
Guardians and Actions:
Linguistic Support for Robust, Distributed Programs

Barbara Liskov

Robert Scheifler

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

This paper presents an overview of an integrated programming
language and ~lstem designed to support the construction and
maintenance of distributed programs: programs in which modules
reside and execute at communicating, but geographically distinct,

nodes. The language is intended to support a class of
applications in which the manipulation and preservation of
Iong.lived, on-line, distributed data is important. The language

addresses the writing of robust programs that survive hardware

failures without loss of distributed information and that provide
highly concurrent access to that information while preserving its

consistency. Several new linguistic constructs are provided;
among them are atomic actions, and modules called guardians

that survive node failures.

:. Introduction

Technological advances have r,lade it cost-effective to

construct large systems from collections of computers connected
via networks. To support such systems, there is a growing need

for effective ways t? organize and maintain distributed programs:

programs in which modules reside and execute at communicating,

but geographically distinct, locations. In this paper we present an

overview of an integrated programming language and system

designed for this purpose.

Distributed programs run on nodes connected (only) via a
cjommunicafions network. A node consists of one or more

processors, one or more levels of memory, and any number of

This research was supported in part by the Advanced Research

Projects Agency of the Department of Defense, monitored by the

Office of Naval Research under contl-act NOOO14.75,C.0661, and
ill part by the National Science Foundation under 9rant

NKX79-23769.

Permission to copy whhout fee all or part of this material k granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice k given that copying k by
permission of the Association for Computing Machinery. To copY

otherwise, or to republish, requires a fee and/or sPecific Permission.

@ 1982 ACM 0-89791-065-6/82/001/0007 $00.75

external devices. Different nodes may contain different kinds of
processors and devices. The network may be Ionghaul or

shorthaul, or any combination connected by gateways. Neither
the network nor any nodes need be reliable. However, we do

assume that all failures can be detected as explained in [14]. We

also assume that message delay is long relative to the time needed

to access local memory, and therefore access to nonlocal data is
significantly more expensive than access to local data.

The applications that can make effective use of a distributed

organization differ in their requirements. We have concentrated
on a class of applications in which the manipulation and

preservation of long-lived, on-line data is important. Examples of

such applications are banwng Systems, airline reservation
systems, office automation systems, data base systems, and

various components of operating systems. In these systems,

realtime constraints are not severe, but reliable, available,
distributed data is of primary importance. The systems may serve

a geographically distributed organization. Our language is

intended to support the implementation and execution of such
systems.

The application domain, together with our hardware

assumptions, imposes a number of requirements

Service, A major concern is to provide continuous service

of the system as a whole in the face of node and network
failures, One principle that applies here is that local

problems should be localized. For example, a program

should be able to perfornl its task as 10n9 as the Particular
nodes it needs to communicate with are functioning and

reachable. In addition, it should be possible for an

application program to use replication of both data and

processing as a means for increasing the availability of a

service and for providing graceful degradation.

Extensibility. An important reason for wantin9 a

distributed implementation is to make it easy to add and

reconfigure hardware in order to increase processing

power, decrease response time, or increase the availability

of data. Similarly, it should be easy to remove hardware. In
the same way that the physical system can be extended or

reconfigured, it must be possible to implement logical
systems that can be expanded and reconfigured. For
example, a banking system might need to grow or shrink to

accommodate changing numbers of tellers. TO maintain
continuity of service, it must be possible to make both
logical and physical changes dyrwnica//y, while the system
continues to operate.

7

Autonomy. We assume that nodes are owned by

individuals or organizations, and that with ownership comes

the desire to control how the node is used. For example,
the owner may want control over what runs at the node, or,

if the node provides a service to programs running at other

nodes, the owner may want control over when that service

is available. Further, the node might contain data that must

remain resident at that node; for example, a multinational

organization must abide by laws governing information flow

among countries. The important point here is that the need

for distribution arises . not only from efficiency

considerations, but from political and sociological
considerations as well.

Distribution. The distribution of data and processing can

have a major impact on overall efficiency, both in terms of
responsiveness, and cost. effective use of hardware.
Distribution also affects availability, To create efficient,

available systems while retaining autonomy, the
programmer needs explicit control over the placement of

modules in the system. However, to support a reasonable

degree of modularity, changes in location of modules

should have limited, localized effects on the actual code.

Concurrency. Another major reason for choosing a

distributed implementation is to take advantage of the
potential concurrency in an application, thereby increasing

efficiency and decreasing response time. For example, the

clerks in an airline reservation system should be able to
process requests concurrently.

Consistency. In almost any system where on-line data is

being read and modified by oll.going activities, there are
important consistency constraints that must be maintained.

For example, in an airline reservation system a flight must

not be overbooked by more than a certain number of seats.

Such constraints apply not only to individual pieces of data,

but to distributed sets of data as well. For example, when

funds are transferred from one account to another in a

banking system, the net gain over the two accounts must be
zero. Also, data that is replicated to increase availability

mu$t be kept consistent,

In the remainder of this paper we discuss a programming

language and system, called Argus, that satisfies these
requirements, To avoid rethinking issues that arise in sequential

languages, we have chosen to base Argus on an existing

sequential language. CLU [16, 19] was chosen because it
supports the construction of well. structured programs through
abstraction mechanisms, and because it is an object. oriented
language, in which programs are naturally thought of as operating

on (potentially) Iong.lived objects.

Of the above requirements, we found consistency the most

difficult to meet. The main issues here are the coordination of

concurrent activities (permitting concurrency but avoiding
interference), and the masking of hardware failures. Thus, to
support consistency we had to devise methods for building a
reliable system on unreliable hardware. Reliability is an area that
has been almost completely ignored in programming languages
(with the exception of [21]). Yet our study of applications
convinced us that consistency is a crucial requirement: an
adequate language must provide a modular, reasonably automatic
method for achieving consistency.

Our approach is to- provide atornicify as fundamental
concepts in the language, The concept of atomicity is not original

with our work, having been used extensively in data base

applications [3, 4]. However, we believe the integration into a
programming language of a general mechanism for achieving

atomicity is quite novel. Atomicity is discussed in the next section.

Section 3 presents an overview of Argus The main features

are guardfarm, the logical unit of distribution in our system, and
atomic actions. Section 4 illustrates most of the important

features of the language with a simple mail system. The final

section concludes with a discussion of what has been

accomplished.

2. Atomicity

Our solution to the problem of maintaining a consistent

distributed state in the face of concurrent, potentially interfering
activities, and in the face of system failures such as node crashes

and network disruptions, is to make activities atomic. The
distributed state is a collection of data objects that reside at

various locations in the network. Some of these objects are

stable: they are stored on Nabk storage cfevfces, for which the

probability of loss of information due to hardware failures is

extremely small (see [14]).’ Other objects are stored in volatile

r7emory. Since the probability of Io;s of volatile objects is

relatively high, these objects must contain only redundant

information if the system as a whole is to avoid loss of information.

Such redundant information is useful for improving efficiency,

e.g., an index for fast access into a data base.
An activity can be thought of as a process that attempts to

examine and transform some objects in the distributed state from
their current (initial) state to some new (final) state, with any

number of intermediate state changes. Two properties distinguish

an activity as being atomic: indivisibility and recoverability. By

indivisibility, we mean that the execution of one activity never

appears to overlap (or contain) the execution of any other activity,
[f the objects being modified by one activity are observed over

time by another activity, the latter activity will either always

observe the initial states or always observe the final states, but it
will never observe intermediate states. By recoverability, we mean

that the overall effect of the activity is all.or. nothing: either all of

the objects remain in their initial state, or all change to their final

state. If a failure occurs while an activity is running, either it must
be possible to complete the activity, or to restore all objects to
their initial states.

Supporting these requirements as part of the semantics of a
programming language imposes substantial implementation

difficulties. However, we believe atomic activities are necessary
and are a fairly natural model for a large class of applications. If
the language/system does not provide actions, the user will be

compelled to implement them, perhaps unwittingly reimplementing
them with each new application, and may implement them
incorrectly. Therefore, atomicity must be an integral concept of

the language.

1, We need merely assume that stable storage is accessible to

every node in the system; it is not necessary that every node have

its own local stable storage devices,

8

2.1 Actions

We call an atomic activity an action. An action may complete

either by cornrrriffing or aborting. When an action aborts, the

effect is as if the action had never begun: all modified objects are
restored to their previous state. When an action commits, all

modified objects take on their new states; only at this point do

changes to stable objects become permanent.

One simple way to implement the indivisibility property is to

force actions to run sequentially. However, one of our goals is to

provide a system that supports a high degree of concurrency. The

usual method of providing indivisibility in the presence of

concurrency, and the one we have adopted, is to guarantee

serializability [5], namely, actions are scheduled in such a way that

their overall effect is as if they had been run sequentially in some

order. To prevent one action from observing or interfering with

the intermediate states of another action, we need to synchronize

access to shared objects. In addition, to implement the

recoverability property, we need to be able to undo the changes

made to objects by aborted actions.

Since synchronization and recovery are likely to be

somewhat expensive to implement, we do not provide these

properties for all objects For example, objects that are purely

local to a single action do not require these properties. The

objects that do provide these properties are called atomic objects,

and we restrict our notion of atomicity to cover only access to

atomic objects. That is, atomicity is guaranteed only when the

objects shared by actions are atomic objects.
Atomic objects are encapsulated within atomic abstract data

types. An abstract data type consists of a set of objects and a set

of primitive operations; the primitive operations are the only
means of accessing and manipulating the objects [15]. Atomic

types have operations just like normal data types, except that

operation calls provide indivisibility and recoverability for the

calling actions. Some atomic types are built. in while others are
user-defined. Argus provides, as built-in types, atomic arrays,
records, and variants, with operations nearly identical to the

normal arrays, records, and variants provided in CLU. In addition,

objects of built-in scalar types, such as characters and integers,
are atomic, as are structured objects of built. in immutable types,

such as strings, whose components cannot change overtime.
Our implementation of built-in atomic objects is based on a

fairly simple locking model. There are two kinds of locks: read

locks and write locks. Before an action uses an object, it must
acquire a lock in the appropriate mode. The usual locking rules

apply: multiple readers are allowed, but readers exclude writers
and a writer excludes readers and all other writers. When a write
lock is obtained, a version of the object is made, and the action
operates on this version, If, ultimately, the action commits, this

version will be retained, and the old version discarded. If the

action aborts, this version will be discarded, and the old version

retained. For example, atomic records have the usual component

selection and update operations, but the selection operations
obtain a read lock on the record (not the component), and the

update operations obtain a write lock and create a version of the
record the first time the action modifies the record. .%rce

changes become permanent only at the granularity of entire

aciions, acquired locks and versions can be kept in volatile
storage while an action executes,

All locks acquired by an action are held until the completion
of that action, a simplification of standard two-phase locking [7].

This rule avoids the problem of cascading aborts: if a lock on an

object could be released early, and the action later aborted, any

action that had observed the new state of that object would also

have to be aborted.

Within the framework of actions, there is a straightforward

way to deal with hardware failures at a node: they simply force the

node to crash, which in turn forces actions to abort. The volatile

information (e.g., versions) kept for an action that has not yet

finished will be lost if the node crashes. If this happens the action
must be forced to abort. To ensure that the action will abort, a
two. phase commit protocol [8] is used, In the first phase, an

attempt is made to verify that all locks are still held, and to record

the new state of each modified stable object on stable storage. If

the first phase is successful, then in the second phase the locks
are released, the recorded states become the current states, and

the previous states are forgotten. If the first phase fails, the
recorded states are forgotten and the action is forced to abort,

restoring the objects to their previous states.
Turning hardware failures into aborts has the merit of freeing

the programmer from low-level hardware considerations. On the

surface it also appears to reduce the probability that actions will
commit. However, this is a problem only when the time to

complete an action approaches the mean time between failures of
the nodes. We believe that most actions are quite short compared
to realistic MTBF for hardware available today.

It has been argued that indivisibility is too strong a property

for certain applications, because it limits the amount of potential

concurrency [13]. We believe that indivisibility is the desired

property for most applications, if it is required only at the

appropriate levels of abstraction. In particular, we intend to
provide a mechanism for user-defined atomic data types. The

important property of these types is that they are free to violate

ii~divisibility internally, but they present an external interface that

does not violate indivisibility. We will not present such a

mechanism here; the exact linguistic constructs are still a subject

of current research.

2.2 Nested Actions

Thus far, we have presented actions as monolithic entities,

In fact, it is useful to break down such entities into pieces; to this

end we provide hierarchically structured, nesfed actions. Nested

actions, or subactions, are a mechanism for coping with failures,
as well as for introducing concurrency within an activity. An

action may contain any number ot subactions, some of which may
tJc performed sequentially, some concurrently. This structure

cannot be observed from outside; i.t,, the overall action still
satisfies the atomicity properties. Subactions appear as atomic

activities with respect to other subactions of the same parent.

Subactions can commit and abort independently, and a subaction

can abort without forcing its parent action to abort. However, the

commit of a subaction is conditional: even if all subactions

commit, aborting the parent action will abort all of the subactions.

Further, changes to stable objects become permanent only when

top-level actions commit.
Nested actions aid in composing (and decomposing)

activities in a modular fashion. For example, a collection of
existing actions can easily be combined into a single, higher-level
action, and can be run concurrently within that action with no
need for additional synchronization. To extend this exampfe, the

concurrent actions might be reads or writes to the sites of a
replicated data base. If only a majority of the reads or writes must
be successful for the overall action to succeed, this is easily
accomplished by committing the overall action once a majority of

the subactions commit, even though some of the other subactions
aborted.

9

Nested actions have been proposed by others [4, 22]; our
model is similar to that presented in [20]. To keep the locking

rules simple, we do not allow a parent action to run concurrently

with its children. The rule for read locks is extended so that an

action may obtain a read lock on an object provided every action
holding a write lock on thahobject is an ancestor. An action may

obtain a write lock on an object provided every action holding a

(read or write) lock on that object is an ancestor. When a
subaction commits, its locks are inherited by its parent; when a

subaction aborts, its locks are discarded.
Note that the locking rules permit multiple writers, which

implies that multiple versions of objects are now needed,
However, since writers must form a linear chain when ordered by

ancestry, and actions cannot execute concurrently with their

subactions, only one writer can ever actually be executing at one

time. Hence, it suffices to use a stack of versions (rather than a
tree) for each atomic object. On commit, the top version becomes

the new version for the parent; on abort the top version is simply

discarded. A detailed description of locking and version

management in a system supporting nested actions is presented

in [20],

Since changes become permanent only when top-level

actions commit, the two-phase commit protocol IS used only for

top-level actions. Nested actions do not guarantee any additional
reliability in the face of node crashes, Various checkpoint

mechanisms have been proposed to increase this kind of reliability

[9]. Although we are considering way~ of including similar
mechanisms, it appears they alter’ fundamel)taily the semantic

view presented to the user, and thus cannot be considered merely

as optional features of a system,

2.3 Remote Procedure Call

Perhaps the single most important application of nested

actions is in masking communication failures. Logical nodes

(described in the next section) in our system communicate via

messages, We believe that the most desirable form of
communication is the paired send and reply for every message

sent, a reply message is expected. in fact, we believe the form of
communication that is needed is remote procedure ca//, with

at-most-once semantics, namely, that (effectively) either the

message is delivered and acted on exactly once, with exactly one
reply received, or the message is never delivered and the sender is

so informed.

The rationale for the high-level, at-most-once semantics of
remote procedure call is presented in [18]. Briefly, we believe the

system should mask from the user Iow.level issues, such as

packetization and retransmission, and that the system should
make a reasonable attempt to deliver messages. However, we

believe the possibility of long delays and of ultimate failure in

sending a message cannot and should not be masked. The
sender should be allowed to cope with communication failure
according to the demands of the particular application, and must
be able to terminate communication if the delays become

excessive. If communication is terminated, then the remote
procedure call should have no effect.

The all.or-nothing nature of remote procedure call is similar
to the recoverability property of actions, and the ability to cope

with communication delays and failures is similar to the ability of
an action to cope with the failures of subactions. Therefore, it
seems natural to implement a remote procedure call as a
subaction: communication failures wiil force the subaction to
abort, and the sender has the ability to abort the subaction on

demand, However, as mentioned above, aborting the subaction

does not force the parent action to abort. The sender is free to
find some other means of accomplishing its task, such as

communicating with some other node.

2.4 Remarks

In our model, there are two kinds of actions: nested actions

and top-level actions, We believe these correspond in a natural

way to activities in the application system, Top-level actions

correspond to activities that interact with the external

environment. For example. in an airline reservation system, a
top.level action might correspond to an interaction with a clerk

who is entering a related sequence of reservations, Nested

actions, on the other hand, correspond to internal activities that

are intended to be carried out as part ot an external interaction; a

reservation on a single flight is an example.2

Atomic types provide two services to the user of the

language: they guarantee indivisibility and recoverability for using

actions, The user -of our language does not need to write any

code to undo or compensate for the effects of aborted actions.

On the other handl the commit of a top-level action is irrevocable.
If that action is later found to be in error, actions that compensate

for the effects of the erroneous action, and all later actions that

depended on it (read its results), must be defined and executed by
the user, Note that in general there is no way that such

compensation could be done automatically by the system, since
extra+ystem activity is needed (e.g., canceling already issued

checks).

Given our use of a locking scheme to implement atomic

objects, it is certainly possible for two (or more) actions to
dead/ock, each attempting to acquire a lock held by the other.

Although in many cases deadlock can be avoided with careful
programming, certain deadlock situations are unavoidable. Our

method of breaking deadlocks is to abort actions, rather than

refuse locks Although distributed deadlock detection algorithms

that detect a farge class of deadlocks are possible (see [20]), the
Argus system is not guaranteed to detect deadlocks; in general,

deadiocks must be broken by timing out and aborting actions.

3. Linguistic Constructs

In this section we describe the main features of a new

language designed to support the requirements discussed in

Section 1. The most novel features of this language are the

constructs for implementing guardians, the logical nodes of the
system, and for implementing actions, as described in the
previous section, As stated in the introduction, we have chosen to

use the sequential language CLU as a basis for the design. As in
CLU, all typechecking in Argus is done at compile time.

2. Nested top-level actions are also available, They are useful for

accomplishing benevolent side effects, e.g., updating a cache or

performing garbage collection or collecting stati~tics, that need

ncit De undone if the parent aborts,

10

3.1 Overview

In Argus, a distributed program is composed of a group of

guardians A guardian encapsulates one or more resources, and
provides controlled access to those resources. The external

interface of a guardian consists of a set of operations called

handlers, which may be invoked by other guardians using the

at-most-once, remote procedure call semantics discussed

previously. The guardian executes the calls on these handlers,

synchronizing them as needed. Furthermore, it may refuse to
perform an access desired by a caller if the caller does not have
proper authorization.

Internally, a guardian contains data objects and processes.

Some of the data objects comprise the global state of the

guardian; these objects, such as the actual resources, are shared
by the processes. Other objects are local to the individual

processes.

Guardians exist entirely at a single physical node: all of a

guardian’s processes run at that node, and (the volatile state of)

the guardian’s objects are stored at that node. However, as

explained below, a guardian survives crashes of the node at which

it resides.

A guardian’s global state is a portion of the distributed state

and as such may consist of both stable and volatile objects, After

a crash of the guardian’s node, the language support system

re-cx’eates the guardian with the stable objects as they were when
last written to stable storage, i.e., as of the last commit of a

top-level action that modified some of the guardian’s stable

objects. A process is started in the guardian to re-create the
volatile objects. Once the volatile objects have been restored, the

guardian can resume background tasks, and can respond to new
requests.

Although the processes inside a guardian can share objects

directly, direct sharing of local objects between processes in

different guardians is not permitted. The only method of

inter-guardian communication is by calling handlers, and the

arguments to handlers are Passed by value: it is impossible to
pass a reference to a local object in a message. This rule ensures

that objects local to a guardian remain local, and thus ensures

that a guardian retains control of its own objects. It also provides
the programmer with a concept of what is expensive: local objects

are close by and inexpensive to use, while non-local oblects are

more expensive to use; this is underhned by the different access

methods (procedure call versus handler call). A method for

passing data values between heterogeneous nodes using different

internal representations is presented in [10].

Guardians and handlers are an abstraction of the underlying

hardware of a distributed system. A guardian is a logical node of

the system, and inter-guardian communication via handlers is an

abstraction of the physical network. While the implementation of a

guardian ts guaranteed never to be split across physical nodes, for

convenience several guardians may remie at the same physical
node. Such guardians communicate via handler CalIS, fIOWW?r:

all inter-guardian communication is location-independent. The
most important difference between the logical system and the

physical system is reliability: the stable state of a guardian is

never lost (to a very high probability), and the at-most.once

semantics of handler calls ensures that handlers either succeed

completely or have no effect.

3.2 Guardian Structure

The syntax of a guardian definition is shown in Figure 1.3A

guardian definition implements a special kind of abstract data type
whose operations are handlers. The name of this type, and the

names of the handlers, are listed in the guardian header. ” In

addition, the type provides one or more creation operations, called

creators, that can be invoked to create new guardians of the tYPe;

the names of the creators are also listed in the header. Guardians
may be pararneterized, providing the ability to define a class of

related abstractions by means of a single module. Parameterized

types are discussed in[16. 19].

Fig, 1 Guardian structure.

rrarne = guardian [[pararneter-dec,.s]]

is creator-names handles harrd/er-narnes

{ [stable] variab/e-dec/.s-arrd-inifs }

[recover body end 1
[background body end]

{ creator-and-handler-definitions
}

% /oca/ procedures and iterators may a/so be defined

end name

The first internal part of a guardidr, is a list of variable

declarations, with optional initializations c’dining the guardian

state, Some of these variables can be declared as stable
variables; the others are volatile variables.

The stable state of a guardian consists of all objects

reachab/e from the stable variables; these objects, called stable

objects, have their new versions written to stable storage by the

system when top-level actions commit. Argus, like CLU, has an

object oriented semantics. Variables name (or refer to) objects
residing in a free storage area. Objects themselves may refer to

other objects, permitting recursive and cyclic data structures

without the use of explicit pointers. Thesetof objects reachable

from a variable consists of the object that variable refers to, any

objects referred to bythatobject, and soon. (Ina language with

explicit pointers, the concept of reachability would still be needed
to accommodate the use of pointers in stable objects.)

We require that all stable objects also be atomic objects, as

discussed in Section 2. This requirement is enforced by

compile.time type-checking: the type of each stable variable must

be atomic. One reason for this requirement is that the system
knows how to syncfwonize with activity in the guardian to ensure
that atomic objects are written to stable storage in internally
consistent states. In addition, the system knows how to write

atomic objects in an incremental manner and still preserve the

sharing among these objects. These same properties d.o not hold

3. In the syntax, optional clauses are enclosed with [], zero or

more repetitions are indicated with { }, and alternatives are

separated by 1. The ‘A sign starts a comment.

11

for non-atomic objects. As mentioned in Section 2, the language

provides a number of built-in atomic types, arid users may define

new abstract atomic types. in fact, guardians are themselves one

class of user. definable atomic types.
Guardian instances are created dynamically by invoking

creator operations of the guardian type. For example, suppose we
have a guardian definition with header:

g = guardian is create handles hl, h2, h3

and the create operation has header:

create = creator (n: int) returns (g)

When a process executes

x: g : = g$create(3)

the guardian object x is created at the same physical node where

the process is executing. The handlers provided by the guardian

are referred to as X,IJ 7, x. /?2and x.f13.
When a creator is invoked. a new guardian instance is

created, and any inttializ.ohons attached to the variable

declarations of the guardian state are executed The body of the

creator is then executed; typically, tl!is code will finish initializing
the guardian state and then return the guardian object. (Within

the guardian, the expt-ession self refers to the guardian object.)

All three of these steps are performed within a single subaction of

the catler: the guardian will be destroyed if the body of the creator

aborts this subaction. Aside from creating new guardian

instances and executing state variable initializations, creators

have essentially the same semantics as handlers, as described

further below,

The recover section runs after a crash. Before creating a
process to run the recover section, the system restores the

guardian’s stable objects from stable storage and executes any
initializations attached to declarations of volatile variables of the

guardian state. Since updates to stable storage are made only

when toplevel actions commit, the stable state has the value it

had at the latest commit of a top-level action before the guardian

crashed The effects of actions that had executed at the guardian
prior to the crash, but had not yet committed to the top level, are

lost and the actions are aborted.

The job of the recover section is to re-create a volatile state

that is consistent with the stable state. This may be trivial, e.g.,
creating an empty cache, or it might be a lengthy process, e.g.,

creating a data base index. The recover section is not run as an

action, although it may create top-level actions, as explained in

Section 3.4.4

After the successful completion of a creator (when the

guardian is first created) or of the recover section (after a crash),
two things happen inside the guardian: a process is created to

run the background section, and handler invocations may be
executed, The background section provides a means of

performing periodic (or continuous) tasks within the guardian; an

SXatMDle lS Presented ifi Section4. Like the recover secticm, the
background section is not run as an action.

4. Aprocess that isnotrunning asanaction is severely restricted
inwhatitcando, Forexample, itcannot call operations on atomic

objects without first creating a to~>-level action.

3.3 Handlers

Handlers (and creators), Iike proceduresin CLU, are based

on the termination model of exception handling [17]. A handler

can terminate in one of a number of conditions: one of these is

considered to be the “normal” condition, while others are

“exceptional,” and are given user-defined names. Results can be

returned both in the normal and exceptional cases; the. number
and types of results candiffer among conditions. Theheader ofa

handler definition lists the names of all exceptional conditions and

defines thenurnber andtypes ofresults in all cases. Forexample,

file_date= handler (fn:file_name) returns (date)

signals (not-.possible(string))

is the header of ahandler whose calls either terminate normally,
returning a result of type date, or exceptionally in condition

not_possib/e with a string result. In addition to the named

conditions, any handler can terminate in the fai/ure condition,
returning a string result; failure termination may be caused

explicitly by the user code, or implicitly by the system when

something unusual happens, as explained further below.

Handler calls differ from ordinary procedure calls in several

important ways:

1. Procedures always runinside theguardian in which they

are called. Handlers usually belong tosome other guardian

(although a call to a handler of your own guardian is

permitted), and that guardian is likely to reside on some

other node. Thus, the system will construct a message
containing the arguments and send it to the appropriate
node. When the handler call terminates, the system

constructs another message containing the termination
condition and results, and sends it back to the calling

guardian.5

2. Procedure arguments and results arepassed by sharing

(see [19]); i.e., the argument and result objects are shared
between the calling and called pt-ocedure. As mentioned

above, handler arguments and results are always passed by

value.

3. To achieve the at. most-once semantics discussed

previously, handlers are executed as subacfions of the

calling action. Procedures simply execute within the calling

action.

Since ahandler executes as an action, it must, in addition to
returning or signaling, either commit or abort. We expect

committmg to bethemost comrnoncase, and therefore execution
of a return or signaf statement indicates commitment. To cause
an abort, the return or signal is prefixed with abort.

Let us examine a step-bystep description of what the system

does when a handler is invoked:

5. If the calling and called guardians reside on the same node,

the system may be able to avcid this message passing.

12

1. Anewsubaction iscreated.

2. A message containing the arguments is constructed.

Since part of building this message involves executing

user-defined code (see [10]), message construction may
fail, Ifso, thesubaction aborts andthecall terminates with

a faihre exception.

3. Thesystem suspends thecalling process and sends the

message to the target guardian. If the handler’s guardian

no longer exists, the subaction aborts and the call

,termi nates with a failure exception.

4, The system makes a reasonable attempt to deliver the

message, butsuccess is not guaranteed. Thereason isthat

it may not be sensible to guarantee success under certain

conditions, such as a crash of the target node. In such

cases, the subaction aborts and the call terminates with a
fai/ure exception. The meaning of such a failure is that

there is very low probability of the call succeeding if it is

repeated immediately.

5. Thesystem creates aprocess atthe receiving guardian

toexecute the handler. Note that multiple instances of the

same handler may execute simultaneously. The system
takes care of locks and versions of atomic objects used by

the handler in the proper manner, according to whether the

handler commits or aborts. When the handler terminates,
the system destroys the process.

6. Thesystem creates theresponse message and sendsit
tothe calling guardian. lfthisis impossible (as in(2) or(4)

above), the subaction aborts and the call terminates witha

fai/ure exception.

7. Thecalling process continues execution. Itscontrol flow

is affected by the termination condition as explained in [17],

For example, for a call of file_date above we might have

d:date:= file_date(frl) YOnormal return

except when not_possible, failure (why string):
‘Exceptional return

end

As was mentioned above (in step 4), the system does not

guarantee to deliver messages; it merely guarantees that if
message delivery fails there is a very low probability of the call

succeeding if it is repeated immediately. Hence, there is no

reason for user code to repeatedly retry handler calls. Rather,

user programs should guarantee progress by retrying top-level

actions, which may fail because of node crashes even if all

handier calls succeed.

3.4 lnline Actions

The preceding section explained handler calls only in terms

of subactions. Top-level actions are created by means of the
action statement:

enter topaction body end

Thiscauses the bodytoexecute asanewtop-level action. When

the bodycompletes, itdoesso either bycommitiing oraborting. It

is also possible to have an in line subaction:

enter action body end

This causes the body to run as a subaction of the action that

executes the enter.

When an inline action terminates, it must indicate whether it
is committing or aborting. Since committing is assumed to be

most common, it isthedefault; the qualifier abort can be prefixed

toanytermination statement tooverride this default. Forexample,

an inline action can execute

leave

to commit and cause execution to continue with the statement
following the enter statement; to abort and have the same effect

on control, it executes

abort leave

Falling off the end of the &rdy causes the action to commit.

Examples of inline actions are given in Section 4.

3.5 Concurrency

The language as defined so far allows concurrency between

actions, but not within a single action. Toallow subactionsto run

concurrently, we provide the following statement form:

Coenter { Co”’m } ‘nd

where

coarm ::= arm(ag
[

foreach dec/-/ist

in ifer-irwocaliorr 1
body

armtag ::= action I topaction

The process executing the coenter, and the action (if any) on

whose behalf it is executing, are suspended; they resume
eXeCUtiOTI after the coenter is finished.

A foreach clause indicates that multiple instances ot tne

coarm will be activated, one for each item (a collection of objects)

yielded by the given iterator invocation,6 Each such coarm will

k,ave local instances of the variables declared in the dec/-/ist, and

the objects constituting the yielded item will be assigned to them.

Execution of the coenter star!s by running each of the iterators to

completion, sequentially, in textual order. Then all coarms are

started simultaneously as concurrent siblings. Each coarm
instance runs in a separate process, and each process executes

within a new top-level action or subaction, as specified.

A simple example making use of foreach is

coenter action foreach i: int in int$from_to (1, 5)

p(i)

end

which creates five processes, each with a local variable i, having

the value 1 in the first process, 2 in the second process, and so on.
Each process runs in a newly created subaction.

A coarm may terminate without terminating the entire
coenter either by falling off the end of its body, or by executing a
leave statement, As before, leave may be prefixed by abort to

cause the completing action to abort; otherwise the action
commits.

A coarm also may terminate by transferring control outside

the coenter statement. Before such a transfer can occur, all

6. An iterator is a limited kind of coroutine that provides results to

its caller one at a time [16, 19].

13

other active coarms of the coenter must be terminated. To
accomplish this, the system forces all coarms that are not yet

completed to abort, To abort a coarm, the system waits for its
process to leave any critical regions (see next section); it then

destroys the process and aborts the action.
A simple example where such early termination is useful is in

timing out a handler call:

coenter

action x.h(...); exit done

action slee~(units); exit timed_out

end

Whichever of these two actions completes first, itcommits” itself

and aborts the other. In either case; the abort takes place

immediately (since there are no critical regions). In particular, it is

not necessary for the handler call, x.h(,,,), to finish before the

calling action can be aborted. This last fact isirnportant,sinc ethe
reason for timing out a call may be to avoid waiting a long time due

to crashes, loops, or deadlocks elsewhere in the system, (Such

timeouts can result in orphan processes tha(continue to run at the

called guardian and elsewhere. Wehavedeveioped algorithrnsfor

dealing with orphans, but they are beyond the scope of this

paper.)

There is another form of coente r for use outside of actions,

as in the recover and background sections of a guardian. In

this form the armfag is process. The semantics is as above,

except that no actions are created.

3.6 Synchronization

By now we have lots of potential concurrency. The

background code of a guardian may have many concurrent tasks

in progress. Multiple handler calls may be active inside the

guardian, and some of these may have created concurrent

subactions. Howisall this concurrent activity synchronized?
We expect that most concurrent activity within the action

system will be synchronized automatically through the use of
atomic objects For example, consider a guardian that guardsa

single atomic array and provides a number of handlers, some of
which read thearray while others modify it, These handlers will be

synchronized by their use of the atomic array. There might be

several handler calls concurrently reading the array, while handler
calls wanting to modify the array will wait for the system to release
the locks held by the actions on whose behalf reading is taking

place.
However, not all execution takes place within the action

system. The background and recover sections are not actions,

and may use the coenter statement to perform tasks with
concurrent processes, Some mechanism is need to synchronize

such processes. In addition, a Process synchronization
me~hanism is needed when implementing highly concurrent

user. defined atomic types, and also occasionally to schedule
handler calis. Tosupport both needs, weprovide aformofcrifica/
region by means of abuilt-in type called mutex, No two processes

may execute simultaneously in critical regions controlled by the

same mutex object, Each mutex object has a data object
associated with it, Weguarantee that, while aprocess executesin
a critical region controlled by the’rnutex object, the system is
prevented from writing the associated daia object to stable
storage, This latter guarantee can be used to ensure that only

consistent states of the associated data object are written to
stable storage.

The main interaction of critical regions with the material

presented in previous sections is that when a coarm transfers

control outside its coenter statement, the other processes inside

the coenter must be terminated and their associated actions, if

any, aborted. This termination happens immediately unless a

process isina critical region; inthlscase, thesystem allows the

process to continue until it exits all critical regions. The

assumption is that processes communicate only via atomic data,

or via data protected by critical regions. The above rule ensures

that a process will be terminated as quickly as possible, but not

while the data it shares with other processes is in an inconsistent

state.

3.7 Remarks

The language sketched above has two main concepts:

guardians and actions. Guardians maintain complete local control
over their Iocal data. Thedata inside a guardian is truly local; no

other guardian has the ability to access or manipulate the data

directly. The guardian provides access to the data via handler
calls, but the actual access is performed inside the guardian. It is

the guardian’s job to guard its data in three ways: by

synchronizing concurrent access to the data, by requiring that the

caller of a handler have the authorization needed to do the

access, and by making enough of the data stable so that the

guardian as a whole can survive crashes without loss of
information.

While guardians are the unit of modularity, actions are the

means by which distributed computation takes place, Atop-level
action will start at some guardian. This action can perform a

distributed computation by making handler calls to other

guardians; those handler calls can make calls to still more

guardians, and soon. Since the entire computation is an atomic
action, it is guaranteed that the computation is based on a

consistent distributed state, and that when the computation
finishes, thestate is still consistent, assuming in both cases that

user programs are correct.

To provide this guarantee, the system must do a lot of work.
It keeps track of the history of actions: which guardians are

visited, which objects are read, and which are modified. As

subactions commit and abort, this history is modified
appropriately. Finally, when a top.level action commits, this

history is used to ensure that none of the guardians involved7

have crashed since they were used. If this condition ismet, the

system updates stable storage appropriately, releases locks, and
discards old versions If the condition is not met, the system

forces the action to abort, releases all locks, and restores old
versions.

4, ASimple Mail System

In this section we present a very simple mail system. We

have designed the system somewhat along the lines of Grapevine

[1]. Although we have chosen inefficient implementations for
some features. and have omitted many necessary and desirable
features of a real mail system, we hope to give some idea of how a
real system could be implemented in Argus.

“fhe interface to the mail system is quite simple. Every user

has a unique name (user_id) and a mailbox. However, mailbox

7, The guardians involved are those visited by handler calls

performed as subactions of the top4evel action, wf~ere the

subaction and all of its ancestors have committed.

14

locations are completely hidden from the user. Mail can be sent to

a user by presenting the mail system with the user’s user_id and a

message; the message will be appended to the user’s mailbox,

Mail can be read by presenting the mail system with a user’s

user_id; all messages are removed from the user’s mailbox and
are returned to the caller. For simplicity, there is no protection on

this operation: any user may read another user’s mail. Finally,
there is an operation for adding new users to the system, and

some operations for dynamically extending the mail system.
All operations are performed within the action system. For

example, a message is not really added to a mailbox unless the

sending action commits, messages are not really deleted unless-
the reading action commits, and a user is not really added unless

the requesting action commits.
The mail system is implemented out of three kinds of

guardians: mailers, maildrops and registries. Mailers act es the
front end of the mail system: all use of the system occurs through

calls of mailer handlers. To achieve high availability, many mailers
will ,exist, e.g., one at each physical node. A maildrop contains the

mailboxes for some subset of users. Individual mailboxes are not

replicated, but multiple, distributed maildrops are used to reduce

contention and to increase availability, in that the crash of one
physical node will not make all mailboxes unavailable. The

mapping from user_id to maildrop is provided by the registries.

Replicated registries are used to increase availability, in that at

most one registry need be accessible to send or read mail. Each

registry contains the complete mapping for all users. In addition

registries keep track of all other registries.

Figure 2 defines a number of abbreviations for atomic types

used in implementing the mail system, For simplicity, we use only
types obtained from the built. in atomic type generators sfrucf and

afomic_array, together with the abstract types user_id and

message, whose implementations we omit, Structs are immutab/e

records: new components cannot be stored in e stl-uct object

once it is built. Since structs are immutable, they are atomic.
Atomic arrays are one.dimensional, and can grow and shrink

dynamically. Of the array operations used in the ln:~il system, new

creates an empty array, addh adds an element to the high end,
frim removes elemen!s, e/cmer7ts iterates over the elements from
low to high, and copy copies an array, Read locks on the entire

iirray are obtained by new, e/ements, ttnd copy, and write locks

are obtained by addh and trim.

The mailer guardian definition is presented in Figure 3. A

mailer must be given a registry when created; this registry is the

mailer’s stable “handle” on the entire mail system. The mailer

also keeps a volatil~ handle: the registry representing the “best”

access path into the system. The background code is used to

periodically choose a new registry to play this role; the closest
responding registry would be an appropriate choice.

A mailer performs a request to send or read mail by first

using the best registry to determine the maildrop of the specified

Fig. 2. Abbreviations

mailbox = struct[mail: messagelist, % messages for
usec user-id] “h this user

messagelist = atomic-arrsy[messsge]
mailboxlist = atomic_array[mailbox]
registry list = atomic-array [registry]
steeringlist = atOmic_array[steering]

steering = struct[users: userlist, % users with mailboxes
drop maildrop] “h at this maildrop

userlist = atomic-array[user-id]

Fig. 3. Mailer Guardian

rnsiler = gusrdian is create
handles send_msil, read_mail,

add_user,add_maildrop, add_registry

stable some: registry % stable handle

best: registry 04volatile handle

recover
best: = some % reassign after crash

end

background
while true do

enter topsction
best: = ...% choose closest responding registry

end
sleep(...)
end

end

create = creator (reg: registry) returns (mailer)
some:= reg
best: = rag
return(self)
end create

send-mail = handler (usec user-id, msg: meseage)
signals (no-such-user)

best.lookup(user).send-mail(user, msg)
res ignal no-such-user

end send-mail

read_mail = handler (user user_id) returna (messsgelist)
sign als (no_such-user)

retu rn(best.lookup(user).read_mail(user))
resignal no_auch_user

end read_msil

add_user = handler (user: user_id) signals (user-exists)
drop: maildrop: = best.chooseo
all: registvlist: = best.all_registrieso
coenter

action
drop.edd-user(user)

action foreach reg: registry in registrylist$elements(all)
reg.add-user(user, drop)

abort resignal user-exists
end

end add-user

a&Lmaildrop = handler ()
all: registrylist: = best.all_registrieso
drop: maildrop: = maildrop$createo
coenter action foreach reg: registry in registrylist$elements(all)

reg.add-maildrop(drop)
end

end add-msildrop.

add-registry = handler ()
all: regiatrylist : = best.all-registrieso
new registry: = registry$create(all, best.all_steeringso)
coenter action foreach reg: registry in registrylist$elements(all)

reg.add-registry(new)
end

end add-registry

end mailer

15

user, and then forwarding the request to that maildrop. A mailer

adds a new user by first using the best registry to choose a
maildrop, and then concurrently asking that maildrop to create a

mailbox and informing all registries of thenewuser/maildrop pair,

Note that if the user is discovered to exist at any registry, the

overall action aborte.
A new registry is added by extracting the entire

user. to-maildrop mapping andthelist of all registries from the best
registry, and using them to create a new registry. The other
registries are then informed of thenewregistry sothey may add it

totheir registry lists. Finally, anew maildrop isadded by creating

one and informing all registries of its existence.

Figure 4 shows an implementation of the registry guardian.
The state of a registry consists of an array of registries, together

with a steering /ist associating an array of users with each
maildrop. When a registry is created, it is given an array of all

other registries, to which it adds itself, and the current steering
list, The add_user handler checks to make sure the user is not

already present, and adds the user to the user array for the given

maildrop. The add_rnai/drop and add_registry handlers perform

no error-checking because correctness is guaranteed by the
mailer guardian,

An implementation of the maildrop guardian is given in

Figure 5. The state of a maildrop consists of an array of

mailboxes; a mailbox is represented by a struct containing a

user_id and an array of messages. A maildrop is created with no
mailboxes. The add_user handler can be invoked to add a
mailbox. Note that this handler does not check to see if the user

already exists; this checking is performed by the registries, The

send_mai/ and read_mai/ handlers use linear search to find the

correct mailbox, When themailbox is found, serrd_rnai/ appendsa
message to the end of the message array; read_mai/ first copies

thearray, then deletes all messages, and finally returns the copy.
Both handlers assume the user exists; this is guaranteed by the

registries,

Finally, in Figure 6, we show a simple use of the mail system,

namely, sending a message to a list of users, with the desire that

the message be delivered only if all of the users exist, and

otherwise to get back a list of all nonexistent users. The message

is sent to all of the users simultaneously, and the non-existent

users are collected in an array. Although a non-atomic array is

used, its addh operation is defined to be indivisible, so no explicit
synchronization is needed here, After all sends are completed, if

the array is non.empty, the overall action is aborted, thus ensuring

that none of the users are sent mail.

4.1 Remarks

Close examination of the mail system will reveal many places
where the particular choice of data representation leads to far less

concurrency than might be expected. For example, in the

maildrop guardian, since both send_mai/ and read_mai/ modify the

message array in a mailbox, either operation will lock out all other

operations on the same mailbox wrtil the executing action
commits to the top level. Even worse, since both send_rnai/ and
read_mai/ read the mailbox array, and add_user modifies that

array, an add_user operation will lock out all operations on all
mailboxes at that maildrop, In the registry guardian, an add_user

operation will lock out lookup operations on all users with
mailboxes at the given maildrop, and an add_mai/drop operation
locks out all lookup operations

In a real system, this lack of concurrency would probably be

unacceptable. What is needed are data types that allow more
concurrency than simple atomic arrays. For example, an

Fig. 4. Registry Guardian

registry = guardian is create
handles lookup, choose, all_registries, all-steerings,

add-user, add-maildrop, add-registry

stable registries: registrylist %all registries
stable steerirrgs:steeringlist %all users and mai/drops

create = creator (rest: registrylist, eteers steeringlist) returns (registry)
registrylist$addh(rest, self)- “Aadd se/f to /ist
registries: = rest
steerings: = eteers
return(self)
end create

lookup = handler (usec user_id) returns (maildrop)
signals (no_such_user)

for steer:steering in ateeringlist$elements(steerings) do
for USEuser_id in usedist$elements(steer.users) do

if usr = user
then return(steer.drop) end

end
end

signal no-such_user
end lookup

choose = handler () returns (maildrop) eignals (none)
if steeringlist$empty(steerings)

then signat none end
drop: maildrop: = % choose, e.g., mai/drop with /east users
return(drop)
end choose

all-registries = handler () returne (regiatryisi)
ret urn(registries)
end all-registries

all_steerings = handler () returns (steeringlist)
return(steerings)
end all-steerings

add_user = handler (user: user_id, drop: maildrop) signals (user-exists)
for steer steering in steeringlist$elements(steeririgs) do

for usc user_id in userlist$elements(steer.users) do
if usr = user

then signal user_exists end
end

if steer.drop = drop
then userlist$addh(steer.users, user) end % append user

end
end add_user

add_maildrop = handler (drop: maildrop)
steeringlist$addh(steeringa, steering${ueere: userlist$newo,

drop: drop})
end add_maildrop

add_registry = handler (reg: regiat~)
regist~list$addh(registries, reg)
end add_registry

and registry

16

Fig. 5. Maildrop Guardian

maildrop = guardian is create handles send_mail, read-mail, add_uaer

stable boxes: mailboxlist: = mailboxlist$newo

create = creator () returna (maildrop)
return(self)
end create

send-mail = handler (user: user-id, msg: message)
for box: mailbox in mailboxlist$elements(boxes) do

if box.user = user

then messagelist$addh(box.mail, mag) % append message

return

end
end

end send-mail

read_mail = handler (user user_id) returns (rrressagelist)
for box: madbox in mailboxlist$elements(boxes) do

if box.user = user
then mail: messagelist: = messageliat$copy(box.mail)

messagelist$trim(box.mail, 1, O) “Adelete mes$ages
return(mail)

end
end

end read_mail

add-user = handler (user user-id)
mailboxlist$addh(boxes, mailbox${mail: messagelist$newo,

user: user})
end add-user

end maildrop

Fig. 6. Distributing Mail

distribute_mail = proc (m: mailer, users: id list, msg: message)

signals (no-such_users(idlist))

idlist = array[user..id]

enter action

bad: idlist: = idlist$newo

coenter action foreach user: user-id in idlist$elements(uaars)

m,send_mail(user, msg)

except when no-such_usec

idlist$addh(bad, user) % indivisible

end
end

if -idlist$empty(bad)
then abort signal no_such_users(bad)end

end
end distribute-mail

associative memory that allowed concurrent insertions and
lookups could replace the mailbox array in maildrops and the

steering list in registries; a queue with a “first-commit first-out”

semantics, rather than a “first-in first.out” semantics, could
replace themessage arrays in maildrops. Such types can be built
as user-defined atomic types, although we will not present

implementations here.
The concurrency that is built in to the mail system leads to a

number of potential deadlock situations. For example, in the
registry guardian, two instances of add_user could simultaneously

read the same user array, and then simultaneously r&mpt to

modify that array, neither succeeding because theotller still holds

a read lock, In the mailer guardian, deadlock is possible if two
different add_user, acfcf_rnai/drop, or add_registry requests modify
registries in opposite orders.

Some of these deadlock situations would go away if data

representations allowing more concurrency were used. For

example, the use of a higflly concurrent associative memory for

the steering list would alfow acfd_mai/drop requests to run

concurrently. In other cases, the algoritflms must be modified,

For example, to avoid a deadlock between two different requests

to add the same user, the mailer add_user operation could pick a

distinguished registry, such as the first one in the list of all
registries, and perform the registry add_user operation there

sequentially before performing alf of the rest concurrently. To

avoid deadlock between concurrent add_mai/drop and

add_registry requests, the mailer add_regis/ry operation could first

get a write lock on the registry list of a distinguished registry, and

add_mai/drop could be forced to obtain its registry list from that

same registry.
It may be argued that the strict serialization of actions

enforced by the particular implementation we have shown is not
important in a real mail sy$tem. This does not mean that actions

are inappropriate in a mail system, just that the particular
granularity of actions we have chosen may not be the best. For

exampfe, if an action discovers that a user does (or does not)
exist, it may not be important that the user continues to exist (or
not exist) for the remainder of the overall action. It is possible to

build such “loopholes” through appropriately defined abstract

types. As another example, it might not be important for alf
registries to have the most up-to-date information, provided they

receive aff updates eventually. fn particular, when adding a new

user, it may suffice to guarantee that all registries eventually will
be informed of that user. This could be accomplished by keeping

appropriate information in the stable state of a mailer guardian,
and having the background process of that mailer be responsible

for eventually informing all registries.

5. Summary and Conclusions

In this paper we have presented a fairly high.level overview

of a new language for writing distributed programs. Although a

great many details have been omitted, we believe enough of the

language has been described to indicate how the requirements

stated in the introduction have been met

Consistency, Actions and atomic objects provide a

powerful, easy to use mechanism for ensuring consistency

of distributed information. GuarrJlans ensure that the

effects of completed activities are not lost in node crashes,

Service. Service is a basic aspect of the fanguage, in that

each activity uses just those guardians of interest. Of
course, the underlying system c~mponents managing those

guardians must be highly available, but these are local to

the physical nodes executing those guardians. Replication

of both data and processing at the application program is

achieved thr&rgh the use of multiple guardians, as seen in

the simple mail system presented above.

Distribution. Guardians give the application program

control of distribution. Tightly coupled processing and data

can be grouped together within a singfe guardian, which

alfows for fast local processing, Furthermore, the
application program specifies where guardians reside.

Concurrency. A great deal of concurrency is possible
between actions, as well as within actions, through the use

of concurrent aubactiorm. However, user-defined atomic
types may be required to achieve acceptable degrees of

concurrency, as illustrated in the mail system.

17

Extensibility. Guardians can be created dynamicall~ they

can also be destroyed, and moved from one physical node
to another, although we have not discussed these latter

capabilities. Thus an application program can be

reconfigured as needed. Reconfiguration has a minimal

impact on guardians that use the application because

communication between guardians is location-independent.
The syntax of haridler calls is Iocation.independent,

ensuring that distinct guardians that are instances of the

same guardian definition can be used interchangeably. In
addition, the names of handlers are Location. independent,

permitting a guardian to be moved from one node to
another without affecting the users of that guardian.
Examples of expanding an existing service dynamically can

be seen in the mail system.

Autonomy. Guardians have complete control of their local

data and resources, and the application program controls

where guardians reside; the system never moves guardians

on its own initiative. Guardians can be freely created at the

same node as the creating guardian, but to create a

guardian at a foreign node (or to move a guardian to a
foreign node) an intermediary guardian must be used; this

guardian can check for proper authorization. However, the

owner of a node may wish to allow a particular guardian to

be created at that node but disallow that guardian from
creating other guardians at the node. ThLIS our protection

model is inadequate, and we are investigating better

models.

Argus is quite different from other languages that address

concurrent or distributed programs (e g., [2, 6, 11, 12]). These
languages tend to provide modules with a superficial resemblance

to guardians, and some form of communication between modules

based on message passing. For the most part, however, the

modules have no internal concurrency and contain no provision

for Iong.term storage that survives crashes. Indeed, many such

languages completely ignore the problem of node crashes. In the

area of communication, either a Iow.level, unreliable mechanism
is provided, or reliability is ignored, implying that the mechanism is

completely reliable, with no way of actually achieving such
reliability.

We have completed a preliminary, centralized, partially

simulated implementation of the language, ignoring hard problems

such as flow control, deadlock detection, and orphan detection.
We expect to begin work on a real, distributed implementation in
1982. At this point it is unclear how efficient such an

implementation can be. As we have argued, actions are

necessary for many applications, so they must be implemented;

we expect the implementation will be more efficient at system level

than at the application level. For other applications, actions may

simply be a convenient tool, not a strictly necessary one. We
conjecture that actions can be implemented efficiently enough
that they will be used in many applications even when they are not

strictly necessary.
using our initial implementation as a test bed, we have

worked out several distributed programs, some abstracted from
the applications of interest, others from within the system itself.
We have been pleased with the language so far, For example,

actions are a useful tool in thinking about the interface to an

application. However, we expect to get a much more realistic idea
of the strengths and weaknesses of the language when the
distributed implementation is complete and we can run real

applications. We expect to go through another language/system
design cycle after we have gained some experience with such

applications.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11,

12.

13.

14,

15.

References

Birrell, A,, Levin, R., and Schroeder, M., “Grapevine”,

Xerox PARC, Palo Alto, CA, April 1981, To appear in

Communications ACM.

Brinch Hansen, P,, “Distributed processes: a concurrent

programming concept”, Communications ACM 27, 11,

November 1978,934-941.

Davies, CT., “Recovery semantics for a DB/DC system”,
Proceedings of th; 1973 ACM Nationa/ Conference, 1973,

136-141.

Davies, CT,, “Data processing spheres of control”, IBM

Syslerns Journal 77,2, 1978, 179-198.

Eswaren, K.P, Gray, J.N, Lorie, R.A,, and Traiger, I.L,,

“The notion of consistency and predicate locks in a

database system”, Communications ACM 19, 11,

November 1976,624-633.

Feldman, J.A., “High Level Programming for Distributed

Computing”, Corn,mu,~icat\orIs ACM 22, 6, June 1979,

353.368.

Gray, J, N,, Lorie, R.A., Putzolu, G.F., and Traiger, i.L,

“Granularity of locks and degrees of consistency in a

shared data base”, Modeling in Data Base Managemerrf

Systems, G.M. Nijssen editor, North Holland, 1976.

Gray, J. N,, “Notes on data base operating systems”,

Lecture Notes in Computer Science 60, Goos and

Hartmanis editors, Springer- Verlag, Berlin, 1978,393-481.

Gray, J.N,, et al. “The recovery manager of a data

management system”, IBM Research Report rW2623,

August 1979.

Herlihy, M, and Liskov, B., “A value transmission method

for abstract data types”, Computation Structures Group

Memo 200-1, MIT Laboratory for Computer Science,

Cambridge, MA, July 1981, submitted to ACM TOPLAS.

Hoare, C.A.R,, “Communicating sequential processes”,

Communications ACM 21, 8, August 1978, 666-677.

Ichbiah, J.D, et al., “Preliminary ADA reference manual”,

S/GPLAN Notices 74, 6, June 1979,

Lamport, L., “Towards a theory of correctness for

multi-user data base systems”, Report CA-7670-0712,

Massachusetts Computer Associates, Wakefield, MA,
October 1976,

Lampson, B. and Sturgis, H. “Crash recovery in a
distributed data storage system”, Xerox PARC, Palo Alto,

CA, April 1979,

Liskov, B. and Zilles, S. N., “Programming with abstract

data types”, Proceedings ACM SIGPLAN Conference on
Very High Level Languages, S/GPLAN Notices 9, 4, April

1974,50-59.

18

16. Liskov, B., Snyder, A,, Atkinson, R.R., and Schaffert, J.C,

“Abstraction mechanisms in CLU”, Communications ACM

20,8, August 1977,564-576.

17. Liskov, B. and Snyder, A., “Exception handling in CLU”,

IEEE Transactions on Software Engineering 5, 6,

November 1979,546-558.

18. I_Lskov, B., “On linguistic support for distributed

programs”, Proceedings, IEEE Symposium on Reliability in

Distributed Software and Database Systems, Pittsburgh,

PA, Juiy 1981,53-60.

19. Liskov, B. et al., “CLU reference manual”, Lecture Notes

in Computer Science 114, Goos and Hartmanis editors,

Springer. Verlag, Berlin, 1981.

20. Moss, J.E.B., “Nested transactions: an approach to

reliable distributed computing”, Ph,D thesis, Technical

Report MIT/LCS/Tf?-26r3, MIT Laboratory for Compute’r

Science, Cambridge, MA, 1981.

21. Randell, B. “System structure for software fault

tolerance”, IEEE TransactIons on Soffware Engineering 7,

2, June 1975, 220-232,

22. Reed, D.P., “Naming and synchronization in a

decentralized computer system”, Ph.D thesis, Technical

Report MIT/LCS/7’R-205, MIT Laboratory for Computer

Science, Cambridge, MA, 1978.

19

