
Querying Constraints

Jean-Louis Lassez
IBM T.J. Watson Research Center

P.O.Box 704
Yorktown Heights, NY 10598

jll@ibm.com

Abstract
The design of languages to tackle constraint
satisfaction problems has a long history. Only
more recently the reverse problem of introduc-
ing constraints as primitive constructs in pro-
gramming languages has been addressed, A
main task that the designers and implementers
of such languages face is to use and adapt the
concepts and algorithms from the extensive
studies on constraints done in areas such as
Mathematical Programming, Symbolic Com-
putation, Artificial Intelligence, Program Veri-
fication and Computational Geometry. In this
paper, we illustrate this task in a simple and
yet important domain: linear arithmetic con-
straints. We show how one can design a query-
ing system for sets of linear constraints by us-
ing basic concepts from logic programming and
symbolic computation, as well as algorithms
from linear programming and computational
geometry. We conclude by reporting briefly
on how notions of negation and canonical rep-
resentation used in linear constraints can be
generalized to account for cases in term alge-
bras, symbolic computation, affine geometry,
and elsewhere.

1 Introduction

Various forms of declarative arithmetic are
built in languages of the CLP class [JL] such
as CLP(32), CHIP, CAL, Prolog III, Br\TR-
Prolog. Declarative arithmetic has also been
introduced in languages not related to Logic
Programming such as Mathematics and Tril-
ogy, and in principle at least could be intro-
duced in the paradigms of Functional and Ob-
ject Oriented Programming. One could hope,
and a strong case is ma.de in the pa.per by
Kanellakis, Kuper and Revesz (in this volume),
that constraints will play a major role in query
languages. It is fair to say that the ma.jor ob-
stacle to the use of constraints as primitive ele-
ments in any programming system is the lack of
efficiency (computation time as well as size of
output and size of intermediate computa.t.ion,
as we know from Symbolic Computation). In
that respect the linear case is interesting. It
has a wide range of applications and since it
has been thoroughly studied in various fields,
there is a wealth of techniques we can draw
upon.

In the main sections below, we address the
problem of querying systems of linear con-
straints. We illustrate how we can make use, in
our context, of concepts and techniques from
Logic Programming, Symbolic Computation,
Linear Programming and Computati0na.l Ge-
ometry.

We conclude with a few remarks on a the-
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Asociation for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-352-3/90/0004/0288 $1.50 288

ory emanating from the embedding of con-
straints in programming systems, thus going
further than a direct application of “foreign”
techniques. We know that a number of elemen-
tary properties of linear constraints dealing
with canonical representations and negation
[LMc88,LMc89] also hold for other types of
constraints such as term equations and inequa
tions [LMM]. Such properties are important
as they allow efficient handling of constraint
propagation and tell us which constraints are
efficiently “negatable”. A complete treatment
is to be found in [LMc] in which we abstract
these properties and build an axiomatization
to account for a variety of domains.

2 Querying systems of linear

constraints

We consider here, as in linear programming, a
system of constraints as a conjunction of equal-
ity and inequality constraints. We will draw an
analogy with the situation in Logic Program-
ming: the set of clauses is the program, the
answer to a query Q(z,y)? is a set of sub-
stitutions. The substitutions establish a rela,
tionship between variables which is satisfied iff
Q(z, y) is a logical consequence of the program.
A single algorithm, resolution, is used to com-
pute the answer, regardless of the query. The
program can be viewed as an implicit represen-
tation of a set of its logical consequences: the
least model.

Here the program will be the set of con-
straints. Queries wiil be parameterized, the
parameters playing the role of logical variables.
The answer to a query will be a set of linear
constraints on the parameters that is satisfied
iff the query is implied by the program. The
algorithm that is analoguous to resolution is
variable elimination, this single algorithm will
provide the required answer for any query. Fi-
nally the subsumption cone, which character-
izes the set of all constraints implied by the

program, provides the analogy with the notion
of least model. We will motivate the introduc-
tion of such objects by a few examples.

Let S be the set of constraints in store.
What type of information do we want to ex-
tract from S, during execution or at output
time? First examples are, does S =+ Q? where
Q is of the types: z = 3, z + y - z = 1,
z - y + 32 5 4. For such queries a simple
yes/no answer is required and can be obtained
by showing that the constraint S A 1Q is not
solvable. This is the standard technique for
subsumption in Theorem Proving.

In Logic Programming one goes a level
higher: we do not merely ask for a yes/no an-
swer, unless the query is ground (that is ha.s no
variables). For a general query, we obtain as a
side effect of the solvability test, a set of sub-
stitutions which form a finite representation of
the set of answers. So the examples of queries
we just gave correspond to ground queries in
a Logic Program, despite the presence of vari-
ables. A trivial case of a type of query tha,t
would correspond to the more powerful queries
in Logic Programs is: do the constraints in
store imply that the variable 2 has a fixed
value? More formally: 3aVz : S + z = Q ?
Clearly here we not only want to know whether
2 has a fixed value, but if so we want to know
its value.

More generally, linear relationships between
the program variables may be implied by the
constraints in store. This information is essen-
tial for representing constraints in a caaonical
form, for output standardization, constra.int
propagation, the elimination of redundancy in
parallel (see [LHM], [LMc88], [LMc89] for de-
tails). In CLP(R), a non-linear expression such
asz = log(z - y) is delayed. The knowledge
that z - y has a fixed value a for some cr will
resolve the delay.

Let us consider now inequality queries. In
CLP(R) the output should represent the re-
lationships between the input variables only.
However the constraints in store contain a.us-

289

iliary variables introduced during the execu-
tion of the rules in the program. For exam-
ple, let CC, y be the input variables and u, v be
the auxiliary variables in S = {CC + 2y + u <

19-Y - u + u 5 2,~ + u - v < 0). After
eliminating u and 2, we obtain {CC - y 5 2) as
the output. A related situation occurs in or-
der to resolve guards in committed choice lan-
guages [Ml, (S]. The guards contain existential
queries, and their execution leads to a similar
problem of variable (or quantifier) elimination.

These problems can be formalized as answer-
ing parameterized queries of the form:
Eh,P,-y ,... Vz,y ,... : S =s- ax fj3y-f . . . 2 (or
=) y and R(a,P, r)? where R(a,/3, 7)
is a set of linear relations on the parameters
such as Q = 0, ,G 5 2-y. What we request is a
finite representation of the set of answers. In
the case where the query is simply 0 5 a? the
answer will tell us if the system is satisfiable
or not. A query such as QZ 5 /3? is asking for
the range of the variable CC, that is a classical
linear programming problem, since the range
is given by the max and the min of the objec-
tive function z. The fact that the answer to a
query is a set of constraints on the parameters
will be made clear in the following section.

3 Executable Specifications

Here we will see how we can specify the con-
ditions under which a query is implied by a
set of constraints, and provide a simple vari-
able elimination procedure, due to Fourier,
that provides the answer. Let us first say a
few words about Fourier’s elimination proce-
dure and solvability algorithm (F]. Despite its
simplicity, its historical and theoretical impor-
tance, it is not well known and for sake of being
self contained it is described here informally:

Let S be a set of inequality constraints
az+by+ . . . 5 c . We first select a variable, say
CC, and consider all possible pairs of constraints

from S where x appears with coefficients of op-
posite signs. If this set is empty, that is if r
appears with coefficients of the same sign in
all constraints, we delete all constraints con-
taining z. If the set of pairs is not empty, from
each pair we generate a new constraint which
does not contain z, by computing an appropri-
ate linear combination of the two constraints.
These new constraints replace in S the con-
straints that contained x, giving a set Sl. Now
S is solvable if and only if Sl is solvable. In ge-
ometric terms Sl represents the projection wrt
to the z-axis of the polyhedral set associated
to S. So variable elimination is a projection
operation. The process is repeated until all
variables have been eliminated.

Fourier’s theorem tells us that S is not solv-
able if and only if a contradiction 0 5 c (where
c is a negative number) has been generated
in the process. It has often been remarked
that Fourier’s procedure bears a strong a.na.l-
ogy with resolution (selecting two literals of
opposite signs, unifying, building the resolvent
clause, etc).

As was mentioned in [DE], Fourier’s result
can be used to establish in a straightfor\vard
manner fundamental theorems in Linea.r Pro-
gramming. We also know from Symbolic Com-
putation that variable (or quantifier) elimina.-
tion is a powerful tool. Let us see a few esa.m-
ples. As a first illustration consider the prob-
lem of computing the convex hull of a set of
points directly from its specification: A point
P is in the convex hull of points PI, Pn iff
3x 1, X,, Xi 2 0 Vi and C Xi = 1 such that
P = C XiPi.

Let (x,y,..) be the coordinates of P. If we
eliminate the X’s from this specification we ob-
tain a relationship between solely the coordi-
nates (x,y,...) which is solvable if and only if
the initial relationship is. It therefore repre-
sents the desired convex hull.
Example: let s=(Lw),
P2=(0,1,0), Ps=(O,O,l) and P=(x,y,z). We
have x = x1,y = X2,% = x3,x1 t x2 t x3 =

290

1, Xr 2 0, X2 2 0, As 2 0. We trivially obtain a
representation of the convex hull by eliminat-
ingtheX’s: z+y+%=l,z>O,y>O,z>O.
So variable elimination provides us with a sys-
tematic way of characterizing interesting sets
of constraints directly from an existential spec-
ification.
We address now the problem of obtaining ex-
istential specifications for sets of constraints
implied by a set S of inequality constraints.
A constraint C is a quasi-linear combination
of constraints of S = (Cl, Cn} iff C is ob-
tained by adding a positive number to the right
hand side of a non-negative linear combination
of constraints of S. The following theorem is
a direct corollary to Fourier’s theorem. It is
very rarely mentioned, does not seem to have
been used in that form at least, but is in fact
equivalent to the fundamental Duality Theo-
rem in Linear Programming [A]. It provides a
simple characterization of the set of constraints
implied by S, and forms the basis for our ap-
proach. (For sake of simplicity we will use the
word combination for non-negative combina-
tion unless specifically stated).

Theorem 1 (Subsumption Theorem [A])
A constraint C is implied by a set of constraints
S ifi C is a quasi-linear combination of con-
straints of S.

Now we can specify that a constraint C =
cu t py + . . . 5 7 is implied by S: Let the
constraints in S be (alz + bly + . . . 5 cl, ag +
b2y + . . . 5 cz, . ..}. Then C is implied by S iff
3X1 > O,& 1 O..., and q 1 0 such that

c &a; = a

CxiCitq = 7

Define the subsumption cone of S, denoted
SC(S) as the polyhedral set obtained by elim-
ination of the X’s and q from the above speci-
fication. By Fourier’s elimination we have

Proposition 1 Let S be a set of linear in-
equalities, a constmint a2 + py -I- ,.. 5 y is
implied by S i@ the point (a,p,...,y) belongs
to the subsumption cone of S.

Because of this proposition we are justified
in claiming that there is an analogy between
the subsumption cone and the least model in
Logic Programming. To show the interest of
this notion, we will now present a few proper-
ties of the subsumption cone.

Example: S = {-z 5 0,-y 5 0,~ t y 2 1).
We have Q = -x1+ x3,/3 = -x2 t x3,-/ =
As t q,Xl 1 0, X2 2 0, X3 2 0,q > 0. From
which we derive SC(S) = (-o t y 2 0, -,B t
y 2 0,~ 2 0). We use the word cone in the
definition because as no constant appears in
the specification, the resulting set of inequali-
ties is always an homogeneous system defining
a cone.

This notion of subsumption cone is useful
when we have to test repeatedly for implica.-
tion. Using S requires running a linear pro-
gram, using SC(S) requires a simple evalua-
tion of the constraints. SC(S) also gives us
information about cutting and supporting hy-
perplanes. The points in SC(S) characterize
the implied constraints. Dually the constraints
which are incompatible with S are character-
ized by the open cone symmetric to SC(S)
with respect to the origin. Consequently the
constraints which are not implied and are not
incompatible correspond to points in the com-
plement of the two cones, which is straightfor-
ward to check. The faces of these constraints
are the hyperplanes which cut S. The support-
ing hyperplanes of S correspond to points on
the facets of SC(S) as they are both implied
by S and at the limit of cutting.

Clearly two sets of constraints that have
the same implications, that is the same sub-

291

sumption cone, are equivalent: they define the
same polyhedral set. So a subsumption cone
uniquely determines a polyhedral set. Now
a subsumption cone may be pointed or not.
When pointed, it is the convex closure of its
extreme rays. The other case is a little bit
too involved to be addressed here. Let us just
mention that these two cases correspond to the
fact that S may or may not be full dimensional.
The complete treatment requires the use of the
canonical form [LMc88] and results about the
structure of polyhedral cones [GT].

Proposition 2 Let S be a set of linear in-
equalities. The set of constmints derived from
the set ofeztreme rays of the subsumption cone
0jS is a set of constraints equivalent to S (un-
der assumption of full dimensionality).

Consider the previous example. Each of the
constraints --(y t Y 2 R-P t Y 1 O,Y 1 0
defines a facet of the subsumption cone. To
obtain the extreme rays of the cone we intersect
the constraints in all possible pairs of adjacent
hyperplanes supporting the facets. That is we
solve the systems: {--Q + y = 0,-p + y =
0,Y 2 q, (-0 t Y = 0,Y = 0,-P t Y L o},
{--Pi-Y =o,y= 0, -o -I- y 1 0) Simplifying
we obtain : o = fl = y,y 2 0 which gives the
constraint yz -I- yy 5 y equivalent to 2 -l-y 5 1,
while a = y = O,p 5 0 is equivalent to -y 5 0,
and /? = y = 0, CY 5 0 is equivalent to -x 5 0.
Using this technique we can find an executable
specification for the convex hull CH(Pi, 1 5
i < n) of a collection of polyhedral sets Pi.

Proposition 3 CH(Pi,l < i < n) = extreme
rays {nl SC(Pi)} (under assumption of full di-
mensionality).

Indeed a constraint is implied by the convex
hull iff it is implied by all Pi’s* Consequently
the subsumption cone of the convex hull is
equal to the intersection of the subsumption
cones of the P;‘s. The extreme ray extraction
gives us a set of constraints defining the affine

hull. Algorithmically we can compute in par-
allel the SC(P;) by variable elimination, the
intersection is trivial as we just collect all the
sets of constraints together, finally computing
extreme rays is a classical problem. The gen-
eral case will be discussed in the full paper.

We will later mention a more efficient
method than Fourier’s to compute the sub-
sumption cone. However, one should also con-
sider adapting the powerful convex hull algo-
rithms from Computational Geometry.

So to answer a parametric query, one can
first compute the subsumption cone and add
to it the relations that the parameters must
satisfy in the query. Else we can express di-
rectly using theorem 1 that the constra.int in
the query is implied by the system, and elimi-
nate the X’s and q.

The subsumption cone is therefore a new
tool to reason about sets of constraints. Other
sets can be defined similarly, for instance we
can express that a parametric constraint is im-
plied by a system Sl, while its opposite is im-
plied by a system S2. Eliminating the appro-
priate variables will give us a relation which
characterizes the set of hyperplanes separa.ting
Sl and S2. A simple variant would be to cha.r-
acterize pairs of parallel hyperplanes at a fixed
distance d from each other and which sepa.rate
Sl and S2. Another interesting application of
variable elimination is the computation of the
image of the polyhedral set by a linear appli-
cation. One needs only eliminate the source
variables in the specification. The image is
given by the resulting constraints. We leave
as a simple exercise the following construction:
given a set of inequality constraints whose con-
stants on the right hand side are parameters
w-2, T,, find the relation on the ri’s which
is satisfied iff the system is solvable.

We will now propose an alternative to
Fourier’s method for variable elimination
which leads to a more practical system.

292

4 Variable elimination via ex-

treme points

If we eliminate all variables but one, say x,
from a set S of constraints, then we compute
the r-ange of the variable x. This can be done
by the classical methods of linear programming
via the maximization and minimization of the
objective function x. These methods are far
more efficient than Fourier’s elimination. If we
eliminate all variables but n, we look for the
range of a point in an n dimensional space.
Clearly we need to generalise the notion of ob-
jective function to capture this range. This is
what we do now.

Assume we want to eliminate given variables
from a set of constraints S. Consider the para-
metric query Q where the existentially quan-
tified variables are the variables from S that
we want to keep. %,/?,y, . ..Vx.y, . . . : S +
c!x + py + . . . 5 y? The set of answers to this
query represents the set of constraints implied
by the projection of S in the (x, y, . ..) space.
It is easy to see that we can in fact restrict our-
selves to linear combinations, rather than the
quasi-linear. So the projection we want to com-
pute will be a minimal set of generators for the
set of linear combinations which are answers
to the query. We express now that the con-
straint in the query is a linear combination of
the constraints in S. Let the constraints in S
be {arx + bly •t . . . 2 cl,a2x t b2y t . . . < ~2, . ..}
we then have the relations:

c Xi& = Cr

c Xibi = p

c XiCi = y

c Xidi = 0

c A; = 1

Xi > 0

where the equalities whose right-hand-side is
zero correspond to eliminated variables. We
have normalized the coefficients of the linear
combination so that their sum is equal to one,
without loss of generality. This is in fact more
than syntactic convenience. One sees easily
that the set of solutions to the above system
is closed for normalized linear combinations.
In geometrical terms it means that the set of
points whose coordinates are the coefficients of
the linear combinations is a convex set. A clas-
sical theorem states that the set of points in a
polytope is the convex closure of a finite set
of extreme points. So if we can show that OUI
convex set has a finite set of extreme points E
we will have a characterization of the set of an-
swers which is a specialization of the subsump-
tion theorem: (where G is the set of constraints
which correspond to E).

Theorem 2 A constraint C is an answer to
the query Q iflit is a quasi-linear combination
of the finite set of constraints in G.

In order to establish this result and provide
a way of computing G we generalize the op-
timization function in Linear Programming in
the following way.

In the above system, the set of constraints
that are not parameterized represents, but for
the lack of objective function, a linear pro-
gramming problem in standard form. An ob-
jective function Q is a mapping of R” into R.
Let A be the polyhedral set associated with the
constraints. @(A) is an interval in R, and the
linear programming problem is to determine
its maximum or minimum (when they exist).
That is we have to compute one or the other of
the extreme points of the image of a polyhedral
set. What we also know is that the value of the
maximum or minimum is obtained as an ima.ge
of an extreme point of A. We generalize this

293

picture by taking as objective function a func-
tion @, from Rn to R”’ this time, defined by
the parametric constraints in the above system,
and by considering the set of extreme points of
@(A) instead of a minimum or maximum. We
have again the fact that the extreme points in
Q(A) are images of the extreme points of A,
and a.s A is a polytope, @(A) has a finite num-
ber of extreme points. This provides an infor-
mal proof for the result we needed:

Theorem 3 Let P be the generalized linear
program:

extr(@(A))

C&U; = Ct
C &bi = P

Ic XiCi = y

I C Aidi = 0

The solutions to that program determine a f;-
nite set of constraints which defines the projec-
tion of S.

However, the finite set of constraints should
be minimized by redundancy elimination to ob-
tain a better representation of the projection
of S on the (x, y, . . .) space. As there are
algorithms to compute sets of extreme points
[MR] we can effectively obtain G. Implemen-
tation issues are not trivial and will be treated
in [HL]. Let us just mention here that it is
possible to have an output of exponential size.
Consequently it would be unrealistic to assume
that one can arbitrarily query anything more
than very special sets of constraints. Of course
very small sets or cases where the number of
variables is small, or cases where the number of
variables is close to the number of constraints

(even if these numbers are large), or sparse sys-
tems will be suitable. The range of applications
of such a querying system needs to be estab-
lished. Also it would be interesting to look
at approximate symbolic answers when the ac-
tual answer is known to be of unmanageable
size, or eventually compute alternate (dual for
instance) representations.

5 Existence of implicit equal-

ities and causes of unsolv-

ability

In the previous sections we were concerned
with generating answers to queries. Here we
address a complementary problem: what are
the causes, that is, what are the subsets of con-
straints in a system, that imply a given answer?
This approach will allow us to provide a sim-
ple solution to the problem of implicit equal-
ities which is shown to be very similar to the
problem of detecting causes of unsatisfiabili ty.

Much is known about the handling of equal-
ity queries. In a set of inequality constra.ints,
those which can be replaced by an equality
constraint by simply replacing < by = with-
out changing the semantics are called implicit
equalities. This set of constraints plays a role
analogous to the set G in the previous sec-
tion. Implicit equalities in fact define the affine
hull of the polyhedral set associated to a set S
of inequality constraints. There are a num-
ber of methods to compute them, a standard
one being to run a linear program for ea’ch
constraint in the set. This is not very effi-
cient, particularly in the case where there are
no implicit equalities present, which occurs fre-
quently for a large class of problems. In the
case of CLP(R) where backtracking may occur,
all this work is wasted. There are far more so-
phisticated ways of computing implicit equal-
ities by using a single linear program [FRT].
However in these methods the size of the prob-

294

lem is substantially increased as well as the
number of variables. In logic based program-
ming languages, we would rather want to re-
duce the number of variables than increase it.
SO these algorithms also lead to a substantial
overhead in our setting.

What we need here is an efficient algorithm
that answers the existential query first, so that
we pay the price of generating the answers only
when we have a guarantee that they exist. Re-
cently, it was found that Fourier’s algorithm
for solvability of inequality constraints has this
property [LM]. It was established in [LM] that
implicit equalities exist if and only if Fourier’s
algorithm generates a tautology 0 < 0. So we
have “for free” the information we request as
a side effect of solvability.

We will use the results of the previous sec-
tion to provide an efficient method of deter-
mining the existence of implicit equalities as a
side effect of a simple and efficient solvability
test, a.nd to separately generate them when re-
quired. The results from [LM] are also used to
establish correctness. Essentially we formulate
the solvability problem in a variant of dual-
ity in linear programming. It is a variant in
that first we view the dual space as a space
of linear combinations and not according to its
usual economic or geometrical interpretation.
So we are justified in adding a normalization
constraint which would not be meaningful oth-
erwise. (We could do without, in principle, but
as it forces the polyhedral set to be finite it
considerably simplifies the algorithms). And
also, of course, it is extended so as to take care
of implicit equalities. Let S be the set of con-
straints, its quasi-dual formulation D expresses
that we have normalized linear combinations of
constraints in S that eliminate all variables. It
is therefore an application of Theorem 1 in a
particular case. The objective function is ob-
tained as in the case of linear programming but
its use will be adapted to our purpose. We have
now the theorem:

Theorem 4

1.

2.

3.

If the quasi-dual linear program D is
not solvable then S is solvable and
contains no implicit equalities.

If the quasi-dual linear program D is
solvable then:

(a) If the objective function has u
strictly positive minimum then S
is solvable and does not contain
any implicit equality.

(b) If the objective function has zero
as a minimum then S is solvable
and contains implicit equalities.

(c) If in the process of minimizing
the objective function a negative
value is obtained, then S is not
solvable.

When implicit equalities exist they
can be obtained by generating the set
of extreme points of D with the objec-
tive constraint set to zero.

The proof of this theorem is obtained as a
consequence of [LM] and the arguments in the
previous section. It is important to note that
we have not given an algorithm here strictly
speaking, but rather a different formulation of
the problem. Any solving algorithm can be
used with this formulation for parts 1 and 2 in
the above theorem. As for part 3 any algorithm
which generates all extreme points can be ap-
plied. (Or more efficient methods if need be).
This technique to find the causes of tautologies
0 5 0, can be easily extended to find the causes
of inconsistencies: one has to record for each
successive negative value taken by the objec-
tive function, the combination of constraints
that are responsible.

295

6 Negatable constraints and

canonical representations

One of the main theoretical and practical is-
sues in Logic Programming is an efficient im-
plementation of negation. One approach is
to have a weaker form of negation, as in in-
tuitonistic logic, another approach is to re-
strict the use of negation to simple subformu-
las. In [LMc], we introduce, in an abstract
setting, the notion of negatable constraints.
They represent the constraints which can be
negated “for free” in a system that is with-
out increasing the complexity of the associated
solver. This corresponds to an intuitionistic
behavior of disjunction (hence the dubious la-
bel of “crypt0-intuitionism”). This property
is closely linked to the existence of a canoni-
cal form which is particularly suitable for con-
straint propagation. The proposed axiomati-
zation is sufficiently general to account for a
variety of examples that come up in affine ge-
ometry, group theory, symbolic computation,
term algebras and elsewhere. It is also interest-
ing to note that some of the axioms appear in
a characterization of matroids. We will use our
previous setting of linear constraints to intro-
duce these notions and suggest how they may
be systematically abstracted.

Linear equality constraints define affine
spaces. The well known geometric property
“an a.fIine space is contained in a union of affine
spaces iff it is contained in one member of this
union” is used in [KKR] to show the homo- ’
morphism theorem. Let us call this property
the strong compactness property. It implies
that equality constraints are negatable. Indeed
consider a system of equality constraints and
a conjunction of inequations (that is negated
equalities). How do we test this system for
solvability? A replacement of each inequation
by a disjunction of strict inequalities would
lead to a combinatorial explosion and trans-
form the problem into a linear programming
problem. However this is not needed since the

strong compactness property implies that we
can test the set of equality constraints inde-
pendently with each inequation. The set is not
solvable iff the hyperplane associated with one
of the inequations contains the afline space de-
fined by the equality constraints. The key fac-
tor behind the strong compactness property is
the notion of dimension: one cannot cover an
object of dimension d with a finite (even de-
numerable in that case) number of objects of
dimension strictly smaller than d.

In [LMM] the problem of sets of equations
and inequations in the Herbrand universe was
addressed using the analogy with the situation
of linear arithmetic equalities and inequations
that we just described. AI1 that was needed
was to introduce the notion of dimension of the
set of solutions to an equality in the Herbrand
universe: the number of domain variables in
an idempotent mgu (which is an invariant). To
test for solvability does not lead to a combina-
torial explosion, and the unification algorithm
remains sufficient.

We can easily find similar examples of negat-
able constraints in domains that benefit from
the notion of dimension. Let us give a simple
example with a different flavor. Let the do-
main be a completely divisible group G. Let
the constraints be with one argument: H(z)
is satisfied iff z belongs to subgroup H of G.
All constraints are negatable. The strong com-
pactness property is established by an applica.-
tion of the pigeon-hole principle.

Let us now consider the problem of canoni-
cal form, in the case of (positive) linear con-
straints. A first use is for standardisation
of representation: two sets of constraints in
canonical form should be equal iff they repre-
sent the same polyhedral set. This can be eas-
ily achieved if the polyhedral set is full dimen-
sional: a triangle in a two dimensional space
is uniquely described by a set of three con-
straints. If the set is not full dimensional there
is an infinite number of non redundant equiva.-
lent sets of constraints defining the same poly-

296

hedral set. The solution adopted in [LMc88] is
quite natural: break the syntactic representa-
tion in two parts. One is the uniquely repre-
sentable set of equalities defining the affine hull
of the polyhedrai set, the other is a unique set
of inequalities as we are back to the full dimen-
sional case. What is the link with the equalities
as negatable constraints?

Let us note first that the strong compactness
property still holds: “A polyhedral set is con-
tained in an union of hyperplanes iff it is con-
tained in one member of this union”. So the
equality constraints are still negatable, we have
no combinatorial explosion and solvability is
still a linear programming problem despite the
presence of inequations. But if the constraints
are in canonical representation we are in a bet-
ter situation as the solvability problem reduces
to Gaussian elimination despite the presence of
inequalities. What happens is that a polyhe-
dral set behaves exactly in the same way as
its affine hull in the presence of inequations:
an hyperplane contains a polyhedral set iff it
contains its afhne hull.

The same results would be achieved with
convex sets instead of polyhedral sets, or even
taking dense subsets of affine spaces. An ax-
iomatization of this phenomenon leads to three
axioms which are part of the characteriza-
tion of matroids, the missing axiom being the
exchange property. From these one can ex-
tend the notion of canonical representation to
sytems of constraints containing negative con-
straints. Important results follow. Essentially
they imply that we can separate, in the canon-
ical form, the different types of constraints in
a semantically meaningful way. In terms of
implementation it means that we can use the
solvers more efficiently. In terms of querying
the system, it means that if the query is about
say negatable constraints then we need consult
only the negatable part of the canonical repre-
sentation.

Acknoyledgements
I thank T. Huynh, J. Jaffar, C. Lassez, M. Ma-
her and K. McAloon for many fruitful discus-
sions.

References

PI S.Achmanov, Progmmmation
Line’aire, Editions Mir, Moscou
1984.

IDE1

PI

WTI

G.B. Dantzig and B.C. Eaves,
Fourier-Motzkin Elimination and
Its Dual, Journal of Combinatorial
Theory Ser. A, 14 (1973) 288-297.

J.B.J. Fourier, reported in: Analyse
des travaux de 1’Academie Royale
des Sciences, pendant l’annee 1824,
Partie mathdmatique, Histoire de
I’Acade’mie Royale des Sciences de
l’lnstitut de France 7 (1827) xlvii-
Iv. (Partial English translation in:
D.A. Kohler, Translation of a Re-
port by Fourier on his work on Lin-
ear Inequalities, Opsearch lO(1973)
38-42.)

R.M. Freund, R. Roundy and M.J.
Todd, Identifying the Set of Always-
Active Constraints in a System
of Linear Inequalities by a Single
Linear Program, Technical Report,
Sloan School of Management, Mas-
sachusetts Institute of Technology,
October 1985.

WI

WI

A.J. Goldman and A.W. Tucker,
Polyhedral Convex Cones in Linear
Inequalities and Related Systems.
Annals of Mathematical Studies 5’s.
Princeton University Press, 1956.

T. Huynh and J-L. Lassez, Design
and Implementation of Algorithms
for Variable Elimination in Linear
Arithmetic Constraints, forthcom-
ing.

REFERENCES 297

[JLI

[JMSY]

[KKR]

[LHM]

WI

WMI

PJ MCI

[LMc88]

(LMc89j

(Ml

J. Jaffar and J-L. Lassez, Constraint
Logic Programming, POPL 87, lll-
119.

J. Jaffar, S. Michaylov, P. Stuckey
and R. Yap, The CLP(X) Language
and System, IBM Research Report,
T.J. Watson Research Center, forth-
coming.
P. Kanellakis, G. Kuper and P.
Revesz, Constraint Query Lan-
guages PODS 90, Nashville.
J-L. Lassez, T. Huynh and K.
McAloon, Simplification and Elimi-
nation of redundant arithmetic con-
straints, Proceedings of NACLP 89,
MIT Press.
J-L. Lassez and M.J. Maher, On
Fourier’s Algorithm for Lin-
ear Arithmetic Constraints, IBM
Research Report, T.J. Watson Re-
search Center, 1988.

J-L. Lassez, M.J. Maher and
K. Marriott, Unification Revisited,
Foundations of Logic Programming
and Deductive Databases, J. Minker
ed., Morgan-Kaufmann 1988.

J-L. Lassez and K. McAloon, A
Constraint Sequent Calculus, sub-
mitted 1989.

J-L. Lassez and K. McAloon, Appli-
cations of a Canonical Form for Gen-
eralized Linear Constraints, Pro-
ceedings of the FGCS Conference,
Tokyo, December 1988, 703-710.

J-L. Lassez and K. McAloon, Inde-
pendence of Negative Constraints,
TAPSOFT 89, Advanced Semi-
nar on Foundations of Innovative
Software Development, LNCS 351
Springer Verlag 89.
M. Maher, A Logic Semantics for
a class of Committed Choice Lan-
guages, Proceedings of ICLP.4, MIT
Press 87.

T.H. Matheiss and D.S. Rubin, A
Survey of Comparison of Methods
for Finding All Vertices of Con-
vex Polyhedral Sets, Mathematics of
Opemtions Reseamh, 5 (1980) 167-
185.
V. Saraswat, Concurrent Constraint
Logic Programming, Ph.D. Disser-
tation, Carnegie Mellon University
1989.

REFERENCES 298

