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Sumgpary ITI A Model of Computation in a Programming

Language

Wwe present the best known algoritnm
for the determination of run-time types in
a i ze regquirin no type
Getiarariona: W Gomonsirate tnat it is  gramming language is the parallel assign-
superior to otner published algorithms and ment statement, whose most general form (s
tnat 1t 1is the best possible algoritim Q:
from among all tnose that use tne same set

The basic building block of our pro-

of primitive operators, (X1’X2‘XS’""xk)<_(®i1(y11’y12'""Y1d1)”
I Introduction $ig(12"122""'yad2>’
In this paper we przsent a model of
computation that 3is an abstraction of
typeless programming languages such as
APL, SZTL and SHOBOL. Based on this model o, ({ ¥ ..., X )
we present a general scheme for automati- L klTk2 kd,
cally inferring tne types of the variables Wwhere
in a given progranm. Jur type inference
system 1is provably more powsrful than tne Ao & ... X are distinct variable
systems o° Jones and Mucanick [J] and 1 ? K
Tenenbaum [T]. names .
&, &, ....,ei are opurators of
In Ssetion 11 we introduce a model ToTe K .
for tne treatment of type inferance. A degrees d,,d,,....d , respectivsly,
system of relationships that enables us to and
infer types is discussed in Section III. tne Y. 's are variable names
Then Section IV gives a formula that we Jmn
believe I1s tne best achievable without " . . ‘ .
introducing wnolly new concepts into the . fne  simple assigoment L&Y Iis
probiem of type determination. Section V sncluded oy writing it as X&-1d(1). where
justifies our view by showing how to gst ~d s tnep ‘dentfty opeva?or. Uperators
tne Dbest possible result from a given set Day be of dsgree U; that is they may take

of primitive operators and starting solu-
tions. In JSection VI we show that our
solution is at least as good as other pro-

posed methods, and Section VII 3is an
gextended examples that demonstratses our
solution can be Dbetter than other known

solutions.
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no arguments and yield constant values.

The intent 1s tnat variable names
are bound to {(associated wita) values From
(members of) a universe of values V. Each
operator ej with degree dj corresponds to

d.
a function @j:V Iy

Now tne meaning of an
statement should be clear.

ables ij b2 pbound to

assignment o Iis executed. Tnan after Q is
exgcuted. variables X1...,.X bgcome bound

assignment

Let tne vari-

values v. before
jm

K
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to ne val & e RN
t alues $j1(v11, v1d1),

- A 3 w n

wjk(vKT..,.,deK;, respectively. £ach Ay

loses any valiue it may have been bound to

before tne execution of 4.
gram variablss 1.
g ariabiegs lJm

All otner pro-
retain theipr values.

A program is a directed
of whose nodes 1s labsled by an instance
of an assignment statement, subject to the
“ollowing restrictions:

graph., each

1. There is a special node whicn we
cali tne start/finisn (8¢) nodse.

2. bkvery node is reachable from the 3¥
node.

3. The 3¢
node.

4. The 3¢ node 1s labeled by an assign=-
ment statement in which every progran
variaoie appears on thne left hand
side and no variables appear on tne
rignt nand side.

node is reachable “rom every

A program
tnrough the

gxecution is a path
program graph that begins at
the St nods and ends at the SrF node but
does not contain any otner instancses of
the S node.

correspondence of the model programming
language to real programming languages

Lxecuting the 3F node corresponds to
initlalizing all variables. rdeaching thne
3F node corresponds to program termina-
tion. If we 1ike, we may postulate the
existence of a special value,
undefined € V, and a constant function, u,
wnich yields tnis value. Then a typlcal
program might navs 1ts SF node labeled
witn the statement
(211Z21v2&)<-(u o <-'p)~

we can nodel the input and output
statemants of a real programning language
with special operators, vecision state-
ments can be modeled as folliows:
real language: $

model Pl

!

new_variable<-p(X

PN

Admivtediy. we onliy
that tne przdicate, p, is
model program elther edge
after p 1is evaluated,
outcome. Thus there nmay

1“2""’Xk)

model tne
evaluated
may be
regardliess
exist

ract
in a
rtagken
of p's
z<xecution
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patns in tne model o€ a real program which
are not execution patns in the real pro-
gram. But it is true that every possible
real execution path is a possible patn
through the model program Tnerefore, any
statement tnat nolds true for all execu-
tions of a model program £, must also hold
true for every possible execution of tne
program that ¢ models. If we take any
reasonable semantics for predicates., thne
set  of program executions is not effec~
tively computable, so our over-estimate of
the set of execution paths is a reasonable
approach, and corresponds to the assump-
tions usually made in code optimization
LA, G, H, na, Ki, Secl.

We shall assums that
we analyze are correct,

all programs

that In the sense

that the result of every operation will be
well defined for all input values occur-

ring during any execution. and that all
executions reach the SF node after passing
tarough a finite number of statements.

LIl Tae Type Determination rroblem

If a compiler could predict the range
o® wvalues that variables may take on dur-

ing tne sxecution of a program. it could
utilize tne information to produce
simpler, more efficient code to carry out
tne operations indicated by the program.
tor example. i the statement I&«-Jd+K
ocecurrad somswhere in the text of an APL
program. and tne compiler could determine

that both J and K would always be bound to

scalar integer values for every executlion
0f tnis statement, then tne compiler could
generate code tnat would wuse a simple

machine instruction to add the values of d

and K (rathner than calling a generalized
addition routinsz), and could allocate a
singie word for I in which to place tne

result ({(ratner than binding I to the
storage that the genegralized addition
routine would allocate dynamically).

Morsover, if a global check showed that [
never takes on any valuas other than those
of scalar integers, then the compller
could allocate I at compile time (assuming
no recursive uses of ). Bauer [B] snhows
that aven a simple type determination
scheme can result in substantial savings.
More generally, we would 1like ¢to
partition tne universe of computable
values, V, into "types. Fror tne purposes
of this paper, a type is any subset of V.
For instance, types may correspond to dif-
ferent storage representations. fach of
integar. real arrayl1:10], real set,
heterogeneous array. ¢char, char string,
anytaing (a data structure capable of
storing any value in tns universe V) mignt
be types. It is perfactly permissible
for one type to contain values taat are
also contained in another type. It 1is
also possible to incorporate tne constant
propagation problem into our scheme by




having types such as constant 3, constant
string "abc", and so on.

In general, the compiler writer must
decide on the set of types he is willing
to consider. Here we shall only make the
assumptions that:

t. The set of types, which we shall denote

by T, forms a lattice.#
(greatest lower bound) of two =slements
s,t € Y is denoted by s/\t. The join
{(least upper bound) of s and t is
denoted by s\/t. A partial ordering <
on T is given by tne rule
y2x & x<y = xAy=x & y\Vx=zy. e
shall use < for "< but not =." There
exists a least element Q and a greatest

The meet

alement 1 such taat for all se€v,
0 <s 1.

The partial ordering < should be
interpreted as follows. I€ s<t then
saying tnat a prograam variable X is

bound to a value of type s is more pre-
cise than merely saying that X is bound
to a value of type t.°

2. A symbol or expression that
an element of Y will usually appear
surrounded by brackets when it is
important tnat the reader think of tnat
expression as a subset of V as well as

rapresents

a member of Y. Bearing this in mind,
we assune that tne lattice join and
meet are related to set union and
iatersection as follows:

Lt\/s] o [t]uls] and

[(tAs] o {tlals].

This snould be interpreted as fol-

lows. “If program variable X is either
bound to a value of type t or a value
of type s, then it is surely bound to a
value of type t\/s, which must contain
the set [t]dls]. On tne other hand, if
we Know that X is bound to a value
whose type 1s described by both t and

s, then X is surely bound to a value
whose type is t/\s, whicn must contain
the set [tlni{s].- .

3. {(Finite Chain Condition) All chains
(sequences of elements related by <) in
T are of finite length. HNote that this
is not so strong a condition as assum-
ing that all cnains have tneir lengtn
bounded by some constant. However, the
finite chain condition does imply that

T is a complete lattice.*

theory and
found in

t An introduction to lattice
its basic definitions may be
reference [D].
$_A&IEEEEGEMES complete if every chain of
elements has both a least upper bound and
a greatest lower bound.
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To see that these
reasonable.
lattice of
First, we
V, such as

assumptions are
let wus <consider how such a
types may be constructed.
choose some 'basic!' subsets of
the example types mentioned
above. We may also include some ‘alter-~
nated typses (T] such as real_or_character
or integer _or integer array in this ini-
ial collsction of types. A natural par-
tial ordering of tnese subsets 1s given by
tne subset relation, . To insure the
existance of greatest and least types wsa
add V and the smpty set to our collection
of types. Next, we must extend our col-
lection so that for each pair s and t of
subsets of V that appear in our colliec-
tion, there also appears both a unique
largest subset that contains the intersec-
tion of s and t and a unique smallest sub-~

set that contains tne union 09 s and t.
Tnis assures tng existence of a greatest
lower bound and a least upper bound for

each pair in our collection. Our collec~

tion 1is now a lattice satisfying assump-
tions 1 and 2. If we were careful in all
of our selections, then we should also

satisfy assumption 3. In
Wwe started witn only “initely many “'basicH
subsets, then our extension to a complete
lattice will also be finite

particular, if

Anotner way to tnink about the con-
struction of a lattice of types, T, is to
view the process as the Jjudicious selec-
tion of a subpartial order of tne powerset
of V that 1s coincidentally a lattice
satisfying assumptions 1.2 and 3. Tenen-
baum [T] gives a very detailed example of
such a 1lattice of types for the program=-
ming language 3ETL.

Type Inference

Our goal Is to automatically infer
the type of values each variable may be
bound to at each point in the program.
This ZInformation will aid tne compiler in
deciding what code to generate for each
statement .

We begin the task by examining the
operators of our programining language.
Suppose we know that at some point in a
program, X, is bound to a value of type

t,, for 1Kikk.

Now consider the expres-
sion e(x1,X2....,XK). we would like to
speak about its type. e names a function,
S0 consiaer tne set
R:{@(v1,‘..,vk)2v4€Lt4]} R necessarily
includes Aall of the vaiues that
@(xl,xe,...,xk) may have. Now let s be an

element of T such tin.t [s] DR. Then it is

clear that the value of @(X1,X2,...,XK)
must be of type s. Thus for sach operator
@, we may define a “unction T::TK->T such

VA
that Te is tne least type s such that [s]



S te(vy..v) |oveere 1t

A function f on a lattice is said to
be monotenic if f(x) < f{y) whenevar x £
y.

(VI R
Lemma 1: T@ is monotonic.

Proof: Let (qT., .,qk)g(r1,...,rk).
pefine W = ?Q(VT""’VK) ! viEqi} and R =
fe{v ....,v ) | v.ér.}. If [s] =oQ, then
1 K i1 =
-0
Is] o . Therefors LTo(q1...,,qk)] o R.
0 e s
Since T@(PT, ,rk} S R by the definition
of T: it follows that
0 .
(t%aq,,. .00 Ar%r... r )1 23
o 1 K e 1 K = ‘
by our assumption that [tAs] o ltiaLs].
Tharefore
PU( 4 {T\U Yoo
A@\q1,...,qK) /\ e r],...,rk, =
T':{r'.}. -vpk)s
, u a
S0 T;\q1,...,qk) > Te(r1.....rk>-

A¢ Interpret tne monotonicity of our
type inference functions as being tne con-
dition tnat 'tne more precise tne informa-
tion we have concerning tne type of an
operator's inputs, the more precise we can
be in maging a statement about the
operator's output.-

the
operator's

wWe have consldered
the types of an
known, and Wwe have Seen how we can dsduce
a valid assertion about the operator's
result. Now suppose that we have sSome a
priori information concerning the type of
an operator's result and tne types of sonme
of its inputs. We may be able to capital-
ize on this information by wusing it to
deduce sometning more about a particular
input. ror example consider the APL
statement: A¢=B+1. Suppose we have
knowledge that A will be an integer after
the statemsnt has been executed. Then by
the nature of the '+' operator. it must be
tnat 4 is bound to an integer value before

case where
inputs are

tine '+' operator is applied
e —————— A I

. Ko, , .
$ wote tnat I° 1s a lattice wWwitn partial
?idcz < given by {xpoox ) < (y1""7ykj
2% and only 1Y x,<y., for 1<i<«, where
X0 ys 8T, N and V are similarly extend-
nd s i€ spK :
ed; 1f x. yéY, tnen x/\y is the greatest
element wEY® and x\/v is the least clement

S

ugf ", sucn that w<x<u and w<y<u. Moreo-

ver, 1f T satisfiss the finite chnain con-

dition. then so does TK.
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; -0 .
As we constructed a function T@ Yor

gach operator &, so we now construct addi-

. : e K
tional functions T1,P L., T for wach
& @ ®
opsrator as “ollows. (k is the degree of
operator ., for each Jj=1.,2.. .,k con-
. : i o aK+1
struct a monotonic function Ti:T ->T

5 at Tj £ . i F
ucn tnat $(t0’t1’ o0 ,tK) s t@e least
element of { 86T | |s] 2 {VJ{VJELtj] and
I ov,eit, ], 14] sucn that

- . ) »d
vu_e(v1 ...VK)} }. We may prove each T
to be monotonic; tne proof is similar to
tnat of vLemma 1 and is omitted,#

Infersence of types across statements

Now we would like to consider what
type inferences can be made by examining a
single assignment statement, Q, such as
the one shown in Sect. 2. Type determina-
tion is unusual among data Flow problems
in that information may be propagated botn
forward and backward.

Forward inference: Let t be a map from the
set z of program variables to the elements
of T giving knowledge about the types of
the values assigned to the program's vari-
ables before statement Q is executed. wWe
wisn to construct from t and ¥ a new map
fg(t) tnat describes what we Kknow about

the types of tne vaiues assigned to the
program variables after statement Q 1is
exgcuted. In constructing fQ we make use

of our knowledge of the operators and the
semantics of the assignment statemznt.

for <acn variable 2 € z we define

LFQ(t)](Z) to be

(1) t{zZ), if Z does not occur in statement
9.

(2) r'; (602 0,e(X ), ety ), 17 2

1 m

me
.
m
. tn - . e
occurs in the m position of tne left
nand side of «.

$ We expect that it will not always be
practicabie to construct these best type

inference f“unctions Ti. in such cases any
monotonic functions Tg. which approximate

tne functions T, may be used in tne tneory

which folliows. Wwe say g approximates f
i, for all x in tne domain of £,
g(x)>€(x}.



3
(3) A T (Lt st (Y )

i

all pairs (m,7j) m ...,t(Ymd 1),
such that m
Z=Y . otherwise.

mj

Backward infersgnce: Let t be a map Ffrom
the set of program variables z to tne
elements of T giving knowledge about tne
types of tne values assigned to tne

program's variables after statement Q is
executed. we wish to construct a new map
bu(t) which will describe what we can

deduce about what the types of the values

of tne program variables
statement & was executed.
bQ we again

were before
In constructing
make use of our knowledge of
tne operators and the
assignment statement.

semantics of the

pefine LDQ(t)J(Z) to be

(1) t{(Z), if Z does not occur in statement
("I

{2) 1. if £ occurs only on the

: left
side of V. ’

hand

]

(3) To.
i

m

t'(sz);v'--:
t'(Ymd 1)
m

(B(X )5t (¥ ,)
all pairs (m,J)
such that
Z=Y .

mj

otherwise.

where
£ (W) = 1, if W appears on the left

- side of Q

t (W), otherwise

Notice tnat both fQ(t) and bQ(t) can
be regarded as functions of t for a fixed
statement J¢. Indeed. fQ and b, arge mono-
tonic functions tnhat map (z-2T] into
Lz-9T]*, since they are just compositions

of tnhe monotonic functions {Ti toand /\.

# [z—T] denotes the set of all mappings
from the set 2z to tne lattice T. Hote
that [z->T] is a lattice. If €,g € [z->T]
then we define f<g whenever f(Z)<g(Z), for

all Z€z. Further, if z is a finite set of
t elements then [z-»T] is isomorphic to
1 : N f e s

T%, wnence the finite chain condition

nolds for [z-2>T] whenever it holds for T.
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Program-wide type inference

How consider a program P in our model
language consisting of a dirscted graph of
n nodzs. For convenignce let the Sf node
pe node 1, and designate tne otner nodes
2,3,...,0.

et the

2""’ZL}'

we describe tne types of tne
wnich may be assigned to each of
variables by a mapplug t:z—>T. A
safely desgripes tane types of
ie for each i, (t(Z.)] 5

progran variables be z =
{L1,Z At any given point in tne
program
values
the

mapping ¢t
values of z

fvev | v
any program execution}.
that if 3 safely describes z,
mappings x such that x(Zi)}s(Zi)
.6z

more precise (better) than a safe
s 3f t is safe and t<s.

is possibly bound to Z, during

It is easy to see
then all
for all

safely describe z. A mapping t is

mapping

for each node j of ¢ we
forward and backward inference
fj and bj from [z=»T) to [z=->T].

lined above Ffor example node 4.

construct
functions
as out-

By construction we have:

1. If t:z-»Y safely describes the types of
the values assignzd to the program
variables before node j 1s executed,
then ?j(t) safely describes the types

of tne values assigned to the program
variables after node j has been exe-
cuted.

2. [f s:z-»T safely describes tns types of
the values assigned after node J has
bsen executed, then bj(s) safely

describes the types of the values which
were assigned to tne program varliables
before node j was executed.

Now, couching our type inference
problem in tne notation we have developed
above, our problem 1is to find mappings
x1,x2,x3,...,xn from 2z to Y so that for

each Xj and for all executlons of our pro-

zram ? and for all times in a given execu-
tion of P at wnhicn control reaches node j.
xj safely describes tn:z program variaplss

on gptpy to node j. We o0all such a set of
mappings a safeg solution to the type find-

ing problem for program P under thes lat-
tice of types T. It will ofren be con-
venient to write a proposed solution as

one vector

X (xT,x2,x3,...,xn)eLz—QT]n.

$ /\ and \/ are monotonic functions of two
arguments, meaning that 1f w<x and y<u,
tnen wAy < x/\u and w\/y < x\/u.



I€ we
then

can
our

find very
compiler

precise such
xj's, can tailor its
code to accomodate only those types of
vaiues which the x.'s indicate mignt arise

during an actual program sxecution.
We Know how to make type inferences
when passing through the nodes, in tne
indi-

sense that our functions Fj and bi

o

cate how the variables of our program take
on new types as each statement 1s exe-

cuted. HMaking use of the information con-
tained in the flow grapn o° P, we now
define functions F and B which character-
ize forward and backward propagation,
respectively, of type information
throughout the program

¢ is a function from |lz->7]" to
- n .
lz=>T]" given by

FUX,0 X L. X 3], =  (x ).

Le{xy, %, xn/JJ \/ (x )

mepred{j) "

wWhere pred(j) = { m | mepj is an
cdge in tne flow graph of P }

itivel if =L v, . ¥
Intu vely. yJ Lr(x1 ,xn)JJ then

yj gxpresses what can pe deducsd about the

types of tne values of tne variables at

node j given the types of tne variaoles
at  the nodgs that flow into J. as
described by vsctor x = (x1.‘...xn).

The following matrix notation gives
us an  alternative way of writing tne
exprsssion F(x). <Consider F as an niXn
matrix of functions, ij, each
ij:Lz—>T]-9Lz—?T]. where

?m , A€ me>j is an edge of p
o= , .
jm 0 . otherwise
: :
and 0(t)=0, for all te{z->7]
So F{x)=F"x is tne inner product of an

nXa matrix of “unctions
Lz—Y] and an n-vector of mappings in
Lz=>T], witn function application
corrssponding to scalar multiplication and
tne lattice function
V:ilz2T1Xiz=»T]->|2-T] corresponding to
scalar addition.

from Lz~>T] to

+ 0 stands botn Tor tne least
the latticge

least element

1 ¢lement of
Llz>T]—>{z>Y]] and for the
of [z—>%].
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Similarly Wwe
B:lz=>T1">(z>T)" by,

define

[_B(X1‘X ,Xn)]m =

Drees (x.)

j€suce(m) ™ I’
where suce(m) = { §j | m—>j is an

) edge in the flow graph of p }
Intuitively, if ymztB(x1,...,xn)]m, then

Yy ®Xpresses what can be deduced about the

types of the values of the variables at

node m, given the types of the variables
at the successors of node m.

Again, we can write B(x) in matrix
notation as 3'x,
Wwherea

bm ; if m—>j is an edge of P
B ., = R
mj 0 , otnerwise

wotice tnat potn ¥ and B are monotonic
functions, since tney are each composi-

tions of monotonic functions.

F and B rzpresent two di“ferent, but
related, type infersnce systems. Tne fol-
lowing two lemmas show how eitner i or B
nay be used to demonstrate the safeness of
a proposed solution.

. . - n
Lemma 2: Let vectors x and s in [z->T]" be
such tnat x > s/\ifF(x), and let s be safe.
Then x is safe.

rroof: The proof is carried
straightforward induction on
patn length. |

out by a
execution

A similar lemma holds for B.

Lemma 3: Let x be such tnat x>s/\3(x),
where s 1is sa‘e, x,sELZg>T]n. Then x is
safe.

Proof: The proof is similar to that of

Lemma 2. |

fortunately, the two preceeding lem-
mas not only give a means of testing the
safeness of a solution; but they also sug-
gest a way to compute a safe solution. We
shall demonstrate tnis for the case of the

forward type propagation system, 7. A1l
of tne following may also bs carried out
in the B system.

Assume we have a safe solution,
sE[z—)T]n. and we hope to €ind a bstter
solution. x. The fact that any x which
satisfies x > s/\F(x) 1is safe suggests



that we look for tne smallaest such X,
namely that we find the smallest x such
that x=zs/AF(x).

Considering s as fixed, defing

n
LZQY]—N -»>71]
S(x) = s/\b(x)

(Notice that FS is a monotonic function
because A and F are monotonic.) How let

-

(O) be tne least fixedpoint of F_

That is, v is the least element of [z->T]"

such that v = FS(V) = s/\®(v}). By Lemma
2, v is provably safe. Notice that the
monotonicity of Fs implies that
I+1, 0001 .
ST 2R (0) L ror 120,1,2, which
also gives us
.m i
F_{(0)= \YJ Fo(0)
S i=z=t,2,...,m N
Thus we can write v explicitly as,
. i
vV = L‘S(Q/ = \/ r‘s(.Q)
. i=1,2,3, ...
FS(O) can always be computed in finitely

many steps as long as the lattice T nas no

infinite chains.
Wow conslidering s as the variable,

define tne function H:[z—;T]n~>[z—9Y]n by

f(s) = rs(o) or algorithmically by
f(s) 1= { v & 0;
while v 2 sAF{v) do
v « s/A\f{v);
return v}

we summarize what appears above by:
Lemma 4: If s is safe then (s} is safe.

The following lemma expresses some
interesting facts about the function .

Lemma 5

{a) § is decreasing. i.e., for all x,
Fix)<x.

(b) § is monotonic.

(¢) F9(x)=8(x), f.e., for all x, E(x) is
a fixedpolnt of #.

(@) 2(eK0))=7%(0), for all x, and for
all x>0.
Progof:

*® N

(a) f{x)= FX(D)=x/\E(§(x)) <X

(b, Let x<y . e ciaim
F‘(O)(r (0, , for all 1 . 50 that

* . .

w(x)=EX(Q) < ry(9)=i(y). Qur proo?
proc=eds Dby induction on 1 For 1=0 we
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nhave ri(D):Q:E;(O). Wow assume induc-
tively. Ei(u)<5;(o). Tnis, along with tne
monotonicity of F gives us

(01 E(Fx(g)) < r(Fy(Q);

Our nypothesis is that x<{y. so by (bt1) and
the monotonicity of N
(b2)
ST I P RPN e _ﬁ:. +1
T s AR (L (0D < y AR RS (0))=F T ()

which completes tne induction.

. *® .

{c) Let y:ﬁ(x):FX(O). We claim

{ct) vy > F;(Q), for all i
and

(c2) F;(Q) = F>(0), for ail i.
As in part {(b,, we procsed by induction on
i At 1=z0 botn (c1) and (c2) ars trivi-
ally true. Now assume tne induction
nypotnesis *for {c¢1). That and the mono-

tonicity of F_ imply tnat Fx(y)zF;+T(Q).

But since y is a fixedpoint of FX, we have
y:FX(y) *+1(0). which completes the
induction step for {ct).

To prove {(c2), assume the induction
hypotnesis and apply Fy to get
i+ .. - ., . .
# T 0)=F (P00 sy AR (FL (D)), But  sines
y is a fixedpoint of FX we also have
y= Ex(y)zx/\F(y). So we can write

Ce2.1) £5710) = x A (IAF(FL(0))
Combining tne fact tnat ¥ is monotonic
witn (c1}, we see F(y)}F(F;(Q)). By tne
definition of > tnis means
F(F;(Q)):F(y)/\F(F;(Q)). Thus we can sub~
stitute for F(y)AF(F;(0)) in (c2.1) and
gat F;+1(Q)=x/\F(F1(Q))=F§+1(g), whicen
compietes the induction. Finally. notice
that (c2) implies that

E (x)=F(y)= F (0)=r (O) f(x).

To prove (d). let :r;(g}‘ using
arguments similar to those given above, we
may prove by induction on i tnat

{d1; r;(Q) = F;(y). for 0<i<k
and

PN U - K P .

{(d2) ry(o) I {(0)., for idk.
Hence %

\ o \ _aK N
E(y)_ry(ux_rx(QJ.
a



Iv A Type Retermination Algorithn

A conszqguence of Lemma 5 i1s that
given any safe solution s. we can apply #
to it to get a (possibly) bztter solution.
#(s). But no further applications of { can
yield any improvements over f(s).

0f course all of tne above arguments

work equaily well for the backwards infer-
gnce system - wWe can construct a 3 ‘“unc-

%

by defining B(s) = BS(Q),
s/A\B(x). And we state
Lemmas 4 and 5' by just substituting the
symbol B in place of § everywnere thnat
appears in Lemmas 4 and 5. 3o given a

safe solution s we can compute a (possi-
bly) better solution B(s).

tion from B

where bs(x) = can

wotice tnat the fact tnat a
safe solution s cannot Dbe
further applications of § or $ does not
imply that it may not be improved by an
application of B or &, respectively. It
is easy to demonstrate programs where

B f{s) gives a better than

1
eitner f(s) or B(s).T Given an initial
safe solution s, (eg. 1. which is always
safe) we can computs

given
improved by

solution

S = B (s) = B ... B(s).

In tnz next section we snall present
someg general results about monotonz ‘unc-
tions on lattices that show § is, in some
sense, an optimal solution to the type
determination problem.

v yptimality fesult

4]

functions,
members

uiven 3 set of monotone
ﬁ:{n1,hP,.4.,hn} < LL=>L}, wnose

zach map a complete lattice L into itself,
given L's meet and Jjoin functions,
M={/\.\/}  LLXL=>L], and given a set of
initial points, S:is1,sz,.A.,sm}g L, we
would like to study the set of points,

Cc(H,M,3), which can be computed by arbi-
trarily applying arpitrary compositions of

the “‘unctions of H and M to thne points of
5. Just what we mean by “'computed" and
‘tarpitrary: will pecome clear as we
proceed in our investigation.

OQur motivation is as follows. I

each of the points in S represents a safe
solution to tne type determination problem
and each of the functions in H and M
preservae safety, then every point in
C(i,4,3) will also represent a sa®s solu-
tion. wWe shall use the tasory we desvelop
to prove thnat ($'$)*(s) is the best solu-

tion we can find, given operators §, ¥, B,
[N . \/. composition and application of
functions, and an initial sa®e solution s

+ We shall present suca a program at tne

end of tanis paper.
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Since each point in C(d,M,3) is to
bg computable (in finitely many opera-
tions) for each point ¢ in C(H,M.3) tnere

should be some formula e tnat expresses .

how to compute ¢ “rom the sets d, M, and
5. S50, turning the problem around, we
shall first look at a ratner largs class
of formulas, (£ul), defined by:

B o= U{EY | i=1.2,...}

8= uisd 'Ry jk=1,2,. ..}

where the £E's and the GJ’K'S are given
recursively by the rules which follow.
Intuitively, the £*'s are vectors of b
expressions with values in L, and the
LJyk . j

69 % s are functions from LY to Lk.

(E.1) (variaple introduction) If x is a

variable name, then x is in 61.

=

3 3
{concatenation) 1€ e €L~ and

K=i_ K-i k=1 K
& gpoe )eb .

, then (eAve
if

then

(.unction
..Kt,,.4K
J J

gd 8 (e dyerk.

application)

~
s
)
|..A
r:

and edagd,

K

K,Ka-K.
(£.1v) (function closure) If g " €G and

b K,k-#*, Kk LK
eKEEK, tnen both |g i~(e™)eE” and

)
koK (<Xyee®. (We use ¥ for the

L g
for
an
K.)

greatest lower bound {(glb) and #
tne least upper bound (lub) of

. . K,K
iterated application of g to e

eKGEK
variable
L J.k
(9 N

and
names,

It
are

(abstraction)
Y“VYZ!"‘ij

K
then X(JT'YZ""’yj)‘e €

; LK,
(G.ii) (function introduction) If gJ is

. j K
name of a function from LJ-?L ,
JrKgdi K

the

then g

: K
Jur intent is that each formula in E

may Dbe as an element of LK.
provided

interpreted f
variable
in a formula

we interpret each free
as an slement of L.

LJK
GJ

Simi-

larly the formulas in may each be

R P j K
interpreted as functlons mapping ;J to‘L .
3ince we are only given tne functions in H

and M and tne initial lattice points in S
to start with, let us consider how to
interpret the set of formulas
(Bud)iH,™,s]. The notation  QlH,M,53]
stands for the set of exprsssions e such
that



(1) e is a formula in tne set U,

(2) if x is a free variable name In e,
tnen x € {'51'*‘32',...,‘sm'}, i.e.,
x names an element of 3, and

(3) if g is a function name occuring in e

gitner g€u1’1

then and

g names an

. 2
element of H, or g€u ' and g naues
an element of .

To interpret a formula, eS{BUS)LH,M,3], we

first define a function 1, which maps
variable names Sqee Sy into the
corresponding lattice points of 5. and
Wwhicnh maps function names n1, ,,nn and
/\,\/ £o the corresponding functions of H
and M. wdext, we extend I to T, a function
whose domain is (2U5)1H,4,3), by recur-
sively defining:
(Le. 23 T(x) = L{x) , if x is a variable
name.
(Lo 22) 2((e™, 65700 = (L(e™),2(eX7)) eL®
(l.iii)
— . y
t(ed ety = 12 il edy) el®
{({r iv.a)
N < * K-
(Lg% 1)) =
) ~r KoKy ad . .
glotil(g™ )17 (e y) t 120,12,
(Ii.iv bj
. LE LKk
Tz 1 () =
tubt (g Kyt (1(e®yy 1 oi=0,1.2, .
(Iu.1i) I(x(y1.y2,. ,yj).eK) is tne func=-
tion feLLY—>L ), given by:
f(ti’tZ""‘tj) = J(ek), whers J is
tne extaension of an interpretation
J thnat 1s given by:
t., if e = the variable Yy
+ for some i
J(e) =

I(e), if e = some other variable
or function name

Note tnat this definition is not
: . K
circular, since e has fewer
instances of abstraction than
X(yT,...,yj).eK.
(Lu.ii) I(g) = I{g) . if g is a function
name.

The correspondence between these
rules for interpreting formulas, and the
rules given above for buillding formulas
should be obvious - we are just saying
that a formula is interpreted by inter-
preting each of the parts of which it was
built. In the case of rules (It.iv.a) and
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(IfAiv.D), it should be noted that the
existence of greatest lower and least
upper bounds is guaranteed by our assump-

tion that L is a complete 1lattice (and

K
each L7). Thus I maps each
in (RUG)[H,M,5] into a member of

hence so 1is
formula

the set

WL 11,2, .00 0 (ULLLILS)

fede

| 3,k=1,2,...}1).

e can now define c(d,4.3) =

v e€(RUG)H,M,S] }. Ubserve that
because of rules (E.11),(E.114) and
(E.iv), C{(H,M,3) is necessarily closed
under finite Cartesian products, function
application. and function closures. [t is
also true that C(H,4,3) contains the pro-

jection functions, B?:LK~>L, since rule

(G.1i) allows us to write formulas of the
form k(x1,...,xk).x4. Also notice that if

w ~
{I(e)

e:L L) ec(d,m,3) and  €:LI>LF ec(i,u,s)

tnen thers exist formulas egeGl’J and

ePeGJ’K such tnat g=I(e ), f:I(eF), and
IT ig fop-—
x(x1....,xi).ef(eg(x1,...,xi)) is a for

{

mula in G7'" whose interpretation is just

f'g. Tnus C(H,M,3) is closed under func-

tion composition.

The reader should now be convinced
that C{H,4,3) is the set of all points and
functions which can be computed from H, M,
and S by arbitrary function composition
and application.

Two points should bz made here.
First, we have introduced the coancatena-
tion construction {£.1i) (whicn leads to
closure under finite Cartesian products)
to capture the notion that during a compu-
tation we may separately compute and store
several different values which may be
recombined later by a further computation
Second, we have introduced tne two Fforms
of function closure {(E.iv} to capture the
notion tnat we may apply a particular
function arbitrarily many times, 1in a
iterative fashion. accumulating intermedi-
ate results in a meet or join, nalting
only when tnat meet or join reaches a
minimum or maximum value, respectively.
Notice that if tne underlying lattice L
satisfies the finite chain condition, then
function closure can be effectively com-
puted.

We would now like to further investi-
gate the properties of c{(d,4,s). Our
“ipst result says (roughly speaking) that
21l functions in C{H,M,S) are monotonic
and tnat everytaing in C{(d,M,S3) monotoni-
cally depends on tne values in the sets H,
M, and 3.



Recall tnat the
;nterpretat'on I for the single symbol
formulas in (BUG){H,M,S] is tne set of
names for the elements of H, M, and S. We
shall say that 1I' is an alternative
interpretation for tne single symbol for-
mulas in (2UG)[H,4,S] if L' nas the same
domain as I, but I' maps the names of ele~
ments of S into {possibly) different
values in L, maps the names of elements of
H inte (possibly) different monotonic
functions in [L-»L], and maps the names of
elements of ¥ iInto (possibly) different
monotonic functions in LLXL-»L]. A par-
tial ordering on alternative interpreta-
tions is defined by saying 1'<I if and
only 1€ for all e in the domain of I,
I (e)<I{e).

domain of an

Now Wwe can state:

Theoren 1: Let I' and I be alternative
interpretations for the single symbol for-
mulas in (£UG)[H,4,S], such that I'<I.
Tnen

(1) for all ¢B(EUG)(H,M,5],
{(2) for all g&Gid,M.3], I(g
tonic function.

§ (e)<I(e).

Aa MONO=

Proof: The proof is a stralightforward
induction on tne structural complexity
{number of applicat;ons of rules

(E.1)-(E.Lv),
construction)

(b.i) and (G.ii) used in the
of the Formula e. |

For a given
formulas e

interpretation I,

that 1 and e2

I(e1)=I(eZ), It is easy to
(BUG)Ld,H.3] is
gequivalence classes by
that the set of these equivalence classes
is isomorphic to C(d,M,S). 3ince eacn
member o° C{d,#,S) has (at least) one for-
mula in (LUu)LH,u,o] that represents 1it,
in the text that follows we shall find it
convenient to blur the distinction between
members of £{d,M,8) and tnsir representa-
tive formulas, All formulas will be
understood to be interpreted by I, unless
we indicate otherwise.

we say
are eguivalent i€

that

partitioned into
tnis relation and

see

liotice that there is a natural
tial ordering on thne elements of C(H,M,S};
for 01,02€C(H,M,S), 015c2 if and only if

either (CW,CEELK for some K and c1<c2 ) or

(01,c26LLK—?LJ] and 01502 ). OQur next
result snows tnat minimal and maximal ele-
ments of C(H,M,S) exist and can be

represented py simple formulas.

#irst, for notational convenience, we
define:
/\k = k-wise meet =
X(Y 1Y 009, ) ¥ AT, N Ay,

par-’
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( = k-~wise join =
S AREPERRER AR SAVE AVARRRVI S
K

D = k~duplicator =
. Xy (y,¥,...,y) ElLaL¥]

£ = . jest o° i =

Xy AR AL A () Ay
n join =

th U)Vh(yﬂw VM W)VY
s = veutor of 3 = (51’52""’Sm)
(A" (s))
V¥(minlh, u,5])

minid,d,3)]
miQK[H.H,S] =

max(d.h,8] = () (\/"(s))
m@&KLH,M,SJ = D%(max(H,M,8])
minfd S 1,m,5] -

x(x). 05T A™ (s %))

where
X:(X.‘,...,xj
Ky, .
ma LH,M,5] =
K :
x{x).D << 3 <\/m*3<s,x>>>, where
X=(x1 REF )
' we snall drop tne TLH L RLS Supp:X,
sXcept wWhere 1t is Important to empnasize
that tne various min's and max's are
de¥ined in terms of tne sets h, 4 and 5.
To prove the next theorem we will
neged:
Le2ana b: for all J.okK,
max£d K (max JLH M,51) = max(H,4,3] and
. K
minfd ¥ (mind) = min
Proof: First notice that max 2 Sy for eatch
s,.€5, because
axs (h) (V™)) 2 WSy 2 s, Also

notice thnat h is monotone since it is 1in
C{H,M,3), and that by construction hn 1is
increasing, i.e., n{x)>x, for all x. So

mQXSj‘K(maxj) = DK((E)*(\/H+J(S maxJ))) =

b *max)) = KM Um oy s

+ Wote thnat,
increasing,

for
tne

all x, since n is
ziements of

ih*(x) | i=0,1,2,...} form a cnain and
since L is assumed tc satisfy tne finite
chain condition. ali monotonic functions
are continuous [3]. Therefore for all x,

,—\¥ ¥ . - %,
(n) () (x)) = () (x).



DX () (VP (s))) = max®.

ment shows the result for

r Aargu-

Now we can state:

Theorem 2:

(a) Let ¢ € C(H,u, S)nLK for some k. Then
min®(H,,8] < ¢ < max K(d,u,8].

{b) Let ¢ € C(H,M.S)n[LJ-9LK], for some
Ji.k. Then
minfd K[H.,4,8) < ¢ < maxfJ'¥[H,M,5].
Proof: Since each c8C(d,M,S) nas a

representative formula we can carry out a
proof by induction on the structure of
these formulas. As in the case of tne
pravious theorem, there will be an argu-
ment for each of tne rules (E.1)-(E.iv)
and (G.1)-(G.ii). For the sake of brevity
we only resent the argument for rule
(E.1i1). After seeing this, the mannezr in
which the rest of the proof could be car-
ried out will become obvious.

Assume ¢ € C(H,M,S)nLK can be written

as g(e), where g € C(H,M.S)nLLJ-aLk] and
e € C(H,M,S)nLJ and both g and e have
smaller minimal formulas than does ¢. By

the induction hypothesis e < mng[H,M,S].

Hence by the monotonicity of £,
gle) < g(mggj). The ianduction hypothesis
also guarantees that g < mggﬁJ’ [H,M,8].

So g(mng) < mg;FJ’ (maxJ) which  equals

max“i{d,M,S] by the preceeding lemma. A
similar argument shows that
oin“(H,0,5] < c. |
Now, let us apply Thzorsm 2 to the
solution of Section IV. Let d={#,3,F,B},
M:{/\,\/}, and S = {s} for some safe solu-
tion s€ Lz-)T]n, where z:{ZT,ZE,A.,,ZQ} is
the set of variables o©f an n-node flow
graph. We can now show that
Thneorem 3: The best safe solution 1in
C(H,M,3) over the lattice (z—>TI" is 3 =
* *
(B F)~(s) = (F BI=(s).
Proof: By the previous theorenm witn
Lzlz=>T] we know that the smallest ele-
%
ment in C(H,M,S)an—?T]n is n—(s). But

notice that because B is decreasing, and
B_ is monotonic, for any x we have $(x) =

X
B, (B(x)) < B (x) = x/A\B(x).

P
BI (D) -
larly, §(x) < x/\F(x). Horesover, because
F is decreasing, #{${x))<#{x), and because
is decreasing, and # 1is monotonic,
E($(x)) < B(x). Combining these facts
get

with a 1little 1lattice algebra, we

Simi-
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F(B(x)) < BONABGOAF(x)AB(x)Ax, which

equals h{x), for all x. Therefore
B < n, which implies that
R # *

§ = (f B)-(s) < n (s), which equals
minld ,A 3]. But
(#8)%(s) € c(i,M,8)plz>T1]" Hence
§ = m-nLd M,S]. Similarly
(8 £)%(s) = min. |

Since (8'#) is a decreasing function,

no confusion will result from writing
. . * 0 * 2 Y
(B'8#)~(s) as (#°F) (s). A similar remark
applies for §'B.
Optimality of £ and B

Observe that F is not directly
expressible in terms of F and B, in tne
sense that, unless 0 is in 3, the formula

for H, which is Xs.{{Xy. s/\r(y,) (O)) is
not in C({F,B},{/\, V1.8, 4 similar
statement applies to K. ‘Because 0 is gen-
erally not a safe solution, we do not wish
to introducs 0 into S. To explore tne
properties of formulas like those for §
and 3 we shall define a new class of com-
putable objects A(H,M,3). A{d,M,S) 1is
much 1like C(H,M,S), except that in defin-
ing the set of underlying formulas and
their interpretations, we add rule (E.v)
and its interpresting rule (IE.v):

(E.v) (least fixedpoint formation) If

(1) gJ Kegd K

(2? gj’k has no free occurrences of
variables ATRERES S

(3) ey, .,eJ€E1, and

{(4) n names a Punct on in H
then l X =
X(yq, ooy, 8 (n(e Jyoeonlesd).
(Note tnat £ is a member of GX° K}

*
Then (Q'()EEk where Qk = {90,...,0)

represents the least element of Lk

vy IC lup{LI(£)15 (0 ) 1
i=0,1,2,... '}, which is the least fix-
dp t of tne function I(*7}.

we are very careful in specifying tne
form of Ffunction f in rule {(i.v) pecauss
we do not want unsafe solutions to entser
into a{Hd,d.3). In particular, tne appli-
cation of a function in H to each argument

i, K . ;
of gJ’ is one way to assure safety in tne
presence of a least fixedpoiat opszrator,
altnough it is not the only conceivable
WAay .



Formally,
formulas

we lef f be tae
tnat can be built by
applying rules (£.i)-(E.v), (G.1) and
{(G.1ii); let I be the natural intarpreta-
tion for the names of tne elements of H,
A, and 3; and let f bs tne extension of I
given by rules {(I£.i)~-{Iz.v)., (IJ.%i) and
{(Iu.1i). Tnen we define A{H,M,S) =
{ I(e) | egr(d,,3] }. As we did while
discussing the elements of C(Hd,M4,3), we
shali usually denote the members of
A(H,4,3) by their reprssentative “ormulas,
understood to be interpreted by I.

set of all
recursively

In particular, note that

xy.s/A\#(y) €

fy = AC{F},m, {s])
and tnat F;(Q) can be written as
. *

f = xs. {[Xy.Lxx.sAx)(F(y))) (0)),
which is in a form admitted by rules
(E.i)=(E.v), (g.1) and (G.ii). So f €
AC{Ff},M,3), for any S, since there are no
frge variables in the Fformula for .
Similar formulas can be given to demon=-

strate tnat B, and B are in A({B},M,{s}).

The following lemma expresses the
observation tnat all functions in A(H,M,S)
are monotonic and that all objects in
A(H,1,S) depend monotonically on I.

Lemma 7: Let I' and I b=z alternative
in terpreta;ions for tne single symbol for-
rmulas in R{H,M,3], suen that L['<I. Then

(1) for all e€R|H,M,3], I'{e)<I(e).

(2) for all g&RLd,M,S] such that g is in a
form given by either rule (G.i) or (G.ii),
I(g) is a monotonic function.
Prog€: The proof is essentially the sams
as tnat of Tneorsm 1,

An immediate consequence of Lemma 7

is tnat { and # are monotonic functions;
thus we have an alternative way of demon-
strating a fact that we stated earlier as
part (b) of Lemma 5

we shall now show that, in the case
where H={Ff}, d={/\,\/}, S=isq.....s } ¢
lattice L, and ¥ €lL-=»L], then af{i:d,s)
has minimal elements. As usual. all tnat
follows will still nold if B and B are
uniformly substituted for ¥ and . respec-
tively. Just as we defined min and minf
we noWw define:
4
lowlF,4,8] = F(/\m(s))*
low[F.#,3] = U¥(lowlF.d,51)
_lQ J Ll‘,l’] DJ =
I We shall use r in place of {r}., when it

and the context makes our
Also, s here stands for a
m elements of 3.

is convenlent
meaning clear.
vector of the
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x(x). DA™ (5,000, whers
x:(xr...,xj
Corresponding to Lemma 0, we have:

Lemma d: For all j.k, lowfd ¥ (lowllr.M,81)
= low®XLF.u4,3]
Proof: The pronf is much like that 9?
Lemma 6, the Kkey polnts being thnat ¥ is
decrsasing and monotonic and that §'f=f.
But these facts ars given by parts (a),
{b), and (¢) of Lemma 5.
Theorem 4.
{a) Let a € A(F,M,S)ﬂLK. for some k. Then
a > low"[F,i4,s].

. K-
(b) Let a € A(F,M,s)nLL3->L ]. Then
a > lowa’ LF,u,3].
Proof: Tne proof closely follows tnat of

Theorem 2. except that we must present a
naw argument corresponding to the new rule
(E.v).

) o K
Assume a € A(F,4,8)AL has a
5

representative formula of the “orm ¥ (Qk),
where £ =
(X(y ey, )egd X (Fle ) ... Fle)))
g€ A(F,M, a)nLL L ] and qJ'k, LRRRRELY
are each of a form adnitted by rule
(B.v). By tae induction nypothesis,
EJ K> 1ouwrd ®iE,u,s) and
8, 2 lowls,d, a'J for 1<i<j, whare S' = §
g {yx,.. Y b Therefore, because all
functions balong*ng to A(F,u,3) are mono-

tonia, )
(1) £ > X(y).[1oued ¥[F,M4,5]]
(F(lom(F,M,8'1),...,F(lowlF,M,5'1)),

where y = (y1. .,yk).
Tne rignt nand side of (1) can easily be
shown to be 2qual to
X(y) 0% A (s.y)), wnere s =
m
A(s).
. i,.K K. 31
we claim £7(Q°) > D bS(Q), for all
i20. This is shown Dby induction on i.
For 1=0 the claim is trivially true. WOW

by the induction hypothssis and the mono-
Bl ! 3
tonicity of £, 0%y > e(d€rl()).

fnis and inequality (1) yield

(2]

Koo s 1
VR & Fy . s



The right nand side of (2) may be reduced

to UK’E F R F ;(O/. which is seen to equal

s
+1(,) by twice invoking part (d) of
Lemma 5. This completes the induction

f*(Qf) z lub{fi(gk)}
“(LuptF(0)}) = 000 (s)

30 we have a =

K..%i -
rs(Q)} =
fov,31. 1

v

Theoraem 4 says that given some safe

solution sE| z—%T] , the best safe solution
to A({F}, {/\ Vi dsh) is #(s). oOr, in
other words, givan type infarence function
F, computing #(s) is an optimal way to use
F to improve a safe solution s. We remind
the reader tnat similar remarks can be
made about .

VI  Comparison with other technigues
Other researchers

alternative metnods for
safe solutions to the type finding prob-
lem. In tnis section we express some of
tnese methods in the notation whicnh we
nave developed above. We tnen prove the
inequalties which indicate that our metnod
yields better solutions.

nave proposed
computing good

Jones and Mucnnick [J] construct sys-
ems of equations which correspond to for-

ward and backward inference of types. In
our notation their backward system
L
corresponds very closely to’
y = B(y)
and tneir forward system is just
by(x).
They suggest solving the backward system
for its maximal Fixpoint, substituting
this into the forward system and solving
for the minimal fixpoint. That 1is, they
set '
w* )
yO = 5 (1)
and
- ) = iy
XO = Ly \ yO
o
Our technique is somewhat wmore gen-
eral in that we can easily incorporate any
additional information provided by a given
safe solution s which might, for sxampie,

be derived from user declarations witnin

$ In tneir paper,

suggest
LB(x)]m

Jonsas and Muchnick also
the possibility of computing B as
b, (x ), rathner than us-
jésuce(m) ™
ing the join we proposed in Section IIL.
We do not consider this version o0f their
algorithm; as pointed out in [J], it can
lead to incorrect determination of types
except under very strict assumptions about
program behavior.
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tne program. Also notice

*
pes” (O); < H(B (113,
Mucinnick's solution.
So our technique is at
as tnat of [J].
Tenenbaum's |T]
safe solution in

initial socluticn X

ering forward type
initial solution is improved by
ing botn forward and bacxkward

ences simultaneously. e
in our notation as

x, = £(1) = £ (0) be taz initial
solution. and de¥insz function
Gilz—=T1%>iz—>11" oy
ulx) = F(x)/\ﬁ(x)/\x( It s easy to see
that safe imnlies tnnat
x/\b\x)/\b(x; = uy{x) is safe. It is alsc
easy to see taat 3(x)<x for all x, so
that applying U repeatedly to a safe solu-
tion can only improve it. Tnus,

that §°8(1) =

which is Jones and

least as powerful
idea is to
two saages.
is computad

ompute a
first an
by consid-

Tnegn the
consider-
type infar-
can exprass tinis

Follows. Let

infersnces.

sAaF

* \
Tenenbaum's final solution Is Vg = G \xO).

Jut in the previous section we showed tnat

Fa(x) ¢ AOABCOAr O Ab(x)Ax, which

is < ax). Therzfore

Gow W) <TW) = .

Let us also observs
tors f and #$ are
a solution tanat is
baum proposes.

tnat tnz opera-
not necessary to produce
superior to what Tenen-
Using only tne functions ¢

and B, we can obtain the safe solution

G F(OIAB (D)), whicn is  never worse

tnan Tenenbaum's solution and Is, in fact,

minimal in C{H.M,3) wanen H={Ff.B},
- -ﬂ*f, ..*

=t /A N/}, and 3={F (D),3 (0)}.

Thus our technigue may oproduce
stronger asscertions aboubt variable types
than either Jonss and Muchnick: s or
Tenenbaumn's ‘approacn.

Vil An example

in tais seetion we present a program
“ragment and, using the definitions and
ferm‘n0¢ogv deve;oted aoove, We compute
D) (1) Altnough our axampln g
extremely simple, it is interesting In
that it demonstratss that thne incequalities
oresented in tne previous section may nold
strictly.

designad
and scalar

wur prograaning languags is
to manipulate character strings

numpers. We have fPour opsgrators:

in (input) takes no arguments and
always returns thne next item fron
tne input file.

5 takes no arguments and rsturns  the
integer ‘“ive.

fl{y) returns the greatest intsoer
whicn is <y 19 y is a number, and
returns a string which is tnz



translation of y to lower case if y T;
is a character string. \ rog
@{x,y) returns the sum of x and y 1 yT_YZ-:~»1____,T§al ‘»9_
botn x and y are unumbers, returns 1 i 1 real 0
tne concatenation of x and y i€ botn ?;a; s real real 0
x aand y are character strings., and ing poosnt o Int Q
is otnerwise undefined. char  char O 0
v P0 0 0
To form our lattice of types, we T;
choose the basic types: 1
YiMo i J  rea 2o
real = the se¢t of real numbars 1 | real rea 0
int = tne set of integers real | real re 0
char = the set of all character int i int int 4]
strings char | O 0 0
and extend to a lattice, T, which s shown 0 0 0 0
diagramaticalilly by:
T,.
T el
1 Telint v, ,y,)
7 ‘\\\ YNy, 11 real lont  char 0
Fﬁal Nar 1 | real 0 0
‘nt e real | real 0 0
= int i int 0 Q
\\0 ghar | D 0 Q
0 ] 0 0
T o o 3 i X 1:\] p £1 Is
he type functions, { og} are defined T 'y1’y2)
oy vi\y, 0 1 re; ghar 0
YL 14 enar 0 0 Tghar 0
in real | 0 0 0 0 0
int P0 0 0 0 0
0 _ int char | char O 0 ghar O
5 T = 0 b0 0 0 0 v
0
y T () ;
‘ ' SR L Also, T1(o y1.y2) = 0, for all yv4, ¥p
1 I ®
real | int 5
int | int and TS(x.y )y = 1!
char | chap ® y1,y2) .Q(x,y2,y1). for alil
-1
Ffl\x,y) d¢ snall analyze the following pro-
y.\Nx.1..1 . _real int _ _chap O aram, where 1 is the 3f node.
K P rgal vrgal char O
real | real real rgal O 0
int i int  ipt  int 0 Q P
char | cahar 0 0 char 0 1 la,8) <= (2n,5) |
0 P 0 0 0 0 L 2
2: IA <= ﬁl(A)ii)
0
To(rq172) ;
v\, 1 1 real int char 0
1 | 1 " real real char 0
real | real real real 0 0 forward infersnce “unctions
int i real preal int O [} ¢ .
char | char 0 0 cnar 0 f1,f2,FS:T2->T2 €or statements 1, 2, and 3
v b0 0 Y 9 0 arc given by:
- 0
- T
[f1(tA’tB)JA T Tin
0
£ = T
L-1(tA.tB)]B 5

73



L, (e, b0, = Tay (t)
Loyt gy = ty
_ g0
Lol eg) ]y = T ,tg)
.2
Legle,,tg) ]y = Toldt,,ty)

The subscripts A and B reference the com-

2 R
ponents of a wvector € T  wnicn descripe
variables 4 and B, respectively.

Fa

T P . .
Cing matrix of ¢, the forward propaga-
tion function is: Pae
0 U ¢
- 5
o= f f
1 Z 0
U £,
v, 0
Backward inference functions

2
b1.02,b3:T -9T2 are given by:

Lo (Lt )], =1

Loy (t, b0 ], = 1

Loy (ty tyd ]y = Tg (e, 1)
Lo (bt 0]y = &y

Lbylt, .t ), = T;(tA,J,tB)
Loy (b b))y = To(r,,1.t,)

) The matrix of the backward propaga-
tion function is:

o b, 0
go=
9 b b2
03 9] 0

We can now compute:

#(1) G (F(1)
A B A B
1: real int rgal int
2: 1 int 1 int
3: 1 int real 1nt
B E(1) A A
A B LA B
1: real int int int
2: real int real int
3: real int int int

We can also compute thnat:

B(1)=1
B Q) = ()
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30 we nave the following relations:
G Ch R cetua) < ) -
F 8{1) = §'B (1)

Tnus our proposed solution Is strictly
better than eltner Tenenbaum's soLutxon or
Jones and Muchnick's solutlo * on tni
example.
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