Monotonic Aggregation in Deductive Databases

Kenneth A. Ross* Yehoshua Sagiv?
Columbia University Hebrew University
kar@cs.columbia.edu sagiv@cs.huji.ac.il

Abstract

We propose a semantics for aggregates in deductive databases based on a notion of mini-
mality. Unlike some previous approaches, we form a minimal model of a program component
including aggregate operators, rather than insisting that the aggregate apply to atoms that have
been fully determined, or that aggregate functions are rewritten in terms of negation. In order to
guarantee the existence of such a minimal model we need to insist that the domains over which
we are aggregating are complete lattices, and that the program is in a sense monotonic. Our
approach generalizes previous approaches based on the well-founded semantics and various forms
of stratification. We are also able to handle a large variety of monotonic (or pseudo-monotonic)
aggregate functions.

1 Introduction

Deductive databases allow views to be defined using programs consisting of logical rules. Recently,
a number of researchers have considered adding aggregation to the rule language. If the aggregation
is applied in a stratified fashion, where there is no recursion through aggregation, then the semantics
of a set of rules can be defined using standard iterated least-fixpoint techniques. For such programs
aggregation is always applied to relations and views whose extensions can be computed in advance.

However, there are interesting examples of views for which the natural formulation of the rules
is to apply recursion though aggregation. For example, one can define the shortest paths in a graph
in terms of shortest subpaths through intermediate nodes in the graph. Another example is the
company control problem, in which we say that company A controls company B if more than
50% of B’s shares are owned by A, or by companies that A controls. (Note the recursion in this
definition.)

Previous proposals have attempted to define the semantics of rules with recursively applied
aggregation, but they suffer from one of several deficiencies: The set of aggregate functions may be
limited (say to just minimum and maximum), the underlying database may be restricted in some
way (with relations required to be acyclic, for example), or the semantics may simply give too little
information about some predicates, giving an undefined truth value where a defined value would
be expected. One way or another, there are interesting examples of views that past approaches do
not adequately handle.

In this paper we propose a new semantics based on the idea of an iterated minimal model, in the
style of the perfect model semantics or the stratified semantics [2, 6, 10, 11]. However, unlike both
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of these semantics, we minimize components of programs that include aggregations of predicates
in the component, rather than requiring the aggregation be on lower level predicates that have
a previously assigned semantics. Our semantics is well-defined for a large class of programs that
we term monotonic programs. This class includes the company-control example, the shortest-path
example and a number of other interesting examples.

Our approach allows us to unify within one general framework many classes of program that,
up to now, have been considered separately. In addition, it allows us to define example programs
that were not admitted by past proposals. We identify sufficient syntactic conditions for programs
to be monotonic; these easily-checked conditions are general enough to include a wide variety of
examples.

The rest of this paper is organized as follows. In Section 2 we introduce our syntax and present
some motivating examples. In Section 3 we define the concept of a monotonic program, and
define the semantics of such programs. In Section 4 we develop sufficient syntactically recognizable
conditions that ensure that a program is monotonic, and present some additional examples. We
compare our techniques with related work in Section 5. Some additional issues are addressed in
Section 6, and we conclude in Section 7.

2 Basic Definitions and Examples

In Section 2.1 we present some basic material on lattices and fixpoints. In Section 2.2 we review
deductive databases. In Section 2.3 we define various concepts related to cost arguments and
aggregation. In Section 2.4 we define the notion of cost-consistency, which is a semantically
important requirement; in Section 2.5 we provide a syntactic sufficient condition called conflict-
freedom. Finally, in Section 2.6 we describe several motivating examples.

2.1 Fixpoints

Definition 2.1: Let D be a set partially ordered by C. We say (D,C) is a complete lattice if for
every subset X of D, both the least upper bound (1lub, or U) of X and the greatest lower bound
(glb, or M) of X with respect to C exist.

Let T : D — D be a mapping. We say T is monotonic if T(z) C T(y) whenever z C y, for
z,y€ D. O

The following result is a classical theorem of Tarski [16].

Theorem 2.1: Every monotonic operator 17" on a complete lattice (D, C) has a least fixpoint that
is equal to glo{z|T(z)C z}. 1
2.2 Deductive Databases

Deductive databases extend relational databases by allowing one to define views using recursively
applied rules. Such rules allow the succinct declarative expression of queries that cannot be
expressed in relational languages such as relational algebra. See [17] for an introduction to deductive
databases.

Definition 2.2: A rule is a logical formula of the form
A — Ll, Ceey Ln

where A is an atom, and Lq,..., L, are literals. We refer to A as the head of the rule and to
Lq,..., L, as the body of the rule. Each L; is a subgoal of the rule. All variables are assumed to



be universally quantified at the front of the rule, and the commas in the body denote conjunction.
If the body of a rule is empty then we may omit the “<—” symbol.

A program is a finite set of rules. A program component is the subset of rules for a set of
mutually recursive predicates. O

We shall consider only one program component at a time. For a particular component P, we
shall say pis a “CDB predicate” of P if p appears in the head of a rule in P. We shall say p is an
“LDB predicate” of P if p appears in the body of a rule in P but not in the head of any rule in
P. The notions of CDB and LDB are componentwise counterparts of IDB and EDB respectively.
Think of the CDB as the “current component database” and the LDB as the “lower component
database.”

We shall assume the presence of some “built-in” predicates over the cost domains, such as =,
< and < over the natural numbers. Similarly, functions such as addition and multiplication on
the natural numbers are also assumed to be built-in. Such predicates and functions have their
usual meaning, and may appear in the bodies of rules. There will be no safety problem using
such predicates and functions as long as their arguments are bound to values elsewhere in the
body of each rule in which they appear. In this paper, we assume that the built-in predicates are
equalities or inequalities involving arithmetic expressions, and that built-in functions appear only
as arguments of built-in predicates.

2.3 Terminology

In this section we extend deductive databases with syntax for performing aggregates.

2.3.1 Cost Predicates and Aggregate Subgoals

Definition 2.3: A cost-predicate is a predicate having a distinguished argument, called the cost-
argument, that ranges over a given cost-domain. A cost-atom is an atom whose predicate is a
cost-predicate. Different cost-predicates may have different cost-domains. O

We shall usually write the cost-argument as the final argument of an atom. In this paper we shall
assume that the column that contains the cost argument is known; in practice a system would
need a declaration identifying which columns are cost arguments for each predicate, and which cost
domains those arguments range over.

In the case of a boolean cost-domain we may choose to leave the cost argument implicit. So,
rather than writing p(a, b, 1) where 1 is the boolean value corresponding to true, we may simply
assert that the atom p(a,b) “is true.”

We shall assume that the cost argument of an atom functionally depends upon the other
arguments of the atom. So the atoms p(a,3) and p(a,4) could not be simultaneously true. We
make this assumption for the following important reason. Most query evaluation strategies insist
on performing duplicate elimination in order to guarantee termination. Thus we cannot expect to
rely on the multiplicity with which a given tuple appears as a semantically meaningful entity. In
other words, if we were to calculate the sum of all C' values satisfying p(a, ('), we could not expect
to count p(a,3) twice if p(a,3) was derivable using two separate rules. Thus we find ourselves in a
difficult situation. If rule ry allowed us to derive p(a,3) and rule ry derived p(a,2), then the sum
computed would be 5. However, if both rules derived p(a, 3) then the sum would be 3. The resulting
sum operation would be nonmonotonic and nonstandard. If the cost argument functionally depends
upon the other arguments then such difficulties do not arise.

In general, determining whether a derived recursive predicate satisfies a functional dependency
is undecidable [1]. Nevertheless, for small strongly connected components either ad hoc arguments



or some sufficient conditions (such as those developed in Section 2.5) could be used to establish
functional dependencies.

Definition 2.4: (Aggregate Subgoal) Consider a domain D and a range R. Let M (D) denote the
class of multisets over D, and suppose that F is a map from M(D) to R. We call F an aggregate
function and can use it in an aggregate subgoal of the form

CIfE:p(Xl,"'7Xn7Y17"'7Ym7E)

where pis a cost-predicate and D is the cost-domain of the cost-argument of p. In the above subgoal,
X1,..., X, are the variables that appear also outside the subgoal and they are called grouping
variables, while Y7,....Y,, are the local variables that appear only in this subgoal. The variable
F, called a multiset variable, appears in the cost-argument of p, and the only other occurrence of
F is immediately following F (denoting the fact that £ is used to form the multiset to which the
aggregate function is applied). The variable C, called an aggregate variable, must be different from
Y1,..., Y, (and from F).
A ground instance of the above aggregate subgoal is of the form

C:fE:p($1,"',$n,Y17'"7Ym7E)

where ¢ and z7,...,2, are constants. Given an interpretation for predicate p, the above ground
instance is satisfied if and only if ¢ = F(5), where S is the multiset defined by

S = 7T-E(O-Xlzavl,~~~,Xn:90n]3()(17 o '7Xn7Y17 o '7Ym7 E))

and P is the relation for p (according to the given interpretation). Note that the projection is
interpreted as in SQL (i.e., duplicates are retained).
We also allow aggregate subgoals of the form

CéfE:p(le"'vXnvylv"'vymvE)

in which we use a different equality symbol. The only difference from the previous case is the
following: A ground instance is false if the multiset is empty.

In a similar fashion, we can also define an aggregate subgoal that has a conjunction of atoms
rather than a single atom p(Xy,---, X,, Y1, -+, Y, E). (We do not allow negation within an
aggregate subgoal.) Note that in the case of a conjunction, the multiset variable F appears in
some cost-arguments of the conjunction (and immediately following the aggregate function F), but
nowhere else. O

For deductive databases without aggregation, a “ground” subgoal is a variable-free subgoal.
However, a “ground” aggregate subgoal has only its grouping variables and result value instantiated
to constants. For example, the following is a ground aggregate subgoal, assuming that ' is a local
variable:

70 = average G’ : record(john, C, G").

Observe that the aggregate subgoal
C = FE :p(le"'vXnvylv'"7Ym7E)
has the same semantics as the conjunction

p(le'"7Xn7Z17"'7Zm7G)7CIfE:p(le'"7Xn7Y17"'7Ym7E)



where Z;,...,Z,, and G are variables that appear only in the p subgoal. So “=” is a restricted

application of the “=” version of aggregation, motivating the “r” in the symbol. Thus “=” does
not give any additional expressive power if we already have “=".
The two types of aggregate subgoals (one with “=” and the other with “=") are each convenient

in different situations, and we shall see examples of both in this paper. The version based on “="

corresponds more closely with SQL, which does not aggregate over empty groups. The version
based on “=” is needed when empty groups are semantically meaningful, but we shall have to pay
some attention to the issue of safety (see Section 2.3.3).

If an aggregation is performed on a predicate with an implicit cost argument, then we omit the

cost argument from the aggregate subgoal, as in
p(N) «— N = count : ¢(X)

Example 2.1: Suppose we have an EDB relation record such that record(S,C,G) is true when
student S scored a grade GG (assume the grade is expressed as a percentage) for course C'. The
students’ individual averages over all courses can be expressed using the rule

s-avg(S, () «— G = average G’ : record(S,C,G")
The class average for a given course would be written
c-avg(C,G) «— G = average G’ : record(S,C,G")

The only significant difference between the two rules is that the first average is grouped by 5, while
the second is grouped by C'. We could compute the average grade of all classes with the rule

all-avg(G) — G = average G’ : c-avg( S, G')
(Note that the alternative rule
all-avg(G) — G = average G’ : record(S,C,G")

may compute a different result, since classes with more students would be weighted higher.) The
rule

class-count(C, N) — N = count : record(S,C,G)

gives the count of students in each nonempty class, while the rule
alt-class-count(C, N') — courses(C'), N = count : record(5,C,G)

gives the count of students in each class, whether empty or not, assuming that coursesis a predicate
that is true for all courses. O

2.3.2 Default Values

In some cases it may be appropriate to assign default cost values to atoms whose status has not
yet been derived using rules. In a circuit, for example, we may make the assumption that all wires
start initially with the value 0. Thus, if ¢(W, D) is an atom indicating that wire W has truth value
D, we would start with ¢(W,0) being true for every W. Without such a default value, we would
have no atoms of the form ¢(W, D) true until they were derived using other rules.

This distinction can sometimes be important, as we shall see in Example 4.4. Thus we need
a mechanism to declare that a particular cost-predicate has a default value for its cost argument.
The syntax we shall use is



declare default t(W,0)

which indicates that cost-predicate ¢ has 0 as the default cost argument. Of course, we are not
required to represent all of the instances of the atoms with default cost values. We shall call such
a cost-predicate a default-value cost-predicate.

We shall insist that the default truth value is the minimal element with respect to the cost order
C. This property is natural, since the default value will usually be replaced with another value,
and we want the new value to be larger according to the cost order. Since we will be dealing with
a complete lattice of cost values, a minimal element always exists, being the greatest lower bound
of all elements of the lattice.

2.3.3 Safety

Safety is needed to guarantee finiteness of the result. However, safety (as defined below) cannot
guarantee termination of a bottom-up evaluation. Methods for detecting termination (e.g., [4, 14,
13]) may be used for that purpose.

In addition to negative subgoals and built-in subgoals, there are two other cases of subgoals that
may have infinitely many ground instances that are satisfied (with respect to a given interpretation).
One case is aggregate subgoals that uses the = form, since in this case, there may be infinitely many
cases in which the aggregate is taken over the empty set. For example, the subgoal

N = count : record(S,C,G)

is satisfied with N = 0 for every possible value of (' other than those representing nonempty classes.
It is important that the grouping variables in such subgoals be restricted to a finite set.

Similarly, a default-value cost-predicate has infinitely many true instances, each with the default
cost value. Thus we need to make sure that references to default-value cost-predicates restrict all
of the non-cost arguments.

Definition 2.5: (Range-restriction) Consider a rule r. A limited argument is a non-cost argument
of an LDB or CDB predicate with no default declaration. The set of limited variables is the minimal
set containing all variables V that satisfy one of the following conditions.

e V appears in a limited argument of a positive subgoal.

e V is a local variable of an aggregate subgoal, and inside that subgoal, V appears in a limited
argument.

e V is a grouping variable of an aggregate subgoal of the form =, and inside that subgoal, V'
appears in a limited argument.

e V appears in a built-in subgoal of the form V =Y or of the form Y = V', where Y is a limited
variable.

e V appears in a built-in subgoal of the form V' = a or of the form a = V', where « is a constant.

The set of quasi-limited variables is the minimal set containing all variables V' that satisfy one of
the following conditions.

e V appears in a cost argument of an LDB or CDB atom and that atom appears either as a
positive subgoal or inside an aggregate subgoal.

e V is an aggregate variable (of an aggregate subgoal).



e V appears in a built-in subgoal of the form » = F or of the form v = F, where F is an
arithmetic expression, and each variable in F is either quasi-limited or limited.

Rule r is range-restricted if

e in each negated subgoal, the variables in non-cost arguments are limited and the variable in
the cost argument is quasi-limited,

e in each subgoal of a default-value cost-predicate, the variables in non-cost arguments are
limited,

e in each aggregate subgoal, all the grouping variables are limited,

e in each aggregate subgoal, all local variables that appear in noncost arguments (of LDB or
CDB predicates) are limited,

e in each built-in subgoal, each variable is either quasi-limited or limited, and

e in the head, the variables in non-cost arguments are limited and the variable in the cost
argument is quasi-limited.

a

Note that the definition of a range-restricted rule does not place any restriction on variables that
appear in cost arguments of (positive) atoms. However, by definition, such variables are quasi-
limited.

The notion of limited variables is a simple extension of the definition from [17]. Quasi-limited
variables range over the cost domain. The intuition behind a quasi-limited variable is that its value
is uniquely determined by the values of other limited (or quasi-limited) variables in the rule.

Example 2.2: Suppose that ¢ is a default-value cost-predicate. The following rules are range-
restricted.

alt-class-count(C, N') — record( X,C,Y), N = count : record(S,C, )
UG, C) — gate(G, and),C' = AND D : [connec( G, W) N t(W, D)]
s(X,Y,C)«— C =min D : path(X, Z,Y, D)

The following rules are not range-restricted.

alt-class-count(C, N ) — N = count : record(9,C,G)
(G, and,C) — gate(G, and), C' = AND D : [connecl{ G, W) A t(W, X, D)]
s(X,Y,C)— C=min D : path(X,Z,Y,D)

An extension is a set of ground atoms for the LDB and CDB predicates. The core of an
extension is the subset of all ground atoms « such that the value in the cost-argument of a (if it
exists) is not the default value.

When computing a program P, there is a need to represent explicitly only the core of the
extension. Therefore, we assume that a computation starts with an extension of the LDB that
has a finite core, and during the computation the following must be true. First, the core of the
extension of the CDB is always finite. Second, aggregates are taken over finite multisets. Both of
these conditions are satisfied if all rules are range-restricted and if, in each cost-predicate, the cost
argument is functionally dependent on the non-cost arguments. Formally, we have the following
lemma.



Lemma 2.2: Consider a program P in which all rules are range-restricted. Let D be an extension
that satisfies the following two conditions. First, the core of D is finite. Second, no two atoms in
D differ only on the cost argument. Let G be the set of all ground instances of rules of P whose
bodies are satisfied according to D. The following is true for G.

o (4 is finite.
o For each ground aggregate subgoal in &, the multiset for this ground instance is finite.

o If h is the head of some rule in &, then the constants in the noncost arguments of & are from
the active domain.

Proof: Let the active domain consist of the constants that either appear in limited arguments of
atoms from D or appear explicitly in P. Note that the active domain is finite.

Now consider a rule r of P. In order to satisfy r, each limited variable must be substituted by
a constant from the active domain. Also, once constants are substituted for the limited variables,
unique values are determined for the quasi-limited variables. Since variables appearing in noncost
arguments are required to be limited and other variables are required to be quasi-limited, it follows
that G is finite and each ground aggregate subgoal in G has a finite multiset. [

In what follows we shall assume that all rules are range-restricted.

2.4 Cost Consistency

There is a potential problem of inconsistency in that a cost atom may be defined in more than one
way. For example, the two rules

p(X,C) — C =min D : ¢(X, D)
p(X,C)—C =sum D :r(X,D)

are incompatible if ¢ and r contain elements with the same first argument, since ' is supposed to
be functionally dependent on X. There are other ways to generate inconsistencies. For example,
the single rule

p(X,C)— q(X,Y,C)

may violate the functional dependency of C' on X in p, assuming that ' is a cost argument of both
p and g¢.

Definition 2.6: We say a program is cost-consistent if for every set of CDB and LDB relations
satisfying the required functional dependencies of cost arguments, the set of tuples in the heads
generated by a single application of all rules in the program also satisfies the required functional
dependencies of cost arguments. O

An equivalent definition of cost-consistency is given in terms of a Tp operator in Section 3.
Essentially, we need to ensure that no pair of rules can generate conflicting cost arguments. In the
next section we describe a sufficient condition for cost-consistency.

2.5 A Syntactic Sufficient Condition for Cost Consistency

We first need to ensure that each rule on its own respects the functional dependency of the cost
argument.



Definition 2.7: (Cost-respecting rule.) Let r be a rule whose head has a cost argument. We
say r is cost-respecting if it is possible to infer that the cost argument in the head is functionally
determined by the non-cost arguments using all of the following.

1. The functional dependencies in the body of the rule.

2. The functional dependencies stating that an aggregate’s value is functionally dependent on
the grouping variables.

3. Armstrong’s axioms [3, 17]. 0
Example 2.3: As discussed above, the rule
P(X,C) = q(X,Y,C)
is not cost-respecting. The rule
path( X, Z2,Y,C) — s(X, Z,Ch), ard(Z,Y,Cs),C = C1 + Cq

is cost respecting since XY Z — (' can be inferred using X7 — €1, YZ — (s, C1Cy — C and
Armstrong’s axioms. The rule

s(X,Y,C)— C=min D : path( X, Z,Y, D)

is cost-respecting since the aggregate €' is computed with respect to the grouping variables X and
Y,and so XY — (. O

We now consider the issue of conflicting cost arguments from different rules. A simple but
restrictive way to ensure consistency is to restrict programs so that no two heads of rules with cost
arguments are unifiable. We shall generalize this restrictive condition to allow rules with unifiable
heads under certain conditions.

In order to avoid conflicting cost values we need to ensure that for any pair of rules whose heads
unify, either (a) the unified versions of the rules cannot have their bodies simultaneously satisfied,
or (b) the unified rules generate identical values for the cost arguments when they generate atoms
with the same non-cost arguments.

Definition 2.8: (Containment mapping [17].) Let r; and ry be rules, and let h be a mapping
from the variables in rule vy to variables or constants appearing in ro. We say h is a containment
mapping from ry to ry if the following conditions hold:

o After applying h, the head of ry is identical to the head of ry, and

o After applying h, each subgoal of ry is identical to a subgoal of 5. |

The existence of a containment mapping guarantees that the tuples generated by r, are a subset
of those generated by ry [17].

Definition 2.9: (Integrity constraint.) An integrity constraint is a conjunction of subgoals, which
we write as a “headless rule” of the form

HSl,...,Sn.

The semantics of such an integrity constraint is that we are guaranteed (according to the semantics
of the application) that for no ground instance g of the constraint will g be satisfied according to
the database. O



Example 2.4: In an application based on circuits, the integrity constraint
— gate(G, or), gate(G, and)

states that no gate (¢ can be both an or gate and an and gate. (See Example 4.4.) In an application
dealing with directed graphs, the integrity constraint

— arc(direct, Z,C')

states that the constant direct does not appear as the first argument in any tuple of the are relation.
(See Example 2.6.) O

Definition 2.10: (Conflict-free.) We say a program is conflict-free if every rule is cost-respecting,
and for every pair of rules r; and ry in the program whose heads, restricted to the noncost
arguments, unify with most general unifier 6:

1. There exists a containment mapping from r16 to ro8 or vice-versa, or

2. The conjunction of the bodies of 718 and r,6 contain an instance of a given integrity constraint.
O

Example 2.5: The program

X, X, Y, M) — s(X,Y, M)
(X, Z,Y,N)—c(X,Z),s(Z,Y,N)

is cost-respecting since, after unifying the noncost arguments of the two rule heads, there is a
containment mapping (that maps M to N) from the first rule to the second.
Given the integrity constraint < arc(direct, Z,C'), the program

path( X, direct,Y, D) — arc(X,Y, D)
path( X, Z2,Y,C) — s(X, Z,Ch), ard(Z,Y,Cs),C = C1 + Cq

is cost-respecting, because the conjunction of the two rule bodies (once the noncost arguments of
the heads have been unified) is

arc(X,Y, D), s(X, direct, C1), arc(direct,Y,C3),C = C1 + Cy
which contains an instance of the subgoal in the integrity constraint. O

Lemma 2.3: If a program is conflict-free, then it is cost-consistent.

Proof: We prove the contrapositive. Suppose P is not cost-consistent, so that atoms p; and ps
differ only in their cost arguments, where p; and p, are generated in a single application of the rules
to some given relations. If p; and p; were generated by the same rule, then that rule could not be
cost-respecting, and so P would not be conflict-free. If p; and p; were generated by different cost-
respecting rules, then it is clear that there is no containment mapping between unified versions of
those rules, since there is no actual containment. Further, it is also clear that no integrity constraint
prevents the bodies of both rules from being simultaneously true. Hence P is not conflict-free. |

We shall demonstrate that each of the examples presented in this paper is conflict-free.

10



2.6 Motivating Examples

In this section, we present two motivating examples, namely the shortest-path program from [7]
and a version of the company control example originally from [5], which is also described in [9].

Example 2.6: (Shortest path) Suppose a relation arc is given, where arc(X,Y, W) means that
there is an arc in some graph from X to Y of weight W. We express the shortest path relation s
using the following rules:

path( X, direct,Y,C') — arc(X,Y,C)
path( X, Z2,Y,C) — s(X, Z,Ch), ard(Z,Y,Cs),C = C1 + Cq
s(X,Y,C)«— C =min D : path(X, Z,Y, D)

In [7] the shortest path program has one fewer attributes for the predicate path. We include the
extra attribute Z, which represents the first intermediate node on the path, to ensure that the cost
is functionally dependent upon the other attributes. This extra argument is also necessary if one
wishes to construct the actual shortest paths.

Each rule above is cost-respecting. This program is conflict-free assuming the integrity con-
straint that the first argument of the arc relation is not direct. O

Example 2.6 applies to finite graphs. For infinite graphs, the min of an infinite set of lengths is
not necessarily well-defined. We shall address this issue in Section 6.1.

Example 2.7: (Company control) Suppose a relation s is given, where s(X,Y, N) means that
company X owns a fraction N of all the shares in Y. We say a company X controls another
company Y if the sum of the shares it owns in Y together with the sum of the shares owned in Y
by companies controlled by X is greater than half the total number of shares in Y. (Note that this
definition is recursive.) We express the “controls” relation ¢ using the following rules:

(X, X,Y,N)— s(X,Y,N)

(X, Z,Y,N)—c(X,Z),s(Z,Y,N)
m(X,Y,N)«— N =sum M : co(X,Z,Y, M)
(X,Y)—=m(X,Y,N),N> 05

cv(X,Z,Y, N) expresses the fact that X controls a fraction N of the shares in Y through interme-
diate company Z. m(X,Y, N ) expresses that X controls a fraction N of the shares in Y.

FEach rule above is cost-respecting. This program is conflict-free because there is a (trivial)
containment mapping from the first rule to the second once the heads of both rules are unified. O

3 Minimal Models and Monotonic Programs

For programs without negation or aggregation there is a well-accepted semantics based on the least
Herbrand model of the program. We shall now consider programs with aggregate subgoals (but
not negation for the moment) and look for an extension of the notion of minimality.

We should first remark that we do not always expect to have a unique minimal model when the
program may have aggregates. For example, the program

p(b)
q(b)
p(a) — 1 = count : ¢(X)
q(a) — 1 = count : p(X)

has two minimal Herbrand models, namely {p(a), p(b),q(b)} and {g(a), p(b),q(b)}.

11



Definition 3.1: The Herbrand universe of a program P is the set of all possible terms constructible
from the function and constant symbols appearing in P. The aggregate Herbrand base of P is the
set of atoms that can be generated by substituting terms from the Herbrand universe for non-
cost arguments of predicates in P, and interpreted constants of the appropriate domain for cost
arguments of predicates in P. O

Definition 3.2: Let p(z1,---,2,,¢) and p(y1,- -, Yn, ') be ground cost atoms. Suppose that the
cost argument of p comes from a partially ordered domain (D, C). We shall write

p(xlv' . '7$nvc) E p(ylv' . '7ynvc/)

if and only if z; = y; fori = 1,---,n, and ¢ C ¢’. If p and ¢ are ground atoms without cost

arguments, then p C ¢ if and only if p=¢. O

Definition 3.3: An aggregate Herbrand interpretation I for a program P containing aggregates
is a subset of the aggregate Herbrand base of P such that no two atoms in I differ only on the
cost argument, and such that interpreted predicates are given the standard interpretation for the
appropriate domain. If p is a default-value cost predicate with n noncost arguments, then we
additionally require that for all ¢4,..., ¢, in the Herbrand universe, there is a ¢ in the cost domain,
such that p(g1,...,¢n,¢)isin [.

We say I C I' if for every atom p in I there exists an atom p’ in I’ such that p C p'. O

Definition 3.3 requires aggregate Herbrand interpretations to respect the functional dependency
of cost arguments upon the other arguments. They must also give the expected semantics for
interpreted predicates, such as <, +, and =. The requirement for default-value cost predicates p
means that an interpretation must give some cost value (usually the default value) to every instance
of the noncost variables of p. We use J; to denote the interpretation that is empty except that it
gives default values to all instances of default-value cost predicates. We assume that the default
value for each cost domain is the minimal value.

Definition 3.4: If p is a ground atom, then we say p is satisfied in an interpretation [ if p € I. If
—p is a ground negative literal, then we say —p is satisfied in an interpretation I'if p & I. If pis a
ground aggregate subgoal, then we use Definition 2.4 to determine whether p is satisfied, using [
to define the extension of the aggregated relation(s). The body of a ground rule r is satisfied in [
if all subgoals in the body are satisfied in I. A ground rule is satisfied in I if its head is satisfied in
I, or if its body is not satisfied in 1. O

Definition 3.5: An aggregate Herbrand interpretation [ is an aggregate Herbrand model of a
program P if every ground instance of every rule in P is satisfied by [I.

I is an aggregate Herbrand pre-model of P if for every ground instance of every rule r in P,
whose body is satisfied by I, the head atom & of r is such that ~ C &’ for some element A’ of 1. O

A pre-model allows the cost in a head predicate of a rule to be greater (with respect to C) than the
value needed to satisfy the rule. All models are pre-models, but the converse is false. For example,
{p(a,3),q(a,2)} is a pre-model of the single rule program

p(X,C) — q(X,C)

agsuming that 2 C 3, but not a model.
We shall omit the adjectives “aggregate Herbrand” since we shall be dealing exclusively with
aggregate Herbrand interpretations, models, and pre-models.
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Theorem 3.1: Let H be the domain of interpretations for a program component P, and let C on
H be as defined in Definition 3.3. If the cost arguments of P belong to a complete lattice (D, C),
then (H,LC) is also a complete lattice.
Proof: We first show C is a partial order on H. Suppose C were not transitive on H. Then there
must exist Iy, I3, and I3 with Iy C I, I, C I3, but Iy £ Is. By the definition of C, there are atoms
p1 € I, p2 € Iy and ps € I3 such that py C py, p2 C ps, but p; [Z p3. Since C on atoms requires
equality on the non-cost arguments, we must have ¢y, ¢9, and ¢3 in D such that ¢; C ¢, ¢ C ¢s,
but ¢; [Z ¢3. This last property contradicts the transitivity of C on D. A similar argument can be
used to demonstrate the antisymmetry of C on H.

Given a set S = {95, 99,...} of interpretations, we define NS and US as follows. If a non-cost

atom p(xq,---,x,) is in every (respectively, some) S;, then p(xq,---,2,) is in NS (respectively LLS).
If every S; has a cost atom of the form p(z1,---, 2., ¢;), then p(zq, -+, 2,,M{¢;}) is in M9, If some
S; has a cost atom of the form p(z1,---,2,,¢;), and C is the set of such ¢; values from those \5;
having such a cost atom, then p(zy,---,2,,UC) is in US.

We need to prove that M5 is indeed the greatest lower bound of 5, and that LS is the least
upper bound. It is clear from the definitions that NS is a lower bound, i.e., that NS C 5; for each
i, since M{¢;} is a lower bound in D. Now suppose that T was a greater lower bound, so that

o for each ¢, T C 5,
e MNSCT,and
e there is some atom p, such that p € T" and {p} Z NS.

There are two cases to be considered. First, if p is a non-cost atom, then p must be in every 95;
and hence in M5, a contradiction. The second case is when p is a cost atom, which is denoted as
p(g1,- - gn,c). Foreach i, T C S;. Therefore, for each i, there is an atom p(¢1,...,9.,¢;) € 5,
such that ¢ C ¢;, and consequently, ¢ C M{¢;}. By definition, p(g1,...,0,,M{c¢;}) € NS. But
¢ C i{e;}, implies {p(g1,...,9n,¢)} E M9, a contradiction. The argument for least upper bounds
is similar. |1

Theorem 3.1 also applies when we restrict our interpretations to contain just CDB atoms.

Definition 3.6: Let P be a program component with cost arguments having values from a com-
plete lattice (R,C). Let I be an interpretation for predicates defined in all lower components (i.e.,
the LDB), and let J be an interpretation for the predicates defined in P (i.e., the CDB). We say
J U is a minimal model of P based on I if JUI is a model of P, and there is no J' (different from
J) such that J' C J and J' U [ is a model of P. O

Example 3.1: Consider the program of Example 2.6. Let the arc relation be given by I =
{arc(a,b,1),ardb,b,0)} corresponding to the following graph.

e

a—b

Suppose the domain and range are the nonnegative integers, and that C is the > relation.
Beware! “C” here means “greater or equal to,” and so minimal models will have larger cost values.
Two models of the program (omitting the arc facts) are

My = {path(a, direct, b, 1), path(b, direct, b,0), path(a,b,b,1),s(a,b,1),s(b,b,0)}
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and
My = {path(a, direct, b, 1), path(b, direct, b,0), path(a,b,b,0), s(a,b,0),s(b,b,0)}.

My C My, since s(a,b,1) C s(a,b,0) and path(a,b,b,1) C path(a,b,b,0), while My IZ M;. As we
shall see below, Mj is in fact the unique minimal model of the component based on I. Note that
My g M,. O

Definition 3.6 can easily be extended to the case where not all cost arguments have the same
type of cost domain. “C” can be interpreted as a composition of several partial orders Cy,---,C,
with each such partial order applying to predicates having the appropriate cost-domain.

Definition 3.7: Let P be a program component, and let I be an interpretation for predicates
appearing in the bodies of rules in P but not in their heads (i.e., LDB predicates). Let .J be an
interpretation for predicates appearing in the heads of rules in P (i.e., CDB predicates). Define

Tp(J,I)={A: A~ By, ---, B, is a ground instance of a rule in P,and TUJ E By A---AB,} U Jy
We say P is cost consistent if for every such J and I, Tp(J, ) is an interpretation. O

Note that T'p(J,I) is defined as the least upper bound of two sets. One set consists of atoms
that are derived by applying the rules, while the other set, .Jy, is used to ensure that appropriate
instances of the default-value cost predicates are present. Cost-consistency in Definition 3.7 (which
is equivalent to Definition 2.6) addresses the consistency issue discussed in Section 2.4. We
effectively say that a program is cost consistent if for every pair of interpretations J and I, Tp(J, 1)
contains no conflicting cost atoms. In what follows, we assume (without further comment) that
program components are cost consistent.

Proposition 3.2: Let [ be a fixed interpretation for the LDB predicates of a program component
P, and let J vary over interpretations on the CDB of P. Then J U [ is a pre-model of P if and
only if Tp(J, 1) C J.

Proof: Suppose that J U I is a pre-model of P. There are two cases to be considered. First, if
h € Tp(J,I) because h is the head of a ground instance of a rule in which the body is satisfied
by J U I, then there is some element A’ € J such that h C h'. The second case is when h is in
Tp(J,I) because h isin Jy. Let p(g1,...,gn,c) denote h in this case. Note that by the definition of
Jy, predicate p must be a default-value cost-predicate and ¢ must be the minimal value of the cost

domain. Since J is an interpretation, there is a some ¢/, such that p(g1,...,gn,¢') € J, and clearly,
¢ C ¢/. Therefore, {h} C J also in this case. Since this observation holds for every h in Tp(J,I),
Tp(J,I)C J.

Conversely, if Tp(J, 1) C J and r is a ground instance of a rule with head h such that the body
is satisfied by J U I, then there must be some h’ € J such that A~ C A'. Since this observation holds
for every rule r, we conclude that J U I is a pre-model of P. |

Definition 3.8: Let I be an interpretation for the LDB predicates of a program component P.
We say P is monotonic if Tp(J, ) is monotonic in J for every fixed [. O

Proposition 3.3: For a monotonic program P and for fixed I, the least fixpoint J of Tp (with
respect to C on the first argument) exists, and J U [ is the least pre-model of P that is based on [.
Proof: By Theorem 2.1, since we have a monotonic operator on a complete lattice. [

We shall denote the least fixpoint of Tp for a given second argument I by J}D, and let M}D =
JPul
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Proposition 3.4: M}D is a model of a monotonic program P.
Proof: Since Tp(JF, I)=JF. 1

Corollary 3.5: For a monotonic program P, M}D is the least model (with respect to C) of P based
on I, and is the greatest lower bound of all models of P based on I. |

For Horn programs, the intersection of all Herbrand models is itself a model of the program,
which is therefore the least Herbrand model and the unique minimal Herbrand model. We have
shown an analogous result for monotonic programs with aggregates. Note that we had to consider
pre-models and not just models because (unlike the case for Horn programs) the set of models is
not closed under the operation of greatest lower bound (M).

Under what conditions can we ensure that there is a unigue minimal model for a component?
We basically need to prove that a program is monotonic with respect to a given partial order. We
can ensure this by insisting that all aggregates are monotonic operators, and that cost values (and
truth values) in the head are monotonic functions of the cost values in CDB predicates in the body.
We shall formalize this intuition in Section 4.

Example 2.6 is monotonic. Example 2.7 is monotonic assuming that the cost-domain for share
proportions is some subset of R* U {oc} that is closed with respect to sum. In both cases, the
corresponding least models give the expected semantics. Thus we have achieved a framework
within which a number of independently proposed examples can be handled.

4 Sufficient Conditions for Monotonic Programs

In order to apply the monotonic semantics, it is important to be able to syntactically recognize
programs that are monotonic. We address this question in this section. In Section 4.1 we discuss
the monotonicity of the aggregate functions themselves. We use these monotonicity properties in
Section 4.2. In Section 4.3 we present some examples of programs satisfying the stated sufficient
conditions.

4.1 Monotonic Aggregate Functions

Let D be some domain, R some range. Let the function F be a map from M (D), the multisets over
D, into R. Let Cg be a partial order on elements of R and let Cp be a partial order on elements
of D. (In the next section, we will focus particularly on complete lattices (D,Cp).) We extend
Cp to M(D) as follows: If I and I’ are in M (D) then I Cp I’ if there is an injective map m from
elements of I to elements of I’ such that ¢ Cp m(7) for all i € I.

We say F is monotonic on (D,Cp, R,Cp) if the following condition holds:

VI,I'e M(D):1Cp I' = F(I)Cgr F(I')

(In most of our examples, D = R and Cp=LCp.) Note that Cp is not necessarily a partial
order on M(D), since it is possible to construct distinct infinite multisets M and M’ such that
M Cp M'Cp M. An example of this behavior is when D is NT U {oo} (i.e., the positive integers
with a limit element), Cp is <, M = {1,2,3,...}, and M’ = {2,3,4,...}. Restricted to finite
multisets, Ep is a partial order.

The intuition behind monotonic aggregate functions is that adding more elements to the multiset
being operated upon, or increasing the values of those elements (with respect to Cp), can only
increase the value of the function (with respect to Cp).

Example 4.1: Figure 1 shows examples of monotonic aggregate functions on various domains,
all of which are complete lattices. R denotes the reals, N denotes the nonnegative integers, B

15



D Cp|MNp |Up | 1p | R Cr|Llr | F
RU{f£oo} | < | min | max | Loo | RU{£oo} | < | Loo | maximum
R*U{x} | < |min | max |0 R U{x} | < |0 max imum
RU{f£oc} | > | max | min | oo RU{£o} | > | oo | minimum
R*U{x} | < |min | max |0 R U{x} | < |0 sum

B > | v A 1 B > |1 AND

B < |A v 0 B < o O0R

Nt U{oc} | € |min | max |1 Ntu{ec} | < |1 product
B < |V A 0 NuU{oo} < |0 count
95 C N U 0 95 C 0 union
25 D U N S 25 D S intersection
E C N U 0] B < |10 P

Figure 1: Monotonic Aggregate Functions.

denotes the booleans (where 1 represents true and 0 represents false), S denotes an arbitrary set,
and E denotes the domain of (multigraph) edges. A superscript of 4 indicates the positive subset
of the values, and a superscript of * denotes the nonnegative subset. P denotes any monotonically
increasing property of a multigraph, such as “having a simple path of length 4.” O

In the context of databases we shall only really be interested in finite multisets. However, if
relations are permitted to become infinite, then we may need infinite objects (like oo) to represent
aggregates of infinite multisets.

4.1.1 Pseudo-Monotonicity

An aggregate function need not be monotonic in a component P in order for the corresponding Tp
to be monotonic in its first argument. Consider the AND operator on booleans with respect to the
ordering < on truth values. A larger multiset of boolean values may give a smaller value for the
result of the aggregate, for example

AND({1}) £ AND({0,1}).

However, if the size of the multiset on which AND operates is constant, then AND is in some sense
monotonic with respect to <. For any fixed £ > 0, AND is a monotonic operator on k-element
multisets of boolean values. Increasing one of the k£ truth values from 0 to 1 can only increase the
result of the conjunction.

Definition 4.1: Let F be an operator from M (D) into R. We shall say F is pseudo-monotonic on
(D,Cp, R,Cp) if for every fixed k£ > 0, and for every pair I and I’ of multisets over D of cardinality
k,

ICpI'=s F(I)CrF(I'). O

As discussed above, AND is pseudo-monotonic on (B, <,B, <) although not monotonic on the
same structure. max is pseudo-monotonic on structures with partial order > and min is pseudo-
monotonic on structures with partial order <. Even average is pseudo-monotonic with respect to
structures having partial order <.
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4.2 A Syntactic Sufficient Condition for Monotonic Programs

In this section, we define syntactic conditions on programs that guarantee monotonicity. Recall
(from Definition 2.4) that in an aggregate subgoal of the form

CIfE:p(Xl,"'7Xn7Y17"'7Ym7E)

C' is an aggregate variable and F is a multiset variable. Note that F must appear in the cost
argument of p, and F cannot appear outside the aggregate subgoal. Instead of a single atom
p( X1, -, X, Y1, -+, Yo, E), the aggregate subgoal may have a conjunction of atoms, and in this
case, F/ must appear in some of the cost arguments of those atoms. We will also use the following
terminology. An aggregate subgoal is an LDB aggregate if all its predicates are LDB predicates;
otherwise, it is a CDB aggregate. A CDB cost variable is either a variable appearing in a cost
argument of a CDB predicate or an aggregate variable of a CDB aggregate.

We start with a discussion of the declarations that must be part of any program. Formally, a
type consists of a set of values, called the cost domain, and a partial order on the cost domain.
The cost argument of each cost predicate should have a type declaration. Similarly, each aggregate
function should have one type declaration for its domain and another type declaration for its range.
We assume that rules are well typed in the following sense. In an aggregate subgoal with a multiset
variable F. the type declaration of the domain of the aggregate function must be the same as the
type declaration of each cost argument in which F occurs.

A rule is required to be well typed in order to avoid a semantic error when applying an aggregate
function. However, to guarantee monotonicity additional restrictions are required. The first (and
simplest) part of these restrictions is given in the next definition.

Definition 4.2: A rule r is well formed if it satisfies the following syntactic restrictions.
1. Built-in subgoals do not appear inside aggregate subgoals.!

2. Only variables (and no constants) may appear in cost arguments of CDB predicates and to
the left of the = (or =) sign in aggregate subgoals (this restriction can always be satisfied by
adding built-in subgoals).

3. Fach CDB cost variable has at most one occurrence among the non-built-in subgoals of r.
(Technically, a multiset variable F has at least two occurrences. For the purpose of this
definition, however, we ignore the occurrence immediately following the aggregate function.)

Consider a well formed rule r and let F, denote the conjunction of the built-in subgoals in the
body or r. We will now define when F, is monotonic. Monotonicity of F, is needed to guarantee
monotonicity of r.

An assignment for I, is an assignment of constants to variables of r. We distinguish between
two types of assignments. A full assignment is an assignment to all the variables of F.. A partial
assignment is an assignment to only those variables of F, that also appear in some non-built-in
subgoals of r.

Definition 4.3: Let 07 and o2 be two (partial or full) assignments for £,. We say that o1 C oy if
for all variables » on which both o, and oy are defined,

o 01(v) C oy(v) if v is a CDB cost variable, and

!This restriction does not involve a loss of generality, since an aggregation can always be applied to a single
ordinary atom by adding more rules.
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e 01(v) = 03(v) otherwise.

a

Definition 4.4: F. is monotonic if for all o1 and o5, such that
e oy is a full assignment that satisfies F,.,
e 05 is a partial assignment for F., and
e 01 L 0y,

there is an extension of o3 into a full assignment o}, for F,, such that o} satisfies £, and if the head
of r has a cost argument with a variable vy, then oy(v;) C o%(vg). O

In practice, we need some simple conditions for checking that F, is monotonic. It is not difficult
to find such conditions. For example, if I, has the single atom C' = C'; + (5, such that ('] is a CDB
cost variable, C'5 is not a CDB cost variable, the only other occurrence of €' is in the cost argument
of the head, and > is the partial order associated with all these variables, then F,. is monotonic.

We are now ready to define and prove the condition that guarantees monotonicity.

Definition 4.5: A rule r is admissible if
e 7 is well typed and well formed,

o for each CDB aggregate subgoal, either the aggregate function is monotonic, or the aggregate
function is pseudo-monotonic and all CDB predicates appearing inside the aggregate subgoal
are default-value cost predicates, and

e [, (the conjunction of built-in subgoals) is monotonic.

a

Note that the second part of the above definition implies that an aggregate subgoal with a pseudo-
monotonic aggregate function cannot have a noncost CDB predicate.

Lemma 4.1: If all rules of a program P are admissible, then P is monotonic.

Proof: Consider an interpretation I for the LDB predicates of a program component P. We have
to show that Tp(J,I) is monotonic in J. So, let J and J’ be two interpretations for the CDB
predicates, such that J C J'. We have to show that Tp(J,I)C Tp(J',I).

We say that atom p’ € J' corresponds to atom p € J if p’ and p are atoms of the same predicate
and both are equal on all the non-cost arguments. By Definition 3.3 and the fact J C .J’, for each
p € J there is a unique p’ € J’ that corresponds to p and, moreover, p C p/.

Let r be a rule of P of the form H «— G1,---,G,; without a loss of generality, we assume that
Gi41,...,G, are all the built-in subgoals. Suppose that A «— Bq,---, B, is a ground instance
of r, such that TU.J = By A--- A B,. We will now show how to convert the ground instance
A« By,---, B, into another ground instance A" — B},---, B/, such that TUJ |= B{ A---A B/,
and A C A’

For each subgoal G; of rule r, we have to convert the ground instance B; of G; into the new
ground instance B!. There are several cases to be considered. First, suppose that G is a subgoal
having an LDB predicate. In this case, B; must be in I and we choose B to be the same as B;.
Second, suppose that G; is a subgoal of a CDB predicate. In this case, B! is the unique atom of .J/
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that corresponds to B;. The third case is when ; is an aggregate subgoal. The most general form
of GG; in this case is - -
C = f IO pl(X17Y17 E1)7 s 7pk(Xk7Yk7 Ek)

where Xj is the vector of global variables that appear in p;, 17] is the vector of local variables that
appear in p;, and I is the variable in the cost argument of p; (1 < j < k). Note, that either one
of X;, Y; or E; may not exist. Also note that some of the E; are equal to E. The ground instance
B; of (G, is of the form

c=FE: pl(jlvyla El)v T 7pk(jk7Yk7 Ek)

where ¢ and Zy,...,Z; are constants. Let S; (resp., S!) denote the set of ground instances
P1(Z1,Y1,€1)s- - PE( Tk, Yk, €) Of the conjunction pi(z1, Y1, F1), ..., pr(Zk, Y, £k), such that each
pi(%,y5,€;) is in TUJ (resp., T UJ').

Since rules are well formed, there is no pair of atoms p;(X;,Y;, E;) and p(X;, Y, Ep) (1 <
J,0 < k), such that p; and p; are CDB cost predicates and F£; is the same as [j. There-
fore, J C J' implies that for each p1(Z1,91,€1),..., (%K, Yk, €x) in S;, there is a corresponding
P1(Z1,91,€1), -+, PR(Tk, Ui, €;) in ), such that for j = 1,2, ..., k, e; C €} if p; is a CDB cost
predicate, and e; = e; otherwise. Moreover, if all CDB cost predicates among py, ..., p; are default-
value cost predicates, then the sets S; and 57 must have the same size. Let M; and M/ be the
multisets obtained by projecting S; and 57, respectively, onto E. The above discussion implies the
following.

o M;C M!, and

o if all CDB cost predicates among pq,...,pr are default-value cost predicates, then M; and
M/ have the same size.

If G; is an LDB aggregate (i.e., each p; is an LDB predicate), then we choose B to be the same
as B;. In this case, S; and S/ must be the same and, clearly, B! is satisfied by T U J'. If G, is
a CDB aggregate (i.e., some of the p; are CDB predicates), then the aggregate function is either
monotonic or pseudo-monotonic. In both cases, M; C M/; moreover, in the second case, both M;
and M/ have the same size. Thus, in either case, there is a constant ¢/, such that ¢ C ¢’ and the
ground aggregate subgoal

Cl =FFE :pl(thlvEl)v .- '7pk(jk7Yk7Ek)-

is satisfied in I U J'. Consequently, we choose the above ground aggregate subgoal to be B!.

Thus, we have shown how to construct for each non-built-in subgoal G; (1 < i < k) a ground
instance B! that is satisfiable in I U J’. Moreover, the only difference between Bi,..., By and
Bi,...,Bj might be in the constants assigned to the CDB cost variables (the new constants may
have been increased with respect to the corresponding partial orders). Since r is a well-formed
rule, each CDB cost variable has a single occurrence among the subgoals G, ..., G, and therefore,
Bi,..., B} is a ground instance of the conjunction G, ..., Gy and is satisfiable in U J'.

It remains to show how to satisfy the conjunction F, of the built-in subgoals Ggy1,...,Gy.
Let o1 be the full assignment for £, that is induced by the ground instance A «— By,---, B, and
let oy be the partial assignment for F, that is induced by the ground atoms By, ..., B}. Clearly,
o1 € oy. Since FE, is monotonic, there is an extension o} of oy, such that o} satisfies F,. We
generate B ,,..., B, by instantiating G11,..., G, according to o3. Note that the monotonicity
of F, also implies that if the head of r has a cost argument with a variable vy, then oq(v;) C o%(vy).

In conclusion, for each ground instance A «— By,---, B,, such that TUJ = By A--- A B, we
have obtained a ground instance A’ — Bf,---, B/ of r, such that TUJ' |= B{A---AB/ and AC A'.
If AeTp(J,I)because A € Jy, then Tp(J, ) has either A or a ground atom A’ such that A C A’
Thus, Tp(J, 1) C Tp(J', I). |1
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Example 4.2: One can verify that both the shortest-path program (Example 2.6) and the company-
control program (Example 2.7) are admissible. Being well-typed and well-formed is easy to check.
The aggregate functions are monotonic, as described in Figure 1. €' = (7 + (3 is monotonic, as
discussed after Definition 4.4, asis N > 0.5. O

4.3 Further Examples of Monotonic Programs

The power of this approach can be seen by using some of the monotonic and pseudo-monotonic
aggregate functions to get monotonic programs. Two examples are given below.

Example 4.3: (Party invitations) Suppose we are organizing a party, at which a number of people
are invited. However, some of the guests refuse to come unless it can be guaranteed that they will
know at least k other people at the party (where k& depends upon each guest). We assume that
each guest requires proof of other guests’ commitments before deciding whether or not to come;
we do not allow groups of friends to decide collectively to attend. Guests inform the host of how
many others they require.

We assume each person has a unique name. The EDB atom requires(X, K') holds when the
invitee X requires that K other people that X knows come before X will come. The EDB atom
knows(X,Y) holds if X knows Y.

We can express the attendance of the party using the following rules.

coming( X ) — requires(X, K), N = count : ke(X,Y),N > K
ke(X,Y) — knows(X,Y), coming(Y")

coming( X ) holds if X is coming to the party. ke(X,Y) holds if X knows Y and Y is coming. This
program is obviously conflict-free because no head atom has a cost argument. The program above
is monotonic, being admissible, and will compute the status of all invitees even when there are
cycles in the knows relation. The program would be modularly stratified [12] only if the knows
relation was acyclic (a very unlikely occurrence). Note that the truth of the subgoal N > K is not
monotonic in K; however, since K is not a CDB cost variable, N > K is monotonic according to
Definition 4.4. Note that we use a “=" aggregate subgoal, because we do not want to lose those
people who require nobody else. The first rule is range-restricted, since the grouping variable X
appears in a noncost argument of an LDB subgoal. O

Pseudo-monotonicity can be used as the basis for an example based on circuits.

Example 4.4: Suppose a circuit of AND and OR gates is given, with each gate given a unique
name, and every input wire also given a unique name. The gates may have arbitrary fan-in (and
fan-out), but we assume that any input to a gate appears only once (since repeating inputs serves
no useful purpose on gates with arbitrary fan-in). We shall use the name of the gate as a synonym
for its output wire.

The EDB atom gate(G,T) holds when G is the name of a gate of type T', where T' may be and
or or. The EDB atom connect(GG, W) holds if wire W is connected as an input of gate . Finally,
the EDB atom input(W, 1) holds when input wire W has the value true, and input(W,0) holds when
input wire W has the value false. (Note that we are making the boolean cost arguments explicit.)
We declare t to be a default-value cost-predicate:

declare default t(W,0)

We can define the truth values of all wires, even if the circuit has cycles, according to the following
program P.
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HW,C) — input(W, ()
UG, C) «— gate(G,or),C = 0R D : [connec{ G, W) N t(W, D)]
(G, C) «— gate(G, and),C' = AND D : [connect{ G, W) A t(W, D)]

t(W,1) holds when wire W has boolean value true, and ¢(W,0) when it has the value false. (We
make the implicit assumption that the circuit behaves in a minimal fashion. For example, we
assume that a circuit consisting of a single AND gate with its output connected as its sole input
would have the value false on the output wire. For the circuit to behave in a maximal fashion, one
would change the default value for ¢ from 0 to 1. )

The rules are range-restricted. In the second rule, for example, the grouping variable G appears
outside the aggregation in the subgoal gate(G, or). Also, the non-cost argument W of the default-
value cost atom ¢(W, D) appears in the conjunct connect( G, W). Each of the rules is cost-respecting.
The program is conflict-free assuming appropriate integrity constraints stating that OR gates, AND
gates, and input wires come from disjoint classes.

OR is monotonic with respect to the order <, although AND is not. However, this program
is admissible due to the pseudo-monotonicity of AND and the fact that ¢ is a default-value cost
predicate.

Let us elaborate on how the pseudo-monotonicity helps here in order to elucidate this program’s
monotonicity. The shape of the circuit is determined by lower-level LDB predicates. The AND
aggregation in the third rule applies to all wires W such that connect(G, W) holds; for each gate GG
there is a fixed number of such input wires W. Thus we can hope to use the pseudo-monotonicity
property of AND with respect to <. An essential element in using this property is the fact that ¢
is a default-value cost predicate.

Because t is a default-value cost-predicate, there is always a matching cost value D for any wire
W connected to GG. If no explicit value has been derived, then the default value is used. If ¢ were
not a default-value cost-predicate, it might happen that for some wire w, the status of the wire
is not determined at some point, in which case there would be no atom of the form #(w, D). As
a consequence, the conjunction [connect(g, w) A t(w, D)] would fail, where g is some AND gate to
which w is connected. If all other wires connected to g had t-value 1, then the aggregate would
return 1. At a later time, ¢(w,0) might be derived, in which case the aggregate would now return 0
and thus behave nonmonotonically. However, since ¢ is a default-value cost predicate, {(w, 0) would
have been true all along, and so the nonmonotonic behavior would not have arisen.

The only atoms in the third rule that change during a bottom-up iteration are the ¢ atoms. If a
larger value of D is derived for some W, or if t(W, D) is derived for the first time, then the resulting
value of (' can only increase from what it was on the previous iteration. Thus Tp is monotonic in
its first argument, and so the least model exists. O

5 Related Work

5.1 Stratification

Mumick et al. observed that if a program did not perform any recursion through aggregation then
an iterated model could be constructed in a similar way to the construction of the unique perfect
model for a stratified program [9]. They call a program “aggregate stratified” if it is stratified with
respect to aggregation operators.

Ross extended the notion of stratification to “modular stratification,” (with respect to negation)
and described how to construct a two-valued well-founded model for such programs [12]. The
extension of modular stratification to aggregate functions (rather than negation) is described in
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[12]. Mumick et al. termed programs which are modularly stratified with respect to aggregation
“sroup stratified” programs [9]. For such programs a unique perfect model can be defined.

While each of these forms of stratification successively generalizes the previous one, there are
programs of interest that are not modularly stratified, and hence cannot be handled by the proposals
mentioned above. We seek a more general proposal that would agree with these methods for
programs that happen to be modularly stratified, group stratified or aggregate stratified.

5.2 Monotonic Programs (a la Mumick et al.)

Mumick et al. also define a class of “monotonic programs” and describe how one can compute a
bottom-up fixpoint of a monotonic program that is not necessarily stratified (or even modularly
stratified) [9]. Since we have already used the term “monotonic programs” for a broader class of
programs, we shall refer to the monotonic programs of [9] as “restricted monotonic programs” or
“r-monotonic programs.”

Definition 5.1: A rule is said to be r-monotonic if adding new tuples to the relations for its
ordinary subgoals or its aggregate subgoals can only add tuples for the head (i.e., cannot invalidate
an earlier deduction) regardless of the relations for other subgoals in the rule. A program is r-
monotonic if every rule in it is r-monotonic. O

Mumick et al. do not treat arguments that are formed using aggregation as special. A con-
sequence of this policy is that rules containing an aggregate subgoal cannot have the aggregated
value appearing in the head. For example, the program of Example 2.7 is not r-monotonic because
of the third rule

m(X,Y,N)«— N =sum M : co(X, Z,Y, M).

Suppose that after one iteration the tuple m(x,y,n1) has been derived. If some new cv tuples are
later derived, then the sum will increase compared with its previous value n; thus invalidating the
derivation of m(z,y,n1). On the other hand, the company control program can be formulated as
an r-monotonic program by combining the third and fourth rules into one rule, namely

o(X,Y)—=N=sumM : co(X,Z,Y,M),N > 0.5

However, the shortest path program of Example 2.6 is not r-monotonic. There is little hope of
rewriting it as an r-monotonic program since the length of the shortest path should be part of the
s relation, and this length is the result of an aggregate operator. Example 4.3 is monotonic, but
not r-monotonic due to the nonmonotonicity in K. It is, however, “stratified monotonic” in the
sense of [9].

The class of monotonic programs properly includes all r-monotonic programs of [9]. Unlike
monotonic programs, r-monotonic programs cannot have the result of an aggregation as part of a
resulting head tuple.

5.3 Kemp and Stuckey’s Well-Founded Semantics and Stable Models

Kemp and Stuckey have defined an extension of the well-founded semantics of [20] to programs with
aggregation [8]. In order to generalize the immediate consequence operator and the unfounded set
construction, they define how an aggregate subgoal is (and is not) satisfied. The essential feature is
that all instances of the atom being aggregated must be fully defined in the sense that every such
ground atom is known to be either true or false.

The shortest-path program of Example 2.6 can be given a two-valued well-founded semantics if
the arc relation is acyclic (in which case the program is modularly stratified). The min aggregate
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can be successively applied to larger fragments of the graph, working from the “sinks” towards the
“sources.” Note that in this case we can assign a semantics irrespective of the way path weights
are combined and the domain from which the path weights come; the subgoal €' = Cy 4+ Cy could
be replaced with C' = G(C,C3) for any arbitrary function G. However, in the presence of cycles
there may be s atoms that are undefined in the well-founded model because they depend through
aggregation on a path atom that is itself undefined because it depends upon an s atom.

For a number of monotonic programs, including Examples 2.6, 2.7, 4.3 and 4.4, the well-founded
semantics would be uninteresting in the sense that it would make too much information “undefined”
when the appropriate EDB relations contain cycles. The reason for this discrepancy is that the
semantics requires all subgoals to be fully defined before an aggregate can be applied to it. For
monotonic programs, on the other hand, we can apply an aggregate to a partially defined relation
to get a monotonic sequence of “approximations” to a least fixpoint.

Kemp and Stuckey also generalized the stable model semantics to programs with aggregates
using the same notion of when an aggregate subgoal is satisfied. As pointed out in [8], programs
may have multiple stable models. The shortest-path program (without the “fix” mentioned below)
can have two incomparable stable models; the two models in Example 3.1 are stable in the sense
of [8]. A similar problem also occurs for the company-control example.

For min and max aggregates this flaw can be removed; for example the shortest path program
can be “fixed” by adding the subgoal path(X,W,Y,C) to the third rule. Since the shortest path is
indeed a path, the meaning of the program is unchanged. The extra subgoal provides an additional
way for the body to fail outside of the aggregation. By consistently employing this extra-subgoal
construction, Kemp and Stuckey are able to prove the existence of a unique stable model for all
cost-monotonic min and max programs discussed in Section 5.4. Unfortunately, this fix does not
apply to arbitrary aggregate operators, since the result of an aggregate operation does not, in
general, appear in a tuple being aggregated upon. They do, however, obtain the result that for
r-monotonic programs with min and max aggregates, the least fixpoint obtained using a bottom-up
construction yields a least stable model.

5.4 Cost-Monotonic min and max

The approach of Ganguly, Greco and Zaniolo is somewhat different from that of Kemp and Stuckey.
Rather than extend the well-founded semantics to handle min and max aggregate operators, they
rewrite the aggregate subgoals as a conjunction of normal subgoals involving negation, to yield a
normal program [7]. The well-founded model of that normal program is taken to be the semantics
of the original program.

For example, the third rule of the shortest path program (Example 2.6) would be rewritten as

s(X,Y,C) — path(X, W,Y,C),d(C'),~3(Z, D) [path(X, Z,Y, D),d(D),(D <q C)]

The d predicate holds of all elements in some domain, and <y is assumed to be a total-ordering of
that domain.

Ganguly et al. define a class of “cost-monotonic” min and max programs, and show that the
rewritten versions of these programs have a two-valued well-founded model.? The shortest-path
program is cost-monotonic assuming that all arcs have nonnegative weights.

A similar approach was proposed independently by Sudarshan and Ramakrishnan [15] for
evaluating programs with aggregates that return extreme values, such as min and max.

2Actually, the proof in [7] that cost-monotonic min and max programs have a two-valued well-founded model
requires the (unstated) assumption that <g be a well-founded ordering of the domain. An example where <4 is not
a well-founded ordering and the well-founded model is three-valued is when the arc relation consists of all tuples of
the form arc(fi(a), fi+1(a), 3_i) and arc(fi(a), b, 21_i) for 1 =0,1,.... This arc relation can be generated by a finite
set of rules.
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The “cost-monotonic” min and max programs of [7] are not all monotonic in our sense. For
example, if the subgoal p(C') were added to the second rule of the shortest-path program (Exam-
ple 2.6), where p is some LDB predicate, then the resulting program would be cost-monotonic but
not monotonic in our sense. On the other hand, some programs that are monotonic in our sense
are not cost-monotonic according to [7]; an example is the shortest-path program (Example 2.6)
when the edges may have negative weights. Additionally, our definitions also apply to aggregate
operators other than min and max.

5.5 Stable Models Revisited

Kemp and Stuckey’s definition of stable models in the presence of aggregates treats aggregate
subgoals like negative subgoals: Aggregate subgoals are eliminated in the reduction stage. A model
M is stable if it is the minimal model of the Horn program resulting from this generalized reduction
of the program with respect to M. Unfortunately, even for monotonic programs, unique stable
models are not guaranteed, and incompatible stable models may exist. For example, consider the
shortest path program of Example 2.6. The two models given in Example 3.1 are both stable. We
would choose M; as our unique minimal model. As discussed in [8], Example 2.7 may also have
multiple stable models.

One could define an alternative stable model semantics as follows. Consider a candidate model
M. Apply the reduction (with respect to M) to negative literals only, and not to aggregate literals.
The resulting program may contain aggregates. If the reduced program is monotonic, and if M
is its unique minimal model, then call M “stable.” This alternative definition agrees with our
classification of minimal models for monotonic programs without negation. It also shows how one
may extend this minimal model semantics to programs with negation.

Intermediate semantics are also possible. For example one may choose to eliminate some
aggregate subgoals (for example the nonmonotonic ones) at the reduction stage, and leave others
(say the monotonic ones) to form a monotonic reduced program. There may be several applicable
intermediate semantics. An example might be a program component containing both min and max;
min and max are each monotonic but with respect to opposite orderings. The choice of such an
intermediate semantics is beyond the scope of this paper.

5.6 Van Gelder’s Well-Founded Semantics

Recently, Van Gelder has given a different extension of the well-founded semantics [18]. Van Gelder’s
extension is based on the definition of the well-founded model using the alternating fixpoint [19].
Van Gelder’s extension of the well-founded semantics can simulate Kemp and Stuckey’s extension,
while being “less undefined” on a number of important examples.

In [18], Van Gelder provides a translation of monotonic programs into his formalism. This
translation often (but not always, as illustrated in Example 5.1 below) yields a program whose
semantics agrees with ours in the sense that Van Gelder’s well-founded model contains the atom p
if and only if p is in our least model. On the other hand, even when the two semantics agree on
the set of true atoms, Van Gelder’s translation may make an atom undefined when we would make
it false. An example based on one from [18] is the company control program (Example 2.7) with
the EDB {s(a,b,0.3),s(a,c,0.3),5(b,¢,0.6),s(c,b,0.6)}. For us, ¢(a,b) and c(a,c) are false, while
for Van Gelder they would both be undefined.

The translation of [18] places the final computation of aggregate values in a higher component
than the recursive rules defining the aggregate. For example, Van Gelder’s approach can compute
the final proportions of share ownership in the company-control example (Example 2.7) only after
the controls relation ¢ has been fully computed. Our approach computes the controls relation ¢
and the share proportions relation m in one sweep.
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Van Gelder’s translation does not yield our least model on some programs involving limits, as
shown by the next example.

Example 5.1: Let halfsum be the aggregate operator that returns half the sum of a multiset of
values. halfsum is monotonic with respect to < on the nonnegative real numbers. Consider the
program

p(a,C) — C = halfsum D : p(X, D)

p(b, 1)

For us, the least model is {p(a, 1), p(b,1)}. Intuitively, Van Gelder’s approach does not yield p(a, 1)
because infinitely many applications of the first rule are required to achieve it. O

On the other hand, Van Gelder can assign a semantics to programs with recursion through both
aggregation and negation.

6 Further Issues

6.1 Aggregates of Infinite Relations

For infinite multisets, aggregates such as min may not be well-defined (see Example 2.6), and should
be replaced by the greatest lower bound glb. For infinite sets or multisets, the greatest lower bound
may not be a member of the set. For example, the greatest lower bound of {1, %, %, -+-} is 0, which
is not a member of the set. We cannot require a min subgoal be false if an infinite set has no
smallest element, since this would violate monotonicity.

Thus our semantics would give a “shortest path” of length 0 if there are paths of length 1, %, %, e
even though there is no actual path of length 0. Whether this is a desirable feature depends upon
the context. On one hand, one could argue that 0 is the limit of successively shorter path lengths.
On the other hand, one could argue that the shortest path should be a path. As discussed above,

we cannot restrict shortest paths to be paths without violating monotonicity.

6.2 Bottom-up Evaluation

Can we use Tp as the basis for computing the minimal model of a monotonic program component
P? Given an interpretation I for the lower components, the sequence

J(Dv TP(J@,I), TP(TP(J(Z)vI)vI)v

is monotonically increasing with respect to C, and each member of the sequence can be finitely
represented (by representing just the core). If the program is free of uninterpreted functions, and J
is a well-founded ordering on the appropriate cost-domain, then the iteration will terminate after a
finite number of steps. Function-free programs with min aggregates on well-ordered domains (such
as the nonnegative integers) satisfy this property. Any monotonic function-free program having
finite cost-domains will also satisfy this property.

If Tp is continuous in its first argument, then its least fixpoint may be obtained by iterating the
above sequence w times. However, as pointed out in [8], T» may be monotonic in its first argument
without being continuous, and so iteration of the above sequence beyond w may be required before
a fixpoint is reached.

6.3 Iterated Minimal Models

While we have only considered one strongly connected component at a time, it should be clear
how the semantics of a whole program could be defined. At the lowest level in the component
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hierarchy, we assume that the program is either monotonic, or has a two-valued well-founded
model (according to Kemp and Stuckey’s extension of the well-founded semantics). In either case,
we take the two-valued model M that results, and use that as the “base” interpretation for the next
highest components. Effectively, M will be the fixed second argument of Tp for higher components
P. We may proceed inductively in this way until the whole program is assigned a semantics.
Some monotonic components may also have two-valued well-founded models in the sense of
Kemp and Stuckey, and so we must satisfy ourselves that the above construction is well-defined in
the sense that the same model would be chosen as the least fixpoint of T and as the well-founded
model. The following result implies the well-definedness required; our minimal model agrees with
the well-founded model on all atoms that the well-founded model makes true of false, while the
minimal model will assign true or false to all atoms left undefined by the well-founded semantics.

Proposition 6.1: Let P be a monotonic component with negation applied only to LDB predicates,
and having no default-value cost predicates. Let I be a fixed interpretation for the LDB of P. Let
W F} be the well-founded (partial) model of P in which [ is treated as the EDB of P. Then for
every ground atom p,

e WFP =p= M} = p, and
o WFF |=—p= M} = -p.

Proof: The proof is by induction on the construction of the well-founded model, which is three-
valued in general. A three-valued interpretation is a consistent set of ground literals; an atom that
appears neither positively nor negatively is considered “undefined.” Recall that the well founded
model is constructed by iterating an operator Wp(J) = TH(J)U=-Up(J), where J is a three-valued
interpretation, Tf is the immediate consequence operator,® and Up(.J) is the greatest unfounded
set with respect to J. Then WFIP is the least fixpoint of Wpys. The base case (J = 0) is trivial.
The limit ordinal case is straightforward. We consider the successor ordinal case below. Suppose
that the induction hypothesis holds for J. We show that it also holds for J' = Wpys(J).

An atom p € J' must result from an application of 7% ; to J. In particular, there must be a rule
instance with head p all of whose subgoals are true in J U I. For aggregate subgoals ¢ this means
that all instances of predicates mentioned inside ¢ are defined (i.e., either true or false) in J. By the
induction hypothesis, the same subgoals are true in M}D and so eitherp € T or p € Tp(J}D, I)= J}D;
hence p € JF UT = MY.

A negated atom —p € J' must result from an application of Upy; to J. In particular, for every
rule instance with head p either some subgoal is false in J U I, or some positive subgoal is also in
Upur(J). For aggregate subgoals ¢ that are false in such rules, all instances of predicates mentioned
inside ¢ are defined (i.e., either true or false) in J. Let R be the set of rule instances with head
belonging to Upys(J). In particular, all rules with head p are in R. By the induction hypothesis,
all rules in R that have a false subgoal in J U I also have a false subgoal in M}D, and so such
rules cannot fire in an application of Tp(J}D,I). In the remaining rule instances, every rule has a
positive subgoal that appears as the head of another rule. Thus there is a cyclic dependency, and
none of these rule instances will fire in an application of Tp(J}D,I). Hence p ¢ M}D. Since M}D is
two-valued, we conclude that M¥ |= —p. |

Note that the well founded model is partial (i.e., three-valued) in general. When the well-founded
model is two-valued then Proposition 6.1 implies that WFIP and M}D are the same.

The restriction to components without negative CDB subgoals in Proposition 6.1 is not very
limiting: Any rule with a negative CDB subgoal will violate monotonicity unless that rule never
fires.

*We label the three-valued immediate consequence operator T5(J) to distinguish it from our operator Tp(J, I).
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7 Conclusions

We have presented a framework within which many examples of interesting aggregate programs
may be assigned a semantics by the construction of a minimal model. These programs must have
an immediate consequence operator that is monotonic with respect to a more general lattice on
interpretations than simply inclusion; the lattice is based on a lattice of cost values being aggregated.

An important area for future work is evaluation and optimization of monotonic programs. Some
authors have looked at optimization of special cases of monotonic programs. Mumick et al. [9] have
proposed a magic sets transformation for r-monotonic programs. Ganguly et al. [7] have proposed
a greedy technique for certain programs with min and max aggregates; their methods work for the
shortest path program (Example 2.6) as long as all arcs have nonnegative weight. Greedy methods
do not extend to the class of monotonic programs since, in general, one may have to discard a tuple
in favor of a tuple having larger (smaller in the case of a min-program) cost value. Sudarshan and
Ramakrishnan [15] have also proposed evaluation techniques for extreme-value aggregate operators.
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