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This paper introduces a reflective extension of the relational algebra.
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programs as relations and by adding a LISP-like evaluation operation to
the algebra. We first show that this extension, which we call the reflec-
tive algebra, can serve as a unifying formalization of various forms of
procedural data management which have been considered in database
systems research. We then study the expressive power and complexity
of the reflective algebra. In particular, we establish a close corre-
spondence between reflection and bounded looping, and between tail-
recursive reflection and unbounded looping. These correspondences
yield new logical characterizations of PTIME and PSPACE. ] 1996
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1. INTRODUCTION

The concept of reflection was introduced by Smith
[23, 24] to study programs that need to analyze, and poten-
tially modify, their own behavior. Reflection has since
received attention in different areas of computer science. In
programming languages, it has been used as a tool in the
study of interpreters [3, 16, 18, 33], the design of extensible
programming languages [13], and polymorphism [26]. In
A.I., reflection has been used to study programs that must
explain their own reasoning strategy [4, 15]. In databases,
Stemple et al. [25] applied reflection in the dynamic crea-
tion of data types in database programming languages.

A very rough definition of reflection is that programs can
be treated as data and vice versa. The meta-programming
facilities of languages like LISP provide a simple and good

example. In LISP, both programs and data are represented
in a uniform format, namely lists. It is thus possible to build
representations of LISP programs by using the quote func-
tion and list constructors. Programs represented as data in
this form can then be executed dynamically by explicit
application of LISP's evaluation operator eval. (In the
literature, the process of constructing data representations
of programs is often called reification, and only the process
of evaluating these representations is then called reflection.)

Of course, the idea of reflection is as old as the concept of
computation, dating back to the universal Turing machine,
universal recursive functions, and the von Neumann
architecture. For example, it is straightforward to write an
interpreter for Pascal programs in Pascal. Indeed, adding
reflective features to a computationally complete program-
ming language will not enhance its expressive power; the
features are typically only meant to allow for a more natural
or succinct expression of certain advanced programming
constructions. This is no longer true, however, if we work
with languages that are not computationally complete. In
this paper, we will study reflective programming in the
context of the relational algebra. Viewing the relational
algebra as a programming language to express database
queries, this language is certainly not computationally
complete (in fact, it is contained in LOGSPACE [32]).
Well-known examples of computable queries not express-
ible in the relational algebra are parity checking and
transitive closure computation.

Our motivation for this study stems from the increasing
attention that is being paid to procedural data management
in database systems. To our knowledge, Stonebraker et al.
[27, 28] were the first to investigate the treatment
of programs as data in the field of databases. Taking an
informal point of view, they argued that a wide range of
applications can benefit from procedural data. Then there is
the current interest in so-called active databases [21, 22],
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dealing with procedural data in the form of rules which can be
stored together with the ordinary data in the database (e.g.,
[29]). Also in object-oriented database systems [34], proce-
dural data in the form of methods play a central role.
Moreover, note that even current commercial relational data-
base systems maintain various data dictionary relations con-
taining meta-information like relation names or view defini-
tions. To date, most of the discussion on the management of
mete data, and more importantly procedural data, in
database systems has been held on an informal level, and only
few theoretical models are available. F-Logic, for instance,
unifies data and mete data [14]. Ross [19] introduced an
algebra for first-order logic with higher order syntax (HiLog
[7]), extending the relational algebra with a modest form of
reflection to deal with relations containing relation names.

As already mentioned, our purpose in the present paper
is to define an extension of the relational algebra with a
general reflection mechanism and to study its properties.
Our extension is based on a format for storing relational
algebra programs in relations introduced by Saxton, et al.
[20]. In analogy with LISP, reflective capabilities can thus
be added to the relational algebra simply by providing an
evaluation operator which executes its argument relation
containing a program. Importantly, relations containing
programs can be created and manipulated in just the same
way as relations containing ordinary data. In particular,
program relations can be constructed by means of relational
algebra computations taking ordinary relations as input.

The further contents of this paper can be summarized as
follows. In Section 2, we introduce our model for reflective
programming in the relational algebra. In Section 3, we
show that this model can serve as a unifying formalization
of the various forms of procedural and mete data manage-
ment in database systems mentioned earlier.

In Section 4, we turn to expressiveness and complexity
issues. Since reflection treats programs as data, the notion of
expression complexity [32] is very relevant in this context.
We also study the power of reflection when used purely as
a language construct for expressing conventional queries.
Since reflection makes it possible to specify programs, the
structure or length of which can depend on the input
database, the reflective algebra will turn out to be more
expressive than the ordinary relational algebra. Specifically,
we show that adding basic reflection is in a sense equivalent
to adding bounded looping, and that adding tail-recursive
reflection is equivalent to adding unbounded looping. These
correspondences yield new logical characterizations of
PTIME and PSPACE.

2. EXTENDING THE RELATIONAL ALGEBRA
WITH REFLECTION

In this section, we define a query language based on the
relational algebra, and show how programs in this language

can be stored in relations. We then introduce the reflective
eval operation.

We will use the following version of the relational
database model. Assume disjoint, countably infinite sets of
attributes and relation names. A relation scheme is a set of
attributes. A database scheme S is a finite set of relation
names in which each relation name R has an associated
relation scheme sch(R).

We further assume that each attribute A has an
associated domain, dom(A), of data elements. Given a
relation scheme {, a tuple over { is a mapping t on the
attributes in { such that, for each A # {, t(A) # dom(A).
A relation over { is a finite set of tuples over {. Finally,
given a database scheme S, a database instance over S is a
mapping I on S such that for each R # S, I(R) is a relation
over sch(R).

Remark 2.1. 1. We assume that a total order is known
on the universe U of all data elements. The results of this
paper rely heavily on this assumption.

2. We also assume that there is a fixed total order on the
universe of attributes (this order will always be clear from
the context). Combining this assumption with the previous
one, it follows that there is a natural lexicographical order-
ing on the tuples of every relation.

3. Finally, we assume that the universe of attributes
includes infinitely many natural number attributes whose
domain is the set of natural numbers, and that the natural
ordering of the natural numbers is compatible with the total
order on U.

Following [5], we view the relational algebra as a
programming language, denoted A, as follows. Programs in
A are sequences of assignment statements. Each assignment
statement has the form ``X :=E '', where X is a variable and
E is a term. Each variable X has an associated relation
scheme sch(X ), and can take relations over sch(X ) as
values. Each term is one of the following:

v a relation name is a term;

v a constant one-attribute one-tuple relation, of the
form (A : a) where A is an attribute and a # dom(A), is a
term;

v a variable is a term;

v if X, X1 , X2 are variables, then the following are terms:

X1 _ X2 (union);

X1&X2 (difference);

X1 � X2 (natural join);

?̂A(X ) (projecting out attribute A);

_A=B(X ) (equality selection);

_A<B(X ) (less-than selection); and

\A�A$(X ) (renaming of A to A$).
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(1) X1 :=R; (6) X6 :=X4 � X5;

(2) X2 :=(P : Fred); (7) X7 :=?̂C $(X6);

(3) X3 :=X1 � X2; (8) X3 :=X3 _ X7;

(4) X4 :=\C�C $(X3); (9) X8 :=?̂P(X3).

(5) X5 :=\P|C $(X1);

FIG. 1. Program of Example 2.2.

We assume familiarity with the usual operators of the rela-
tional algebra (cf. [30]); the only unusual one here is ?̂.
Indeed, we define projection ?̂A as projecting out the
attribute A; formally, if r is a relation over scheme {. then
?̂A(r) equals ?{&[A](r) where ? is the classical projection
operator of the relational algebra. While ? has a variable
number of attribute parameters, ?̂ has exactly one. This will
make it easier in Subsection 2.1 to reify A-programs.
Obviously, ? can be defined in terms of ?̂.

Now given an A-program P, let S be the set of all rela-
tion names occurring in P. Then P can be applied to any
database instance I over S. The relation names take their
values from I, the variables are initialized to the empty
relation, and the assignment statements are executed in
order. The final result of the program is, by default, the
value of the variable occurring on the left-hand side of the
last assignment statement. Since relation names and
variables are typed (by their associated relation schemes),
programs should be type-checked, but we will ignore this in
this discussion.

Example 2.2. Consider a database containing a parent-
child relation R over scheme [P, C]. The program shown in
Fig. 1 computes, in variable X8 , the set of all children and
grandchildren of Fred. The statements are numbered for
easy reference.

2.1. Reification of Relational Algebra Programs

In LISP, reflective programming is facilitated by the
uniform format in which both programs and data are
represented, namely lists. LISP has the reflective eval
operator which takes a list constituting a program (we say
that the program is reified ) as argument and executes it. If
we define a format in which programs can be stored as rela-
tions we can define an analogous reflective operation for the
relational algebra. We next show how this is possible,
following [20].

Example 2.3. The program shown in Fig 1 can be
stored in a relation over the attributes [sno, var, op, att-1,
att-2, arg-1, arg-2, rel, const], as shown in Fig. 2. There is a
tuple for each statement, containing, where applicable, the
assigned-to variable var, the algebra operator op, the
possible attribute parameter(s) att-1, att-2 of the operator,
and the argument(s) arg-1, arg-2. Note how statements 1
and 2, which have no operator, have their own encoding

sno var op att-1 att-2 arg-1 arg-2 rel const

1 X1 R
2 X2 P Fred
3 X3 � X1 X2

4 X4 \ C C $ X3

5 X5 \ P C $ X1

6 X6 � X4 X5

7 X7 ?̂ C $ X6

8 X3 _ X3 X7

9 X8 ?̂ P X3

FIG. 2. Program of Fig. 1 stored in a relation.

format. Non-applicable entries are filled with a blank (or
some other fixed data element). Finally, every statement has
a statement number sno, a natural number. K

We call the relation scheme [sno, var, op, att-1, att-2,
arg-1, arg-2, rel, const] the program scheme. Using the
format illustrated in Example 2.3, every A-program can be
stored in a relation over the program scheme; such relations
are called program relations. The domains of the program-
scheme attributes are as follows.

v sno is a natural number attribute, i.e., dom(sno) is the
set of natural numbers;

v dom(op) equals [_, &, � , ?̂, \, _= , _<];

v dom(att-1) and dom(att-2) equal the set of attributes;

v dom(var), dom(arg-1), and dom(arg-2) equal the set
of variables;

v dom(rel ) is the set of relation names; and

v dom(const) is the set of all data elements.

To be entirely correct, the blank symbol should be added
to all of these domains.

Remark 2.4. 1. Variables, operator symbols, attri-
butes, relation names, and the blank symbol are called
lexical symbols. Note that the above implies that we
consider each lexical symbol to be contained in the universe
of data elements.

2. In a program relation, statements need not be
numbered consecutively. It suffices that the attribute sno
is a key for the relation. The first statement is then the
statement with the smallest number, and for each statement
in the sequence (except the last), the next statement is the
statement with the smallest higher number.

Program relations could be given in the database, but
they can also be constructed using A-programs. A very
simple case of the latter is given by the following easy but
important lemma:

Lemma 2.5. For every program relation r there exists an
A-program that computes r.

Proof. The program P assembles r from constant rela-
tions using union and join. The constant relations hold the
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different symbols used in r. For example, for the program
relation of Fig. 2, we will have (sno : 1), (var : X1), (op : �),
etc. K

Programs used to construct program relations are called
meta-programs. Of course, meta-programs of the basic type
considered in Lemma 2.5 are not sufficient, as only constant
program relations can be constructed in this way. Indeed,
one of the key potentials of reflection seems to be that
programs can be specified whose structure or length is not
determined a priori, but rather depends on the actual
database instance to which the meta-program is applied.
In order to be able to exploit this potential, we need at
least be able to generate sets of new statement numbers.
A practically convenient approach to accomplish this is to
use an invention mechanism similar to the one used in
update languages [2] and object-oriented query languages
[1, 11]. In our algebraic context, we define this mechanism
as an additional algebra operator on relations as follows:

Definition 2.6. Let { be a relation scheme, and let N be
a natural number attribute not in {. Let r be a relation over
{. Then numberN(r) is a relation over [N] _ { obtained by
extending the tuples of r with a new attribute N, such that
each tuple is numbered with a new natural number, in
increasing order according to the lexicographical ordering
of the tuples in the relation.

We can extend the programming language A by allowing
terms of the form ``numberN (X )'' with X a variable.

Example 2.7. Recall the motivation for introducing the
numbering operator, given before Definition 2.6. Assume
the database scheme contains a relation name R with unary
relation scheme sch(R)=[A]. The following program
shows how, starting from a constant (k) a priori given state-
ment numbers, k } n new ones can be generated, where n
is the size of relation R in the database instance. In this
example, k=2.

X1 :=(sno : 1);

X2 :=X1 _ (sno : 2);

X3 :=R � X2 ;

X4 :=numberN (X3).

The result of this program applied to a particular R relation
is shown in Fig. 3.

N A sno

11 a 1
12 a 2

R=

A
a
b
c

X4= 13 b 1
14 b 2
15 c 1
16 c 2

FIG. 3. Illustration of identifier-generating program from Example 2.7.

2.2. Reflection in the Relational Algebra

We are now ready to extend the language A with a
LISP-like evaluation operator (and the numbering operator
of the previous subsection), yielding the reflective relational
algebra, denoted RA.

Definition 2.8. A term of RA is either

1. a term of A;

2. an expression of the form numberN (X ), with W a
variable; or

3. an expression of the form eval(X ), with X a variable
over the program scheme.

The semantics of the number operator was already defined
in Definition 2.6. The semantics of a term eval(X ) is as
follows. If X holds a program relation representing an
A-program P. then eval(X ) executes P and evaluates to P's
final result. If X does not hold a syntactically correct
program, then eval(X ) yields the empty relation by default.

3. APPLICATIONS

In this section, we discuss the applicability of the reflec-
tive algebra, and situate it within related work. In
particular, we demonstrate, mostly by way of examples, that
the reflective algebra leads to an improved exploitation
of a data dictionary as well as to a uniform treatment
of procedural data. As will be seen, this has additional
implications, including the possibility to simulate the
algebra introduced in [19].

3.1. Using Data Dictionaries

Recall that a program relation is built up using lexical
data elements that make up the program the relation
contains. Two particular kinds of lexical symbols are
relation names and attribute names. These symbols are not
only useful for program relations; they can also be used to
describe the database scheme. In fact, relational database
systems typically store a description of every database
scheme they handle in a relation called the data dictionary.
Using the reflective algebra, we can better exploit the
presence of such a dictionary.

Consider the data dictionary shown in Fig. 4 (left). Now
consider the query ``What is known about John?'' As
answer to this query, we want all triples (rel : R, att : A,
val : v), such that the R relation contains a tuple t in which
``John'' appears, and t(A)=v. An illustration is given in
Fig. 4 (right). For every fixed database scheme, this query
can be expressed in the relational algebra as

.
R, A, A$

(rel : R) � (att : A) � \A�val ?A_A$=John (R)
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rel att rel att val

Persons name Persons name John
Persons age Persons age 24
Children parent Children parent John
Children child Children child Steve
Hobbies person Children child Iris
Hobbies hobby Hobbies person John

Hobbies hobby ping-pong
Hobbies hobby math

FIG. 4. (left) Example of a data dictionary. (Right) All that is known
about John in a database over this dictionary. (John's age is 24, he has
children Steve and Iris, etc.)

where R is a relation name of the scheme and A, A$ are (not
necessarily distinct) attributes in sch(R). We can easily
implement this expression with an A-program, but of
course the program (like the expression) will depend on the
database scheme.

However, in the reflective algebra, we can write one single
program that will work for any database scheme. The idea
is to write a meta-program that implements the above
expression only at run time, by accessing the data diction-
ary. The program thus constructed can then be executed
using eval. The result, but no longer the query itself, will still
depend on the scheme (and the contents) of the database
under consideration.

Roughly, the meta-program constructs the program
according to the following procedure. First, using
the dictionary, all triples of the form (R, A, A$), where
both A and A$ are attributes of R. are generated by
a straightforward A program. Next, auxiliary program
relation variables for the necessary selections and projec-
tions are constructed, which are then joined appropriately
with the previously derived triples, in order to turn the
triples into algebra statements. Finally, the auxiliary
program relations are united, and the number operator is
applied to the result in order to obtain a proper statement
sequencing.

Another aspect to be mentioned in connection with
dictionaries, which represents another application area for
the reflective algebra, is query optimization. Assume that
P is a program relation whose contents represents the
relational algebra query ``_A=a(R � S )'' In A, this query is
written as follows:1

X1 :=R; X2 :=S;

X3 :=X1 � X2 ; X4 :=_A=a(X3);

If A is an attribute of R, but not of S, query optimization
would suggest rewriting the given query as ``_A=a(R) � S '',
which is represented by the following program:

X1 :=R; X2 :=S;

X3 :=_A=a(X1); X4 :=X3 � X2 ;

Besides a renumbering of some of the variables occurring in
this program, the latter basically results from the former by
an exchange of two statements. Hence, it is possible to write
an expression in the reflective algebra which detects, by an
inspection of a given program relation and the dictionary,
whether query optimization is possible and, if so, modifies
P such that this program relation finally contains the
optimized expression.

3.2. Simulation of Ross's Algebra

Recently, Ross [19] proposed a model and an algebra
supporting databases where not only the data dictionary,
but also other relations, can contain relation names. Ross's
algebra extends the relational algebra with an expansion
operator called :. Slightly adapted to the present context,
this operator takes a relation scheme { as parameter and a
unary relation U as argument, and replaces every relation
name R with sch(R)={ appearing in U by its associated
relation.

We illustrate this operator using a simple example.
Assume relation U has scheme [rel ] and contains
[R, S, T ], where R and S are relation names with scheme
[A, B] and T is a relation name having another scheme. Let
R and S have the following contents:

R: A B

a b
b c

S: A B

b c
d e

Then :A, B(U ) would produce a relation with the following
contents:

R
R
S
S

a
b
b
d

b
c
c
e

Using a similar technique as described in the previous
subsection, we can express the : operator in the reflective
algebra; we now indicate how to do this using the above
example. First, we select from the data dictionary those
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relation names in U that have scheme [A, B], which is
easily expressed in relational algebra. Let the result be
[R1 , ..., Rk]. Then, a relation is constructed containing the
following statements for each Ri :

X :=Ri ; Y=(rel : Ri); Z :=Y � X.

Finally, using the number operator, the different groups
of statements are linked together by newly generated
statement numbers, yielding a program which when
evaluated using eval will simulate :A, B(U ).

As a further implication of the above exposition, the
following can be noted: Relational database systems
commonly also store view definitions in a specific relation
of the data dictionary. Rather than (relation name, attribute
name) pairs, this relation contains (view name, view defini-
tion) pairs. Since relational algebra can be used as a tool for
defining views, view definitions are often (equivalent to) A
programs. Hence, in our model, we store them not in the
dictionary itself, but in program relations that have the
same name as the view name. For example, suppose we have
a program relation named john-hobbies whose content is a
program to retrieve John's hobbies from relation Hobbies,
and assume that john-hobbies appears in the dictionary.
Construct a program relation P holding the statement
``X1 :=john-hobbies''. Then

X1 :=eval(P );

yields the contents of john-hobbies, and

X2 :=eval(X1);

computes the view.
It follows that we can translate an ordinary program

which uses views to an RA program that looks up the
definition of each view only at run time.

3.3. Procedural Data

Analogous to the way Ross's model and algebra
generalize the notion of a dictionary, procedural data
generalizes the idea of storing view definitions in relations.
Storing programs as data has been investigated earlier by
Stonebraker et al. [27, 28]. In a practical context, they
proposed a system, called QUEL+, allowing QUEL
programs to be stored as strings in tuple components and
executed dynamically. QUEL+ can easily be formalized in
the reflective algebra, as will be described next.

Recall the Persons-Hobbies database from Subsec-
tion 3.1. In QUEL+, we could add an attribute hobbies
to the Persons relation, containing a QUEL program
retrieving all hobbies of a specific person. A typical tuple in

this extended Persons relation would be (name: John,
age: 24, hobbies: Q), where Q is the QUEL query

retrieve Hobbies.hobby where person=param-1.

To find all age-hobby pairs, we can then use the following
QUEL+ query:

retrieve (Persons.age, Persons.hobbies with name)

The with operator binds the parameter of the executed
queries.

To model the above example, we store Q in a program
relation which we also call Q. The selection ``person=
param-1'' is expressed using a join with a constant holding,
initially, the literal symbol ``param-1''. Thus, program
relation Q will encode the following program:

X0 :=Hobbies;

X1 :=( person : param-1);

X2 :=X0 � X1 ;

X3 :=X3 _ X2

This program has to be executed repeatedly, once for each
value of the parameter. Hence the union at the end, which
collects the results of all executions (X3 is initially empty).

The QUEL+ query is expressed by constructing, for each
person in the Persons relation, a copy of Q where param-1
is replaced by the person's name (and to which a join with
the person's age is attached, which is not included below).
Finally, using number generation, the programs thus
obtained are concatenated and the resulting concatenation
is executed. Formally (for clarity of presentation, some
operators have been composed)

X4 :=?̂age(Person);

X5 :=X4 � Q;

X6 :=_const=param-1 (X5);

X7 :=_name=name$ (\name�name$ (X6) � X4);

X8 :=\name$�const ?̂const (X7);

X9 :=(X5&X6) _ X8 ;

X10 :=numberN (X9);

X11 :=\N�sno ?̂sno ?̂name(X10);

eval(X11).

Note that it is important that the application of the number
operator correctly groups together the statements of each
program copy in the concatenation. Thereto, recall that
statement numbers are generated in accordance with the
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lexicographical ordering of the tuples in X9 . For the opera-
tion to work correctly, it suffices that in this lexicographical
ordering, the name attribute (coming from X4) is considered
as the first component of each tuple, and the sno attribute
(coming from Q) as the second.

In this simple example, every Person tuple contains the
same QUEL query Q. This need not be the case in general.
Different queries can be stored in different tuples by the
name of their program relation. Instead of joining each per-
son with the same program Q as above, one then uses the :
operator of the previous subsection to look up the
appropriate program for each person. The formal details are
tedious but straightforward.

Stonebraker et al. argued that by using procedural data
unnormalized (nested) relations and complex objects can be
represented. For example, the procedural field hobbies can
be alternatively viewed as a nested relation.2 However, the
manipulative aspect of this representation has not yet been
considered. For example, one could think of the above-dis-
cussed QUEL+ program as unnesting the hobbies field. For
more complex operations, however, a simple execution of
stored procedures is not always sufficient, and one needs the
ability to construct new procedures. As stressed from the
outset, the reflective algebra supports such constructions.
As a simple example, the nesting &[B](R) of a relation R over
the scheme [A, B] can be constructed as the program
relation containing the relational algebra expression
?B(R � (A : param-1)).

We finally mention that the reflective algebra allows one
not only to store procedural data like ordinary data, but
also the possibility of querying procedural data. For example,
a query like ``Which programs in the database depend
on relation R?'' can be answered by inspecting a program
relation. One application of this feature is the area of active
databases (cf. the Introduction), which commonly support
rules of the form ``if condition then action,'' since both the
condition and the action can be modeled as programs in the
database.

3.4. Manipulation of Methods in OODBS

In object-oriented database systems, objects have not
only data attributes but also procedural attributes, called
methods. Just like the view dictionary discussed in Sec-
tion 3.1, it would be interesting if these methods could be
stored in the database itself. If the methods are implemented
using the relational algebra (e.g., [10]), we can again store
them in program relations.

The reflective algebra can now be used to model applica-
tions that require the construction of derived method
implementations from existing ones. For example, consider
an OODB application where different persons can have
different implementations of the hobbies method, due to

overriding. Each person tuple contains the name of the
program relation containing its method implementation.
Suppose we now want to define a view consisting of all
married couples, having a method hobbies which returns the
union of the hobbies of the husband and those of the wife.
To do this, we need to construct for each couple a new
program that computes the union of the results of two other
programs. This construction can also be carried out in the
reflective algebra.

4. EXPRESSIVENESS AND COMPLEXITY

In Sections 2 and 3, we used value invention (the number
operator) as a practically convenient tool to generate
natural numbers as statement numbers in run-time created
program relations. However, there is an alternative
approach which avoids the introduction of new data
elements (up to a constant number), and which is more
amenable to theoretical study, allowing sharper expres-
siveness and complexity results. The main idea behind
this approach is to better exploit the order assumption on
data elements (cf. Remark 2.1). This idea is worked out in
Subsection 4.1.

To formally study the expressiveness and complexity
of RA and some of its variations, we need to introduce
additional query languages and review the notions of the
data and expression complexity of a query language. This is
done in Subsection 4.2.

In Subsection 4.3, we then establish various expressive-
ness and complexity results about RA. In this analysis, it
will prove useful to distinguish between eval's interpretative
power and its implicit looping semantics.

Finally, in Subsection 4.4, we extend RA in turn by
allowing eval statements to occur in program relations. The
resulting language will be called the recursive reflective
algebra, denoted R2A We establish various expressiveness
and complexity results about this language.

4.1. Reflection without Object Creation

Consider an instance I over scheme S. Define the active
domain of I, denoted adom(I ), to be the set of data elements
occurring in I (this unary relation can be derived via
a program in A). Without loss of generality, we assume
that adom(I ) has at least two elements. (Indeed, we can
always write an A program that uses constant terms to
meet this requirement.) Because data elements are totally
ordered (cf. Remark 2.1), it is natural to think of adom(I )
as representing the initial segment 1, ..., |adom(I )| of the
(positive) natural numbers. We can therefore use data
elements in adom(I ) in the role of sno values. To reify
A programs of length greater than |adom(I )|, the join
operation can be used to represent larger numbers
than |adom(I )|. For example, assuming that adom(I ) is
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defined over the relation scheme [A], the statement
X :=adom � \A�A$ (adom) will generate a set of pairs which
can be interpreted as representing the initial segment
1, ..., |adom(I )| 2. Additional joins are required to represent
larger numbers.

Another remark related to the issue of statement numbers
is that any relation r, because it is also ordered, can be
thought of as representing the initial segment 1, ..., |r|. This
remark will become relevant in the proof of Theorem 4.9.

The previous discussion gives two strategies to exploit the
order on data elements as a means to represent natural
numbers which, in turn, can be used as statement numbers
in program relations. However, it is also clear that, under
these strategies, we can no longer maintain the notion of a
single program scheme as in Section 2.1; in fact, there now
are infinitely many variable-sized program schemes:

Definition 4.1. A program scheme is a relation scheme
[sno1 , ..., snok , var, op, att-1, att-2, arg-1, arg-2, rel, const],
for some k�1. The domains of var, op, att-1, ..., const are as
in Section 2.1; however, sno1 , ..., snok are no longer required
to be natural number attributes.

We can without difficulty adapt the definition of the eval
operation to this setting. The only difference is that the
sequencing of statements in program relations is secured by
natural numbers represented as series of sno-attributes
values (as just explained above), instead of as single
sno-attribute natural number values (as used in Section 2.1).

Henceforth, we will no longer consider the number
operator as part of the language RA. Indeed, we have
just shown that its use for reification purposes can be
circumvented. It should be pointed out, however, that
``value-invention'' operations like the number operator
also have other important uses, e.g., in obtaining computa-
tionally complete query languages and in object-oriented
query languages [1, 2, 11]. We will not consider these
aspects in the present paper.

4.2. Query Languages and Complexity

Two relational query languages will play a key role in our
further analysis of the expressiveness and complexity
of reflection: BA, the relational algebra extended with
bounded looping, and WA, the relational algebra extended
with unbounded looping [5].

Formally, BA extends A with a for construct, as follows.

Definition 4.2. Let P be an A program, and let X be
a variable. Then ``for |X | do P od'' is an allowed statement
in BA. Its semantics is that P is repeated n times, where n
is the cardinality of the value of X upon entry of the loop.3

Example 4.3. Recall from Example 2.2 the program P
computing the children and grandchildren of Fred. We can
adapt this program to compute all descendants of Fred, by
surrounding the main body of the program with a for-loop
as follows: (statement numbers refer to statements of P)

1; 2; 3;
for |X1 | do

4; 5; 6; 7; 8
od;

9

Formally, WA extends A with a while construct, as
follows.

Definition 4.4. Let P be an A program, and let X
be a variable. Then ``while X{< do P od'' is an allowed
statement in WA. Its semantics is that P is repeated as long
as the value of X is not the empty relation (which might be
indefinitely).4

Example 4.5. The BA program in Example 4.3 can be
easily adapted to a WA program as follows:

X0 :=R; 1; 2; 3;
while X0{< do

4; 5; 6; 7; 8; X0 :=X3&X0

od;
9

We also need to review the notions of data and expression
complexity of queries and query languages [32].

Definition 4.6. Let S be a database scheme and {
a relation scheme. A query of type S � { is a function Q,
mapping instances over S to relations over {, such that
adom(Q(I ))�adom(I ) for each I.

A query Q is said to be in some complexity class C if
the set [(I, t) | I an instance, t # Q(I )] is in C. The query
is called complete for C if the set is complete for C.
A query language L is said to have data complexity in C if
every query expressible in L is in C. If one of the queries
is complete for C then the data complexity is said to be
complete for C.

There is also another measure of complexity of a query
language, which is based on the size of the programs rather
than on the size of the data. A query language L is said to
have expression complexity in C if for every database
instance I, the set [(Q, t) | Q a query in L defined on
I, t # Q(I )] is in C. If one of these sets is complete for C then
the expression complexity of L is said to be complete for C.
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3 Note that loop-body P must be an A program and cannot be BA

program in turn. On ordered databases, nesting of for-loops does not yield
more expressive power, but whether the same holds on unordered
databases is, to our knowledge, an open problem.

4 It is known [2] that nesting of while-loops does not increase the
expressive power.
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To appreciate the difference between data complexity
and expression complexity, we recall the following result of
Vardi [32], which we will also need later on:

Lemma 4.7. The data complexity of A is in LOG-
SPACE. The expression complexity of A is PSPACE-
complete.

It is easy to see that the data complexities of BA and
WA are in PTIME and PSPACE, respectively. Actually,
also the converse holds:

Lemma 4.8. 1. Every PTIME query is expressible in
BA.

2. Every PSPACE query is expressible in WA.

Proof. 1. It is easy to see that every fixpoint query
[12] is expressible in BA. Also, it is well-known [12, 32]
that every PTIME query is a fixpoint query on ordered
databases. Since in this paper, we work with ordered
databases, this result applies to our context.

2. This is well-known [32]. K

4.3. Reflection and Bounded Looping

As a first illustration of the expressiveness of reflection as
a query language construct, we show that bounded looping
can be simulated by run-time program construction and
execution:

Theorem 4.9. The BA statement for |X| do P od can be
simulated in RA.

Proof. First, using Lemma 2.5, we construct in variable
X0 a program relation for P. Next, we perform the following
statements: (we assume that the scheme of X is [A1 , ..., Ak])

X1 :=\A1�sno1
(X );

X2 :=\A2�sno2
(X1);

b

Xk :=\Ak�snok (Xk&1);

Xk+1 :=\sno1 �snok+1
(X0);

Xk+2 :=Xk � Xk+1;

result :=eval(Xk+2);

The first k statements simply rename the attributes
A1 , ..., Ak into sno1 , ..., snok , respectively. The contents of
Xk is therefore a copy of X (but with renamed attributes). As
discussed in Subsection 4.1, the order assumption allows us
to interpret Xk as representing the initial segment of the
natural numbers 1, ..., |X |.

The (k+1)th statement renames the statement number
attribute sno in X0 to snok+1.

In the (k+2) th statement, Xk+2 is assigned the cartesian
product of Xk and Xk+1. The scheme of Xk+2 is the
program scheme [sno1 , ..., snok , snok+1 , var, op, att-1, att-2,
arg-1, arg-2, rel, const], and the contents of Xk+2

corresponds to an A program representing the |X |-fold
composition of P.

Hence, applying the eval operator to Xk+2 yields the
same result as running the original for loop. K

Lemma 4.8 and Theorem 4.9 imply:

Corollary 4.10. Every PTIME query is expressible
in RA.

The converse of Corollary 4.10, i.e., the possibility that
the data complexity of RA is in PTIME, is highly
implausible. Indeed, we have:

Proposition 4.11. The data complexity of RA is
PSPACE-hard.

Proof. It suffices to make the following observation:

The data complexity of RA is at least the expression
complexity of A.

Indeed, the expression complexity of A is defined in terms
of the sets [(Q, t) | t # Q(I )] for each database instance I.
Each such set corresponds to the query in RA which takes
as input a program relation Q and returns as output the
result of Q applied to I (using the eval operator). Since the
expression complexity of A is PSPACE-complete (cf.
Lemma 4.7) the proposition follows. K

Informally, the expression complexity of some query
language L is the complexity of an interpreter for L (in the
sense of programming languages). From the preceding
discussion it follows that it is implausible that one can write
an interpreter for A in BA.5

As just observed, the intractability of the eval(X )
operator stems from the fact that X can hold completely
arbitrary A-programs. In particular, we have no a priori
knowledge about the relation variables and attribute names
used in the program relations to be evaluated. It is therefore
natural to consider the situation wherein we do have this
knowledge. We can make this formal as follows.

Definition 4.12. An RA program P is called lexically
constrained if there exists a finite set C of lexical symbols
(cf. Remark 2.4), such that all lexical symbols occurring in
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program relations to which eval is applied during any
possible execution of P are elements of C.

Example 4.13. The simulation of the QUEL+
program shown in Section 3.3 is lexically constrained (since
only a single QUEL query Q is used). On the other hand,
suppose R is a relation in the database whose scheme
is a program scheme. Then the program X1 :=R; X2 :=
eval(X1) is not lexically constrained.

Note that the proof of Theorem 4.9 remains valid under
the lexically constrained program assumption, provided the
appropriate set of lexical constants is chosen. Note also that
the assumption does not prevent that the structure or length
of the constructed programs can depend on the contents
of the stored relations. We can now prove the following
converse to Theorem 4.9:

Theorem 4.14. If P is a lexically-constrained RA
program, then P can be simulated in BA.

Proof. Let X2 :=eval(X1) be an eval statement occur-
ring in P. First, we need to check that X1 indeed contains an
A program. If so, since P is lexically constrained by some
finite set C, all lexical symbols occurring in X1 belong to C.
Therefore, the number of possibilities for the (sub)-tuples of
X1 defined over the attributes var, op, att-1, att-2, arg-1,
arg-2, rel, and const is finite, whence the syntax check can be
performed in A following a tedious but straightforward
procedure.

The evaluation of X1 is now simulated using a for state-
ment, which repeatedly takes the next statement from X1

and executes it after inspection by a constant number of
if-then-else tests. More specifically, the loop has the follow-
ing structure:

X :=X1 ;
for |X| do

�* put in S the first statement remaining in X *�
�* we assume that S has k sno-attributes *�
S :=[t # X | c_t$ # X : t$(sno1 , ..., snok)<t(sno1 , ...,

snok)];
X :=X&S;
�* let S=[t] *�
if t(var)=`Yi ' then

if t(op)=` � ' then
if t(arg-1)=`Yj ' then

if t(arg-2)=`Yk ' then
Yi :=Yj � Yk

else . . .
else . . .

else . . .
else . . .

od

The comparison t$(sno1 , ..., snok)<t(sno1 , ..., snok) in
the relational calculus formula is with respect to the
lexicographical order and can be expressed as a Boolean
combination of atomic comparisons of the form
t$(snoi)<t(snoi). The tuple relational calculus formula
and the if-then-else tests are only shorthands and can be
translated into A [30].

The only remaining technical detail is to indicate how,
inside the above for loop, statements involving constant
relations, i.e., of the form ``Y :=(A : a)'' are handled.
Thereto, the following subprogram is used:

if t(var)=`Y ' then
if t(att-1)=`A' then

Constant :=[t(const)];
Y :=\const�A (Constant)

else . . .
else . . . K

As a corollary to Lemma 4.8 and Theorems 4.9 and 4.14,
we obtain:

Corollary 4.15. The class of lexically-constrained
RA programs coincides with the class of PTIME queries.

A drawback of the concept of lexically constrained
programs is that it is semantic rather than syntactic:

Proposition 4.16. The problem whether a given RA
program is lexically constrained is undecidable.

Proof. We reduce the equivalence problem for A
programs, well-known to be undecidable, to the lexically
constrainedness problem for RA programs. Let P1 and P2

be two A programs working on an input relation R. We
assume, without loss of generality, that P1 and P2 use
different variables. Let the result variable of Pi be Xi ,
for i=1, 2. Let X be another variable, and let P be an A
meta-program which constructs in a program relation
variable Z the program consisting of all possible statements
of the form Y :=l, where Y is some fixed variable and l
is a data element occurring in the value of X. Then the
following RA program is lexically constrained iff P1 and P2

are equivalent:

P1; P2 ;
if X1=X2 then X :=<
else X :=R;
P;
eval(Z ).

Indeed, assume P1 and P2 do not yield the same result on
some input relation R. Then they will not yield the same
result on an infinite number of other input relations R$
isomorphic to R. Some of these relations R$ will consist
exclusively of lexical symbols such as relation variables.
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Hence, the application eval(Z) is not lexically constrained.
The converse implication is trivial. K

However, we can avoid this problem by considering a
(decidable !) restriction on the databases, rather than on the
programs. We define:

Definition 4.17. Let C be a finite set of lexical symbols.
A database instance I is called C-lexical-free if all lexical
symbols (cf. Remark 2.4) appearing as data elements in one
of the relations of I are among C.

Since lexical symbols are only useful to store program
relations, lexical-free databases can be thought of as
databases in which the possible procedural or meta-data
are ``static''. In particular, <-lexical-free databases are
``ordinary'' databases which do not contain any procedural
data. By considering RA as a query language working on
lexical-free databases only, we can study reflection purely as
a language mechanism for expressing standard, classical
queries.

We observe:

Proposition 4.18. For any finite set C of lexical
symbols, RA expresses precisely the PTIME queries on
C-lexical-free databases.

Proof. When restricting attention to C-lexical-free
databases only, every RA program is automatically
lexically constrained, since it can only introduce a constant
number of extra lexical symbols through its constant
relations. Hence, the arguments developed in the proofs
of Theorems 4.9 and 4.14 remain valid when considering
lexical-free databases rather than lexically constrained
programs. K

4.4. Recursive Reflection and Unbounded Looping

The type of reflection allowed in RA is non-recursive.
More specifically, up to now, the eval operator is only
defined to work on (program relations containing)
A-programs, not RA-programs in turn. In this section, we
drop this restriction, allowing eval to interpret programs
containing eval-statements. We will call the resulting
language the recursive reflective algebra, denoted R2A.

Strictly speaking, the syntax of RA and R2A can be
the same. Their difference would result from associating
different semantics to the eval operator. However, for
clarity, it will be advantagous to syntacticaly differentiate
between RA and R2A. This leads us to the following
definition of the recursive eval operator reval.

Definition 4.19. A term of R2A is either a term
of RA, or an expression of the form ``reval(X )'', where X
is a variable such that sch(X ) is a program scheme. The
semantics of the recursive evaluation operator is the
following. If r is a program relation containing an A
program, then reval(r) has the same effect as eval(r). If r is

a program relation containing an RA program P then
reval(r) executes P and evaluates to P's final result. And
similarly, if r is a program relation containing an R2A
program P then reval(r) (recursively) executes P and
evaluates to P's final result. Finally, if r does not contain a
syntactically correct R2A program then reval(r) yields the
empty relation by default.

Remark 4.20. The notion of lexically-constrained RA
program can be extended to R2A in a straightforward way.

We will show that the expressive power of R2A is closely
related to that of WA. This relationship will allow us to
derive results about the data complexity of R2A.

Theorem 4.21. The WA statement while X{< do P
od can be simulated by a lexically constrained program in
R2A.

Proof. Let WP be a program relation containing the
following R2A program:

P;

CallP$ :=reval(P$)

Furthermore, let P$ be a program relation containing the
following R2A program:

Xtest :=X � WP ;

WP :=?̂{(X )(Xtest);

CallP :=reval(WP)

The second statement is an abbreviation for a sequence of
statements which project out, one by one, the attributes of
{(X ).

If X{< at the start of an execution of the program
stored in P$, then the contents of WP after the second
statement will be identical to the contents of WP at the start.
In that case, the third statement executes P (once) and
subsequently reevaluates the program stored in P$. (Note
that X can be side-effected by the execution of the program
P.)

If X=< at the start of the program, however, then the
contents of WP will be erased. As a consequence, the third
statement will have no effect.

Hence, the R2A program:

Initialize(WP);

Initialize(P$);

Xwhile :=reval(P$).

correctly simulates the while-loop statement while X{< do
P od. The initializations of WP and P$ can be done by
lexically constrained RA programs. K

547REFLECTIVE PROGRAMMING IN THE RELATIONAL ALGEBRA



File: 571J 140712 . By:CV . Date:11:07:96 . Time:13:31 LOP8M. V8.0. Page 01:01
Codes: 6529 Signs: 5289 . Length: 56 pic 0 pts, 236 mm

A notable feature of the program relations used in the
above proof is that their sole use of reflection is by reval
statements occurring in tail-recursive position. We now
show the following converse to Theorem 4.21:

Theorem 4.22. Let P be a lexically-constrained R2A
program in which all program relations used during the execu-
tion of P are either A-programs or tail-recursive. Then P can
be simulated by an WA program.

Proof. Consider a statement of the form ``X2 :=
eval(X1)'' or ``X2 :=reval(X1)'' in P. When simulating this
statement, we know that X1 has the form of an A-program,
possibily followed by a statement of the form ``X4 :=
reval(X3)''. Hence, we can use a while-loop with a structure
similar to the for-loop used in the proof of Theorem 4.14.
We only indicate the differences:

X :=X1 ;
while X{< do

b

if t(op)=`reval' then
if t(arg-1)=`X3 ' then

X :=X3

else . . .
else . . .

od

Note that, due the lexically constrained and tail-recursive
nature of the reval-calls, the return values of these calls can
be ignored without loss of generality. K

As a corollary to Lemma 4.8 and Theorems 4.21 and 4.22,
we obtain:

Corollary 4.23. The class of lexically constrained,
tail-recursive R2A programs coincides with the class of
PSPACE queries. Alternatively, on lexical-free databases,
tail-recursive R2A expresses precisely the PSPACE queries.

5. CONCLUSION

The ideas presented in this paper can serve as the
beginning of a more comprehensive investigation of the
representation, manipulation, and execution of programs
(queries, procedures, methods, ...) that are stored in the
database together with ``ordinary'' data. We hope they can
also contribute to the ongoing discussion among database
practitioners as to whether the separation of data and
programs, one of the original ideas upon which current
database systems have been built, is still tenable.

An interesting open problem (suggested by C. Beeri) is
the question of what becomes of the notion of computable
query [6] in the presence of procedural data.

From a more practical perspective, it would be useful
to design syntactic variants of RA (or other reflective

database languages) that are more user friendly and�or
amenable to static type checking, issues which we have
ignored in this paper. In this respect it will probably be
advantageous to move to an object-oriented data model.
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