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Abstract 
The design of languages to tackle constraint 
satisfaction problems has a long history. Only 
more recently the reverse problem of introduc- 
ing constraints as primitive constructs in pro- 
gramming languages has been addressed, A 
main task that the designers and implementers 
of such languages face is to use and adapt the 
concepts and algorithms from the extensive 
studies on constraints done in areas such as 
Mathematical Programming, Symbolic Com- 
putation, Artificial Intelligence, Program Veri- 
fication and Computational Geometry. In this 
paper, we illustrate this task in a simple and 
yet important domain: linear arithmetic con- 
straints. We show how one can design a query- 
ing system for sets of linear constraints by us- 
ing basic concepts from logic programming and 
symbolic computation, as well as algorithms 
from linear programming and computational 
geometry. We conclude by reporting briefly 
on how notions of negation and canonical rep- 
resentation used in linear constraints can be 
generalized to account for cases in term alge- 
bras, symbolic computation, affine geometry, 
and elsewhere. 

1 Introduction 

Various forms of declarative arithmetic are 
built in languages of the CLP class [JL] such 
as CLP(32), CHIP, CAL, Prolog III, Br\TR- 
Prolog. Declarative arithmetic has also been 
introduced in languages not related to Logic 
Programming such as Mathematics and Tril- 
ogy, and in principle at least could be intro- 
duced in the paradigms of Functional and Ob- 
ject Oriented Programming. One could hope, 
and a strong case is ma.de in the pa.per by 
Kanellakis, Kuper and Revesz (in this volume), 
that constraints will play a major role in query 
languages. It is fair to say that the ma.jor ob- 
stacle to the use of constraints as primitive ele- 
ments in any programming system is the lack of 
efficiency (computation time as well as size of 
output and size of intermediate computa.t.ion, 
as we know from Symbolic Computation). In 
that respect the linear case is interesting. It 
has a wide range of applications and since it 
has been thoroughly studied in various fields, 
there is a wealth of techniques we can draw 
upon. 

In the main sections below, we address the 
problem of querying systems of linear con- 
straints. We illustrate how we can make use, in 
our context, of concepts and techniques from 
Logic Programming, Symbolic Computation, 
Linear Programming and Computati0na.l Ge- 
ometry. 

We conclude with a few remarks on a the- 
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ory emanating from the embedding of con- 
straints in programming systems, thus going 
further than a direct application of “foreign” 
techniques. We know that a number of elemen- 
tary properties of linear constraints dealing 
with canonical representations and negation 
[LMc88,LMc89] also hold for other types of 
constraints such as term equations and inequa 
tions [LMM]. Such properties are important 
as they allow efficient handling of constraint 
propagation and tell us which constraints are 
efficiently “negatable”. A complete treatment 
is to be found in [LMc] in which we abstract 
these properties and build an axiomatization 
to account for a variety of domains. 

2 Querying systems of linear 

constraints 

We consider here, as in linear programming, a 
system of constraints as a conjunction of equal- 
ity and inequality constraints. We will draw an 
analogy with the situation in Logic Program- 
ming: the set of clauses is the program, the 
answer to a query Q(z,y)? is a set of sub- 
stitutions. The substitutions establish a rela, 
tionship between variables which is satisfied iff 
Q(z, y) is a logical consequence of the program. 
A single algorithm, resolution, is used to com- 
pute the answer, regardless of the query. The 
program can be viewed as an implicit represen- 
tation of a set of its logical consequences: the 
least model. 

Here the program will be the set of con- 
straints. Queries wiil be parameterized, the 
parameters playing the role of logical variables. 
The answer to a query will be a set of linear 
constraints on the parameters that is satisfied 
iff the query is implied by the program. The 
algorithm that is analoguous to resolution is 
variable elimination, this single algorithm will 
provide the required answer for any query. Fi- 
nally the subsumption cone, which character- 
izes the set of all constraints implied by the 

program, provides the analogy with the notion 
of least model. We will motivate the introduc- 
tion of such objects by a few examples. 

Let S be the set of constraints in store. 
What type of information do we want to ex- 
tract from S, during execution or at output 
time? First examples are, does S =+ Q? where 
Q is of the types: z = 3, z + y - z = 1, 
z - y + 32 5 4. For such queries a simple 
yes/no answer is required and can be obtained 
by showing that the constraint S A 1Q is not 
solvable. This is the standard technique for 
subsumption in Theorem Proving. 

In Logic Programming one goes a level 
higher: we do not merely ask for a yes/no an- 
swer, unless the query is ground (that is ha.s no 
variables). For a general query, we obtain as a 
side effect of the solvability test, a set of sub- 
stitutions which form a finite representation of 
the set of answers. So the examples of queries 
we just gave correspond to ground queries in 
a Logic Program, despite the presence of vari- 
ables. A trivial case of a type of query tha,t 
would correspond to the more powerful queries 
in Logic Programs is: do the constraints in 
store imply that the variable 2 has a fixed 
value? More formally: 3aVz : S + z = Q ? 
Clearly here we not only want to know whether 
2 has a fixed value, but if so we want to know 
its value. 

More generally, linear relationships between 
the program variables may be implied by the 
constraints in store. This information is essen- 
tial for representing constraints in a caaonical 
form, for output standardization, constra.int 
propagation, the elimination of redundancy in 
parallel (see [LHM], [LMc88], [LMc89] for de- 
tails). In CLP(R), a non-linear expression such 
asz = log(z - y) is delayed. The knowledge 
that z - y has a fixed value a for some cr will 
resolve the delay. 

Let us consider now inequality queries. In 
CLP(R) the output should represent the re- 
lationships between the input variables only. 
However the constraints in store contain a.us- 
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iliary variables introduced during the execu- 
tion of the rules in the program. For exam- 
ple, let CC, y be the input variables and u, v be 
the auxiliary variables in S = {CC + 2y + u < 

19-Y - u + u 5 2,~ + u - v < 0). After 
eliminating u and 2, we obtain {CC - y 5 2) as 
the output. A related situation occurs in or- 
der to resolve guards in committed choice lan- 
guages [Ml, (S]. The guards contain existential 
queries, and their execution leads to a similar 
problem of variable (or quantifier) elimination. 

These problems can be formalized as answer- 
ing parameterized queries of the form: 
Eh,P,-y ,... Vz,y ,... : S =s- ax fj3y-f . . . 2 (or 
=) y and R(a,P, . . . . r)? where R(a,/3, . . . . 7) 
is a set of linear relations on the parameters 
such as Q = 0, ,G 5 2-y. What we request is a 
finite representation of the set of answers. In 
the case where the query is simply 0 5 a? the 
answer will tell us if the system is satisfiable 
or not. A query such as QZ 5 /3? is asking for 
the range of the variable CC, that is a classical 
linear programming problem, since the range 
is given by the max and the min of the objec- 
tive function z. The fact that the answer to a 
query is a set of constraints on the parameters 
will be made clear in the following section. 

3 Executable Specifications 

Here we will see how we can specify the con- 
ditions under which a query is implied by a 
set of constraints, and provide a simple vari- 
able elimination procedure, due to Fourier, 
that provides the answer. Let us first say a 
few words about Fourier’s elimination proce- 
dure and solvability algorithm (F]. Despite its 
simplicity, its historical and theoretical impor- 
tance, it is not well known and for sake of being 
self contained it is described here informally: 

Let S be a set of inequality constraints 
az+by+ . . . 5 c . We first select a variable, say 
CC, and consider all possible pairs of constraints 

from S where x appears with coefficients of op- 
posite signs. If this set is empty, that is if r 
appears with coefficients of the same sign in 
all constraints, we delete all constraints con- 
taining z. If the set of pairs is not empty, from 
each pair we generate a new constraint which 
does not contain z, by computing an appropri- 
ate linear combination of the two constraints. 
These new constraints replace in S the con- 
straints that contained x, giving a set Sl. Now 
S is solvable if and only if Sl is solvable. In ge- 
ometric terms Sl represents the projection wrt 
to the z-axis of the polyhedral set associated 
to S. So variable elimination is a projection 
operation. The process is repeated until all 
variables have been eliminated. 

Fourier’s theorem tells us that S is not solv- 
able if and only if a contradiction 0 5 c (where 
c is a negative number) has been generated 
in the process. It has often been remarked 
that Fourier’s procedure bears a strong a.na.l- 
ogy with resolution (selecting two literals of 
opposite signs, unifying, building the resolvent 
clause, etc). 

As was mentioned in [DE], Fourier’s result 
can be used to establish in a straightfor\vard 
manner fundamental theorems in Linea.r Pro- 
gramming. We also know from Symbolic Com- 
putation that variable (or quantifier) elimina.- 
tion is a powerful tool. Let us see a few esa.m- 
ples. As a first illustration consider the prob- 
lem of computing the convex hull of a set of 
points directly from its specification: A point 
P is in the convex hull of points PI, . . . . . Pn iff 
3x 1, . . . . X,, Xi 2 0 Vi and C Xi = 1 such that 
P = C XiPi. 

Let (x,y,..) be the coordinates of P. If we 
eliminate the X’s from this specification we ob- 
tain a relationship between solely the coordi- 
nates (x,y,...) which is solvable if and only if 
the initial relationship is. It therefore repre- 
sents the desired convex hull. 
Example: let s=(Lw), 
P2=(0,1,0), Ps=(O,O,l) and P=(x,y,z). We 
have x = x1,y = X2,% = x3,x1 t x2 t x3 = 
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1, Xr 2 0, X2 2 0, As 2 0. We trivially obtain a 
representation of the convex hull by eliminat- 
ingtheX’s: z+y+%=l,z>O,y>O,z>O. 
So variable elimination provides us with a sys- 
tematic way of characterizing interesting sets 
of constraints directly from an existential spec- 
ification. 
We address now the problem of obtaining ex- 
istential specifications for sets of constraints 
implied by a set S of inequality constraints. 
A constraint C is a quasi-linear combination 
of constraints of S = (Cl, . . . . Cn} iff C is ob- 
tained by adding a positive number to the right 
hand side of a non-negative linear combination 
of constraints of S. The following theorem is 
a direct corollary to Fourier’s theorem. It is 
very rarely mentioned, does not seem to have 
been used in that form at least, but is in fact 
equivalent to the fundamental Duality Theo- 
rem in Linear Programming [A]. It provides a 
simple characterization of the set of constraints 
implied by S, and forms the basis for our ap- 
proach. (For sake of simplicity we will use the 
word combination for non-negative combina- 
tion unless specifically stated). 

Theorem 1 (Subsumption Theorem [A]) 
A constraint C is implied by a set of constraints 
S ifi C is a quasi-linear combination of con- 
straints of S. 

Now we can specify that a constraint C = 
cu t py + . . . 5 7 is implied by S: Let the 
constraints in S be (alz + bly + . . . 5 cl, ag + 
b2y + . . . 5 cz, . ..}. Then C is implied by S iff 
3X1 > O,& 1 O..., and q 1 0 such that 

c &a; = a 

CxiCitq = 7 

Define the subsumption cone of S, denoted 
SC(S) as the polyhedral set obtained by elim- 
ination of the X’s and q from the above speci- 
fication. By Fourier’s elimination we have 

Proposition 1 Let S be a set of linear in- 
equalities, a constmint a2 + py -I- ,.. 5 y is 
implied by S i@ the point (a,p,...,y) belongs 
to the subsumption cone of S. 

Because of this proposition we are justified 
in claiming that there is an analogy between 
the subsumption cone and the least model in 
Logic Programming. To show the interest of 
this notion, we will now present a few proper- 
ties of the subsumption cone. 

Example: S = {-z 5 0,-y 5 0,~ t y 2 1). 
We have Q = -x1+ x3,/3 = -x2 t x3,-/ = 
As t q,Xl 1 0, X2 2 0, X3 2 0,q > 0. From 
which we derive SC(S) = (-o t y 2 0, -,B t 
y 2 0,~ 2 0). We use the word cone in the 
definition because as no constant appears in 
the specification, the resulting set of inequali- 
ties is always an homogeneous system defining 
a cone. 

This notion of subsumption cone is useful 
when we have to test repeatedly for implica.- 
tion. Using S requires running a linear pro- 
gram, using SC(S) requires a simple evalua- 
tion of the constraints. SC(S) also gives us 
information about cutting and supporting hy- 
perplanes. The points in SC(S) characterize 
the implied constraints. Dually the constraints 
which are incompatible with S are character- 
ized by the open cone symmetric to SC(S) 
with respect to the origin. Consequently the 
constraints which are not implied and are not 
incompatible correspond to points in the com- 
plement of the two cones, which is straightfor- 
ward to check. The faces of these constraints 
are the hyperplanes which cut S. The support- 
ing hyperplanes of S correspond to points on 
the facets of SC(S) as they are both implied 
by S and at the limit of cutting. 

Clearly two sets of constraints that have 
the same implications, that is the same sub- 
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sumption cone, are equivalent: they define the 
same polyhedral set. So a subsumption cone 
uniquely determines a polyhedral set. Now 
a subsumption cone may be pointed or not. 
When pointed, it is the convex closure of its 
extreme rays. The other case is a little bit 
too involved to be addressed here. Let us just 
mention that these two cases correspond to the 
fact that S may or may not be full dimensional. 
The complete treatment requires the use of the 
canonical form [LMc88] and results about the 
structure of polyhedral cones [GT]. 

Proposition 2 Let S be a set of linear in- 
equalities. The set of constmints derived from 
the set ofeztreme rays of the subsumption cone 
0jS is a set of constraints equivalent to S (un- 
der assumption of full dimensionality). 

Consider the previous example. Each of the 
constraints --(y t Y 2 R-P t Y 1 O,Y 1 0 
defines a facet of the subsumption cone. To 
obtain the extreme rays of the cone we intersect 
the constraints in all possible pairs of adjacent 
hyperplanes supporting the facets. That is we 
solve the systems: {--Q + y = 0,-p + y = 
0,Y 2 q, (-0 t Y = 0,Y = 0,-P t Y L o}, 
{--Pi-Y =o,y= 0, -o -I- y 1 0) Simplifying 
we obtain : o = fl = y,y 2 0 which gives the 
constraint yz -I- yy 5 y equivalent to 2 -l-y 5 1, 
while a = y = O,p 5 0 is equivalent to -y 5 0, 
and /? = y = 0, CY 5 0 is equivalent to -x 5 0. 
Using this technique we can find an executable 
specification for the convex hull CH(Pi, 1 5 
i < n) of a collection of polyhedral sets Pi. 

Proposition 3 CH(Pi,l < i < n) = extreme 
rays {nl SC(Pi)} (under assumption of full di- 
mensionality). 

Indeed a constraint is implied by the convex 
hull iff it is implied by all Pi’s* Consequently 
the subsumption cone of the convex hull is 
equal to the intersection of the subsumption 
cones of the P;‘s. The extreme ray extraction 
gives us a set of constraints defining the affine 

hull. Algorithmically we can compute in par- 
allel the SC(P;) by variable elimination, the 
intersection is trivial as we just collect all the 
sets of constraints together, finally computing 
extreme rays is a classical problem. The gen- 
eral case will be discussed in the full paper. 

We will later mention a more efficient 
method than Fourier’s to compute the sub- 
sumption cone. However, one should also con- 
sider adapting the powerful convex hull algo- 
rithms from Computational Geometry. 

So to answer a parametric query, one can 
first compute the subsumption cone and add 
to it the relations that the parameters must 
satisfy in the query. Else we can express di- 
rectly using theorem 1 that the constra.int in 
the query is implied by the system, and elimi- 
nate the X’s and q. 

The subsumption cone is therefore a new 
tool to reason about sets of constraints. Other 
sets can be defined similarly, for instance we 
can express that a parametric constraint is im- 
plied by a system Sl, while its opposite is im- 
plied by a system S2. Eliminating the appro- 
priate variables will give us a relation which 
characterizes the set of hyperplanes separa.ting 
Sl and S2. A simple variant would be to cha.r- 
acterize pairs of parallel hyperplanes at a fixed 
distance d from each other and which sepa.rate 
Sl and S2. Another interesting application of 
variable elimination is the computation of the 
image of the polyhedral set by a linear appli- 
cation. One needs only eliminate the source 
variables in the specification. The image is 
given by the resulting constraints. We leave 
as a simple exercise the following construction: 
given a set of inequality constraints whose con- 
stants on the right hand side are parameters 
w-2, . . . . . T,, find the relation on the ri’s which 
is satisfied iff the system is solvable. 

We will now propose an alternative to 
Fourier’s method for variable elimination 
which leads to a more practical system. 
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4 Variable elimination via ex- 

treme points 

If we eliminate all variables but one, say x, 
from a set S of constraints, then we compute 
the r-ange of the variable x. This can be done 
by the classical methods of linear programming 
via the maximization and minimization of the 
objective function x. These methods are far 
more efficient than Fourier’s elimination. If we 
eliminate all variables but n, we look for the 
range of a point in an n dimensional space. 
Clearly we need to generalise the notion of ob- 
jective function to capture this range. This is 
what we do now. 

Assume we want to eliminate given variables 
from a set of constraints S. Consider the para- 
metric query Q where the existentially quan- 
tified variables are the variables from S that 
we want to keep. %,/?,y, . ..Vx.y, . . . : S + 
c!x + py + . . . 5 y? The set of answers to this 
query represents the set of constraints implied 
by the projection of S in the (x, y, . ..) space. 
It is easy to see that we can in fact restrict our- 
selves to linear combinations, rather than the 
quasi-linear. So the projection we want to com- 
pute will be a minimal set of generators for the 
set of linear combinations which are answers 
to the query. We express now that the con- 
straint in the query is a linear combination of 
the constraints in S. Let the constraints in S 
be {arx + bly •t . . . 2 cl,a2x t b2y t . . . < ~2, . ..} 
we then have the relations: 

c Xi& = Cr 

c Xibi = p 

c XiCi = y 

c Xidi = 0 

c A; = 1 

Xi > 0 

where the equalities whose right-hand-side is 
zero correspond to eliminated variables. We 
have normalized the coefficients of the linear 
combination so that their sum is equal to one, 
without loss of generality. This is in fact more 
than syntactic convenience. One sees easily 
that the set of solutions to the above system 
is closed for normalized linear combinations. 
In geometrical terms it means that the set of 
points whose coordinates are the coefficients of 
the linear combinations is a convex set. A clas- 
sical theorem states that the set of points in a 
polytope is the convex closure of a finite set 
of extreme points. So if we can show that OUI 
convex set has a finite set of extreme points E 
we will have a characterization of the set of an- 
swers which is a specialization of the subsump- 
tion theorem: (where G is the set of constraints 
which correspond to E). 

Theorem 2 A constraint C is an answer to 
the query Q iflit is a quasi-linear combination 
of the finite set of constraints in G. 

In order to establish this result and provide 
a way of computing G we generalize the op- 
timization function in Linear Programming in 
the following way. 

In the above system, the set of constraints 
that are not parameterized represents, but for 
the lack of objective function, a linear pro- 
gramming problem in standard form. An ob- 
jective function Q is a mapping of R” into R. 
Let A be the polyhedral set associated with the 
constraints. @(A) is an interval in R, and the 
linear programming problem is to determine 
its maximum or minimum (when they exist). 
That is we have to compute one or the other of 
the extreme points of the image of a polyhedral 
set. What we also know is that the value of the 
maximum or minimum is obtained as an ima.ge 
of an extreme point of A. We generalize this 
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picture by taking as objective function a func- 
tion @, from Rn to R”’ this time, defined by 
the parametric constraints in the above system, 
and by considering the set of extreme points of 
@(A) instead of a minimum or maximum. We 
have again the fact that the extreme points in 
Q(A) are images of the extreme points of A, 
and a.s A is a polytope, @(A) has a finite num- 
ber of extreme points. This provides an infor- 
mal proof for the result we needed: 

Theorem 3 Let P be the generalized linear 
program: 

extr(@(A)) 

C&U; = Ct 
C &bi = P 

Ic XiCi = y 

I C Aidi = 0 

The solutions to that program determine a f;- 
nite set of constraints which defines the projec- 
tion of S. 

However, the finite set of constraints should 
be minimized by redundancy elimination to ob- 
tain a better representation of the projection 
of S on the (x, y, . . . ) space. As there are 
algorithms to compute sets of extreme points 
[MR] we can effectively obtain G. Implemen- 
tation issues are not trivial and will be treated 
in [HL]. Let us just mention here that it is 
possible to have an output of exponential size. 
Consequently it would be unrealistic to assume 
that one can arbitrarily query anything more 
than very special sets of constraints. Of course 
very small sets or cases where the number of 
variables is small, or cases where the number of 
variables is close to the number of constraints 

(even if these numbers are large), or sparse sys- 
tems will be suitable. The range of applications 
of such a querying system needs to be estab- 
lished. Also it would be interesting to look 
at approximate symbolic answers when the ac- 
tual answer is known to be of unmanageable 
size, or eventually compute alternate (dual for 
instance) representations. 

5 Existence of implicit equal- 

ities and causes of unsolv- 

ability 

In the previous sections we were concerned 
with generating answers to queries. Here we 
address a complementary problem: what are 
the causes, that is, what are the subsets of con- 
straints in a system, that imply a given answer? 
This approach will allow us to provide a sim- 
ple solution to the problem of implicit equal- 
ities which is shown to be very similar to the 
problem of detecting causes of unsatisfiabili ty. 

Much is known about the handling of equal- 
ity queries. In a set of inequality constra.ints, 
those which can be replaced by an equality 
constraint by simply replacing < by = with- 
out changing the semantics are called implicit 
equalities. This set of constraints plays a role 
analogous to the set G in the previous sec- 
tion. Implicit equalities in fact define the affine 
hull of the polyhedral set associated to a set S 
of inequality constraints. There are a num- 
ber of methods to compute them, a standard 
one being to run a linear program for ea’ch 
constraint in the set. This is not very effi- 
cient, particularly in the case where there are 
no implicit equalities present, which occurs fre- 
quently for a large class of problems. In the 
case of CLP(R) where backtracking may occur, 
all this work is wasted. There are far more so- 
phisticated ways of computing implicit equal- 
ities by using a single linear program [FRT]. 
However in these methods the size of the prob- 
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lem is substantially increased as well as the 
number of variables. In logic based program- 
ming languages, we would rather want to re- 
duce the number of variables than increase it. 
SO these algorithms also lead to a substantial 
overhead in our setting. 

What we need here is an efficient algorithm 
that answers the existential query first, so that 
we pay the price of generating the answers only 
when we have a guarantee that they exist. Re- 
cently, it was found that Fourier’s algorithm 
for solvability of inequality constraints has this 
property [LM]. It was established in [LM] that 
implicit equalities exist if and only if Fourier’s 
algorithm generates a tautology 0 < 0. So we 
have “for free” the information we request as 
a side effect of solvability. 

We will use the results of the previous sec- 
tion to provide an efficient method of deter- 
mining the existence of implicit equalities as a 
side effect of a simple and efficient solvability 
test, a.nd to separately generate them when re- 
quired. The results from [LM] are also used to 
establish correctness. Essentially we formulate 
the solvability problem in a variant of dual- 
ity in linear programming. It is a variant in 
that first we view the dual space as a space 
of linear combinations and not according to its 
usual economic or geometrical interpretation. 
So we are justified in adding a normalization 
constraint which would not be meaningful oth- 
erwise. (We could do without, in principle, but 
as it forces the polyhedral set to be finite it 
considerably simplifies the algorithms). And 
also, of course, it is extended so as to take care 
of implicit equalities. Let S be the set of con- 
straints, its quasi-dual formulation D expresses 
that we have normalized linear combinations of 
constraints in S that eliminate all variables. It 
is therefore an application of Theorem 1 in a 
particular case. The objective function is ob- 
tained as in the case of linear programming but 
its use will be adapted to our purpose. We have 
now the theorem: 

Theorem 4 

1. 

2. 

3. 

If the quasi-dual linear program D is 
not solvable then S is solvable and 
contains no implicit equalities. 

If the quasi-dual linear program D is 
solvable then: 

(a) If the objective function has u 
strictly positive minimum then S 
is solvable and does not contain 
any implicit equality. 

(b) If the objective function has zero 
as a minimum then S is solvable 
and contains implicit equalities. 

(c) If in the process of minimizing 
the objective function a negative 
value is obtained, then S is not 
solvable. 

When implicit equalities exist they 
can be obtained by generating the set 
of extreme points of D with the objec- 
tive constraint set to zero. 

The proof of this theorem is obtained as a 
consequence of [LM] and the arguments in the 
previous section. It is important to note that 
we have not given an algorithm here strictly 
speaking, but rather a different formulation of 
the problem. Any solving algorithm can be 
used with this formulation for parts 1 and 2 in 
the above theorem. As for part 3 any algorithm 
which generates all extreme points can be ap- 
plied. (Or more efficient methods if need be). 
This technique to find the causes of tautologies 
0 5 0, can be easily extended to find the causes 
of inconsistencies: one has to record for each 
successive negative value taken by the objec- 
tive function, the combination of constraints 
that are responsible. 
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6 Negatable constraints and 

canonical representations 

One of the main theoretical and practical is- 
sues in Logic Programming is an efficient im- 
plementation of negation. One approach is 
to have a weaker form of negation, as in in- 
tuitonistic logic, another approach is to re- 
strict the use of negation to simple subformu- 
las. In [LMc], we introduce, in an abstract 
setting, the notion of negatable constraints. 
They represent the constraints which can be 
negated “for free” in a system that is with- 
out increasing the complexity of the associated 
solver. This corresponds to an intuitionistic 
behavior of disjunction (hence the dubious la- 
bel of “crypt0-intuitionism”). This property 
is closely linked to the existence of a canoni- 
cal form which is particularly suitable for con- 
straint propagation. The proposed axiomati- 
zation is sufficiently general to account for a 
variety of examples that come up in affine ge- 
ometry, group theory, symbolic computation, 
term algebras and elsewhere. It is also interest- 
ing to note that some of the axioms appear in 
a characterization of matroids. We will use our 
previous setting of linear constraints to intro- 
duce these notions and suggest how they may 
be systematically abstracted. 

Linear equality constraints define affine 
spaces. The well known geometric property 
“an a.fIine space is contained in a union of affine 
spaces iff it is contained in one member of this 
union” is used in [KKR] to show the homo- ’ 
morphism theorem. Let us call this property 
the strong compactness property. It implies 
that equality constraints are negatable. Indeed 
consider a system of equality constraints and 
a conjunction of inequations (that is negated 
equalities). How do we test this system for 
solvability? A replacement of each inequation 
by a disjunction of strict inequalities would 
lead to a combinatorial explosion and trans- 
form the problem into a linear programming 
problem. However this is not needed since the 

strong compactness property implies that we 
can test the set of equality constraints inde- 
pendently with each inequation. The set is not 
solvable iff the hyperplane associated with one 
of the inequations contains the afline space de- 
fined by the equality constraints. The key fac- 
tor behind the strong compactness property is 
the notion of dimension: one cannot cover an 
object of dimension d with a finite (even de- 
numerable in that case) number of objects of 
dimension strictly smaller than d. 

In [LMM] the problem of sets of equations 
and inequations in the Herbrand universe was 
addressed using the analogy with the situation 
of linear arithmetic equalities and inequations 
that we just described. AI1 that was needed 
was to introduce the notion of dimension of the 
set of solutions to an equality in the Herbrand 
universe: the number of domain variables in 
an idempotent mgu (which is an invariant). To 
test for solvability does not lead to a combina- 
torial explosion, and the unification algorithm 
remains sufficient. 

We can easily find similar examples of negat- 
able constraints in domains that benefit from 
the notion of dimension. Let us give a simple 
example with a different flavor. Let the do- 
main be a completely divisible group G. Let 
the constraints be with one argument: H(z) 
is satisfied iff z belongs to subgroup H of G. 
All constraints are negatable. The strong com- 
pactness property is established by an applica.- 
tion of the pigeon-hole principle. 

Let us now consider the problem of canoni- 
cal form, in the case of (positive) linear con- 
straints. A first use is for standardisation 
of representation: two sets of constraints in 
canonical form should be equal iff they repre- 
sent the same polyhedral set. This can be eas- 
ily achieved if the polyhedral set is full dimen- 
sional: a triangle in a two dimensional space 
is uniquely described by a set of three con- 
straints. If the set is not full dimensional there 
is an infinite number of non redundant equiva.- 
lent sets of constraints defining the same poly- 
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hedral set. The solution adopted in [LMc88] is 
quite natural: break the syntactic representa- 
tion in two parts. One is the uniquely repre- 
sentable set of equalities defining the affine hull 
of the polyhedrai set, the other is a unique set 
of inequalities as we are back to the full dimen- 
sional case. What is the link with the equalities 
as negatable constraints? 

Let us note first that the strong compactness 
property still holds: “A polyhedral set is con- 
tained in an union of hyperplanes iff it is con- 
tained in one member of this union”. So the 
equality constraints are still negatable, we have 
no combinatorial explosion and solvability is 
still a linear programming problem despite the 
presence of inequations. But if the constraints 
are in canonical representation we are in a bet- 
ter situation as the solvability problem reduces 
to Gaussian elimination despite the presence of 
inequalities. What happens is that a polyhe- 
dral set behaves exactly in the same way as 
its affine hull in the presence of inequations: 
an hyperplane contains a polyhedral set iff it 
contains its afhne hull. 

The same results would be achieved with 
convex sets instead of polyhedral sets, or even 
taking dense subsets of affine spaces. An ax- 
iomatization of this phenomenon leads to three 
axioms which are part of the characteriza- 
tion of matroids, the missing axiom being the 
exchange property. From these one can ex- 
tend the notion of canonical representation to 
sytems of constraints containing negative con- 
straints. Important results follow. Essentially 
they imply that we can separate, in the canon- 
ical form, the different types of constraints in 
a semantically meaningful way. In terms of 
implementation it means that we can use the 
solvers more efficiently. In terms of querying 
the system, it means that if the query is about 
say negatable constraints then we need consult 
only the negatable part of the canonical repre- 
sentation. 
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