIT or ABORT by the root process must guarantee the associated 
action (both locally and by the subordinates), whether or not there are failures. 

When a subordinate DB subsystem recovers from a failure, it may have some in doubt transactions 
(those for which prepare but no commit or abort records are logged). For each in doubt transaction the 
subordinate must ask its superior (its immediate predecessor in the tree) for the resolution (commit or 
abort). If the superior finds no record of the transaction then it presumes abort in PA. 

MODIFIED C O M M I T  A L G O R I T H M  

In this section, we describe the distributed commit algorithm using Byzantine Agreement (BPA) as a 
modification of PA. It  is also possible to define the (similar) BPC protocol by modifying the presumed 
commit protocol PC. 

We assume that before it initiates BPA the transaction coordinator (C) has coUected information about 
the depth of the tree of processes generated, and consequently has a good upper bound estimate 
(PhaselTime) on the time required to complete the prepare phase. (If this bound is exceeded, then C 
must abort the transaction, and may retry it using a larger bound on the prepare phase.) What follows 
is pseudocode description of BPA. 

/* User has requested COMMIT TRANSACTION for  transaction T, for  which C is 
transaction coordinator. C already has determined PhaselTime. ByzT 
is a bound on the time fo r  performing Byzantine Agreement, which should include an 
allowance for  dock differences and network problems [DoSt82b, LaMe82]. */ 

PA: PROCEDURE(T) AT SYI'E(C); 
BEGIN 

StartPhasel := ClockTime; /*  Time f rom local clock */ 
ExpectEndPhasel := StartPhasel + PhaselTime; 
ExpectEndPhase2 :-- ExpectEndPhasel + ByzT; 
/* Phase 1 */ 
PERFORM PrepareTrans(T,ExpectEndPhase2) AT SITE(C); /*  same site */ 
WAlT UNTIL "reply is received "; 
EndPhasel :-- CloekTime; 
IF  EndPhasel <--ExpectEndPhasel AND 

"reply is <Vote yes on T ~  WITH Mailboxes " 
THEN BEGIN 

APPEND Mailbox(C) TO Mailboxes; 
Log( <Prepared T:>) and force record to stable storage; 
/* Asynchronously attempt Byzantine Agreement for  processors in Cluster(C) */ 
ATTEMPT ByzantineAgree (T,M ailboxes); 
/* Action will be taken at all cluster processors based on whether 

or not agreement is reached before the timer goes o f f  */ 
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SetTimer (Mailbox(C),ExpectEndPhase2) AND WAIT; 
/* Wait until waked by timer popping or by commit in Mailbox 
IF  "waked by t imer"  

THEN CALL AbortTrans(T) /*  at Site (C) */ 
ELSE BEGIN /* waked by commit message in Mailbox(C) */ 

UnSetTimer (M ailbox(C)); 
CALL CommitTrans(T); /*  at Site (C) */ 

END; /* waked by commit */ 
END /* EndPhasel <ffiExpectPhasel AND reply is yes */ 
ELSE CALL AbortTrans(T); /* at Site (C) */ 

END PA; 

*/ 

/* For phase I o f  2-Phase Commit */ 
Prepa reTrans :  PROCEDURE (T,ExpectEndPhase2) AT SITE(S); 
BEGIN 

IF "S is not willing to Commit T"  
THEN okay := FALSE 
ELSE BEGIN /* S is willing to Commit T */ 

okay := TRUE; 
Mailboxes :ffi EmptyList; 
FORALL S] IN Subordinates(S) DO 

SEND( <PERFORM PrepareTrans(T,ExpeetEndPhase2) >)  TO $1; 
WHILE okay AND "some subordinate has not replied " DO 

BEGIN 
WAIT for a reply from some subordinate; 
/* Replies have the form. vote WITH NewMailboxes */ 
IF "vote is <Vote no on T > "  

THEN okay :ffi FALSE 
ELSE APPEND NewMailboxes TO Mailboxes; 

END; /*  while */ 
END; /* S is willing to Commit T */ 

IF okay 
THEN BEGIN 

Log( <Prepared T > )  and force record to stable storage; 
IF "S is in Cluster(C)" 

THEN APPEND Mailbox(S) TO Mailboxes; 
REPLY( <Vote yes on T >  WITH Mailboxes); 
IF  "S is not the coordinator, C" AND "S is in Cluster(C)" 

THEN BEGIN 
SetThner (Mailbox(S),ExpectEndPhase2) AND WAIT; 
/* Wait until waked by timer popping or by commit in Mailbox 
IF "waked by t imer"  

THEN CALL AbortTrans(T) /* at Site (S) */ 
ELSE BEGIN /* waked by commit message in Mailbox(S) 

UnSetTimcr(Mailbox(S)); 
CALL CommitTrans(T); /*  at Site (S) */ 

END; /* waked by commit */ 
END; /* S is in root duster and is not the coordinator */ 

END /* i f  okay */ 
ELSE BEGIN 

REPLY( <Vote no on T >  W1TH EmptyList); 
CALL AbortTrans(T); 

*/ 

*/ 

95 



END; 
END PrepareTrans  ; 

/* On each PROCESSOR in Cluster(C), i f  the Byzantine Agreement succeeds, the 
Communications Subsystem on that Processor should perform the following procedure */ 

ByzSueeeed- PROCEDU RE (T,M ailboxes) AT PROCESSOR(P); 
BEGIN 

LOG( <Committed T > )  IN BYZANTINE LOG; 
FORALL S RUNNING ON P SUCH THAT Mailbox(S) IS IN Mailboxes DO 

POST(<Commit T ~ )  TO Mailbox(S); /* wakes S */ 
END ByzSuceeed ; 

/* For phase 2 o f  2-Phase Commit */ 
CommitTrans: PROCEDURE(T) AT SITE(S); 
BEGIN 

IF "S is the coordinator, C I' OR "S is not in Cluster(C)" 
THEN DO 

Log( <Committed T>)  and force record to stable storage; 
IF "S is the coordinator, C" 

THEN Tell User that T was Committed 
ELSE REPLY(<Acknowiedge Commit of T>) ;  

END; 
IF "S is in Cluster(C)" AND "S has some subordinate NOT IN Cluster(C)" 

THEN Log( <Committed T>)  and force record to stable storage; 
FORALL S1 IN Subordinates(S) AND NOT IN Cluster(C) DO 

SEND( <PERFORM CommitTrans(T) >) TO $1; 
COMMIT T locally; 
WHILE "some subordinate NOT IN Cluster(C) has not replied" DO 

WAIT for a Commit Acknowledgement from such a subordinate; 
Log( <Ended T>) ;  

END CommltTrans ; 

AbortTrans:  PROCEDURE(T) AT SYI'E(S); 
BEGIN 

Log(<Abort T>) ;  
FORALL SI IN Subordinates(S) AND NOT IN Cluster(C) DO 

IF "$1 d idn ' t  Vote no on T" 
THEN Send( <PERFORM AbortTrans(T) >) TO S1; 

ABORT T locally; 
IF "S is the coordinator, C" 

THEN Tell User that T was Aborted; 
END AbortTrans  ; 

Phase 1 (PrepareTrans) in BPA differs from PA in two ways. One difference is that every process 
forwards, with the Perform PrepareTrans message, the time (supplied by C) by which the first phase is 
to terminate. The other difference involves mailboxes for the processes that are in C's cluster, the root 
cluster. A process that votes yes should append to its vote message a list of all mailbox ids that it 
received with the yes votes of its subordinates, and should append a mailbox id of its own if it is in 
the root cluster. (In the example of Figure 1, assuming that all processes vote yes, B will forward 
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along with its yes vote the id of its mailbox and that of F's.) Each process that is in the root cluster 
waits to receive (in the mailbox whose id it appended) an agreement to commit, setting a timer 
allowing enough time for one Byzantine Agreement after the upper bound on termination of phase 1. 
If the commit agreement is received before the timer expires, then the process commits immediately. If 
the timer expires, then the process aborts instead. 

During phase 1 of BPA, processes outside the root cluster behave just as they do in PA, except that 
they must forward mailbox iris. (In the example of Figure 1 A will forward the id of G's mailbox.) 
Outside the root cluster, BPA is blocking, since processes do not set timers. (In the example of Figure 
1 D, E and A do not set timers.) Thus a process that has voted yes may wait indefinitely to be told 
by its superior whether to commit or abort the transaction. (In a system that has back-ups for database 
systems, such as the HAS prototype, a process must wait until a back-up for its superior is activated.) 
However inside the root cluster, processes stay in the prepared state at most until the timeout, so BPA 
is not blocking inside the root cluster. 

At the end of the phase 1 of BPA, the transaction coordinator C decides whether or not to commit 
the transaction. C decides to commit only if all its subordinates voted yes. If C decides to abort, it 
aborts the transaction locally, but sends no messages to subordinates in the root cluster; these processes 
will abort the transaction when their timers expire. If C decides to commit, it behaves like a 
subordinate in PA, writing a prepared record and forcing it to stable storage. (The prepared record is 
for the purpose of recovery.) C also appends a mailbox id to the list of root cluster mailbox ids 
received from subordinates. It then generates a Byzantine Agreement on the commit message (among all 
the processors in the root cluster, not just those that participated in the transaction) and waits on its 
mailbox. The mailbox iris are sent as part of that commit message, but are not used until the commit 
point is reached. The eommlt point is the point at which Byzantine Agreement is reached; C should 
force a commit record to its log when it is informed by a message in its mailbox that agreement has 
been reached. When a processor where one of the mailboxes is located reaches the commit point, it 
posts a commit agreement message to that mailbox (or to those mailboxes, since more than one may be 
on a single processor). 

If a root cluster process S receives the commit agreement before its timer expires, then it commits the 
transaction locally, performing updates and dropping locks. Only if S has any subordinates that are not 
in the root cluster must it write (and force) a commit record to the log. In that case, S must also 
complete processing as in phase 2 of PA for those subordinates. 

If a root cluster process times out before receiving the commit agreement, then it acts as if it had 
been told to abort the transaction. The transaction coordinator C may timeout just like any other 
process. A process that times out needs to send abort messages only to its subordinates in non-root 
clusters. 

R E C O V E R Y  

This section briefly discusses some of the techniques for cluster and processor recovery in a system 
using BPA. 

CLUSTER RECOVERY 

Ousters are not supposed to crash. If a cluster crashes we call this event a catastrophe. The details of 
cluster recovery are beyond the scope of this paper. However, we can sketch the required operations 
by treating a cluster like a single processor: the data bases managed by a cluster must be recovered 
from checkpoints and the logs of all processors in the cluster must be examined to obtain a consistent 
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state assignment for each transaction. If any processor has logged a transaction as committed, then all 
must agree to that assignment. 

PROCESSOR RECOVERY 

When a member processor of a cluster recovers from a crash or from a cluster partition in which it 
was not in the majority partition, it copies the agreement logs of t processors and takes the union of 
their successful agreements to form its agreement log. (Here t is the Byzantine reliability.) If t 
processors are not available, then all available processors in the cluster are used. Only processors that 
can communicate with a majority of the processors in the cluster are allowed to perform distributed 
actions. When a processor finds itself in a non-majority partition it suspends all distributed actions until 
it becomes part of a majority partition, at which time it undergoes Processor Recovery. 

PROCESS RECOVERY 

When a DB subsystem recovers, it finds the results of agreements pertaining to transactions in the 
prepared state before failure in the agreement log in virtual storage on the processor on which it now 
resides. Neither log read operations nor sending of messages to other processors is required to resolve 
these in doubt transactions. (Such operations would be required in the ease of PA.) This speeds the 
recovery procedure for the DB subsystem, and allows it to resume operations quickly. Operations 
resumed include informing subordinates of the remits of commit processing, as required by PA, if the 
subordinates are outside the cluster. 

F A I L U R E  C L A S S I F I C A T I O N  

In order to be able to compare the reliability characteristics of different commit protocols, in this 
section we introduce a model of failure classification. 

Our classification of failures and our notions of degrees of reliability are defined with respect to a 
fixed decomposition of the distributed system into components. These components are treated as black 
boxes that either do or do not meet a predetermined set of input/output specifications. For example, 
we may decompose a distributed system into a set of processors, terminals, disks, and unidirectional 
communication links. Alternatively, we could view all the processors and all the communications links 
as one component and specify the actions (terminal and disk reads and writes) that this component is 
to perform given the behavior of the other components. An event (say the loss of a message between 
processors) may be an error (failure to meet specifications) with respect to the former decomposition 
without causing any error with respect to the latter. In this case, we say the event is tolerated with 
respect to the latter decomposition. 

More formally, we postulate a model in which each component has a set [E of possible input events, a 
disjoint set OE of possible output events, and a correctness specification providing a relation between 
inputs and outputs so that any subset of the total set of events (the union of IE with OE) may be 
classified as correct or in error. We emphasize here that we arc discussing classification not detection 
of errors. 

If some collection of events C is in error but there exists a set of output events D such that the 
union of C with D is correct, then we say that C is an error of omission. Otherwise, we say that C 
is an error of commission. 
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It is straightforward to add time explicitly rather than implicitly and talk about partial orderings instead 
of sets of events. The important point is that the notions of omission, commission, and toleration can 
be made precise relative to any decompositions for which the notion of error can be made precise. 

For the remainder of the paper, we use the two decompositions described in the first paragraph of this 
section. We sketch these decompositions informally, but we assert that the notions presented can be 
made rigorous. The errors with which we are concerned for the first decomposition correspond to 
failure to meet our algorithmic specifications in the case of processors, and failure to faithfully deliver 
input messages in order in the case of communication links. However, the notion of error in the 
second decomposition is not the straightforward one involving consistency of the data bases. Instead, it 
is based on a combination of this straightforward notion with the notion of error defined for the first 
decomposition. Consider a particular duration of time such as the time to complete commit processing 
using one of our algorithms. We say that a terminal or disk is inviolate if it was not written to by or 
via any component in error (with respect to the first decomposition). We say that the processing 
component is correct during this period with respect to the second decomposition if it does not 
introduce any data base inconsistency to inviolate components. Thus we say that an algorithm tolerates  
an error with respect to the first (finer) decomposition if no error with respect to the second 
decomposition is introduced because inviolate components remain consistent. Of course, we also wish to 
require of our algorithms that transactions involving inviolate components make progress toward a 
successful commit; otherwise, we could achieve absolute reliability by always aborting transactions. This 
completes our somewhat philosophical sketch of the basis on which we compare the reliability of 
algorithms. 

For definiteness, let the duration with respect to which we define "inviolate" be the duration during 
which a specific transaction is processed (including any recovery processing on failed processors). We 
assume that any error is eventually detected and corrected so that database inconsistencies introduced to 
a terminal or disk by a local error are removed or repaired. We assume that log errors are repaired 
and the database is brought to a state consistent with the log using PA or BPA recovery algorithms for 
in doubt transactions. With these assumptions we can strengthen our notion of toleration of error: no 
inconsistency is introduced among inviolate components and eventually all components are brought to 
consistency by recovery processing if necessary. 

It should be clear that errors of omission are much less dangerous than errors of commission. In fact 
standard two phase commit algorithms are designed to handle errors of omission but not commission. 
One way to restrict the set of errors that must be tolerated to those of omission only is to implement 
failstop processing [Schn83 ]. Failstop components can be implemented so that as long as the number of 
errors of any kind within each component stays below a fixed bound (cf. Byzantine reliability), the 
components stop after any internal error. Here the errors of omission possible are of a very restricted 
variety. It may be possible to implement components that never have errors of commission but allow 
more general errors of omission and are not so expensively redundant as failstop components. 

S A F E T Y  C O M P A R I S O N  

In this section we make the very strong assumption that the only way for a distributed database to 
become inconsistent is for some component to commit a transaction that is aborted by another. Thus 
we ignore any error that might, for example, have a transaction seen by the wrong sites. We are 
interested only in the safety of distributed commit processing, and assume the absolute safety of all 
other aspects of distributed transaction processing. 

Theorem 1. The set PA of commit and recovery algorithms tolerates any number of failures of 
omission. 
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Outline of Proof: Suppose otherwise, that as a result of some number of failures of omission and no 
errors of commission, a database inconsistency is introduced to inviolate or recovered components. 
Without loss of generality, we may assume that the results of a single transaction T are recorded as 
committed at one component and as aborted at another. We may further assume that these components 
are written to by two separate processes p and q: say p correctly aborts and q correctly commits T. In 
PA process p may abort T only if (1) p has voted No on T, (2) p received "Perform AbortTrans(T)" 
from its immediate predecessor, (3) p is the coordinator for T and it sends "Perform AbortTrans(T)" 
to each of its subordinates that did not vote No on T, or (4) p recovered with T in doubt and its 
immediate predessor had no record of T. An analysis of each case under the assumption of no errors 
of commission shows that the coordinator for T cannot have sent "Perform CommitTrans(T)", so when 
q committed T it was an error of commission, contradicting our assumption. O.  

Theorem 2. Within a cluster, the set BPA of commit and recovery algorithms tolerates any number of 
errors of any kind up to the Byzantine reliability of the Byzantine Agreement algorithms it calls. 

Outline of Proof: As above we assume otherwise, that process p correctly aborts and process q 
correctly commits T. In BPA, q may commit T only if (1) q receives a successful Byzantine 
Agreement to commit T or (2) q recovers with T in doubt and finds a successful Byzantine Agreement 
to commit T in the agreement log. It is a property of the Byzantine Agreement algorithms that if a 
successful Byzantine Agreement appears in any processor's log, then it appears in every correct 
processor's log, provided no more than t errors have occurred (where t is the Byzantine reliability). 
Thus if p is correct or correctly recovers, p must have a successful Byzantine Agreement to commit T 
in its agreement log. Moreover, this agreement must have been received before the time that p's timer 
would have wakened it if p had been operating correctly. Thus p cannot have correctly aborted T, 
contradicting our assumption, l-3. 

D I S C U S S I O N  

When the root cluster is viewed as a single highly available processor, our modified commit algorithm 
BPA has the same rcliability as the algorithm we modify: it tolerates any number of failures of 
omission and cannot tolerate certain single errors of commission. In fact the message traffic outside the 
root cluster is unaltered, as arc most of the other measures of efficiency previously discussed. From this 
external point of view our improvement is in recovery time for systems within the root cluster, and 
consequently in the length of time resources must be held locked because PA is blocking. 

Transactions entireiy within the root cluster have the advantage that BPA is non-blocking, in addition 
to the recovery time advantage. Moreover, BPA tolerates as many errors of commission during its 
commit phase (i.e., the second phase) as the Byzantinc Agreement algorithm on which it depends, since 
the commit phase consists of a specific period of waiting for a Byzantine Agreement to commit. 
However, BPA cannot tolerate omission failures sufficient to partition the cluster. 

To compare the advantages and disadvantages of BPA and PA, we consider a committing transaction 
spanning a single cluster. First, let us examine the no failure scenario. BPA saves us the writing of the 
commit .record (which is forced in the case of PA) and sending of commit acknowledgement messages 
by all the non-root processes. Furthermore, no commit messages are sent by the non-leaf processes. 
Against these advantages, BPA has the following disadvantages. The messages sent during the process of 
attaining the Byzantine Agreement do not have any counterparts in PA. These messages c o n t r i b u t e n o t  
only network traffic, but also work load (handling of messages and writing the Byzantine Agreement 
log record) at all the processors in the cluster. Depending on its position in the transaction tree, a 
given process may get to know about the decision to commit after a longer time in BPA than in PA, 
so locks may be held longer in BPA. BPA requires the (force) writing of a prepared record by the 
transaction coordinator process. No such record is written by that process in PA. 
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Now let us consider the failure scenario. If a superior process fails after one of its subordinates had 
voted yes, then in PA (running with back-ups, as in the HAS prototype) the subordinate has to wait 
until the superior is brought up in a backup processor to find out the commit decision. Compared to 
this, in BPA the failure of any processor in the cluster could increase the time it takes for a process 
to find out the commit decision. It is quite difficult to compare these delays. On the other hand, if a 
particular process crashes while in the prepared state, then when that process is brought up in the 
backup processor with PA, it has to communicate with its superior process to find out the commit 
decision. But with BPA, it need only examine the local Byzantine Agreement log to find out the 
commit decision. In this case, BPA is better than PA. But, BPA also imposes the requirement that 
whenever a processor is brought up after a crash, time must be spent in getting an up-to-date version 
of the Byzantine Agreement log before the processor can start hosting data base subsystems. 

When PA is used, and we consider only the commit protocol operation nothing special needs to be 
done ff network partitioning occurs. On the other hand, when using BPA, network partitioning must be 
detected and dealt with as described in the section on recovery. 

It is beyond the scope of this paper to provide Byzantine reliability to the entire environment of 
distributed transaction processing. However, we can suggest modifications, at the cost of additional 
waiting time between receipt of the Byzantine Agreement to commit and the actual commit point, that 
will tolerate failures of commission during either phase of commit processing. Assuming the existence of 
an authentication protocol as used in efficient algorithms for Byzantine Agreement [DoSt82c], we 
require that all messages during the prepare phase be signed with unforgeable signatures and stamped 
with an unalterable time stamp. The coordinator must include in the commit message all the signed 
votes of the participants. If any participant detects a discrepancy between the prepare phase message it 
received and the copy included in the a~'eement to commit, it transmits this discrepancy to all 
participants via a second Byzantine Agreement. Finally, each participant waits for a time sufficient for 
two Byzantine Agreements after the time stamped on the Byzantine Agreement to commit. If no 
refutation has been received by this time, it then commits the transaction. 

BPA assumes that abort messages received in the root cluster are ignored. We can improve the time to 
abort by allowing abort messages (signed as above) and using them in Byzantine Agreements of 
refutation as above. 

Note that both modifications only require extra messages in case of a failure of commission, but they 
do require extra waiting time before the transaction can be committed even when there are no failures. 
Thus they s t~ represent performance improvements over the algorithm presented in [DoSt82b] where 
Byzantine Agreement is used for both phases of commit processing. 

In this paper, we have provided a new kind of trade-off in reliability and efficiency of distributed 
commit algorithms. Our algorithm is particularly suited to the environment of highly available clusters of 
processors. It provides a speed of data base system recovery that facilitates cutover from an ailing 
primary system to a backup system within the cluster, maintaining in many cases the image of a system 
that has had no failure, even in spite of multiple concurrent failures of omission and commission. 
While PA and PC have been implemented in R*, our modified protocols have not been implemented. 
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