
Conference Record of the Fifth Annual ACM Symposium on Principles of Programming Languages

A General Scheme for the

Automatic Inference of variable Typest

Extended Abstract

by

Marc A. Kaplan

&

Jeffrey D. Unman

Princeton University

S.um[n.acy

Se present tfie bes2 known algoi ~thm
f_or t~e d~t~prn:natj.on or run-time types Ln

~ programming language requiring no type

dsclarat:ons. ~$ demonstrate tnat it 5s

super%or to DtQer published algorithms and
that it is the best possible algorithm
~rom among all toose that use trle same set
o? ~rimit~ve ~perators+

In th%s pape~ we pr~sent a ,model of’

computation that is an abstraction o?
typeless programming languages
APL,

Sucfi 3s
Si’TL and SIJOBOL. Based on this model

we present a general scheme ror autofnati-
cally inPerring tne types o? the variables
in a given program, ~ur type %n?erence
system is prfivably more powsr?ul than tne
systetms OP Jones and Mucnnick LJ] and
Tenenbaum [T].

.In S+3ctlon II. W% ?ntroduce a model
?or tne treatment 0? type in ‘er-znce. A
systen OP relationships that enables us to
in?er types is discussed in Sect?o~ 111,
Then SectTon IV gives a ?ormula trlat ‘we
believe is tfie best acn~evable without
intraductng wnolly new concepts ;nto the
praDiem o? t~p~ determ%rlat~on. 5ection V
justi?ies our view by s!?owin: how LO

tne
gst

best poss;ble result ?rom a given set
of’ primitive operators and starting solu-
tions. In .5ectlon VI wd show that our
solution is at least as good as other pro-
possd methods, and Sect:on VII is an
extend%d example that demonst.?at5s our
solution can be better than Other Known
Solutlofls .
------------------------------ -- -_--,-----

?work partially supported by NSF grant

McS-76-15255.

II A Model of Computation in a Programming——— — ——
Language

The basic buildina block of our pro-

gramming language is the parallel assign-

ment statement, whose most general form IS

Q:

(x1, x2.x3, ,.. ,xk)+(@, (Y,1,Y12. ..,11d),

@:1 (12, ,i22!. ..+Y2d1),
‘2 2

e, <fK1,YK2’f
“k

kdk)

wfi+r+

‘1’L2’’’’”XK
are dist;nct variable

names ,
@, e, ,,..,@ are operators~ C)f

-1 -2 K
degrees d1,d2, . . ,dk, respect~v~;y,

and
tfle Y. ‘s are variable names

J M

To? simple assignment X+1 is
included oy writing it as X+id(i). where
:6 $s trle ldent:ty operator. Operztors
may be O: (iegree 0; tflat is they may cake
nO arguments and yield constant values.

The tntent is that varLaD3.e names
are bound to (associated wit~) values ?rom

(members Or) a universe 0? values V. liach
operator aj with degree dj corresponds to

d.
a function @j:V ‘+V.

Now tfie ,meanin,g of’ an assignment
statement should be clear. Let tne varL-
ables Y

Jm
De bound to values b~fore

‘jm
assignment .J is execllted. ?fien a~ter Q :s

executed. var~ables Xl, . ,XK become bound

60

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.© 1978 ACM 0-12345-678-9…$5.00

to tfle values W. (vll,vld)o. .o.
J1 1

@j (v
kl’””” ‘vkdK

), r?spect:vely. Jach A~
K

loses any vaius Lt may have been bounti to
be?ore tne ~execut~on 0? d. All other pro-

gram varia~lzs I .
Jm

reta:n t!l~~r values.

A p~ograrri is a d%rected grav~
~~ whose

eacfi
nodes is labeled by an instance

0? an ass:~nment statement, subject to the

?oiloiiLng restrict~ons:

1.

2.

3.

4.

There :s a spec%al node wh~c!? we
cali tne start/~inisn (Si?) node.
&ivery ntide is reachable ?ron the SF
node.
‘Tne S? node is reachable ?rom every
md.e .
‘T!’Ie J? node is labeled bv an asshn-
,ment statement in ~nlch every pro,qram
variaale appears on the ~ef~ Oand
s?dti and no Var~~b~i[;S appear on tne

r:g~t nand side.

~
Rrograu CXCCU.L1?.Q :s a path

t~rough the program gr~ph tnat beg:ns at
Lfie Sr’ node and ends at the SF nods but
does not conta;n any otner ? n.stances 0?
tfie S2’ node.

correspondence of the model ~rogrammin~—— —
language to real Programming lanquages——

~xecuting tbe sir’ n~de corresponds to
irlitiaiizing all varia~ies. deachirrg tne

SF node corresponds to program termina-
tion If we like, we may postulate the
existence 0? spec%al value ,
undec:.g$g ~ V, and ~ constant f’unct.:on, u
w~ich yields tnis value. ‘Then a typ:cal

program m~gbt fiava :ts Sk’ node labeled

wit.1 ths statenent
(’L1,Z2, . . .,zt)<-(p p, ,.,p).

,

J* can [~odel tne %nput and output

statements 0? a real profzramz;ng lanyuaqe
dith spec~al operators. tiects:.on state-

ments can be modeled as ?’01.Lows:
real language: J

P(X1:X2 . ..lXk)

d L
Tiidd ?ALSti

new_ var$able<-p(A1 i2, . . ,Xv)

db
.

AdmiGtEtii~. we Only lmoael t~e T-act
that t~le pr~d-cate, p, :s evaluated In a
nlodel progr~m either sdge may bti ta~en
a?ttir p :s evaluated, reqardiess o? p’s
outcome. TBUS $here may Cx:st execution

patns %n tne model o? a real program which
are not execution patfis in the real pro-
grac. But it is true that every possible

real execut:on path is a possible path
through tne model program Tnere?ore, any
statement tnat holds true f’or all execu-
t~ons o? a model program P, must also hold
Lrue for every poss:ble execut.i.on or the
program tnat d models. if we take any
reasonable semant;cs for pre~icates. ttie
set of prOgrain executions is not e?~’ec-
tively computable, so our over-est:rnate or
the set of execut;~n paths is a reasonable

approach, and corr~sponds to the assump-
t~ons usually made in code optim:zat~on

1A, G, H, La, Ki, SC].

iie sriall assume that all programs
that we analyze are correct, ~n the sense
that Cos resuit of every operat~on will be
W?ll de~~ned ‘or all input values occur-
r~ng dur:ng any execution. and tnat all
executions reach the SF nods a?ter passin~
tnrough a Finite number o? statements.

lLL ?’rI* Type Determination Pro!J15rn

1? a compiler’ could pr%dict toe range
Op values that variables may take on dur-
ing tne execution 0? a prograin, it could

utilize tne ~n?ormatiorl to produce

simpler, more e??LcLent code to carry out

the operations tndicated by the program.
For example. :? t~e statement 1%-J+K

occurr’+d som*’wh2re Ln t~e text o- an APL
program. and tne compiler could determ~ne

that bot~ J and K would always be bound to
scalar <ntef.er values for every +xecution
0? t~is statement, ttien tae compiler could

generat~ code tfla.t would use a simple
machine instruction to add the values or J

and K (rather than cal!~i.ng a generalized

addition routine) , and could al.Locate a

.sLng:ie word f’or I in which to place the
result (ratfier than bindtng 1 tO tne
storage t!-la,t the generalized addtti.on
routinti would allocate dynam~cally) .
i.loreover, :f a global check showed tfiat 1
never takes on any Valu*s other than tnose
or scalar _Lnt5gers, tnen tbe compiler
could allocate I at compile time (assuming
no recursive uses 0? 1). bauer [B] snows
that sven a simple type determination
scneme can result tn substantial sav;ngs.

More generally, we would ~iKt? tO
partition tfle universe or computable
values, V, into ‘ttypes. For tne purposes

of this paper, a LY.QC :s any subset o? V.
r’or instance, types may correspond to diP-
?erent storage represent,ati.OnS. Each of

lnte~3r.—. .4----- ,re~~ aLIQayLl:l~], rga~ s~t,
~etg~~gggeog~ Srray, c~ac, cgar stKA2E,
an@&D.g (a data structure capable OP
storing any value in the universe V) mifzht

De tyoes it Ls
for

peP?e@tly p~~m%eaible
one type to contain values tfiat are

also contained in another type. It is
also possible to incorporate tne constant
propagation problem into our scheme by

having types such as constant 3, constant,——
string “abc” , an$d so on.

In general, the comp~ler writer .mus t

decide on tbe set 0? types he is willing
to consider. Here we shall only make tfie

assumptions that:

1. ‘The set of types, wbie.h “we shall dsna%e

by T, forms a +
latt:ce. ?’ne meet

(greatest lower bound) OS two elements
s,t ~ T is denoted by s~t. ‘The join

(least upper bound) o? s and t :s
denoted by .sVt. A partial ordering <
on T is giv%n by tne rule
y~x w x<.y e+ XAY=X w yvx=y. Ne
shall uss < for “< but not =.” There

eXiStS a 19ast element Q and a qreatest
element 1 such tnat ?or all s&T,
o < s <. j.

The partial or.deriny .< should be
interpreted as f-ol~ows. ‘Iq s<t then

saying tnat a program variable X is

bound to a value o? type s is more pre-

C:se than merely say~ng that X 4.s bound
to a value 0? type t.”

2. A symbol or exprsss~on tha~ represents
an element of T will usually appear

surrounded by brackets whtin :t %s
important tnat the reader b~ink o? t~at
expr+ss:on as a subset or V as well as

a member of T. Bearing this in flind,
‘we a.ssu,ne that the lattice join and
meet are related to set un~on and
intersection as ?O11OWS:

l.tVs] 5 [t]U[s] and
[tAs] ~ [t]~l_s].

Th;s snould be ~nterpreted as ?ol-
10WS , “IT program variable X is eithzr

bound to a value o? type t or a value
o? type S, then ~t is surely bound to a
value of type tvs, wh~ch must conta~n

the set Lt]dLs]. On the other hand, %?
we know that X is bound to a value
whose type %s describsd by bQ&.D. t and

s, then X is surely bound to a valu~

Wkose type iS tAs, wbicn must conta~n
tne set I_tlnisl.’

3. (Finite Chain Condition) All chatns
(sequences or elements related by <) tn
T are of Ti.nite length. Note that this
is not so strong a condition as assum-
Zng tnat all cnalns have Lfielr Lengtn
bounded by some constant. i-iowever, the
f’infte chain condttion does tnply that

T is a complete lattice. +

.-.. =_ —-._-_—T—
+ An :ntroductlon to lattice theOrY and
its bas~c de?~nitions may be found ~n

re~erenc~ [J].

_.. _- ——__...——-:..-.--—
$ A lattice LS QOQL4.Q if every cha~n

o?

elementS has both a least upper bound and

a greatest lower bound,

To s+j~

reasonable,
lattice of

First, we
V, such as
above. ~~

nated typss

that these assunpt~ons are

let us consider how such a
typss may be constructed

cnoose some “basZc’ subsets of
the example types mentioned

may also include some ‘alter-
LTj such as reaL_Qc_characLer

or i~k~gsc_9.r2gLz.gz.r._gC~~.~ in this ini-
tial col12cti.on Or types, A natural par-

tial ordering oF’ tness subsets CS given by

tne subset relat~on, ~. To insure tbe

exist~nce of gr~ates~ and least types w%
add V and the empty set to our collection
or types. Next , we must extend our col-
IectLon so that f’or sach pair s and t 0?
Subsets or V that appear Ln our collec-
tion, tnerz also appea?s botn a unique
largest subset that conta~ns the i.nt~rsec-
t~on o? s and t and a un<que smallest sub-
set that contains tfle union o? s and t.
Tfiis assurbs tne ex~stsnce o? a greatest

lower bound and a ?L~ast tipper bound ‘or

each pa:r Ln our collection. Our collec-

tion is now a lattice sat~s?ying assump-
t~ons 1 and 2. If we were care~ul i.n all
or our selections , then ‘we should als,>
satisfy assumption 3, In pzrt~cular, 5P

He started wltn only ‘~nitely many ‘basic:’

subsets, tnen our extens~on to a complete
iatt~ce wi~~ also be finite

Ano’cfier way to tfllnx about the con-
struction O? a lattice O? types, T, is to

view the process as th~ jUdiCiOUS selec-
tion or a subpartial ord+r o? toe powerset
c)? v that is Coincidentally a lattice
sati.sfy~n~ assumptions 1,2 and 3. T’enf3n-
baum L?’] gives a very detailed example o?

such a lattice of types ?or the program-
ming langua~e .5dTL.

T~p,.e h:ey.e~~g

9ur goal i.s to automatically LnFer
tile type of values each variable may bs
bound to at eacfi po~nt in tfle
~~:s

program.
%n?ormatLon will aid tfie compiler in

deciding what code to generate ?or each
statement

tie begin the task by exam~n:ng the
operators 0? our programinin~ language .
Suppose ‘we know that at some point in a
program, X, is bound to a value of’ type.
t., ‘or I<i<k.

1
,sLon $(X1 ,X2,.

speak about ;ts

cons
::{e(vl, . ..!vk)

includes all
e(X1.X2,xkj

How cons%der the expres-

.,XK). tie Woulo liKe to

type. e names a function,
aer tcle set
vi~Lt:]} , ti n+esssarily

.
of tne values t~at

may have. Iiow let s be an

element o: T sucn th..t [s] ~R. Then it ~s
clear that the value Oe x)@(xl, x*....., k

must be of’ type s. ‘bus ‘or +ac~ operator

e, we may dep:ne a function T ~:Tk->T SUCh

that ~~~ is t~e least type s such that [s]

62

. . . rk).

~“and d =

aQ. teen

de tnterpret tne .monat<oni.city 0? our
type in?erence ?unctLons as being tne con-
dition tna% ‘toe more precise tne in?orma-
t:on we have concerning tne type Oe an
operator’s inputs, the more precise we can
be :n va~ing a statement about Me
operator’s output. ~~

de have considered tne case where
the ty,oes OP an operator’s inputs are
Known , and tie fiave seen how we can d~duce

a valid assertion about the operator’s

r~sult . NOW suppose ttiat we have some a
prior? inf’ormat$on concerning the tyPe of

an operator’s result and tfle types or some
of tts input.s. We may be able to capital-
ize on tfi:s LnPormatLon by Us%ng M to
deduce sometn:ng more about a particular
input . For example cons;iier the APL
statement: A+-B+? Suppose ‘w2 have
krloi{ledge that A will be an integer af’ter
the statement has been executed, Then by
the nature or the ‘+’ operator. it must be
teat 5 is bound to an i ntegtir value bepo~e
t~]e ‘+4 operator is applied

——- = ——
+ ltiOt12 t~~t ‘fk LS a iatt~c~ xzr,fi partial
order < Civen by (X1Xk) < (Yl,yk)

‘e and only ~?A. x:.<y4 , ?or 7<i<K., where

x<,y2dT. ~ and”v’are slxllarly +:xt%nfl-. ..A

~ d; ;“ x,y6TK, t~en XAY is the Freatsst

elt?ment w~TK and x~v is the l~:l~t element
K

ueT’ , such t.nat W<X<U and W$y<,u , Moreo-
vgr, l? T sat~s~~~s the ‘~n~te cfla~n COn-

d~c~on, then so does “TR.

0
As ,ie constructed a runct~on ‘Te yor

eacn operator e, so we now construct addi-

tional functions
M’ “ - ‘% ‘or ‘ach

operator as ‘oliows. (k is the degr?e OF
operator #.) $or each j=l,2.. .,k con-

struct a Tj.T K+l
monotonic function ~. ->T

Suc.n trlat TJ(t ,t1,t2, .,tk) ZS tne least

element Ore{ ~sT I Ls] ~{vjlvj~[tj] and

3 v.SLt<j. iij Sucrl that
1*

V“=o(vlvk)} }. de may prove each T:

co be nonoton:c; toe proof ~S similar to

tnat of ~emrna 1 and is omi.t~ed.
+

;iow we would like to constder what

typs inferences can be made by examintng a

single assignment statement, Q, such as

the ons sfiown in Stact. 2. ‘ype determina-

tion is unusual among data plow problems

in that information may b+ propagated botti

?Or’ward and backward.

j’~rward h?e.re.n.x: Let t be a map ‘rem the

set z 0~ program variables to the elements

O? T givtng knowledpe about the typEs of

the values ass<gned to the program’s vari-
ables .DeP.ore stattilment d is sxecuted,

~f~

W:SQ to construct rrom t and Q a new nap

?Q(t) tnat. descr:bes what we know about

the typss of t~e va;ues assigned to the

program variables at-t$?r statement Q iS

executed. ln Constructing ‘d ‘e ‘ake ‘se

o? our knowled~e or the operators and the

semant~cs of tne assignment 9’r,atement

{or eacn variable Z. C z we

l~d(t)l(z) to De

def’~nt?

(1) L(z), t? L does not occur in statement
i).

trl
occurs in Lhe m pos~t:on of tfie Ye?t

fiazd side o- d.

$iie expect that Lt wL1l not always be

vracticabie to construct these best type

Tjin~erence !unctiOnS . in such cases any
al”

monotonic ?unct~ons ‘T~, whlefi approximate

Tj may bethe f’unct~ons .0 used in tne tneory

w.h:ckl ?Ollows. de say g appro.x$.~nat.es f
f-ori?, . all x :rl tfls domain O? P,

.dx)>f(x),

63

(3)

such that m

Z=Y
mj

otherwise.

l?lacKHar.d ~n~eCS.,ncg: Let t be a map ‘rem
the set 0? program variables z to tae
elements of T g%v%ng knowledge about tbe
types 0“ t!-le values ass%gned to t!’le
program’s variables aster statement d :s
executed. de CW:sh to construct a new map
bu(t) which will describe what we can

deduce about what the types 0? the values

o? tne program variables were ~e:oq~

statement Q was executed. In ~onstr~~~ting
bti de again make use of our Knowledge of

tfie operators and the semantics of the
assignment statement.

(1) t(z), if Z does not occur in statement

~.

(2) 1< :F L occurs only on ttie le~t band
side 06 d.

(3)

A
T: (t(xm),t’(yml) ,

i_

all pairs (mjj) ‘“
t’(Y),...,

such that m2
Z.y

mj
t’(Ymd)),

m

otherwise.

where

[
~, if W appears on the left

t’(w) =
side of Q

Lt(w) , otherwise

Notice tnat both ?&(t) and bti(t) can

be regarded as functions o? t t’or a f’ixe.d
statement d. indsed. ?

Q
and b are

Q
mono-

ton:c functions that map LZ+TJ -into

Lz+-T]*, since they are just compositior]s

J } and ~,+of tna monotonic functions {Ta,

:

...-.-.---—--.-—-
Y Lz4TI denotes the set OF all map!lings
Trom the set z to tne lattice T. Note

that [zaTl is a lattice. If r,q e [z-T]
tnen we de?int? fsg wnenever ~(Z)<g(Z), fOr
all Zez. Further, i? z %s a f’~n%te set 0?

$ elements then [z-+TI is isomorphic to
T 1,

wnence the f~nite cnain cond%tion
holds for [z4T] whenever it holds for T.

olow consider a progralll P in our xodel

language consisting o? a d~rected graph Op

n nodes. for’ convenience let the S$ no(ie
~~ nade 1 , and designate tne other nodes
2,3,n.

Let t~e program var<ables be z =

{+L2,.. ..ZJ. At any gi.v!?n po;nt Ln t~e

prograin we descr~be the types or tne

values Wnich may be ass~gned to each of

the variables by a mapptng t:zqT. A

mapping t 3acelY dcscrz.Des the types of
values of z ;P, ~or each t, [t(z,)] ~

.—

{Vev ! v is possibly tiounti to Z: during

any program execut~on]. it is easy to see

that ip s describes z, then all
mappings x su~~~~l~t x(Zi)>s(Zi) ~or 311

Z,GZ safely describe Z. A mapping t is
.

rn~.rs. pcecise. (bet,ter) than a sa~e mapping

s <f’ t Is saf’e and t<s.

For each node j o? p we construct

forward and backtiard %n?5renCe functions
P..andb. from [z~T] to [z4TI. as out-

l~ned ab~ve for example node Q.

By construction we have:

1. I? t:z-jT sa?t?ly describes the types of
th3 values ass~gnsd to the program

variables be~ore node j is executed,

thzn ~j(t) sarelY descr~bss ttie types

or tne values ass~gntid to the program

var~ables a~ter node j has been exe-

cut,ed.

2. If s:z4T sa?ely descr~bes the tYPes of
the values ass:gned af’ter node J has

b~en executed, then bj(s) sa~ely

dt?scriDes the types o? the values tihlcb
were assigned to the program var~ables

before node j was executed.

itiow, couching our type ~n~erenc~
problem in tne notation we have developed
above, our problem :s to TInd zapp:ngs
x1,x2,x3, . ..xn ?rom z to T so that For

eacn x and ?or all executions or our pro-
J

gram P and ?or all times in a given execu-
tion o? P at whic~ control reachzs node j,

saf’ely descr:bes tns program variat)les
‘j
on ent~y to node j. de call such a set ofl
mapp~ngs a s~~.g soluJ~Qn to the type Y5nd-
ing prOb;LSIM ‘or program P under the lat-
tice of- types T. lt will opr.en be con-
venient to write a proposed solution as
one vector

-n
x = ‘xl ’x2’ x3’ ””- ’xn)e~z+TJ ‘

+ ~ and V are monotonic fknct~ons 0? two

arguments , meani ng that ir WLX and Y5U,

tnen WAY ~ -XAU and WVY 5 XVU.

64

1P we can YLnd very prec:s+ Sucti
X. ’s, then

J
our compiler can La:lor its

code to accomoda%~ only tfiose types of’

values which the xi’s irrd:cate might arise

during an actual p~ograrn sxeeut:on.

k~e know how to make type LnTerences
when passtng through the nodes, in t~e
Scrrse that our CunctLons C and b .

j J
2.ndT-

cate how the variables of’ our program cake
on new types as each statement :3 exe-
cuted. Miaking use Oy che in~ormatiorl con-.

tainsd ;n the f’low .gr’aph 0? d, we now
de?ine ~uncti.ons E’ and ij wh:c~ character-
ize forward and backward propagation ,
respectively, Q? type information
throu~hout the program

~,, j- s ,3 :“unctLon f’rom LZ~T]n to

Lf’(xl, x<,xn)]. = v
J

“,n(xm).

mtipr’cd(j)

t~pes 0? tn3 values 0? tne variables at

node j given the types 0? tne varia~les
at trl~ nodzs tnat fl(-)~ into j. cl?
described Dy vector x = (xlxnj.

+
and O(t):O, for all t5[z~T]

so F(x)=F’x is the inner !~roduct or

nXn
an

matrix O? ‘unctions From lz-+Tj to

L.z~T] and an n-vector OF mapp~ngs in

LzATJ, Witrl ‘unction ,applicatiorl

corr~spond~ng to scalar mult~plicati~on and

trle lattice ?unctLon

V:[z+T]XLz+T1-> Lz+Tj corresponding to
scalar addit$on.

S%milarly we def’lne

B:Lz~T]n~Lz~T]n by,

LB(xl, x2,xn)]m = V bm(xj),
.jf5SUCc(m)

where succ(m) . { j I m~j iS an
edgs i.n the ?1OW graph o? P]

In%uitive~y, TP Ym=W(xl, ..o,xn)] then

Ym
m’

expresses “what can be deduced about the

types o!’ the values of’ the variables at
node m, ,gLven the typ~s o? tfie variables
at tne successors or node m.

fLgain, we can dr%te d(x) in !matrLx

notation as d“x,

wfier~i

f-b ip ln~j
m’ i.s an edge O? p

D=
mj

\
0, otoerwise

.

uotice tnat ootn F and B are monoton:c

funct;ons , s~nce cQ%y ars each compos~-

tions of’ monotonic ‘unctions.

F and B r~pr+sent two di?f’srent, but

related, type in~ersnee systems. The ?ol-

iow~ng two iemmas show ho’w c~t~sr ?’ or B
nay b? used to demonstrate tfie sa?encss Of

a proposed solution,

~eqryl~ ~: Let vectors x and s in Lz+T]n be
such tfiat x ~ sAF(x), and let s be safe.
~~en x Ls sa~e.

p-roof’: ~!~e proo? :s carried out by a

strai~htTorward induct~on on executiog

path Length. I

A similar lemma holds ~or B

LeImJ~ 3: Let x be such tflat X~SAB(x),

where s is Sa-e, x,sGLz~T]n. Then x is
safe.

hop: : ‘The proof’ is similar to that o?

Lemma 2. 0

Fortunately, the two preceedin~ lem-

mas not only give a means of testing tbe
sa~ene~s OF ~ solution; but they also Sug-

gest a Way to compute a sa?~ so~LUtiOrl. de

shall demonstrate tfiis Yor the case of the
forward type propagation system, F. All

of’ tne Tollowing may also b% carried out

in the El system.

Assume ‘we have a safe solution,

s~[z+T]n, and we hope to ?.irrd a better

solutlon. x. The ?act thab any x ki!lictl

sat~s~ies x > s~~(x) is sa?~ suggests

65

L~at we look ?-or t~e smallest Sucti x,

namely that we Y%nd tfie smallest x Sucti

t!~a.t x=sAF’(x).

Considering s as ~ixed, define

r’
s

:LZ~T]n-+’LZ~T]n by

is(x) = SAF(X)

(Notice tnat Fs is a monotonic $un~t~on

because A and F are monotonic.) Now let

v=F~(Q) be ttie least ~;xedpoint Oe Fs.

That is, v is tne least elemtint OF ~Z-~Tjn
Such that v . E’s(v) . s/l?(v). by Lemma

2, v is provably sa~e. Notice tfiat the
monotonic~ty 0? ‘“P

s
implies that

F:(g). F:(Q)
i=l,2)(...,m

Thus tie can ‘write v explicitly as,

v = 7:(0) = v ‘~~(oj
i=l ,2,3,...

many steps as long as the lattice T bas no
in~~n~te cha~ns.

dow considering s as the var;able,

de~ine tne Function t:[Z~T]na[ZeT]n by

de summarize what appears aDove by:

‘The Tollowing lemma expresses some
%nterest:ng ‘acts “about t’he Cunct%on ~.

L~.nTl@ 5:

(a) t is decreasing ~ori.e., all x,
$(X)<x.

(b) f is monotonic.

(c) lT2(x)=~(x), L.c., For all x, P(x) is
a f’;xedpoint or $.

(d) d(~[(0))=7[(Q), f’or all x, and fop

all k>O.

tg.oa:

(a) I(x)=F~(0) =x~2’($(x)) < x

(b) Let X<y. Vie claim

!Iave r’~(Q)=Q=r~(0). IJOW assume induct-

ively . h’~(uj<~~(o). ‘T.nis , along with tne

,monotonicity or F g2ves us

(D1) F(V~(!Jjj < r’(F}(L!))

Our nypotfies~s ~s that x~y. so by (bl) and

the monotonici.ty of A:
(b2)

‘i+l(g)=x~F(F~(Qj) <. Y~F(F~(M)=F~+l(Q)Lx

which completes tne %nduct:on.

(c) Let y=d’(x)=F~(0). tie c~a~,n

(cl) Y ? F~(!2).for all i

and

(c~) F~(.Q) = F:(O), For all i,

As in part (b), ‘we proceed by induction on
:. At 2=0 botn (cl) and (c2) ars trivi-
ally true . Now assume t~e induction
nypotnes%s “or (cl). That and the rnono-

tonlclty of Fx imply that F X(Y)M:+T(Q).

But since y LS a YixedpoLnt of r’ we flav~
x’

y=fx(y)2F~+’(Q),Whi.c!-l completes the

Lnduction step f’or (cl).

To prove (c2), assume the induction
Qypotflesis and apply “v toi- get

.,
hj+l(Q)= Fy(F~(Q)) =YAF(F~(tI)), But si.nc~

Y is a fixedpoint of ~ we also have
x

y=r’x(y)=xAl:(y). So we can write

-~+’(~j = XAr(y)A~(~~(~j)(c2.1) r

Combining tne ?act tflat F is monoton:c

witfi (cl), we see F(y)>F(P”~(Q)). By the

de~inttion 0? 1.>’ tnis means

F(~l~(~))=i~(y)Af(F~(~)). ?’nus we can sub-

stitute ?or F(y)/lF(F~(L))) In (c2.1) and

‘i+l(Q) =x~F(F~(gj)=r’~+l(g),get fiy Wh:cti

completes tne LnductTon. F’Lnally. notice
that (c2j implies that

66

ii & Typ,e ~e.tp~.rninat:o~ A.Jgori.L.Du

A consequence o? Lemma 5 LS that
g;ven any saf’e solut~on s. we can apply $
to it to get a (possibly) batter solution.
f(s). But no furthf:r apglicat%ons or ~ can
y~eld any ~mprovernents over f(s).

of” course all OF tne above ar,qunents
Horx equaily tie~l ‘or t!?e backwards 5nYer-
ence system - tie can construct a $ f’une-

ti.on from a by de~ining B(s) = B~(Q),

~w.herv b s(x) = sAS(X). And we can state

Lemmas 4 and 5’ by just substituting the
symbol $ Ln place 0? 1? everywhere t~a.t t
appears in Lemmas J-1 and 5. .S0 g?ven .2
sa~e solut:on s we can computs a (possi-
bly) better solution L@(s).

l~otice t~at the fact taat a given
sa?e SolUtLon s cannot be improved by
further applications 0? f or i% does not
%mply that :t may not be improved by an
appl~catiorr of $ or $, rsspt?ct:vely. It
:s easy to demonstrate programs tihere

$’T(s) gives a better solut:on than

either d(s) or X(s).+ Given an <nikLal
safe solution s, (eg. j, which $s always
saf’e) we can compute

$ = (j~j*(s) = i)”r’. ..$”$(s).

In tfie next sect;on we snail present
some gene~~l results about monoton% funct-
ions on lattices that show 5 is, Xn some
sense, an optimal solution to tne type
determinat~on problem.

v vp~j.ma~i$.y fiesuits

Given 3 set o? monotone ‘unctions,

d=t!11,h2, . ..,hn] ~ lL-~L], ‘Whos e members

~ac,h map a complete lattice L into CtselF,

L’s meet and join functions,

~~~e~v} c lLXL->L], and ,given a set ~~

in~tial p;ints , S={S1,S2, . . .,sM}s L, We

would like to study the set or po~nts,

C(ti,),l,s), which can b+ computed by arbi-
t~ar:ly applyins arbitrary compos~ttons o?
t~e functions or l-l anti V to tfle points OP

a. Just what we mean by ‘computed” and
‘arbitrary ‘ W:l.1 necorne clear as we

proceed in our investigation.

Our motivation :s as ?Ollows. ~~

eacn or the points in S represents a saf’e

solution to t~e type deterin:nat~on problen
and each of trle ‘unctLons in i-l and M

preserve saf’ety , tnen every po;nt in

c(ii,4,s) w511 also represent a sa?s solu-
t~on. vie shall use the tneory tie develop

to prove that ($’f)*(S) LS the best solu-

t:on tie can ‘ind, g%ven operators ~, ~, 8,
F , A. V, compos~tion anfi aPPl:cat:oQ o?
functions, and an initial saf’e Solut:on s

$ tie shall prssent such a program at tne
end or t~ls paper.

Since each point :n C(d,M,S) is
be computable (in $initely many oper~~
tions) ~or each point c in C(H,M,S) triers
should be some ‘orrnula e tnat expresses
ho”w to compute c ‘rem ths sets d, [Y , and
s. so, turn~ng tile problem arout?d, we
s~a~~ ~~rst look at a ratner larg~ class
of forrnu~as, (tud), defined by:

P, = U{E: : i=l.c?, ...}

~ = d{~J’k \ J,k=l,i?, ,..}

where the iii’s and the Gjlkrs are g~vsn
recurs%vt?ly by the rules which ?o11ow.

intuitively, the ii’s are vectors of’ L
expressions witn values in L, and the
~j,k,

s are Cunctions ~rom L j to Lk.

(ti.i) (variable introduction) If x is a

1variable name, then x iS in ~ .

(jv~j) (f’unotion application) If

~j.KGGj k
and

~JeEj then

~
j,k(ej)6Ek.

(E.iv) (?unction closure) If ~k’k~tik’k and
k ,k

tnen both L,g
K,k.*

eta, J-(ek)e# and

Srt!atest lower bound (gID) and Z ~or
tfie least upper bound (lub) O? an

iterated application or g “k to ek.)

(abstraction)
k

(b.:) If eK~13 and

YlYY~9.+.~yj are variable naimes,

tnen k(’/~,y~,...,Ye).e K e dJ’k.

(G.i.i) (function
j,x .

introduction) if’ g 1 .s

the name or a f’uncti.on from LJ~Lk,

teen g
j,keGj,K.

,k
our intent is that eac~ formula in L

K
may be interpreted as an element of L e

prov~d.+d we interpret each free variable

in a Formula as an ~~ement 0~ L. Simi-

larly the ?ormulas in
~j,k

may each be
K

interpreted as !hnctions mapping LJ to L .
Since ,We are only given tnti functions Tn H

and PI and tne %nlt:al latttce po~nts tn 3

to start with, let us cons%der how to

Lnterpret toe set OF rormulas

(E?U8)LH,,q,~]. Tne notatton Q~H,i4,sl

stands ?or the set o? exprsss~ons e such

that

67



(1) e is a ~oymula in tne set Q,

(2) ~f x ig a f’ree variable name :n e,

tnen XG {1511, 1S21, .,.,’Sm ‘1, i.e.,

x names an element of S, and

(3) :r g 5s a ?unctton name occur:ng Ln e

then geti’” and gnamesane~tner
2,1

element of n, or g~ti and g names

an element of iq.
TO ~QLRrpEiic.. a formula, e~(~b&)~Hjf~yS~t we
first iief’:ne a YunctLon 1, wnich maps

variable names S,...,s
1

Lnto t!-le
m

corr~spondinp lattice points or S, and

‘wbi.ch maps fhnction names
‘1’

and
““hrl

A,V LO tne corresponding functions of’ H
and M. idext , we extend 1 to ?, a f’unction
drloss doma;n is (JUJ)L3,4,S], by recur-

sively ds?ini.ng:

(Ii.ij l(x) . i(x) , i? x is a variable

nam~ .

~ut)~L~(g ‘kj]i(~(eK)j I i=O,l ,2,.. }

i) l(k(yl.yZ, . ,yJ)eKj is tne ?unc-
.,

tion f’GLLJ~LKJ, given by:

r(t T,t2, . . . ,tj) = ~(ek), where $ is

trls extens<on of an interpretat~on

J that is giV&O by:

fti, ife=

J(e) =<

~I(e), ife

Note tnat trl:s

the variable Yi>

for some i

—— some other variable

or function name

de~in;tlon 5s not
K

circular, since
e nas f’ewer

i nstances of’ abstraction than

k(Y1, . . ..yjeKeK.

(lG.ii) l(g) = i(g) , if’ g is a function
name

The correspondence between these
rules For interpreting f’ormulas, and tne
rules given above ?or building f’ormula~
should be obvious - we are just sayin~
that a ?ormula is interpreted by Lnter-
prst:ng each of’ the parts of’ wh~ch it was
built . In the case 0? rules (IE.iv.a) and

(~1~.iv.b), it SklOU~d be nOted that the
existence of greatest lower and least
upper bounds is guaranteed by our assump-
tion that i, is a. complets lattice (and
Qence so is each Lk). Thus I maps each

formula in (EdG)[H,M,S] into a member o?

the set

(U{Li I i=l ,2,...}) U (U{LLj~Lk]

\ j,k=~ ,2,...}).

def’:ne C(ti,ll!s) ❑

{I(e)ti; e;7;dG)!~~M,Sl 1. Ubserv$ that
because of rules (~,~~),(~.~:~) and
(E.iv), C(H,M,S) is necessar~ly closed

under ?in%te Cartes:an products, funct~on

applicat~on, and fWnction closures. It is
also true that C(H,FI,S) conta~ns tne pro-

ject~on functions , 2~:Lk4L, since rule

(G.i) allows us to write ‘ormulas o? the

~orm k(xl, . . ..xkx.x. . Also not~ce that i~
1

g:Li~L J ~C(H,M,S) and
.,

~:LJ~LK ec(ii,l~,s)

tfien there extst formulas eg~Gi ‘ J and

eeeGj,k sucn tnat g=T.(eg), t=l(er), and

k(xl . . . ..xef(eg(xl.xl. . . .,Xi)) is a For-

,,l,k
mula in u whose interpretation is just

~“g. Thus c(H,M,S) is closed untier ~unc-

tion composition.

The reader should now be convinced

that C(H,M,S) % the set of all points and
functions which can be computed ‘rem H, M,
and S by arbitrary ‘unction composition

and appl~cation.

Two points should b? made here .
First, we have Introduced the concatena-
tion construction (E.ii) (wfiicb leads to

closure under ~ini te Cartesian products)
to capture the notion that during a compu-
tation ire may separately compute and store
several di??ersnt values which may be
recombined later by a Further computation
Second, we kave introduced tfie two forms
of- function closure (E.iv) to capture the

notion tfiat we may apply a particular
function arbitrarily many times, in a
iterat~ve fashion. accumulating Intermedi-
ate results in a meet or join, fialting

only w~tin tflat meet or join reacties a
minimum or maximum value, respectively
iQOtiCe that if’ Lbe underlying lattic~ L
satis?ies tne ?inite chatn condition, then
~unction closure can be ef~ectZvely com-
puted.

~de would now ~~ke to Yurther investi-

gate t,he properties of C(H,(4,S). Our

?irst result says (rough~Y speaking) that

all ?unct,ions in c(Ii,Iq,S) are monotonic

and ttiat everything i.n C(ti,M,S) monotoni-

cally depends on t~e values %n tne sets d,
M, and S.

68



Iiecall tnat t!ls domain of an

ir3terpretatlon 1 ?Or the single symbol
~ormulas in (f2UG)[rI,M,S] is tne set 0?
names for the elements o? H, M, and S. We
shall say’ that 1’ fs an glter.ngtiie
l.nterpretation for tne sin~ie symbol ‘or-

mulas in (2UG)[fi,i*l,S] i? 1’ nas the same
domain as 1, but 1’ maps the names OS ele-
ments of s Lnto (possibly) dlPperent
values Zn L, maps t!le names of elernants 0?

H into (possibly) dlr~erent monotonic
?unctions in lL-+L], and maps t9e names o?
elements of (’I into (possibly) different
monotonic ?unctioris in LLXL~L]. A par-
t:al ordering on altsrnat~ve Interpreta-
tions :s defined by sayLng I’fI i? and

only i+’ “or all e in t~~ domain of 1,

l’(c)<I(e).

itiOW we can state:

T!33Qr.s~.n 1,: Let 1’ and I be alt~rnat;ve

interpretations ‘or the s~ngle symbol !’or-

m;;s in (dUG)[tI,I’l,Sl, such that 1’<1.

(1) ?or all e~(EUG)[i3,M,S], ?’(e)<I(e).
(2) ?or all g~c[li,M,S], I(!g) is a ,nono-

tonic f’unction,

Pcoor: The proof 5s a strai,?htpor~ard
induction on tne structural complex~ty
(number o? applications rules
(E.i)-(li.iv), (G.i) and (G.it) ~~6~d in the
construction) of the ?ormula e.

For a g<v~n tnt?rpretation 1, we say
that Yormulas e

1
and e

2
ar~ egukvaign~. 2P

l(el)=f(e2) it is easy to see that

(EUG)Lfi,M,S] is part~t~oned into

equivalence classes by t~:s relation and
tflat tile set of these equivalence classes

:s isomorphic to c(li,:~,s). Since eacn

n~mber 0° c(ti,,4,S) has (at least) one f’or-

mula in (EbC)lH,lt,S.1 tnat represents :t ,

<n the text that ?O11OWS we shall Find Lt
convenient to blur the dfstlnct:on between
members of c(fl,Ff,S) and tn%~r representa-

tive Formulas . All ‘ormulas will be

understood to be interpreted by I, unless

Je ~fld~catc otherwise.

luot~ce that tflere is a natural par-

tial ordering on toe elements Of C(H,M,S);

?or cl,c2Gc(~l,M,sj, CI<C2 ie and only ip

k
eit,ner (c1,c2~L !or some k and cl<c2 ) or

(C1,C2GLLk+Ljl and CI<C2 ). Our n$xt

result snows tfiat minimal and maximal ele-
ments o? c(H,r4,s) Sxi St and can be

represented oy s;mple formulas.

First , ?or notational convenience, we

define:

Ak =
k(Y1,Y2, ..., :~Y?~~Ay2j\rn?ehYk ‘

v’ = ic-w~se

~(Yl>Y2, .!.,
join

Yk).Y,vY2y. ..vYk

D’ = k-duplicator

ky. (y,y, . . . ,Y) ~[L+Lk]

S = vector of’ S . (S
1’s2’’”” ’srn)

MQX(H,N,S] ❑ (:)z(~%))

rn.axk[H,M,s] s DK(rn2ELH,Jl,s])

~in~J’’KLii,,!,S]

k(x) .iF((&Am+J(s,x))). where
x=(x , . , . ,x

1 j)
IL@l.f’ “kM,rI,S] =

k(x).~k((;~i(vm+j(s,x))), where
x=(x ,.. .,x.)

1 J

To prOV2 t!ld next theorem we WL1l
n~ed:

Pr’oo?-: First notice tnat Dax ? Si ‘or eac~., .. ----

Sies, because

tJaX=(Fi)=(Vm(S)) 2 Vm(s.] 2 S, .
.

Also

notice tnat h is monotons s%nce it is in

C(H,M,S), and that by construction ~ is

~ncreasing, i.e. , rl(x)?x, for all x. So

t~i(x) I ~=u,l,~,...} rorm a cnain And
since L 5s assumed tc sati.sf’y t.ne ?inLte

Chain condttion all monotonic .?unct~ofls
are continuous Li] . T!lerc~~re f’or all X,

69



“- $
Dk((h) (\/m(s))) = LTRXK.A similar ar.gu-

k
ment shows the result f’or K&q . B

NOX we can state:

(b) Let c ~ C(H,M.S)RILj~Lkl, for some

j,k. Ttien

KI&n.CJ’k[H,M,S] S, c S rn~XSJ’K[H,Lq,S].

Proof’: Since-- .. ..- each CGC(H,M,S) has a
representative ?ormula we can carry out a
proof by induction on the structure of

these formulas. tne case 09 t~e

previo;:rtheorem, t~~re%;ill be an argu-

ment each 0? tne rules (E.i)-(E.i.v)

and (G:i)-(G.i.i). For the saKe of’ brevity
de only prtis~nt t~e argument for rule

(E.iii). After seeing this, the manner in

which the rest of’ the proof’ could be car-
ried out will becoine obvious.

!issurne c ~ C(H,M,S)nLk can be written

as g(e), where g ~ C(H,M, S)fil.LjaLk] and

e ~ C(H,N,S)nLJ and both g and e have
smaller minimal f’ormulas than does c, By

the induction hypothesis
Hence

e S rnaxJ[H,M,S],
by th$ monotonicity o? ~,

g(e) < g(maJ). The i.nductio~ hypothesis

also guarantees that g ~ N~K~J’klH,M,S].

so g(gaxj) < ma.~:j’k(rnaxj), Wkli.co equals

~ax:[d,iq,S] by the preceding lemma. A
similar argument shows that

QLn.KIH,l~,sl < c. II

Now, let us apply Theorem 2 to the

solution or Sect+on Iv. Let d={$,@,F,B},

PI={A,v}, and S = {s} for some safe solu-

tion se ~Z->Tln, where Z={Z1,Z2, . . ..ZI} is

the set OF variables o? an n-node ?1OW
graph . de can now show tnat

~~eor~m ~: The best safe
.-———.. solut~on in

C(H,M,S) over the lattice [z+T]n is?=

(4”r)%s) = ($”fi)f(s).

Proof’: By the previous——..— theorem ul!.t9

L=[z+T]n, we know that the smallest ele-

ment in C(H,M,S)~lz+T]n is Q3(s). But

notice that because $ is decreasing, and
Bx is monotonic, ?or any x we have $(x) =

B;(Q) ❑ ~x($(X)) <. BX(X) = xAB(x). Sim~-

larly, $(x) s xAF(x). Moreover , because

~ is decreasing, $($(x))<!(x), and because
$ is decreasing, and is monotonic,

F($(x)) <1(x). Combining these ?acts

with a little lattice al!?ebra, we get

SLnce ($”T) is a decreasing f’unct%on,
no confusion ii:ll result frOm writing

($”tl’)x(s) as (@”t)X(s). A similar remark

appl%es ?or $’$.

QQtimaA.i.i Q: t and- B

Observe that $ :s not directly
expressible in terms or ~ ~n~ G, in the

sense that, unless Q is ~n S, the ?ormula

~or T, whicfi is kS. ((iy. SAF(y))*(Q)), is
not in C(tF,B},{/\,//},Sj. A similar
statement applies to ~. ‘Because O is gen-
erally not a saf’e solu~,ion, we do not wish
to introducz Q into S. To explore tne
propert~es of ~ormulas ltke those ~or $
and $ we shall def’lne a new class of com-
putable objects A(El,,ti,S). A(H,M,S) iS
much like C(li,Lq,S), except tnat in detin-
~ng the set O? underlying formu~~s and
their Interpretations , we add rule (E.v)
and its interpreting rule (IE.v):

(E.v) (least f’ixedpoint formation) 1~

~lj ~J,keGj,K,

(2) ~j,k bas no f’ree occurrences 0?
variables y ,,... 7Yk7

(3) el, . . ..ej~El. and

(4) n names a ?unction in Ii,
then let P =

~(Yl!. ..,Yk ). gJ’K(n(el ),. .,n(ej)).

(Note that F is a member o? Gk’K).

Z4 k
Tnen ~ (J2K)~E , where Q

k
= (0.,...,0)

k
represents the least element of L .

(IE.V) I(r%f)) z lub{L~(?)]i(Ok) !
i=o,172, . . . }, which is the least ~ix-
sdpoint o? t~e ~unct~on 1(?’).

w% are very carefui :n spec:?ylnp tne
form Qf FUnec:on F tn rule (iv) Decause

WG do not want unsa~e solut$ons to sncsr

i nto ~(H,L4.sj. In part~cular, tne applZ-
cat:on 0? a ~unction in H to eac~ argument

or g
J,K .

iS one way to assure saf’ety Ln tne
presence 0? a least f’i.xedpo:nt operator,
altnough it %s not the only conceivable
way .

70



Formally, we let, i be tfle set o? all
‘ormulas t.Dat can be built by recursively

rules (i.i)-(E.v),
~g:;~~;~ ~et

(G.i) and
I be the natural Lnterprsta-

tton ?or the names 0? tne elements

,4,
of’ 3,

and 5; and let f be tqe extsnsion of I

given b,y rules (IE.i)-(Ii.v), (IIJ.1) and

(lG,li), Tnen we define A(tl,M,s) =
{ l(e) ; eGdL13,M,S] }. A s ‘w% did “wh~le
discussing toe elements o? C(ti,kl,s), we
shali usually denote tne members of

A(H,tl,S) by tkeir representative ?orinulas,
understood to be interpreted by I.

In part~cula~, not+ that
c’ =

s
iy.sl\rl(y) e A({F],M, {s})

and tnat ~ = ks.F~(0) can be written as

d-= ks. ([ky. lkx. sAxl(F(Y))li(Q) ),
which ls Ln a form adm~ttsd by rules
(E.~)-(E.v), (G.}.) and (G.:.:), So$e
A({F},M,S), f’or any S, since there are no
fr~+j variables tn the ?ormula f’or if.
similar ‘Oriflu.las can be g~ven to demon-
strate tnat 8 and $ are

s
in A({B},M,{s }).

‘T!1e Yellowing lemma expresses the
obs~rvation t.nzt all ~unct~ons in A(H,M,S)
are monotonic and that all objects <n
A(H,A,S) depend monotonically on 1,

Lema j’: Let 1’ and I be alternative
LnterpretatLons ?or tne single symbol ?or-
mulas in ll[H,i4,S], sucn that I’~1. Then
(1) for all e~RIH,M,S], I’(e)<I,(e).
(2) for all @RLti,M,S] sucn that g is in a
?or.m given by either rule (G.i) or (G.i.i),

l(g) is a monotonic ~unction.

<200:: ‘The proof’ ;s essentially tfie sams
as tna’c oe ‘T!2eorem 1, u

An %mnediate consequence of Lemma 7
is tnat $ and @ are monotonic ‘unct~ons;
thus we have an alternative way of demon-
strating a fact ttiat ~e stated ezrlt$r as
Dart (0) 0? Lemma 5

tie shall now show that, tn the case
where Ii={F}, i’l={~,v}, S=iS~, . . ..Sm} ~

lattice L, and F ~lL~L], then A(ti;lti,s)
has minimal elements. As usual. ail Lnat
f’o~lOws WILl~ still Qold i? B and 1) are
uniformly .suDstituted ?or i and ~. respec-
tively . Just as w+ defined rni~ and .mjnf’
we no”d de!’ine:

.

l~~LF,i4,S] = t(~m(s))+

jQWK[F,iY,S] = LJk(lMJLF,:4,S])

~Qw~J’kLj’,i4,SJ =

is conven~ent
meaning clear.
vector 0“ the m

and t~le context makes our

Also, s hsrs stands For a
elements of S.

:~t~. D%(Am+J(S,X))). where

1
,..., Xj)

Corresponding to Lemma 6, we hzve:

LSMYQ ~.: l’k(lOWjLF,M,S])For all j,k, ~Qwf’ . .

= JQJ./[F,l4,sl.

PCOOE: ?’he proof is much like that of
Lemma 6, the key pOfntS being that $ LS

decreasing and monoton;c and that $’$=$.

dut tnese ‘acts ars g:vsn by parts (a),
(b), and (c) of Lemma 5. 0

TQe,o~eN 4:

(a) Let a ~ A(F,i’l,S)fiLk, f’or some k. Then

a ?. @N.kLl~,:’l,S].

(b) Let a ~ A(F,@fIILj->Lk]. Then

a ~ Joyr “kLF,,vl,S].

f COAC : Tn~ proof c~ose~y ?o~~OWS that ~f

~i~eorefn 2, excegt that we must present a
new argument corresponding to tfie new YUle

(E.v).

K
Assume a ~ A(,F,/4,S)~L has a

-..

representative ?ormula of the form ?*(Q.k),
where P =

(!f(yl, .!. JYk). !3j’k(F(el)4. ,t .F(ej)))

~j,k6 A(F,&l,S)nLLk~Lk], and ,
‘I ’”””’ej

are each of a ~orrn ad.nltted by rule
(t,v). By trle ~nduction hypothesis.

u- {Y1, . . ..YK}. ‘~~~ref’or~ , Decause all

functions belonging to A(F,,.],S) are nono-
ton~,~,

(1) f lk(Y). [UJ’k[F,M,S]]

(F(lQxIF,M,S’ ]), . . ..F(U[F ,M,S’ 1)),

where y = (yl . . . ..Yk).

T!Ie rignt hand side o? (1) can easily be

S!loh’n to t) e ?qual to

k(y’). ok” f’F~’r(Al+k(s,y)), where s=

Am(s).

we claim ?:(OK) 2 Dk”F~(Q), ?or all

:~o. ‘T!lis :s shown by induct:on on i.

For :=0 the claim %s triv%ally true. 140W

t)y the :nduct~on hypothesis and the mono-

ton;c:ty 0? f’, f~+l(Qk) > ?(DW(Q)).

~KI~S and tnequal~ty (1) yield

(2) !’i+’(QK)

Uk6$oh-s -t(A’+L:(s.uk”F;(Q) )).

71



T!~e right hand side of’ (2) may be Peducsd

to uK”~” Fs”!$’F’~((l), which is seen to eciual

bk”F:+~’ ““\O), by twice invoKing part (d) o?
a

LeMM; b. This completes

step.

;
So we nave a = ? I

lub{DK”F@} = Dk(lub

the %nductLon

Jowk[F.M,sl. 0

Theorem ~ SayS that giVen some saee

soiution s~[z~Tln, tns best sa?e solution
tn A({F}, {~,V}, {s}) :s El’(s). or, trr

other words, gi.v~n typ~ i.nf’zrence ?unct~~n
F, computing if(s) is an optimal way to use

F to improve a safe solution s. We rem~nd
the reader tfiat similar remarks can ~)~

made about ~.

Other researchers hav3 proposed

alternative methods ?or computing ffood

Sape solutions to thti typs ?inding prob-

lem. In t~lis section we express some 0?

these metnods ~n the notat~on Wn:cn w%

have d%veloped above. de tfien prove the

insqualt%es whicti Indicate that our msthod
y:elds better solutions.

Jones and Hucnnick [J] construct sys-
t+ms of equations which correspond to f’or-

ward and bacK.4ard ~nfertince 0? types. in

our notation their bac~%ard system
1.

corresponds very closely tot

y = B(Y)
and tfielr ~or’ward system is just

X=F y(x).

?ri~y suggsst solving the backward system

for its maximal ‘ixpoint , subst~tusi~!z

this into tfie ?orward system and solvink~

?or the minimal eixpoint. ‘That is, they

set

and

~. = LJ
L1

* (0) = t(yo)
Y,’)

our kechni.que 5s somewhat morti ,~en-
eral 5.n that we can eas;ly incorporate any

additional information provided by a given
sa~e solution s which might, For example,
be derived from user declarations wltfiln

~ In tineir paper, Jonss and duchrr;c< also
suggest the possibility OP eo,nputi.ng B as
iB(x)]m = ~ bm(xj), rattier than US-

j~succ(m)
ing the join xe proposed Ln Ssction 11.L.
de do not c~ns%der this v+rs%on o? the~r
algorithm; as pointed out in LJ], it can
lead to ~ncorrect determination or types
tixcept under vtiry strict assumptions about
program behavior.

tne program. Also

So our techn~aue LS
as tnat of’ LJ].

‘?enenbaum’s L’?.
safe Solutian Ln

notice that ii’’j)(~.) =

which :s Jones and

at ieast as power?ul

<dea is to compute a
two ~:r.a~-ss ~’ir.~t an

72



transla.$%an 0? y to lower case i? y
is a character string.

e(x,y) returns tne sum 0? x and y ip
DotCl x and y ars numbers, returns
tfie c~flc~teq~t~on o? x and y ~~ both

x and y a?e charact~r str~ngs, and
is oto?rwise unde?:ned.

TO ‘orm our latt,:.ce o~ types, we
[>QoQ.3~ tQe bas~c types:

yc?al = tae sst of’ reai nunb$rs
i.g; = trl+ set 0? integers
Cgal = the set o? all character

str!.ngs
and extend to a lattice, T, which 5s shown
di.agramat~cail.y hy:

TRe typs ?unctLo5s, {’IJ ] are de+’ined
op.

by:

-1
.- ..—--- .

.r~~ 1. .
EeaL

0-..

T~(rQal,y1,y2)
rgai : n.& Qklac o
-.....— ----- —__________. .
Psal real. (1 o.
~gal real Q o.-
int 0:nt. .. c!
g Q o c1
!2 ._o 0 Q

~~(~nt1y1,y2)
Yl\Y2 i 1 gtia~ int GQ.3r Q

- - -_, .- ..__ - .- _,_______ . ._ __ . ,. ,.___ _
1 f real resl i.n$ Q o
~~al { rea~ r9a L int. o
int

o
I “t~9.. :rlt :Jlc o g

Qrlar ! !2 o Q o 0
0!

..
Q o 0—. o 0.. -.

Also. ‘?:(0 Y,.Y2) = JJf for .ali y, , Y2

and T$(x,jI ~7y2) ❑ T:(x,Y2,y1), ?or ~~1

x.

1:

2:

3:

pro-

1

Forward infer?nce ‘unctions

Q.1,?2,F3:T 2->T2 ?or statements 1 , 2, and 3

are given by:

[rl(tA,tB)lA ❑ T:n

73



Lf2(~A,tB)]A = ‘&l(tA)

[f3(tA,~B)]A = T:(tA,t3)

L~3%’tBjlB = l’:(MA,tB)

The subscripts A and B reference t.~e com-
2

ponents of a vector ~ T wQlc.Q descriDe
variables A and d, respect~ve~y.

‘Tne matrix 0= c’, the !’orward propaga-
tion ?unct,~on 5s :

Q g?
3

r’=f’
1 ‘< ogf.g

L

Backward Inperence
22

bl’b2’b3:T ‘T are ~~ven ‘J’:

[bl(tA,tB)]A = 1

Lb1(tA,tB)]5 ❑ I

Lb2(tA.tB)lA = T~l(tA, l)
.

Lb2(tA,tB)lB = td

funct~ons

Lb3(tA.tB)]A = ‘~(tA,. LtB)

Lb3(tA,tB)]B = ‘TjtA,l.tti)

?he .natrlx o? t:ne backward propaga-
t~on funct~on ~s:

o
bl ‘-

d= g
b2 b2

b3 Q (o

‘ide can now compute:

tie can also compute tnat:

$(1)=1

($-tl)*(fl) = ff”$”~(l)

So ‘we nave the ‘ollow%ng relatzons:

($”f/)*(l) < @ N(jj < G*(f(j.)) < f(l) =

ff$(~j = ~“B*(Jj

‘TQUS our proposed solut:on %s str:ctly

better than e:t,ner ?enenbaum’s so?Lution or
+

Jones and Muchn5cK’s solution on tfl:s

example.

fi~fer~nc~s

LA] AnO, A. V.. and J. ~. Unman, l!DQ
?Q.ory O: ~ars~ng. ‘Trgn~l,at.iOQ, aQdL“. .
.0DQ2L:M:
. vol. H, .QQrnpiLing,

Prentice-Hall , Englewood Cl;.P+’s, No

J ., 1973

LB] Bauer, A. ?!. and d. J. Saal, {110!ss

APL rsally need run-time checKi.ng? ‘,

SQ~twa.re. - trzict.zc.e a~d. gxper~enGg,

vol. 4, 1974, Pp. 12Y-130

Lo] l)onnellan, T.. Latt4ce :-lgory ,--” ,,. .<+. .< Per-

gamon Press

LGI Graham, S. L. and #l, iiegman, 1A cast
and usually l~near algorithm ‘or

global ?1OW analys~s’ JACM, vol.

23, NO. 1, January 1~’?b. pp. 1?2-202

Li{a] Kam, J. B. and J. 1) Unman , ‘Mono-
tone Data F~o-w Analys%s Frameworks’!,

Qta Inf~grn~t:ca, vol. ?, January

197’7. pp. 305-31’7

LKi] iildall, G. A., ‘A unif-ied aPProach
to global program opti.mt.zat2.on” ,
PcQcg.gd_irlgs _...of’ AM! 5Y.mPQ?.2u3 Qn

?c2nQ:.IzLQs 0: &oglalNrEiQg L..aIW&LEs>.

1973, pp. 194-2(JO

+ Muchnick LPI] points out tnat for ‘!’UAP(J,
the language ?or which tne LJ] algorithm
was developed, constraints on tne semant-

ics 0? operators guarantee that ($’F)*(lI

is tne same as fd*(.1).

74



[S] Scott, l)., QatQ XJQ$?S ?+s, LatL;c.gs,
unpublished lectur’e nat~s, Matnemat-

ica~ Centre, Amsterdam, Juns 1972,

see also a paper 0? toe same Qame in

SIAI JQMrnaL or Computing,, vol. 5,

I!o. 3. September 197b, pp. 522-567

[’~j ‘Tenenbaun, A. , TyJ.XJ Qetc.paQIZU&oQ :Qc
Ugry tiig~ LevQQ. ~ag&u3.ge9. HePort
liso-3, Courant Institute of

Mathematical Sc5ences, New York
University. 1974

75


