
Monotonic Aggregation in Deductive DatabasesKenneth A. Ross�Columbia Universitykar@cs.columbia.edu Yehoshua SagivyHebrew Universitysagiv@cs.huji.ac.ilAbstractWe propose a semantics for aggregates in deductive databases based on a notion of mini-mality. Unlike some previous approaches, we form a minimal model of a program componentincluding aggregate operators, rather than insisting that the aggregate apply to atoms that havebeen fully determined, or that aggregate functions are rewritten in terms of negation. In order toguarantee the existence of such a minimal model we need to insist that the domains over whichwe are aggregating are complete lattices, and that the program is in a sense monotonic. Ourapproach generalizes previous approaches based on the well-founded semantics and various formsof strati�cation. We are also able to handle a large variety of monotonic (or pseudo-monotonic)aggregate functions.1 IntroductionDeductive databases allow views to be de�ned using programs consisting of logical rules. Recently,a number of researchers have considered adding aggregation to the rule language. If the aggregationis applied in a strati�ed fashion, where there is no recursion through aggregation, then the semanticsof a set of rules can be de�ned using standard iterated least-�xpoint techniques. For such programsaggregation is always applied to relations and views whose extensions can be computed in advance.However, there are interesting examples of views for which the natural formulation of the rulesis to apply recursion though aggregation. For example, one can de�ne the shortest paths in a graphin terms of shortest subpaths through intermediate nodes in the graph. Another example is thecompany control problem, in which we say that company A controls company B if more than50% of B's shares are owned by A, or by companies that A controls. (Note the recursion in thisde�nition.)Previous proposals have attempted to de�ne the semantics of rules with recursively appliedaggregation, but they su�er from one of several de�ciencies: The set of aggregate functions may belimited (say to just minimum and maximum), the underlying database may be restricted in someway (with relations required to be acyclic, for example), or the semantics may simply give too littleinformation about some predicates, giving an unde�ned truth value where a de�ned value wouldbe expected. One way or another, there are interesting examples of views that past approaches donot adequately handle.In this paper we propose a new semantics based on the idea of an iterated minimal model, in thestyle of the perfect model semantics or the strati�ed semantics [2, 6, 10, 11]. However, unlike both�Part of this work was done while the author was at Stanford University. The work done at Stanford University wassupported by an IBM fellowship and the following grants: NSF IRI-90-16358, AFOSR-90-0066, ARO DAAL03-91-G-0177. The work done at Columbia University was supported by NSF grants IRI-9209029 and CDA-90-24735, by agrant from the AT&T Foundation, by a David and Lucile Packard Foundation Fellowship in Science and Engineering,by a Sloan Foundation Fellowship, and by an NSF Young Investigator award.yWork partially supported by BSF Grant 92{00360. 1



of these semantics, we minimize components of programs that include aggregations of predicatesin the component, rather than requiring the aggregation be on lower level predicates that havea previously assigned semantics. Our semantics is well-de�ned for a large class of programs thatwe term monotonic programs. This class includes the company-control example, the shortest-pathexample and a number of other interesting examples.Our approach allows us to unify within one general framework many classes of program that,up to now, have been considered separately. In addition, it allows us to de�ne example programsthat were not admitted by past proposals. We identify su�cient syntactic conditions for programsto be monotonic; these easily-checked conditions are general enough to include a wide variety ofexamples.The rest of this paper is organized as follows. In Section 2 we introduce our syntax and presentsome motivating examples. In Section 3 we de�ne the concept of a monotonic program, andde�ne the semantics of such programs. In Section 4 we develop su�cient syntactically recognizableconditions that ensure that a program is monotonic, and present some additional examples. Wecompare our techniques with related work in Section 5. Some additional issues are addressed inSection 6, and we conclude in Section 7.2 Basic De�nitions and ExamplesIn Section 2.1 we present some basic material on lattices and �xpoints. In Section 2.2 we reviewdeductive databases. In Section 2.3 we de�ne various concepts related to cost arguments andaggregation. In Section 2.4 we de�ne the notion of cost-consistency, which is a semanticallyimportant requirement; in Section 2.5 we provide a syntactic su�cient condition called conict-freedom. Finally, in Section 2.6 we describe several motivating examples.2.1 FixpointsDe�nition 2.1: Let D be a set partially ordered by v. We say (D;v) is a complete lattice if forevery subset X of D, both the least upper bound (lub, or t) of X and the greatest lower bound(glb, or u) of X with respect to v exist.Let T : D ! D be a mapping. We say T is monotonic if T (x) v T (y) whenever x v y, forx; y 2 D. 2The following result is a classical theorem of Tarski [16].Theorem 2.1: Every monotonic operator T on a complete lattice (D;v) has a least �xpoint thatis equal to glbfxjT (x) v xg.2.2 Deductive DatabasesDeductive databases extend relational databases by allowing one to de�ne views using recursivelyapplied rules. Such rules allow the succinct declarative expression of queries that cannot beexpressed in relational languages such as relational algebra. See [17] for an introduction to deductivedatabases.De�nition 2.2: A rule is a logical formula of the formA L1; : : : ; Lnwhere A is an atom, and L1; : : : ; Ln are literals. We refer to A as the head of the rule and toL1; : : : ; Ln as the body of the rule. Each Li is a subgoal of the rule. All variables are assumed to2



be universally quanti�ed at the front of the rule, and the commas in the body denote conjunction.If the body of a rule is empty then we may omit the \ " symbol.A program is a �nite set of rules. A program component is the subset of rules for a set ofmutually recursive predicates. 2We shall consider only one program component at a time. For a particular component P , weshall say p is a \CDB predicate" of P if p appears in the head of a rule in P . We shall say p is an\LDB predicate" of P if p appears in the body of a rule in P but not in the head of any rule inP . The notions of CDB and LDB are componentwise counterparts of IDB and EDB respectively.Think of the CDB as the \current component database" and the LDB as the \lower componentdatabase."We shall assume the presence of some \built-in" predicates over the cost domains, such as =,� and < over the natural numbers. Similarly, functions such as addition and multiplication onthe natural numbers are also assumed to be built-in. Such predicates and functions have theirusual meaning, and may appear in the bodies of rules. There will be no safety problem usingsuch predicates and functions as long as their arguments are bound to values elsewhere in thebody of each rule in which they appear. In this paper, we assume that the built-in predicates areequalities or inequalities involving arithmetic expressions, and that built-in functions appear onlyas arguments of built-in predicates.2.3 TerminologyIn this section we extend deductive databases with syntax for performing aggregates.2.3.1 Cost Predicates and Aggregate SubgoalsDe�nition 2.3: A cost-predicate is a predicate having a distinguished argument, called the cost-argument, that ranges over a given cost-domain. A cost-atom is an atom whose predicate is acost-predicate. Di�erent cost-predicates may have di�erent cost-domains. 2We shall usually write the cost-argument as the �nal argument of an atom. In this paper we shallassume that the column that contains the cost argument is known; in practice a system wouldneed a declaration identifying which columns are cost arguments for each predicate, and which costdomains those arguments range over.In the case of a boolean cost-domain we may choose to leave the cost argument implicit. So,rather than writing p(a; b; 1) where 1 is the boolean value corresponding to true, we may simplyassert that the atom p(a; b) \is true."We shall assume that the cost argument of an atom functionally depends upon the otherarguments of the atom. So the atoms p(a; 3) and p(a; 4) could not be simultaneously true. Wemake this assumption for the following important reason. Most query evaluation strategies insiston performing duplicate elimination in order to guarantee termination. Thus we cannot expect torely on the multiplicity with which a given tuple appears as a semantically meaningful entity. Inother words, if we were to calculate the sum of all C values satisfying p(a; C), we could not expectto count p(a; 3) twice if p(a; 3) was derivable using two separate rules. Thus we �nd ourselves in adi�cult situation. If rule r1 allowed us to derive p(a; 3) and rule r2 derived p(a; 2), then the sumcomputed would be 5. However, if both rules derived p(a; 3) then the sum would be 3. The resultingsum operation would be nonmonotonic and nonstandard. If the cost argument functionally dependsupon the other arguments then such di�culties do not arise.In general, determining whether a derived recursive predicate satis�es a functional dependencyis undecidable [1]. Nevertheless, for small strongly connected components either ad hoc arguments3



or some su�cient conditions (such as those developed in Section 2.5) could be used to establishfunctional dependencies.De�nition 2.4: (Aggregate Subgoal) Consider a domain D and a range R. Let M(D) denote theclass of multisets over D, and suppose that F is a map from M(D) to R. We call F an aggregatefunction and can use it in an aggregate subgoal of the formC = F E : p(X1; � � � ; Xn; Y1; � � � ; Ym; E)where p is a cost-predicate andD is the cost-domain of the cost-argument of p. In the above subgoal,X1; : : : ; Xn are the variables that appear also outside the subgoal and they are called groupingvariables, while Y1; : : : ; Ym are the local variables that appear only in this subgoal. The variableE, called a multiset variable, appears in the cost-argument of p, and the only other occurrence ofE is immediately following F (denoting the fact that E is used to form the multiset to which theaggregate function is applied). The variable C, called an aggregate variable, must be di�erent fromY1; : : : ; Ym (and from E).A ground instance of the above aggregate subgoal is of the formc = F E : p(x1; � � � ; xn; Y1; � � � ; Ym; E)where c and x1; : : : ; xn are constants. Given an interpretation for predicate p, the above groundinstance is satis�ed if and only if c = F(S), where S is the multiset de�ned byS = �E(�X1=x1;���;Xn=xnP (X1; � � � ; Xn; Y1; � � � ; Ym; E))and P is the relation for p (according to the given interpretation). Note that the projection isinterpreted as in SQL (i.e., duplicates are retained).We also allow aggregate subgoals of the formC r= F E : p(X1; � � � ; Xn; Y1; � � � ; Ym; E)in which we use a di�erent equality symbol. The only di�erence from the previous case is thefollowing: A ground instance is false if the multiset is empty.In a similar fashion, we can also de�ne an aggregate subgoal that has a conjunction of atomsrather than a single atom p(X1; � � � ; Xn; Y1; � � � ; Ym; E). (We do not allow negation within anaggregate subgoal.) Note that in the case of a conjunction, the multiset variable E appears insome cost-arguments of the conjunction (and immediately following the aggregate function F), butnowhere else. 2For deductive databases without aggregation, a \ground" subgoal is a variable-free subgoal.However, a \ground" aggregate subgoal has only its grouping variables and result value instantiatedto constants. For example, the following is a ground aggregate subgoal, assuming that C is a localvariable: 70 r= average G0 : record(john; C;G0):Observe that the aggregate subgoalC r= F E : p(X1; � � � ; Xn; Y1; � � � ; Ym; E)has the same semantics as the conjunctionp(X1; � � � ; Xn; Z1; � � � ; Zm; G); C = F E : p(X1; � � � ; Xn; Y1; � � � ; Ym; E)4



where Z1; : : : ; Zm and G are variables that appear only in the p subgoal. So \ r=" is a restrictedapplication of the \=" version of aggregation, motivating the \r" in the symbol. Thus \ r=" doesnot give any additional expressive power if we already have \=".The two types of aggregate subgoals (one with \ r=" and the other with \=") are each convenientin di�erent situations, and we shall see examples of both in this paper. The version based on \ r="corresponds more closely with SQL, which does not aggregate over empty groups. The versionbased on \=" is needed when empty groups are semantically meaningful, but we shall have to paysome attention to the issue of safety (see Section 2.3.3).If an aggregation is performed on a predicate with an implicit cost argument, then we omit thecost argument from the aggregate subgoal, as inp(N) N r= count : q(X)Example 2.1: Suppose we have an EDB relation record such that record(S;C;G) is true whenstudent S scored a grade G (assume the grade is expressed as a percentage) for course C. Thestudents' individual averages over all courses can be expressed using the rules-avg(S;G) G r= average G0 : record(S;C;G0)The class average for a given course would be writtenc-avg(C;G) G r= average G0 : record(S;C;G0)The only signi�cant di�erence between the two rules is that the �rst average is grouped by S, whilethe second is grouped by C. We could compute the average grade of all classes with the ruleall-avg(G) G r= average G0 : c-avg(S;G0)(Note that the alternative ruleall-avg(G) G r= average G0 : record(S;C;G0)may compute a di�erent result, since classes with more students would be weighted higher.) Therule class-count(C;N) N r= count : record(S;C;G)gives the count of students in each nonempty class, while the rulealt-class-count(C;N) courses(C); N = count : record(S;C;G)gives the count of students in each class, whether empty or not, assuming that courses is a predicatethat is true for all courses. 22.3.2 Default ValuesIn some cases it may be appropriate to assign default cost values to atoms whose status has notyet been derived using rules. In a circuit, for example, we may make the assumption that all wiresstart initially with the value 0. Thus, if t(W;D) is an atom indicating that wire W has truth valueD, we would start with t(W; 0) being true for every W . Without such a default value, we wouldhave no atoms of the form t(W;D) true until they were derived using other rules.This distinction can sometimes be important, as we shall see in Example 4.4. Thus we needa mechanism to declare that a particular cost-predicate has a default value for its cost argument.The syntax we shall use is 5



declare default t(W,0)which indicates that cost-predicate t has 0 as the default cost argument. Of course, we are notrequired to represent all of the instances of the atoms with default cost values. We shall call sucha cost-predicate a default-value cost-predicate.We shall insist that the default truth value is the minimal element with respect to the cost orderv. This property is natural, since the default value will usually be replaced with another value,and we want the new value to be larger according to the cost order. Since we will be dealing witha complete lattice of cost values, a minimal element always exists, being the greatest lower boundof all elements of the lattice.2.3.3 SafetySafety is needed to guarantee �niteness of the result. However, safety (as de�ned below) cannotguarantee termination of a bottom-up evaluation. Methods for detecting termination (e.g., [4, 14,13]) may be used for that purpose.In addition to negative subgoals and built-in subgoals, there are two other cases of subgoals thatmay have in�nitely many ground instances that are satis�ed (with respect to a given interpretation).One case is aggregate subgoals that uses the = form, since in this case, there may be in�nitely manycases in which the aggregate is taken over the empty set. For example, the subgoalN = count : record(S;C;G)is satis�ed with N = 0 for every possible value of C other than those representing nonempty classes.It is important that the grouping variables in such subgoals be restricted to a �nite set.Similarly, a default-value cost-predicate has in�nitely many true instances, each with the defaultcost value. Thus we need to make sure that references to default-value cost-predicates restrict allof the non-cost arguments.De�nition 2.5: (Range-restriction) Consider a rule r. A limited argument is a non-cost argumentof an LDB or CDB predicate with no default declaration. The set of limited variables is the minimalset containing all variables V that satisfy one of the following conditions.� V appears in a limited argument of a positive subgoal.� V is a local variable of an aggregate subgoal, and inside that subgoal, V appears in a limitedargument.� V is a grouping variable of an aggregate subgoal of the form r=, and inside that subgoal, Vappears in a limited argument.� V appears in a built-in subgoal of the form V = Y or of the form Y = V , where Y is a limitedvariable.� V appears in a built-in subgoal of the form V = a or of the form a = V , where a is a constant.The set of quasi-limited variables is the minimal set containing all variables V that satisfy one ofthe following conditions.� V appears in a cost argument of an LDB or CDB atom and that atom appears either as apositive subgoal or inside an aggregate subgoal.� V is an aggregate variable (of an aggregate subgoal).6



� V appears in a built-in subgoal of the form v = E or of the form v = E, where E is anarithmetic expression, and each variable in E is either quasi-limited or limited.Rule r is range-restricted if� in each negated subgoal, the variables in non-cost arguments are limited and the variable inthe cost argument is quasi-limited,� in each subgoal of a default-value cost-predicate, the variables in non-cost arguments arelimited,� in each aggregate subgoal, all the grouping variables are limited,� in each aggregate subgoal, all local variables that appear in noncost arguments (of LDB orCDB predicates) are limited,� in each built-in subgoal, each variable is either quasi-limited or limited, and� in the head, the variables in non-cost arguments are limited and the variable in the costargument is quasi-limited.2Note that the de�nition of a range-restricted rule does not place any restriction on variables thatappear in cost arguments of (positive) atoms. However, by de�nition, such variables are quasi-limited.The notion of limited variables is a simple extension of the de�nition from [17]. Quasi-limitedvariables range over the cost domain. The intuition behind a quasi-limited variable is that its valueis uniquely determined by the values of other limited (or quasi-limited) variables in the rule.Example 2.2: Suppose that t is a default-value cost-predicate. The following rules are range-restricted. alt-class-count(C;N) record(X;C; Y ); N = count : record(S;C;G)t(G;C) gate(G; and); C = AND D : [connect(G;W )^ t(W;D)]s(X; Y; C) C r= min D : path(X;Z; Y;D)The following rules are not range-restricted.alt-class-count(C;N) N = count : record(S;C;G)t(G; and; C) gate(G; and); C = AND D : [connect(G;W )^ t(W;X;D)]s(X; Y; C) C = min D : path(X;Z; Y;D)2 An extension is a set of ground atoms for the LDB and CDB predicates. The core of anextension is the subset of all ground atoms � such that the value in the cost-argument of � (if itexists) is not the default value.When computing a program P , there is a need to represent explicitly only the core of theextension. Therefore, we assume that a computation starts with an extension of the LDB thathas a �nite core, and during the computation the following must be true. First, the core of theextension of the CDB is always �nite. Second, aggregates are taken over �nite multisets. Both ofthese conditions are satis�ed if all rules are range-restricted and if, in each cost-predicate, the costargument is functionally dependent on the non-cost arguments. Formally, we have the followinglemma. 7



Lemma 2.2: Consider a program P in which all rules are range-restricted. Let D be an extensionthat satis�es the following two conditions. First, the core of D is �nite. Second, no two atoms inD di�er only on the cost argument. Let G be the set of all ground instances of rules of P whosebodies are satis�ed according to D. The following is true for G.� G is �nite.� For each ground aggregate subgoal in G, the multiset for this ground instance is �nite.� If h is the head of some rule in G, then the constants in the noncost arguments of h are fromthe active domain.Proof : Let the active domain consist of the constants that either appear in limited arguments ofatoms from D or appear explicitly in P . Note that the active domain is �nite.Now consider a rule r of P . In order to satisfy r, each limited variable must be substituted bya constant from the active domain. Also, once constants are substituted for the limited variables,unique values are determined for the quasi-limited variables. Since variables appearing in noncostarguments are required to be limited and other variables are required to be quasi-limited, it followsthat G is �nite and each ground aggregate subgoal in G has a �nite multiset.In what follows we shall assume that all rules are range-restricted.2.4 Cost ConsistencyThere is a potential problem of inconsistency in that a cost atom may be de�ned in more than oneway. For example, the two rules p(X;C) C r= min D : q(X;D)p(X;C) C r= sum D : r(X;D)are incompatible if q and r contain elements with the same �rst argument, since C is supposed tobe functionally dependent on X . There are other ways to generate inconsistencies. For example,the single rule p(X;C) q(X; Y; C)may violate the functional dependency of C on X in p, assuming that C is a cost argument of bothp and q.De�nition 2.6: We say a program is cost-consistent if for every set of CDB and LDB relationssatisfying the required functional dependencies of cost arguments, the set of tuples in the headsgenerated by a single application of all rules in the program also satis�es the required functionaldependencies of cost arguments. 2An equivalent de�nition of cost-consistency is given in terms of a TP operator in Section 3.Essentially, we need to ensure that no pair of rules can generate conicting cost arguments. In thenext section we describe a su�cient condition for cost-consistency.2.5 A Syntactic Su�cient Condition for Cost ConsistencyWe �rst need to ensure that each rule on its own respects the functional dependency of the costargument. 8



De�nition 2.7: (Cost-respecting rule.) Let r be a rule whose head has a cost argument. Wesay r is cost-respecting if it is possible to infer that the cost argument in the head is functionallydetermined by the non-cost arguments using all of the following.1. The functional dependencies in the body of the rule.2. The functional dependencies stating that an aggregate's value is functionally dependent onthe grouping variables.3. Armstrong's axioms [3, 17]. 2Example 2.3: As discussed above, the rulep(X;C) q(X; Y; C)is not cost-respecting. The rulepath(X;Z; Y; C) s(X;Z;C1); arc(Z; Y; C2); C = C1 + C2is cost respecting since XY Z ! C can be inferred using XZ ! C1, Y Z ! C2, C1C2 ! C andArmstrong's axioms. The rules(X; Y; C) C = min D : path(X;Z; Y;D)is cost-respecting since the aggregate C is computed with respect to the grouping variables X andY , and so XY ! C. 2We now consider the issue of conicting cost arguments from di�erent rules. A simple butrestrictive way to ensure consistency is to restrict programs so that no two heads of rules with costarguments are uni�able. We shall generalize this restrictive condition to allow rules with uni�ableheads under certain conditions.In order to avoid conicting cost values we need to ensure that for any pair of rules whose headsunify, either (a) the uni�ed versions of the rules cannot have their bodies simultaneously satis�ed,or (b) the uni�ed rules generate identical values for the cost arguments when they generate atomswith the same non-cost arguments.De�nition 2.8: (Containment mapping [17].) Let r1 and r2 be rules, and let h be a mappingfrom the variables in rule r1 to variables or constants appearing in r2. We say h is a containmentmapping from r1 to r2 if the following conditions hold:� After applying h, the head of r1 is identical to the head of r2, and� After applying h, each subgoal of r1 is identical to a subgoal of r2. 2The existence of a containment mapping guarantees that the tuples generated by r2 are a subsetof those generated by r1 [17].De�nition 2.9: (Integrity constraint.) An integrity constraint is a conjunction of subgoals, whichwe write as a \headless rule" of the form  S1; : : : ; Sn:The semantics of such an integrity constraint is that we are guaranteed (according to the semanticsof the application) that for no ground instance g of the constraint will g be satis�ed according tothe database. 2 9



Example 2.4: In an application based on circuits, the integrity constraint gate(G; or); gate(G; and)states that no gate G can be both an or gate and an and gate. (See Example 4.4.) In an applicationdealing with directed graphs, the integrity constraint arc(direct; Z; C)states that the constant direct does not appear as the �rst argument in any tuple of the arc relation.(See Example 2.6.) 2De�nition 2.10: (Conict-free.) We say a program is conict-free if every rule is cost-respecting,and for every pair of rules r1 and r2 in the program whose heads, restricted to the noncostarguments, unify with most general uni�er �:1. There exists a containment mapping from r1� to r2� or vice-versa, or2. The conjunction of the bodies of r1� and r2� contain an instance of a given integrity constraint.2Example 2.5: The program cv(X;X; Y;M) s(X; Y;M)cv(X;Z; Y;N) c(X;Z); s(Z;Y;N)is cost-respecting since, after unifying the noncost arguments of the two rule heads, there is acontainment mapping (that maps M to N) from the �rst rule to the second.Given the integrity constraint  arc(direct; Z; C), the programpath(X; direct; Y;D) arc(X; Y;D)path(X;Z; Y; C) s(X;Z;C1); arc(Z; Y; C2); C = C1 + C2is cost-respecting, because the conjunction of the two rule bodies (once the noncost arguments ofthe heads have been uni�ed) isarc(X; Y;D); s(X; direct; C1); arc(direct; Y; C2); C = C1 + C2which contains an instance of the subgoal in the integrity constraint. 2Lemma 2.3: If a program is conict-free, then it is cost-consistent.Proof : We prove the contrapositive. Suppose P is not cost-consistent, so that atoms p1 and p2di�er only in their cost arguments, where p1 and p2 are generated in a single application of the rulesto some given relations. If p1 and p2 were generated by the same rule, then that rule could not becost-respecting, and so P would not be conict-free. If p1 and p2 were generated by di�erent cost-respecting rules, then it is clear that there is no containment mapping between uni�ed versions ofthose rules, since there is no actual containment. Further, it is also clear that no integrity constraintprevents the bodies of both rules from being simultaneously true. Hence P is not conict-free.We shall demonstrate that each of the examples presented in this paper is conict-free.10



2.6 Motivating ExamplesIn this section, we present two motivating examples, namely the shortest-path program from [7]and a version of the company control example originally from [5], which is also described in [9].Example 2.6: (Shortest path) Suppose a relation arc is given, where arc(X; Y;W ) means thatthere is an arc in some graph from X to Y of weight W . We express the shortest path relation susing the following rules:path(X; direct; Y; C) arc(X; Y; C)path(X;Z; Y; C) s(X;Z;C1); arc(Z; Y; C2); C = C1 + C2s(X; Y; C) C r= min D : path(X;Z; Y;D)In [7] the shortest path program has one fewer attributes for the predicate path. We include theextra attribute Z, which represents the �rst intermediate node on the path, to ensure that the costis functionally dependent upon the other attributes. This extra argument is also necessary if onewishes to construct the actual shortest paths.Each rule above is cost-respecting. This program is conict-free assuming the integrity con-straint that the �rst argument of the arc relation is not direct. 2Example 2.6 applies to �nite graphs. For in�nite graphs, the min of an in�nite set of lengths isnot necessarily well-de�ned. We shall address this issue in Section 6.1.Example 2.7: (Company control) Suppose a relation s is given, where s(X; Y;N) means thatcompany X owns a fraction N of all the shares in Y . We say a company X controls anothercompany Y if the sum of the shares it owns in Y together with the sum of the shares owned in Yby companies controlled by X is greater than half the total number of shares in Y . (Note that thisde�nition is recursive.) We express the \controls" relation c using the following rules:cv(X;X; Y;N) s(X; Y;N)cv(X;Z; Y;N) c(X;Z); s(Z;Y;N)m(X; Y;N) N r= sumM : cv(X;Z; Y;M)c(X; Y ) m(X; Y;N); N > 0:5cv(X;Z; Y;N) expresses the fact that X controls a fraction N of the shares in Y through interme-diate company Z. m(X; Y;N) expresses that X controls a fraction N of the shares in Y .Each rule above is cost-respecting. This program is conict-free because there is a (trivial)containment mapping from the �rst rule to the second once the heads of both rules are uni�ed. 23 Minimal Models and Monotonic ProgramsFor programs without negation or aggregation there is a well-accepted semantics based on the leastHerbrand model of the program. We shall now consider programs with aggregate subgoals (butnot negation for the moment) and look for an extension of the notion of minimality.We should �rst remark that we do not always expect to have a unique minimal model when theprogram may have aggregates. For example, the programp(b)q(b)p(a) 1 r= count : q(X)q(a) 1 r= count : p(X)has two minimal Herbrand models, namely fp(a); p(b); q(b)g and fq(a); p(b); q(b)g.11



De�nition 3.1: The Herbrand universe of a program P is the set of all possible terms constructiblefrom the function and constant symbols appearing in P . The aggregate Herbrand base of P is theset of atoms that can be generated by substituting terms from the Herbrand universe for non-cost arguments of predicates in P , and interpreted constants of the appropriate domain for costarguments of predicates in P . 2De�nition 3.2: Let p(x1; � � � ; xn; c) and p(y1; � � � ; yn; c0) be ground cost atoms. Suppose that thecost argument of p comes from a partially ordered domain (D;v). We shall writep(x1; � � � ; xn; c) v p(y1; � � � ; yn; c0)if and only if xi = yi for i = 1; � � � ; n, and c v c0. If p and q are ground atoms without costarguments, then p v q if and only if p = q. 2De�nition 3.3: An aggregate Herbrand interpretation I for a program P containing aggregatesis a subset of the aggregate Herbrand base of P such that no two atoms in I di�er only on thecost argument, and such that interpreted predicates are given the standard interpretation for theappropriate domain. If p is a default-value cost predicate with n noncost arguments, then weadditionally require that for all g1; : : : ; gn in the Herbrand universe, there is a c in the cost domain,such that p(g1; : : : ; gn; c) is in I .We say I v I 0 if for every atom p in I there exists an atom p0 in I 0 such that p v p0. 2De�nition 3.3 requires aggregate Herbrand interpretations to respect the functional dependencyof cost arguments upon the other arguments. They must also give the expected semantics forinterpreted predicates, such as <, +, and =. The requirement for default-value cost predicates pmeans that an interpretation must give some cost value (usually the default value) to every instanceof the noncost variables of p. We use J; to denote the interpretation that is empty except that itgives default values to all instances of default-value cost predicates. We assume that the defaultvalue for each cost domain is the minimal value.De�nition 3.4: If p is a ground atom, then we say p is satis�ed in an interpretation I if p 2 I . If:p is a ground negative literal, then we say :p is satis�ed in an interpretation I if p 62 I . If p is aground aggregate subgoal, then we use De�nition 2.4 to determine whether p is satis�ed, using Ito de�ne the extension of the aggregated relation(s). The body of a ground rule r is satis�ed in Iif all subgoals in the body are satis�ed in I . A ground rule is satis�ed in I if its head is satis�ed inI , or if its body is not satis�ed in I . 2De�nition 3.5: An aggregate Herbrand interpretation I is an aggregate Herbrand model of aprogram P if every ground instance of every rule in P is satis�ed by I .I is an aggregate Herbrand pre-model of P if for every ground instance of every rule r in P ,whose body is satis�ed by I , the head atom h of r is such that h v h0 for some element h0 of I . 2A pre-model allows the cost in a head predicate of a rule to be greater (with respect to v) than thevalue needed to satisfy the rule. All models are pre-models, but the converse is false. For example,fp(a; 3); q(a; 2)g is a pre-model of the single rule programp(X;C) q(X;C)assuming that 2 v 3, but not a model.We shall omit the adjectives \aggregate Herbrand" since we shall be dealing exclusively withaggregate Herbrand interpretations, models, and pre-models.12



Theorem 3.1: Let H be the domain of interpretations for a program component P , and let v onH be as de�ned in De�nition 3.3. If the cost arguments of P belong to a complete lattice (D;v),then (H;v) is also a complete lattice.Proof : We �rst show v is a partial order on H . Suppose v were not transitive on H . Then theremust exist I1, I2, and I3 with I1 v I2, I2 v I3, but I1 6v I3. By the de�nition of v, there are atomsp1 2 I1, p2 2 I2 and p3 2 I3 such that p1 v p2, p2 v p3, but p1 6v p3. Since v on atoms requiresequality on the non-cost arguments, we must have c1, c2, and c3 in D such that c1 v c2, c2 v c3,but c1 6v c3. This last property contradicts the transitivity of v on D. A similar argument can beused to demonstrate the antisymmetry of v on H .Given a set S = fS1; S2; : : :g of interpretations, we de�ne uS and tS as follows. If a non-costatom p(x1; � � � ; xn) is in every (respectively, some) Si, then p(x1; � � � ; xn) is in uS (respectively tS).If every Si has a cost atom of the form p(x1; � � � ; xn; ci), then p(x1; � � � ; xn;ufcig) is in uS. If someSi has a cost atom of the form p(x1; � � � ; xn; ci), and C is the set of such ci values from those Sihaving such a cost atom, then p(x1; � � � ; xn;tC) is in tS.We need to prove that uS is indeed the greatest lower bound of S, and that tS is the leastupper bound. It is clear from the de�nitions that uS is a lower bound, i.e., that uS v Si for eachi, since ufcig is a lower bound in D. Now suppose that T was a greater lower bound, so that� for each i, T v Si,� uS v T , and� there is some atom p, such that p 2 T and fpg 6v uS.There are two cases to be considered. First, if p is a non-cost atom, then p must be in every Siand hence in uS, a contradiction. The second case is when p is a cost atom, which is denoted asp(g1; : : : ; gn; c). For each i, T v Si. Therefore, for each i, there is an atom p(g1; : : : ; gn; ci) 2 Si,such that c v ci, and consequently, c v ufcig. By de�nition, p(g1; : : : ; gn;ufcig) 2 uS. Butc v ufcig, implies fp(g1; : : : ; gn; c)g v uS, a contradiction. The argument for least upper boundsis similar.Theorem 3.1 also applies when we restrict our interpretations to contain just CDB atoms.De�nition 3.6: Let P be a program component with cost arguments having values from a com-plete lattice (R;v). Let I be an interpretation for predicates de�ned in all lower components (i.e.,the LDB), and let J be an interpretation for the predicates de�ned in P (i.e., the CDB). We sayJ [ I is a minimal model of P based on I if J [ I is a model of P , and there is no J 0 (di�erent fromJ) such that J 0 v J and J 0 [ I is a model of P . 2Example 3.1: Consider the program of Example 2.6. Let the arc relation be given by I =farc(a; b; 1); arc(b; b; 0)g corresponding to the following graph.
a b

1

0Suppose the domain and range are the nonnegative integers, and that v is the � relation.Beware! \v" here means \greater or equal to," and so minimal models will have larger cost values.Two models of the program (omitting the arc facts) areM1 = fpath(a; direct; b; 1); path(b; direct; b; 0); path(a; b; b; 1); s(a; b; 1); s(b; b; 0)g13



and M2 = fpath(a; direct; b; 1); path(b; direct; b; 0); path(a; b; b; 0); s(a; b; 0); s(b; b; 0)g:M1 v M2, since s(a; b; 1) v s(a; b; 0) and path(a; b; b; 1) v path(a; b; b; 0), while M2 6v M1. As weshall see below, M1 is in fact the unique minimal model of the component based on I . Note thatM1 6�M2. 2De�nition 3.6 can easily be extended to the case where not all cost arguments have the sametype of cost domain. \v" can be interpreted as a composition of several partial orders v1; � � � ;vnwith each such partial order applying to predicates having the appropriate cost-domain.De�nition 3.7: Let P be a program component, and let I be an interpretation for predicatesappearing in the bodies of rules in P but not in their heads (i.e., LDB predicates). Let J be aninterpretation for predicates appearing in the heads of rules in P (i.e., CDB predicates). De�neTP (J; I) = fA : A B1; � � � ; Bn is a ground instance of a rule in P , and I [ J j= B1 ^ � � � ^Bng t J;We say P is cost consistent if for every such J and I , TP (J; I) is an interpretation. 2Note that TP (J; I) is de�ned as the least upper bound of two sets. One set consists of atomsthat are derived by applying the rules, while the other set, J;, is used to ensure that appropriateinstances of the default-value cost predicates are present. Cost-consistency in De�nition 3.7 (whichis equivalent to De�nition 2.6) addresses the consistency issue discussed in Section 2.4. Wee�ectively say that a program is cost consistent if for every pair of interpretations J and I , TP (J; I)contains no conicting cost atoms. In what follows, we assume (without further comment) thatprogram components are cost consistent.Proposition 3.2: Let I be a �xed interpretation for the LDB predicates of a program componentP , and let J vary over interpretations on the CDB of P . Then J [ I is a pre-model of P if andonly if TP (J; I) v J .Proof : Suppose that J [ I is a pre-model of P . There are two cases to be considered. First, ifh 2 TP (J; I) because h is the head of a ground instance of a rule in which the body is satis�edby J [ I , then there is some element h0 2 J such that h v h0. The second case is when h is inTP (J; I) because h is in J;. Let p(g1; : : : ; gn; c) denote h in this case. Note that by the de�nition ofJ;, predicate p must be a default-value cost-predicate and c must be the minimal value of the costdomain. Since J is an interpretation, there is a some c0, such that p(g1; : : : ; gn; c0) 2 J , and clearly,c v c0. Therefore, fhg v J also in this case. Since this observation holds for every h in TP (J; I),TP (J; I) v J .Conversely, if TP (J; I) v J and r is a ground instance of a rule with head h such that the bodyis satis�ed by J [ I , then there must be some h0 2 J such that h v h0. Since this observation holdsfor every rule r, we conclude that J [ I is a pre-model of P .De�nition 3.8: Let I be an interpretation for the LDB predicates of a program component P .We say P is monotonic if TP (J; I) is monotonic in J for every �xed I . 2Proposition 3.3: For a monotonic program P and for �xed I , the least �xpoint J of TP (withrespect to v on the �rst argument) exists, and J [ I is the least pre-model of P that is based on I .Proof : By Theorem 2.1, since we have a monotonic operator on a complete lattice.We shall denote the least �xpoint of TP for a given second argument I by JPI , and let MPI =JPI [ I . 14



Proposition 3.4: MPI is a model of a monotonic program P .Proof : Since TP (JPI ; I) = JPI .Corollary 3.5: For a monotonic program P ,MPI is the least model (with respect to v) of P basedon I , and is the greatest lower bound of all models of P based on I .For Horn programs, the intersection of all Herbrand models is itself a model of the program,which is therefore the least Herbrand model and the unique minimal Herbrand model. We haveshown an analogous result for monotonic programs with aggregates. Note that we had to considerpre-models and not just models because (unlike the case for Horn programs) the set of models isnot closed under the operation of greatest lower bound (u).Under what conditions can we ensure that there is a unique minimal model for a component?We basically need to prove that a program is monotonic with respect to a given partial order. Wecan ensure this by insisting that all aggregates are monotonic operators, and that cost values (andtruth values) in the head are monotonic functions of the cost values in CDB predicates in the body.We shall formalize this intuition in Section 4.Example 2.6 is monotonic. Example 2.7 is monotonic assuming that the cost-domain for shareproportions is some subset of R� [ f1g that is closed with respect to sum. In both cases, thecorresponding least models give the expected semantics. Thus we have achieved a frameworkwithin which a number of independently proposed examples can be handled.4 Su�cient Conditions for Monotonic ProgramsIn order to apply the monotonic semantics, it is important to be able to syntactically recognizeprograms that are monotonic. We address this question in this section. In Section 4.1 we discussthe monotonicity of the aggregate functions themselves. We use these monotonicity properties inSection 4.2. In Section 4.3 we present some examples of programs satisfying the stated su�cientconditions.4.1 Monotonic Aggregate FunctionsLet D be some domain, R some range. Let the function F be a map fromM(D), the multisets overD, into R. Let vR be a partial order on elements of R and let vD be a partial order on elementsof D. (In the next section, we will focus particularly on complete lattices (D;vD).) We extendvD to M(D) as follows: If I and I 0 are in M(D) then I vD I 0 if there is an injective map m fromelements of I to elements of I 0 such that i vD m(i) for all i 2 I .We say F is monotonic on hD;vD; R;vRi if the following condition holds:8I; I 0 2M(D) : I vD I 0 ) F(I) vR F(I 0)(In most of our examples, D = R and vD=vR.) Note that vD is not necessarily a partialorder on M(D), since it is possible to construct distinct in�nite multisets M and M 0 such thatM vD M 0 vD M . An example of this behavior is when D is N+ [ f1g (i.e., the positive integerswith a limit element), vD is �, M = f1; 2; 3; : : :g, and M 0 = f2; 3; 4; : : :g. Restricted to �nitemultisets, vD is a partial order.The intuition behind monotonic aggregate functions is that adding more elements to the multisetbeing operated upon, or increasing the values of those elements (with respect to vD), can onlyincrease the value of the function (with respect to vR).Example 4.1: Figure 1 shows examples of monotonic aggregate functions on various domains,all of which are complete lattices. R denotes the reals, N denotes the nonnegative integers, B15



D vD uD tD ?D R vR ?R FR[f�1g � min max �1 R[f�1g � �1 maximumR� [ f1g � min max 0 R� [ f1g � 0 maximumR[f�1g � max min 1 R[f�1g � 1 minimumR� [ f1g � min max 0 R� [ f1g � 0 sumB � _ ^ 1 B � 1 ANDB � ^ _ 0 B � 0 ORN+ [ f1g � min max 1 N+ [ f1g � 1 productB � _ ^ 0 N[f1g � 0 count2S � \ [ ; 2S � ; union2S � [ \ S 2S � S intersectionE � \ [ ; B � 0 PFigure 1: Monotonic Aggregate Functions.denotes the booleans (where 1 represents true and 0 represents false), S denotes an arbitrary set,and E denotes the domain of (multigraph) edges. A superscript of + indicates the positive subsetof the values, and a superscript of � denotes the nonnegative subset. P denotes any monotonicallyincreasing property of a multigraph, such as \having a simple path of length 4." 2In the context of databases we shall only really be interested in �nite multisets. However, ifrelations are permitted to become in�nite, then we may need in�nite objects (like 1) to representaggregates of in�nite multisets.4.1.1 Pseudo-MonotonicityAn aggregate function need not be monotonic in a component P in order for the corresponding TPto be monotonic in its �rst argument. Consider the AND operator on booleans with respect to theordering � on truth values. A larger multiset of boolean values may give a smaller value for theresult of the aggregate, for example AND(f1g) 6� AND(f0; 1g):However, if the size of the multiset on which AND operates is constant, then AND is in some sensemonotonic with respect to �. For any �xed k > 0, AND is a monotonic operator on k-elementmultisets of boolean values. Increasing one of the k truth values from 0 to 1 can only increase theresult of the conjunction.De�nition 4.1: Let F be an operator fromM(D) into R. We shall say F is pseudo-monotonic onhD;vD; R;vRi if for every �xed k > 0, and for every pair I and I 0 of multisets overD of cardinalityk, I vD I 0 ) F(I) vR F(I 0): 2As discussed above, AND is pseudo-monotonic on hB;�;B;�i although not monotonic on thesame structure. max is pseudo-monotonic on structures with partial order � and min is pseudo-monotonic on structures with partial order �. Even average is pseudo-monotonic with respect tostructures having partial order �. 16



4.2 A Syntactic Su�cient Condition for Monotonic ProgramsIn this section, we de�ne syntactic conditions on programs that guarantee monotonicity. Recall(from De�nition 2.4) that in an aggregate subgoal of the formC = F E : p(X1; � � � ; Xn; Y1; � � � ; Ym; E)C is an aggregate variable and E is a multiset variable. Note that E must appear in the costargument of p, and E cannot appear outside the aggregate subgoal. Instead of a single atomp(X1; � � � ; Xn; Y1; � � � ; Ym; E), the aggregate subgoal may have a conjunction of atoms, and in thiscase, E must appear in some of the cost arguments of those atoms. We will also use the followingterminology. An aggregate subgoal is an LDB aggregate if all its predicates are LDB predicates;otherwise, it is a CDB aggregate. A CDB cost variable is either a variable appearing in a costargument of a CDB predicate or an aggregate variable of a CDB aggregate.We start with a discussion of the declarations that must be part of any program. Formally, atype consists of a set of values, called the cost domain, and a partial order on the cost domain.The cost argument of each cost predicate should have a type declaration. Similarly, each aggregatefunction should have one type declaration for its domain and another type declaration for its range.We assume that rules are well typed in the following sense. In an aggregate subgoal with a multisetvariable E, the type declaration of the domain of the aggregate function must be the same as thetype declaration of each cost argument in which E occurs.A rule is required to be well typed in order to avoid a semantic error when applying an aggregatefunction. However, to guarantee monotonicity additional restrictions are required. The �rst (andsimplest) part of these restrictions is given in the next de�nition.De�nition 4.2: A rule r is well formed if it satis�es the following syntactic restrictions.1. Built-in subgoals do not appear inside aggregate subgoals.12. Only variables (and no constants) may appear in cost arguments of CDB predicates and tothe left of the = (or r=) sign in aggregate subgoals (this restriction can always be satis�ed byadding built-in subgoals).3. Each CDB cost variable has at most one occurrence among the non-built-in subgoals of r.(Technically, a multiset variable E has at least two occurrences. For the purpose of thisde�nition, however, we ignore the occurrence immediately following the aggregate function.)2 Consider a well formed rule r and let Er denote the conjunction of the built-in subgoals in thebody or r. We will now de�ne when Er is monotonic. Monotonicity of Er is needed to guaranteemonotonicity of r.An assignment for Er is an assignment of constants to variables of r. We distinguish betweentwo types of assignments. A full assignment is an assignment to all the variables of Er. A partialassignment is an assignment to only those variables of Er that also appear in some non-built-insubgoals of r.De�nition 4.3: Let �1 and �2 be two (partial or full) assignments for Er. We say that �1 v �2 iffor all variables v on which both �1 and �2 are de�ned,� �1(v) v �2(v) if v is a CDB cost variable, and1This restriction does not involve a loss of generality, since an aggregation can always be applied to a singleordinary atom by adding more rules. 17



� �1(v) = �2(v) otherwise.2De�nition 4.4: Er is monotonic if for all �1 and �2, such that� �1 is a full assignment that satis�es Er,� �2 is a partial assignment for Er, and� �1 v �2,there is an extension of �2 into a full assignment �02 for Er, such that �02 satis�es Er and if the headof r has a cost argument with a variable vh, then �1(vh) v �02(vh). 2In practice, we need some simple conditions for checking that Er is monotonic. It is not di�cultto �nd such conditions. For example, if Er has the single atom C = C1+C2, such that C1 is a CDBcost variable, C2 is not a CDB cost variable, the only other occurrence of C is in the cost argumentof the head, and � is the partial order associated with all these variables, then Er is monotonic.We are now ready to de�ne and prove the condition that guarantees monotonicity.De�nition 4.5: A rule r is admissible if� r is well typed and well formed,� for each CDB aggregate subgoal, either the aggregate function is monotonic, or the aggregatefunction is pseudo-monotonic and all CDB predicates appearing inside the aggregate subgoalare default-value cost predicates, and� Er (the conjunction of built-in subgoals) is monotonic.2Note that the second part of the above de�nition implies that an aggregate subgoal with a pseudo-monotonic aggregate function cannot have a noncost CDB predicate.Lemma 4.1: If all rules of a program P are admissible, then P is monotonic.Proof : Consider an interpretation I for the LDB predicates of a program component P . We haveto show that TP (J; I) is monotonic in J . So, let J and J 0 be two interpretations for the CDBpredicates, such that J v J 0. We have to show that TP (J; I) v TP (J 0; I).We say that atom p0 2 J 0 corresponds to atom p 2 J if p0 and p are atoms of the same predicateand both are equal on all the non-cost arguments. By De�nition 3.3 and the fact J v J 0, for eachp 2 J there is a unique p0 2 J 0 that corresponds to p and, moreover, p v p0.Let r be a rule of P of the form H  G1; � � � ; Gn; without a loss of generality, we assume thatGk+1; : : : ; Gn are all the built-in subgoals. Suppose that A  B1; � � � ; Bn is a ground instanceof r, such that I [ J j= B1 ^ � � � ^ Bn. We will now show how to convert the ground instanceA  B1; � � � ; Bn into another ground instance A0  B01; � � � ; B0n, such that I [ J 0 j= B01 ^ � � � ^ B0nand A v A0.For each subgoal Gi of rule r, we have to convert the ground instance Bi of Gi into the newground instance B0i. There are several cases to be considered. First, suppose that Gi is a subgoalhaving an LDB predicate. In this case, Bi must be in I and we choose B0i to be the same as Bi.Second, suppose that Gi is a subgoal of a CDB predicate. In this case, B0i is the unique atom of J 018



that corresponds to Bi. The third case is when Gi is an aggregate subgoal. The most general formof Gi in this case is C = F E : p1( �X1; �Y1; E1); : : : ; pk( �Xk; �Yk; Ek):where �Xj is the vector of global variables that appear in pj , �Yj is the vector of local variables thatappear in pj , and Ej is the variable in the cost argument of pj (1 � j � k). Note, that either oneof �Xj , �Yj or Ej may not exist. Also note that some of the Ej are equal to E. The ground instanceBi of Gi is of the form c = F E : p1(�x1; �Y1; E1); : : : ; pk(�xk; �Yk; Ek):where c and �x1; : : : ; �xk are constants. Let Si (resp., S 0i) denote the set of ground instancesp1(�x1; �y1; e1); : : : ; pk(�xk; �yk; ek) of the conjunction p1(�x1; �Y1; E1); : : : ; pk(�xk; �Yk; Ek), such that eachpj(�xj ; �yj ; ej) is in I [ J (resp., I [ J 0).Since rules are well formed, there is no pair of atoms pj( �Xj ; �Yj ; Ej) and pl( �Xl; �Yl; El) (1 �j; l � k), such that pj and pl are CDB cost predicates and Ej is the same as El. There-fore, J v J 0 implies that for each p1(�x1; �y1; e1); : : : ; pk(�xk; �yk; ek) in Si, there is a correspondingp1(�x1; �y1; e01); : : : ; pk(�xk; �yk; e0k) in S 0i, such that for j = 1, 2, : : : ; k, ej v e0j if pj is a CDB costpredicate, and ej = e0j otherwise. Moreover, if all CDB cost predicates among p1; : : : ; pk are default-value cost predicates, then the sets Si and S 0i must have the same size. Let Mi and M 0i be themultisets obtained by projecting Si and S 0i, respectively, onto E. The above discussion implies thefollowing.� Mi vM 0i , and� if all CDB cost predicates among p1; : : : ; pk are default-value cost predicates, then Mi andM 0i have the same size.If Gi is an LDB aggregate (i.e., each pj is an LDB predicate), then we choose B0i to be the sameas Bi. In this case, Si and S 0i must be the same and, clearly, B0i is satis�ed by I [ J 0. If Gi isa CDB aggregate (i.e., some of the pj are CDB predicates), then the aggregate function is eithermonotonic or pseudo-monotonic. In both cases, Mi v M 0i ; moreover, in the second case, both Miand M 0i have the same size. Thus, in either case, there is a constant c0, such that c v c0 and theground aggregate subgoal c0 = F E : p1(�x1; �Y1; E1); : : : ; pk(�xk; �Yk; Ek):is satis�ed in I [ J 0. Consequently, we choose the above ground aggregate subgoal to be B0i.Thus, we have shown how to construct for each non-built-in subgoal Gi (1 � i � k) a groundinstance B0i that is satis�able in I [ J 0. Moreover, the only di�erence between B1; : : : ; Bk andB01; : : : ; B0k might be in the constants assigned to the CDB cost variables (the new constants mayhave been increased with respect to the corresponding partial orders). Since r is a well-formedrule, each CDB cost variable has a single occurrence among the subgoals G1; : : : ; Gk, and therefore,B01; : : : ; B0k is a ground instance of the conjunction G1; : : : ; Gk and is satis�able in I [ J 0.It remains to show how to satisfy the conjunction Er of the built-in subgoals Gk+1; : : : ; Gn.Let �1 be the full assignment for Er that is induced by the ground instance A  B1; � � � ; Bn, andlet �2 be the partial assignment for Er that is induced by the ground atoms B01; : : : ; B0k. Clearly,�1 v �2. Since Er is monotonic, there is an extension �02 of �2, such that �02 satis�es Er. Wegenerate B0k+1; : : : ; B0n by instantiating Gk+1; : : : ; Gn according to �02. Note that the monotonicityof Er also implies that if the head of r has a cost argument with a variable vh, then �1(vh) v �02(vh).In conclusion, for each ground instance A  B1; � � � ; Bn, such that I [ J j= B1 ^ � � � ^ Bn, wehave obtained a ground instance A0  B01; � � � ; B0n of r, such that I[J 0 j= B01^� � �^B0n and A v A0.If A 2 TP (J; I) because A 2 J;, then TP (J; I) has either A or a ground atom A0 such that A v A0.Thus, TP (J; I) v TP (J 0; I). 19



Example 4.2: One can verify that both the shortest-path program (Example 2.6) and the company-control program (Example 2.7) are admissible. Being well-typed and well-formed is easy to check.The aggregate functions are monotonic, as described in Figure 1. C = C1 + C2 is monotonic, asdiscussed after De�nition 4.4, as is N > 0:5. 24.3 Further Examples of Monotonic ProgramsThe power of this approach can be seen by using some of the monotonic and pseudo-monotonicaggregate functions to get monotonic programs. Two examples are given below.Example 4.3: (Party invitations) Suppose we are organizing a party, at which a number of peopleare invited. However, some of the guests refuse to come unless it can be guaranteed that they willknow at least k other people at the party (where k depends upon each guest). We assume thateach guest requires proof of other guests' commitments before deciding whether or not to come;we do not allow groups of friends to decide collectively to attend. Guests inform the host of howmany others they require.We assume each person has a unique name. The EDB atom requires(X;K) holds when theinvitee X requires that K other people that X knows come before X will come. The EDB atomknows(X; Y ) holds if X knows Y .We can express the attendance of the party using the following rules.coming(X) requires(X;K); N = count : kc(X; Y ); N � Kkc(X; Y ) knows(X; Y ); coming(Y )coming(X) holds if X is coming to the party. kc(X; Y ) holds if X knows Y and Y is coming. Thisprogram is obviously conict-free because no head atom has a cost argument. The program aboveis monotonic, being admissible, and will compute the status of all invitees even when there arecycles in the knows relation. The program would be modularly strati�ed [12] only if the knowsrelation was acyclic (a very unlikely occurrence). Note that the truth of the subgoal N � K is notmonotonic in K; however, since K is not a CDB cost variable, N � K is monotonic according toDe�nition 4.4. Note that we use a \=" aggregate subgoal, because we do not want to lose thosepeople who require nobody else. The �rst rule is range-restricted, since the grouping variable Xappears in a noncost argument of an LDB subgoal. 2Pseudo-monotonicity can be used as the basis for an example based on circuits.Example 4.4: Suppose a circuit of AND and OR gates is given, with each gate given a uniquename, and every input wire also given a unique name. The gates may have arbitrary fan-in (andfan-out), but we assume that any input to a gate appears only once (since repeating inputs servesno useful purpose on gates with arbitrary fan-in). We shall use the name of the gate as a synonymfor its output wire.The EDB atom gate(G; T ) holds when G is the name of a gate of type T , where T may be andor or. The EDB atom connect(G;W ) holds if wire W is connected as an input of gate G. Finally,the EDB atom input(W; 1) holds when input wireW has the value true, and input(W; 0) holds wheninput wire W has the value false. (Note that we are making the boolean cost arguments explicit.)We declare t to be a default-value cost-predicate:declare default t(W,0)We can de�ne the truth values of all wires, even if the circuit has cycles, according to the followingprogram P . 20



t(W;C) input(W;C)t(G;C) gate(G; or); C = OR D : [connect(G;W )^ t(W;D)]t(G;C) gate(G; and); C = AND D : [connect(G;W )^ t(W;D)]t(W; 1) holds when wire W has boolean value true, and t(W; 0) when it has the value false. (Wemake the implicit assumption that the circuit behaves in a minimal fashion. For example, weassume that a circuit consisting of a single AND gate with its output connected as its sole inputwould have the value false on the output wire. For the circuit to behave in a maximal fashion, onewould change the default value for t from 0 to 1. )The rules are range-restricted. In the second rule, for example, the grouping variable G appearsoutside the aggregation in the subgoal gate(G; or). Also, the non-cost argument W of the default-value cost atom t(W;D) appears in the conjunct connect(G;W ). Each of the rules is cost-respecting.The program is conict-free assuming appropriate integrity constraints stating that OR gates, ANDgates, and input wires come from disjoint classes.OR is monotonic with respect to the order �, although AND is not. However, this programis admissible due to the pseudo-monotonicity of AND and the fact that t is a default-value costpredicate.Let us elaborate on how the pseudo-monotonicity helps here in order to elucidate this program'smonotonicity. The shape of the circuit is determined by lower-level LDB predicates. The ANDaggregation in the third rule applies to all wires W such that connect(G;W ) holds; for each gate Gthere is a �xed number of such input wires W . Thus we can hope to use the pseudo-monotonicityproperty of AND with respect to �. An essential element in using this property is the fact that tis a default-value cost predicate.Because t is a default-value cost-predicate, there is always a matching cost value D for any wireW connected to G. If no explicit value has been derived, then the default value is used. If t werenot a default-value cost-predicate, it might happen that for some wire w, the status of the wireis not determined at some point, in which case there would be no atom of the form t(w;D). Asa consequence, the conjunction [connect(g; w)^ t(w;D)] would fail, where g is some AND gate towhich w is connected. If all other wires connected to g had t-value 1, then the aggregate wouldreturn 1. At a later time, t(w; 0) might be derived, in which case the aggregate would now return 0and thus behave nonmonotonically. However, since t is a default-value cost predicate, t(w; 0) wouldhave been true all along, and so the nonmonotonic behavior would not have arisen.The only atoms in the third rule that change during a bottom-up iteration are the t atoms. If alarger value of D is derived for some W , or if t(W;D) is derived for the �rst time, then the resultingvalue of C can only increase from what it was on the previous iteration. Thus TP is monotonic inits �rst argument, and so the least model exists. 25 Related Work5.1 Strati�cationMumick et al. observed that if a program did not perform any recursion through aggregation thenan iterated model could be constructed in a similar way to the construction of the unique perfectmodel for a strati�ed program [9]. They call a program \aggregate strati�ed" if it is strati�ed withrespect to aggregation operators.Ross extended the notion of strati�cation to \modular strati�cation," (with respect to negation)and described how to construct a two-valued well-founded model for such programs [12]. Theextension of modular strati�cation to aggregate functions (rather than negation) is described in21



[12]. Mumick et al. termed programs which are modularly strati�ed with respect to aggregation\group strati�ed" programs [9]. For such programs a unique perfect model can be de�ned.While each of these forms of strati�cation successively generalizes the previous one, there areprograms of interest that are not modularly strati�ed, and hence cannot be handled by the proposalsmentioned above. We seek a more general proposal that would agree with these methods forprograms that happen to be modularly strati�ed, group strati�ed or aggregate strati�ed.5.2 Monotonic Programs (�a la Mumick et al.)Mumick et al. also de�ne a class of \monotonic programs" and describe how one can compute abottom-up �xpoint of a monotonic program that is not necessarily strati�ed (or even modularlystrati�ed) [9]. Since we have already used the term \monotonic programs" for a broader class ofprograms, we shall refer to the monotonic programs of [9] as \restricted monotonic programs" or\r-monotonic programs."De�nition 5.1: A rule is said to be r-monotonic if adding new tuples to the relations for itsordinary subgoals or its aggregate subgoals can only add tuples for the head (i.e., cannot invalidatean earlier deduction) regardless of the relations for other subgoals in the rule. A program is r-monotonic if every rule in it is r-monotonic. 2Mumick et al. do not treat arguments that are formed using aggregation as special. A con-sequence of this policy is that rules containing an aggregate subgoal cannot have the aggregatedvalue appearing in the head. For example, the program of Example 2.7 is not r-monotonic becauseof the third rule m(X; Y;N) N r= sumM : cv(X;Z; Y;M):Suppose that after one iteration the tuple m(x; y; n1) has been derived. If some new cv tuples arelater derived, then the sum will increase compared with its previous value n1 thus invalidating thederivation of m(x; y; n1). On the other hand, the company control program can be formulated asan r-monotonic program by combining the third and fourth rules into one rule, namelyc(X; Y ) N r= sumM : cv(X;Z; Y;M);N > 0:5However, the shortest path program of Example 2.6 is not r-monotonic. There is little hope ofrewriting it as an r-monotonic program since the length of the shortest path should be part of thes relation, and this length is the result of an aggregate operator. Example 4.3 is monotonic, butnot r-monotonic due to the nonmonotonicity in K. It is, however, \strati�ed monotonic" in thesense of [9].The class of monotonic programs properly includes all r-monotonic programs of [9]. Unlikemonotonic programs, r-monotonic programs cannot have the result of an aggregation as part of aresulting head tuple.5.3 Kemp and Stuckey's Well-Founded Semantics and Stable ModelsKemp and Stuckey have de�ned an extension of the well-founded semantics of [20] to programs withaggregation [8]. In order to generalize the immediate consequence operator and the unfounded setconstruction, they de�ne how an aggregate subgoal is (and is not) satis�ed. The essential feature isthat all instances of the atom being aggregated must be fully de�ned in the sense that every suchground atom is known to be either true or false.The shortest-path program of Example 2.6 can be given a two-valued well-founded semantics ifthe arc relation is acyclic (in which case the program is modularly strati�ed). The min aggregate22



can be successively applied to larger fragments of the graph, working from the \sinks" towards the\sources." Note that in this case we can assign a semantics irrespective of the way path weightsare combined and the domain from which the path weights come; the subgoal C = C1 + C2 couldbe replaced with C = G(C1; C2) for any arbitrary function G. However, in the presence of cyclesthere may be s atoms that are unde�ned in the well-founded model because they depend throughaggregation on a path atom that is itself unde�ned because it depends upon an s atom.For a number of monotonic programs, including Examples 2.6, 2.7, 4.3 and 4.4, the well-foundedsemantics would be uninteresting in the sense that it would make too much information \unde�ned"when the appropriate EDB relations contain cycles. The reason for this discrepancy is that thesemantics requires all subgoals to be fully de�ned before an aggregate can be applied to it. Formonotonic programs, on the other hand, we can apply an aggregate to a partially de�ned relationto get a monotonic sequence of \approximations" to a least �xpoint.Kemp and Stuckey also generalized the stable model semantics to programs with aggregatesusing the same notion of when an aggregate subgoal is satis�ed. As pointed out in [8], programsmay have multiple stable models. The shortest-path program (without the \�x" mentioned below)can have two incomparable stable models; the two models in Example 3.1 are stable in the senseof [8]. A similar problem also occurs for the company-control example.For min and max aggregates this aw can be removed; for example the shortest path programcan be \�xed" by adding the subgoal path(X;W; Y; C) to the third rule. Since the shortest path isindeed a path, the meaning of the program is unchanged. The extra subgoal provides an additionalway for the body to fail outside of the aggregation. By consistently employing this extra-subgoalconstruction, Kemp and Stuckey are able to prove the existence of a unique stable model for allcost-monotonic min and max programs discussed in Section 5.4. Unfortunately, this �x does notapply to arbitrary aggregate operators, since the result of an aggregate operation does not, ingeneral, appear in a tuple being aggregated upon. They do, however, obtain the result that forr-monotonic programs with min and max aggregates, the least �xpoint obtained using a bottom-upconstruction yields a least stable model.5.4 Cost-Monotonic min and maxThe approach of Ganguly, Greco and Zaniolo is somewhat di�erent from that of Kemp and Stuckey.Rather than extend the well-founded semantics to handle min and max aggregate operators, theyrewrite the aggregate subgoals as a conjunction of normal subgoals involving negation, to yield anormal program [7]. The well-founded model of that normal program is taken to be the semanticsof the original program.For example, the third rule of the shortest path program (Example 2.6) would be rewritten ass(X; Y; C) path(X;W; Y;C); d(C);:9(Z;D) [path(X;Z; Y;D); d(D); (D <d C)]The d predicate holds of all elements in some domain, and <d is assumed to be a total-ordering ofthat domain.Ganguly et al. de�ne a class of \cost-monotonic" min and max programs, and show that therewritten versions of these programs have a two-valued well-founded model.2 The shortest-pathprogram is cost-monotonic assuming that all arcs have nonnegative weights.A similar approach was proposed independently by Sudarshan and Ramakrishnan [15] forevaluating programs with aggregates that return extreme values, such as min and max.2Actually, the proof in [7] that cost-monotonic min and max programs have a two-valued well-founded modelrequires the (unstated) assumption that <d be a well-founded ordering of the domain. An example where <d is nota well-founded ordering and the well-founded model is three-valued is when the arc relation consists of all tuples ofthe form arc(f i(a); f i+1(a); 3�i) and arc(f i(a); b; 21�i) for i = 0; 1; : : :. This arc relation can be generated by a �niteset of rules. 23



The \cost-monotonic" min and max programs of [7] are not all monotonic in our sense. Forexample, if the subgoal p(C) were added to the second rule of the shortest-path program (Exam-ple 2.6), where p is some LDB predicate, then the resulting program would be cost-monotonic butnot monotonic in our sense. On the other hand, some programs that are monotonic in our senseare not cost-monotonic according to [7]; an example is the shortest-path program (Example 2.6)when the edges may have negative weights. Additionally, our de�nitions also apply to aggregateoperators other than min and max.5.5 Stable Models RevisitedKemp and Stuckey's de�nition of stable models in the presence of aggregates treats aggregatesubgoals like negative subgoals: Aggregate subgoals are eliminated in the reduction stage. A modelM is stable if it is the minimal model of the Horn program resulting from this generalized reductionof the program with respect to M . Unfortunately, even for monotonic programs, unique stablemodels are not guaranteed, and incompatible stable models may exist. For example, consider theshortest path program of Example 2.6. The two models given in Example 3.1 are both stable. Wewould choose M1 as our unique minimal model. As discussed in [8], Example 2.7 may also havemultiple stable models.One could de�ne an alternative stable model semantics as follows. Consider a candidate modelM . Apply the reduction (with respect toM) to negative literals only, and not to aggregate literals.The resulting program may contain aggregates. If the reduced program is monotonic, and if Mis its unique minimal model, then call M \stable." This alternative de�nition agrees with ourclassi�cation of minimal models for monotonic programs without negation. It also shows how onemay extend this minimal model semantics to programs with negation.Intermediate semantics are also possible. For example one may choose to eliminate someaggregate subgoals (for example the nonmonotonic ones) at the reduction stage, and leave others(say the monotonic ones) to form a monotonic reduced program. There may be several applicableintermediate semantics. An example might be a program component containing both min and max;min and max are each monotonic but with respect to opposite orderings. The choice of such anintermediate semantics is beyond the scope of this paper.5.6 Van Gelder's Well-Founded SemanticsRecently, Van Gelder has given a di�erent extension of the well-founded semantics [18]. Van Gelder'sextension is based on the de�nition of the well-founded model using the alternating �xpoint [19].Van Gelder's extension of the well-founded semantics can simulate Kemp and Stuckey's extension,while being \less unde�ned" on a number of important examples.In [18], Van Gelder provides a translation of monotonic programs into his formalism. Thistranslation often (but not always, as illustrated in Example 5.1 below) yields a program whosesemantics agrees with ours in the sense that Van Gelder's well-founded model contains the atom pif and only if p is in our least model. On the other hand, even when the two semantics agree onthe set of true atoms, Van Gelder's translation may make an atom unde�ned when we would makeit false. An example based on one from [18] is the company control program (Example 2.7) withthe EDB fs(a; b; 0:3); s(a; c; 0:3); s(b; c; 0:6); s(c; b; 0:6)g. For us, c(a; b) and c(a; c) are false, whilefor Van Gelder they would both be unde�ned.The translation of [18] places the �nal computation of aggregate values in a higher componentthan the recursive rules de�ning the aggregate. For example, Van Gelder's approach can computethe �nal proportions of share ownership in the company-control example (Example 2.7) only afterthe controls relation c has been fully computed. Our approach computes the controls relation cand the share proportions relation m in one sweep.24



Van Gelder's translation does not yield our least model on some programs involving limits, asshown by the next example.Example 5.1: Let halfsum be the aggregate operator that returns half the sum of a multiset ofvalues. halfsum is monotonic with respect to � on the nonnegative real numbers. Consider theprogram p(a; C) C r= halfsum D : p(X;D)p(b; 1)For us, the least model is fp(a; 1); p(b; 1)g. Intuitively, Van Gelder's approach does not yield p(a; 1)because in�nitely many applications of the �rst rule are required to achieve it. 2On the other hand, Van Gelder can assign a semantics to programs with recursion through bothaggregation and negation.6 Further Issues6.1 Aggregates of In�nite RelationsFor in�nite multisets, aggregates such as minmay not be well-de�ned (see Example 2.6), and shouldbe replaced by the greatest lower bound glb. For in�nite sets or multisets, the greatest lower boundmay not be a member of the set. For example, the greatest lower bound of f1; 12 ; 14 ; � � �g is 0, whichis not a member of the set. We cannot require a min subgoal be false if an in�nite set has nosmallest element, since this would violate monotonicity.Thus our semantics would give a \shortest path" of length 0 if there are paths of length 1; 12 ; 14 ; � � �even though there is no actual path of length 0. Whether this is a desirable feature depends uponthe context. On one hand, one could argue that 0 is the limit of successively shorter path lengths.On the other hand, one could argue that the shortest path should be a path. As discussed above,we cannot restrict shortest paths to be paths without violating monotonicity.6.2 Bottom-up EvaluationCan we use TP as the basis for computing the minimal model of a monotonic program componentP? Given an interpretation I for the lower components, the sequenceJ;; TP (J;; I); TP (TP (J;; I); I); : : :is monotonically increasing with respect to v, and each member of the sequence can be �nitelyrepresented (by representing just the core). If the program is free of uninterpreted functions, and wis a well-founded ordering on the appropriate cost-domain, then the iteration will terminate after a�nite number of steps. Function-free programs with min aggregates on well-ordered domains (suchas the nonnegative integers) satisfy this property. Any monotonic function-free program having�nite cost-domains will also satisfy this property.If TP is continuous in its �rst argument, then its least �xpoint may be obtained by iterating theabove sequence ! times. However, as pointed out in [8], TP may be monotonic in its �rst argumentwithout being continuous, and so iteration of the above sequence beyond ! may be required beforea �xpoint is reached.6.3 Iterated Minimal ModelsWhile we have only considered one strongly connected component at a time, it should be clearhow the semantics of a whole program could be de�ned. At the lowest level in the component25



hierarchy, we assume that the program is either monotonic, or has a two-valued well-foundedmodel (according to Kemp and Stuckey's extension of the well-founded semantics). In either case,we take the two-valued modelM that results, and use that as the \base" interpretation for the nexthighest components. E�ectively, M will be the �xed second argument of TP for higher componentsP . We may proceed inductively in this way until the whole program is assigned a semantics.Some monotonic components may also have two-valued well-founded models in the sense ofKemp and Stuckey, and so we must satisfy ourselves that the above construction is well-de�ned inthe sense that the same model would be chosen as the least �xpoint of TP and as the well-foundedmodel. The following result implies the well-de�nedness required; our minimal model agrees withthe well-founded model on all atoms that the well-founded model makes true of false, while theminimal model will assign true or false to all atoms left unde�ned by the well-founded semantics.Proposition 6.1: Let P be a monotonic component with negation applied only to LDB predicates,and having no default-value cost predicates. Let I be a �xed interpretation for the LDB of P . LetWFPI be the well-founded (partial) model of P in which I is treated as the EDB of P . Then forevery ground atom p,� WFPI j= p)MPI j= p, and� WFPI j= :p)MPI j= :p.Proof : The proof is by induction on the construction of the well-founded model, which is three-valued in general. A three-valued interpretation is a consistent set of ground literals; an atom thatappears neither positively nor negatively is considered \unde�ned." Recall that the well foundedmodel is constructed by iterating an operatorWP (J) = T 0P (J)[:�UP (J), where J is a three-valuedinterpretation, T 0P is the immediate consequence operator,3 and UP (J) is the greatest unfoundedset with respect to J . Then WFPI is the least �xpoint of WP[I . The base case (J = ;) is trivial.The limit ordinal case is straightforward. We consider the successor ordinal case below. Supposethat the induction hypothesis holds for J . We show that it also holds for J 0 = WP[I(J).An atom p 2 J 0 must result from an application of T 0P[I to J . In particular, there must be a ruleinstance with head p all of whose subgoals are true in J [ I . For aggregate subgoals q this meansthat all instances of predicates mentioned inside q are de�ned (i.e., either true or false) in J . By theinduction hypothesis, the same subgoals are true in MPI and so either p 2 I or p 2 TP (JPI ; I) = JPI ;hence p 2 JPI [ I =MPI .A negated atom :p 2 J 0 must result from an application of UP[I to J . In particular, for everyrule instance with head p either some subgoal is false in J [ I , or some positive subgoal is also inUP[I(J). For aggregate subgoals q that are false in such rules, all instances of predicates mentionedinside q are de�ned (i.e., either true or false) in J . Let R be the set of rule instances with headbelonging to UP[I(J). In particular, all rules with head p are in R. By the induction hypothesis,all rules in R that have a false subgoal in J [ I also have a false subgoal in MPI , and so suchrules cannot �re in an application of TP (JPI ; I). In the remaining rule instances, every rule has apositive subgoal that appears as the head of another rule. Thus there is a cyclic dependency, andnone of these rule instances will �re in an application of TP (JPI ; I). Hence p 62 MPI . Since MPI istwo-valued, we conclude that MPI j= :p.Note that the well founded model is partial (i.e., three-valued) in general. When the well-foundedmodel is two-valued then Proposition 6.1 implies that WFPI and MPI are the same.The restriction to components without negative CDB subgoals in Proposition 6.1 is not verylimiting: Any rule with a negative CDB subgoal will violate monotonicity unless that rule never�res.3We label the three-valued immediate consequence operator T 0P (J) to distinguish it from our operator TP (J; I).26
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