
Combining subsumption and binary methods:
An object calculus with views

Jérôme Vouillon
Department of Computer and Information Science�

University of Pennsylvania

vouillon@saul.cis.upenn.edu

ABSTRACT
We presen t an object-oriented calculus whic hallows arbi-
trary hiding of methods in protot ypes, even in the pres-
ence of binary methods and friend functions. This combi-
nation of features permits complete control of the in terface
a class exposes to the remainder of a program (which is of
key importance for program readabilit y,securit y and ease
of maintenance), while still allowing complex interactions
with other classes belonging to the same module or softw are
component.

This result is made possible by the use of views. A view
is a name that speci�es an interface to an object. A set
of views is attached to each object and a method can be
invok ed either directly or via a view of the object.

1. INTRODUCTION
Information hiding is of key importance for making pro-
grams more readable, secure and maintainable. In particu-
lar, for abstraction purposes, one would expect to be able to
specify freely what methods of a class are exported from a
pac kage (or a module) to the remainder of a program.Fur-
thermore, abstraction should not be impeded by the need for
complex interaction betw een objects.For instance, if objects
from tw o di�erent classes are to in teract with one other, it
should still be possible to hide the methods involv ed in the
interaction. This means that the objects m ust beable to
communicate via methods not present in the in terfaces ex-
ported by the classes to the rest of the program. (A class or
a function having such a privileged access to another class
is commonly named a friend).

A structural subtyping setting, where methods are accessed
by name and method names are not lexically scoped, does
not pro vide suc h freedom [10].Indeed, if a method is neces-
sary for the interaction betw een tw o classes, it must remain

1This work was supported in part by the University of Penn-
sylv ania's Institute for Research in Cognitive Science

in the in terfaceof the class it belongs to (ev en though its
access may be prevented using existential types [2, 15]).

On the other hand, this problem does not exist in languages
such as C++ or Java, where an explicitly declared inheri-
tance hierarchy de�nes the subtyping relation betw een ob-
jects. The reason is that in this setting a method is selected
according to both its name and the static type of the ob-
ject. Then, a new method in a class will not con
ict with a
method of the same name in a superclass. Furthermore, it
is also possible to expose to the remainder of the program
the fact that an object belongs to a subclass of a given class
without having to export any of the methods of this class.
Then, a friend function is simply a function which has ac-
cess to some non-exported methods of a class. T ype safet y
is achiev ed b y ensuring that the function is only applied to
objects of this class (or one of its subclasses).

Ho w ever,such languages usually do not support some ad-
vanced features often found in languages using structural
subt yping, such as selftype and binary methods [3]. We
presen t in this paper a calculus that aims at combining the
best of both w orlds: it pro vides these tw o features while
still allowing arbitrary method hiding. Rather than having
classes, it uses more atomic constructions: it is protot ype-
based, and the notion that an object belongs to a giv en
class is expressed by the fact that it possesses a given view.
A view is simply a name (corresponding to a class name)
giving access to an alternate interface to an object.

Sev eral calculi dealing with similar issues ha ve been pro-
posed previously. Riec ke and Stone [18] presented a calcu-
lus allo wing arbitrary hiding of methods.This calculus only
uses structural subtyping and does not have binary meth-
ods. More recently, Fisher and Reppy [10] proposed a calcu-
lus with support for inheritance-based subtyping. Ho w ever,
this calculus is �rst-order (that is, it does not have the no-
tion of selft ype).

For the sak e of clarit y, we �rst present in Section 2 a simpli-
�ed v ersion of the calculus, introducing most features of the
full calculus. Then, in Section 3, we presen t the full calculus
and demonstrate how it can properly type binary methods
and friend functions. T ype c hecking and type inference are
discussed in section 3.4. Section 4 exposes some limitations
of the calculus. Finally, related works are presented in sec-
tion 5.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
POPL '01 1/01 Londo, UK
Copyright 2001 ACM 1-58113-336-7/01/0001 ... $5.00

290

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

Notations
We write f ; (i = e) to denote the partial function that be-
haves exactly as f except for mapping i to e. This notation
is not standard, but is very convenient, in particular for
writing method tables. We write f � g to denote that the
function g extends the function f , that is, the graph of g is
a superset of the graph of f .

2. BASE CALCULUS
2.1 Examples
We introduce the calculus through examples. Let us con-
sider the following object1:

x1 ::= �(x : �)[L1jL1]
'1

where '1 ::= (ten 7! one; clone 7! two)
L1 ::= (one = 10; two = x)
L1 ::= (one : int; two : �)

It contains two methods. The external names of these meth-
ods (that is, the name of these methods viewed from outside
the object) are ten and clone. A dictionary '1 (a �nite
partial function from method names to method names) is
used to map these external names to some internal names
one and two. The internal names are used as indices in the
method table L1 and in the method type table L1. The �rst
method of this object returns the integer 10 and its type is
int. The second method returns self (that is, the object
itself) which is bound to x at the beginning of the object
de�nition. The type of the method is �, the type of the
object (also called selftype), bound just after x.

The type of the object x1 is

�(�)[ten : int; clone : �]

The types of the methods are the translation of the method
type table L1 using the dictionary '1. More precisely, it is
de�ned as L1 �'1. These types are again parametrized over
selftype �, which is bound at the beginning of the object
type.

The method clone can be invoked using the construction
x1:clone. During the evaluation of this operation, the ex-
ternal method name clone is translated into the internal
method name '1(clone) = two. Then, the corresponding
method body L1(two) = x is extracted. The rest of the
evaluation is standard: the type variable � is replaced by
the type of the object in the method body, and the variable
x is replaced by the object. The expression x1:clone there-
fore evaluates into x1. Its type is obtained by extracting the
type � of the method clone and replacing selftype by the
object type itself: it's the same as the type of x1.

The object x1 can actually be considered as a prototype, of
type

�(�)[ten : int; clone : �];

A prototype is an object which is possibly not yet �nished
and can still be modi�ed: it is possible to add a method
to a prototype, to override one of its methods and to hide
one of its methods. Contrary to proper objects, some of the

1We use the notation ::= to name an expression. It is not
part of the calculus

methods of a prototype may have been given a type with-
out being de�ned yet. Such a method is named an abstract
method. The prototype x1 has no abstract method, so the
set of its abstract methods, at the upper right of its type,
is empty. As in a previous calculus with prototype designed
by Fisher and Mitchell [7], there is no syntactic di�erence
between a prototype and a \proper objects": they are only
distinguished by their types.

The construction x1 + (id : &(�)(� ! �)) adds an abstract
method id of type � ! � (where � is selftype) to the pro-
totype x1. More precisely, it evaluates into a prototype x2
which is a copy of the prototype x1 with space reserved for
one more method id:

x2 ::= �(x : �)[L1jL2]
'2

where '2 ::= ten 7! one; clone 7! two; id 7! three

L1 ::= one = 10; two = x

L2 ::= one : int; two : �; three : �! �

The dictionary has been extended and maps the method
name id to a fresh method name three chosen during the
reduction. The method table of the prototype is unchanged,
while the method type table has been extended with the
method three. The prototype x2 has type

�(�)[ten : int; clone : �; id : �! �]fidg

Note that the set of abstract methods of this prototype is
the singleton fidg: no de�nition is provided for the method
id yet.

We can now provide a de�nition to the method id, using the
construction x2:id()&(x : �)�(y : �)y. In this expression,
x stands for self and � stands for selftype. The expression
evaluates into a new prototype x3. This prototype has the
same method type table L2 and dictionary '2 as x2, but
its method table contains the expected de�nition for the
method id:

x3 ::= �(x : �)[L3jL2]
'2

where '2 ::= ten 7! one; clone 7! two; id 7! three

L3 ::= one = 10; two = x; three = �(y : �)y
L2 ::= one : int; two : �; three : �! �

The type of the prototype x3 is the same as the type of the
prototype x2 except there is no abstract method:

�(�)[ten : int; clone : �; id : � ! �];

The same construction can be used to override a method
de�nition: if the method is already de�ned, its body is re-
placed by the new value.

Finally, it is possible to hide a method of a prototype if this
method is de�ned: the expression x3 n ten evaluates into
a copy of the prototype x3 where the method ten is not
accessible anymore from outside the object: it is removed
from the dictionary '4.

x4 ::= �(x : �)[L3jL2]
'4

where '4 ::= clone 7! two; id 7! three

L3 ::= one = 10; two = x; three = �(y : �)y
L2 ::= one : int; two : �; three : �! �

The type of this prototype is the same as the prototype x3
except for the method ten.

�(�)[clone : �; id : � ! �];

291

a ::= x Variable

j �(x : �)a Abstraction

j a(a0) Application

j �(x : �)[LjL]' Object

j a+ (l : &(�)�) Method addition

j a n l Method hiding

j a:l()&(x : �)a0 Method override

j a:l Method invocation

� ::= � Type variable

j � ! � 0 Function type

j �(�)[L] Object type

j �(�)[L]A Prototype type

L ::= ; j L; (l = a) Method table

L ::= ; j L; (l : �) Method type table

' ::= ; j '; (l 7! l) Dictionary

Figure 1: Syntax (base calculus)

Finally, a subtyping relation � is de�ned on types. A proto-
type can be viewed as an object, provided that all its meth-
ods are de�ned, by subtyping. For instance, the following
relation holds:

�(�)[ten : int; clone : �];

�
�(�)[ten : int; clone : �]

One can also hide some methods of an object type by sub-
typing. For instance:

�(�)[ten : int; clone : �; id : � ! �]
�

�(�)[ten : int; clone : �]

As usual, method can be hidden this way only if the resulting
type has no binary method. This is the main reason why we
di�erentiate prototypes from proper objects: we would like
the usual subtyping rules to hold for proper objects, while
we would like to be able to hide any method in prototypes,
which are used to de�ne objects.

2.2 Formalization
2.2.1 Syntax
The syntax of the calculus is presented in �gure 1. We have
already presented each of the constructions in the examples
above. It assumes three in�nite sets: variables x, method
names l, and type variables �. We recall that a method
table L is a �nite partial function from method names l
to expressions a, a method type table L is a �nite partial
function from method names to types � , and a dictionary
is a �nite partial function from method names to method
names.

2.2.2 Static semantics

(Var)

(x : �) 2 �

� ` x : �

(Abs)

�; (x : � 0) ` a : �

� ` �(x : � 0)a : � 0 ! �

(App)

� ` a : � 0 ! � � ` a0 : � 0

� ` a(a0) : �

(Sub)

� ` a : � � ` � � � 0

� ` a : � 0

(Selection-Base)

� ` a : � � = �(�)[L]
L(l) = � 0

� ` a:l : � 0f�=�g

(Extension-Base)

� ` a : �(�)[L]A

� ` a+ (l : &(�)�) : �(�)[L; (l : �)]A[flg

(Override-Base)

� ` a : �(�)[L]A

�; (�); (x : �) ` a0 : L(l)

� ` a:l()&(x : �)a0 : �(�)[L]Anflg

(Restriction-Base)

� ` a : �(�)[L]A l 2 domL n A

� ` a n l : �(�)[LjdomLnflg]
A

(Proto-Base)

L0 = L � '
A = domL0 n dom(L � ')

For all l in domL, �; (�); (x : �) ` L(l) : L(l)

� ` �(x : �)[LjL]' : �(�)[L0]A

Figure 2: Typing rules (base calculus)

(Sub-Refl)

� ` � � �

(Sub-Arrow)

� ` �1 � �2 � ` � 02 � � 01
� ` � 01 ! �1 � � 02 ! �2

(Sub-Proto-Base)

� ` �(�)[L] � �(�)[L0]

� ` �(�)[L]; � �(�)[L0]

(Sub-Object-Base)

L0 � L co�(L
0)

� ` �(�)[L] � �(�)[L0]

Figure 3: Subtyping rules (base calculus)

292

Method addition (l0 62 domL [range')

�(x : �)[LjL]' + (l : &(�)�) �! �(x : �)[Lj(L; (l0 : �))]';(l=l0)

Method hiding �(x : �)[LjL]' n l �! �(x : �)[LjL]'jdom'nflg

Method override �(x : �)[LjL]':l()&(x : �)a �! �(x : �)[L; ('(l) = a)jL]'

Method invocation (v = �(x : �)[LjL]' and � = �(�)[L � '])
v:l �! L('(l))f�=�gfv=xg

Application (�(x : �)a)(v) �! afv=xg

Figure 4: Reduction rules (base calculus)

The static semantics de�nes a typing judgment � ` a : � and
a subtyping judgment � ` � � � 0, where an environment �
is a sequence of value bindings and type variable bindings:

� ::= ; j �; (x : �) j �; (�)

The typing and subtyping rules are given in �gures 2 and 3.

A type � or an expression a are closed with respect to an
environment � if all of their variables are bound in this en-
vironment. An environment � is closed if all of the types
and view types of its range are closed with respect to �.
A typing judgment � ` a : � is closed if � is closed and a
and � are closed with respect to �; a subtyping judgment
� ` � � � 0 is closed if � is closed and � and � 0 are closed
with respect to �. We assume that all judgments under
discussion are closed, and that no variables are ever bound
twice in an environment.

All typing rules are simple, except the rule Proto-Base.
In this rule, the �rst condition L0 = L � ' ensures that the
type L0 of the methods in the type of the prototype is the
method type table L translated by the dictionary '. The
second condition A = domL0 n dom(L � ') ensures that the
abstract methodsA are the external methods (domain of L0)
which are not de�ned in the method table L. Finally, each
internal method is typed in an environment where selftype
� is an abstract type and self x has type �.

The object subtyping rule Sub-Object-Base requires that
selftype � appears covariantly in the method types L0 (which
we note co�(L

0)). As usual, we say that the type variable
� appears covariantly in a type � if any of the following is
true: � is not free in � ; � is �; � is �1 ! �2 and � appears
contravariantly in �1 and covariantly in �2. Similarly, the
type variable � appears contravariantly in a type � if any of
the following is true: � is not free in � ; � is �1 ! �2 and �
appears covariantly in �1 and contravariantly in �2.

2.2.3 Dynamic semantics
We give a small-step reduction semantics to our calculus.
The local reduction relation �! is de�ned in �gure 4. The
rules de�ning this relation make use of the two standard sub-
stitution operations on values (afv=xg) and types (af�=�g).

For method addition, a fresh internal method name l0 is
chosen. It must not be in the domain of the method type
table L so as not to override the type of another method. It

must not be in the range of the dictionary ' either. Indeed,
any method name l00 such that '(l00) = l0 would not appear
in the type of the prototype before reduction and would be
given type � after reduction.

The type �(�)[L�'] is the most general type an object �(x :
�)[LjL]' can be given. This type is therefore substituted for
selftype during method invocation.

The semantics is de�ned using an evaluation context F :

F ::= []

j F + (l : &(�)�)

j F n l

j F:l()&(x : �)a

j F:l

j F (a)

j v(F)

The local reduction relation �! is extended to a one-step
evaluation relation: a �! a0 i� there are expressions a1 and
a01 such that a = F [a1], a1 �! a01 and a0 = F [a01].

Values are de�ned by the following sub-grammar of expres-
sions:

v ::= x Variable
j �(x : �)a Abstraction
j �(x : �)[LjL]' Object

2.3 Design choices
We present and justify here some design choices common
with the base calculus and the full calculus presented in
next section.

2.3.1 Abstract methods
The calculus has a notion of abstract methods. This no-
tion is not mandatory. However, in order to ensure the
soundness of a calculus with method hiding and object ex-
tension, method overriding and object extension must be
distinguished. Indeed, they have an incompatible semantics
when they operate on a method that already exists in the
object: with method overriding, already existing methods
must have access to the new de�nition of the method; on
the other hand, with object extension, a new method must
be de�ned, di�erent from the previous method of the same
name, and the behavior of existing methods should not be

293

altered. Rather than having these two operations as primi-
tives as in the work of Fisher, Honsell and Mitchell [6], we
have preferred to decompose object extension into the ad-
dition of an abstract method followed by the overriding of
this method. We feel that these latter primitives are more
atomic and orthogonal. Furthermore, they allow the de�-
nition of mutually recursive methods without resorting to
tricks such as non-terminating methods (a non-terminating
method body can have any type, so it can be used as a
placeholder).

2.3.2 Depth subtyping
For the sake of simplicity, we have only considered width
subtyping for objects in our calculus. We don't expect
any di�culty with depth subtyping. Indeed, we have been
careful not to introduce in the calculus any operation such
as method overriding in object, which would be unsound.
Depth subtyping would however make the proofs signi�-
cantly longer.

An unfortunate consequence of this restriction to width sub-
typing is that type variables occurring in an object type are
non-variant. With depth-subtyping, the de�nition of covari-
ance could be updated so as to get rid of this restriction.

2.3.3 Non-deterministic dynamic semantics
The semantics we give is not deterministic. Indeed, when a
method is added to a prototype, an internal method name
can be arbitrarily chosen for this method. It would be easy
to make this semantics deterministic by providing a choice
function, associating a new method names to the set of al-
ready existing internal method names (this is what is done
in the work of Riecke and Stone [18], where the methods
are numbered in a consecutive way). Alternatively, one can
notice that internal method names cannot be observed from
outside an object, in the sense that the behavior of the object
is the same whatever method names are chosen. It would
therefore be possible to identify objects modulo renaming of
their internal method names.

2.3.4 Typed dynamic semantics
The calculus is explicitly typed, so as to ease type checking.
For the sake of subject reduction, type annotations must
then be manipulated during the reduction of an expression.
However, the dynamic semantics does not depend on types:
types could be erased before evaluation.

2.4 Limitation of the calculus and its conse-
quences

The simpli�cation made in the base calculus with respect
to the full calculus is essentially that no attempt is made
to give a precise type to self in the base calculus: selftype
is simply considered as an abstract type in method bodies.
Therefore, a method cannot do anything with self or any
other object of same type, except ignoring it or passing it
around. In particular, a method cannot invokes another
method of the same object. This limitation have di�erent
consequences that we present below.

2.4.1 Dictionaries
Dictionaries are not really necessary for this calculus. In-
deed, a method cannot be invoked anymore once hidden,

and could therefore just be removed from the method table.
However, we preferred to introduce this non-trivial notion
on the simpler calculus.

2.4.2 Covariance
The following typing rule, allowing to hide methods by sub-
typing even in presence of binary methods, would be sound.

L0 � L

� ` �(�)[L] � �(�)[L0]

However, this typing rule would make type checking signi�-
cantly more di�cult. Indeed, consider an object x of type:

�1 ::= �(�)[clone : �; id : � ! �]

With the typing rule above, it would also have type:

�2 ::= �(�)[id : � ! �]

So, the expression x:id can be given both type �1 ! �1
and type �2 ! �2, even though these types do not have a
common supertype. We have therefore chosen to only allow
method hiding by subtyping when selftype does not appear
covariantly in the object type (rule Sub-Object-Base). We
will discuss this in more details in Section 3.4.

3. FULL CALCULUS
3.1 Informal presentation of the Calculus
We �rst illustrate in Section 3.1.1 the problem with method
hiding and binary methods and sketch how it can be solved
using views. We then describe in more details views and
their interaction with binary methods in Section 3.1.2. Fi-
nally, we provide more examples in order to describe the
di�erent features of the calculus and show its expressive-
ness.

3.1.1 What is a Views?
Let us consider a prototype of the following type:

�(�)[val : int; compare : �! bool];

Suppose that we would like the method compare to compare
the value of its argument with the value of self. Its de�nition
would be something like: &(x : �)�(y : �)(x:val = y:val)
An object directly derived from the prototype would have
type:

�(�)[val : int; compare : �! bool]

The method val cannot be hidden by subtyping, as � does
not occur in covariant position in the type. As a conse-
quence, the argument of the method compare must be an
object with a method val, as expected by the method.

Let us now consider what happens when a prototype is de-
rived from the prototype above by hiding the method val.
The type of the new prototype is:

�(�)[compare : �! bool];

An object directly derived from the prototype has type:

�(�)[compare : �! bool]

According to this type, the method compare can be applied
to an object that may not have a method val. This is clearly
unsound. So, in order to allows both method hiding and

294

binary methods, one need a way to keep track in the type
that an object has a given method, even though this method
is not listed anymore in the type. For instance, we could
attach a tag, say comparable, to the object type, indicating
that the object has a method val of the right type.

�(�)[val : int; compare : � ! bool];comparable

The tag would not be allowed to be removed as long as there
is a binary method. Therefore, the object type would also
have the tag:

�(�)[compare : �! bool]comparable

Then the method compare can only be applied to an object
which has a method val, as the type of this object is selftype
which has the tag comparable.

But this is not su�cient. Indeed, the method val could
added again with another type, di�erent from the one ex-
pected by the method compare.

�(�)[val : bool; compare : � ! bool];comparable

The expected behavior would be the method compare to
invoke the old method. Because of this, the tag cannot
be simply a type feature. It must be present in some way
in the dynamic semantics and must provide an access to
some methods which may not be in the main interface of
the object (that is, which are not accessible via a method
invocation a:l). The main idea of this paper is to have a
collection of alternative interfaces to the objects, in addition
to its main interface. An alternative interface is selected by
a name k: a:kl. We call these names views. An object type
holds the set of views that can be used on the object. For
instance:

�(�)[compare : �! bool]fcomparableg

A �xed type is associated to each view. This type de-
scribes the interface it gives access to. The type of the view
comparable could be:

�(�)[val : int; compare : �! bool]

This view then gives access to a method val and a method
compare. The method compare can now be de�ned so as
not to access the method val directly, but via the view
comparable.

&(x : �)�(y : �)(x:comparableval = y:comparableval)

Then, compare would continue to invoke the right method
even when the method val is hidden from the main interface.

�(�)[compare : � ! bool];fkg

Of course, views cannot be hidden when there is a binary
method. One may therefore think that we would have the
same problem with views that with method names. How-
ever, contrary to method names, views are lexically scoped
: we use the construction �(k : t)a to de�ne a new view k of
type t with its scope being the expression a. This construc-
tion is similar to the one used in [20] to represent memory
locations or to the � binder of the �-calculus [14].

3.1.2 Using views
In this example, we progressively create a prototype with
a binary method and another method used in the binary

method, then hide this other method. We then show that
the binary method can still be safely invoked.

We start with an empty object. An object is de�ned as in
the previous calculus except for the addition of a function
�1 mapping views k to dictionaries '.

y1 ::= �(x : �)[L1jL1]
'1
�1

where L1 ::= ;
L1 ::= ;
'1 ::= ;
�1 ::= ;

This object can be viewed as a prototype of type �(�)[L]AK
where all the components L, A and K are empty. The set
K is the set of views of the prototype. Two methods are
added:

(y1 + (compare : &(�)�! bool)) + (val : &(�)int)

This expression evaluates into a prototype y2:

y2 ::= �(x : �)[L1jL2]
'2
�1

where L1 ::= ;
L2 ::= one : �! bool; two : int
'2 ::= compare 7! one; val 7! two

�1 ::= ;

The type of this prototype is

�(�)[compare : � ! bool; val : int]
fcompare;valg
;

We now assume that the environment contains a view k of
type �(�)[compare : �! bool; val : int]. As the view has
exactly the same methods as the prototype, it can be added
to the prototype: hy2ik. This expression evaluates into a
prototype y3 in which the current dictionary '2 is associated
to the view k. Note that the type of the view is indeed the
type of the methods accessible via this dictionary.

y3 ::= �(x : �)[L1jL2]
'2
�3

where L1 ::= ;
L2 ::= one : � ! bool; two : int
'2 ::= compare 7! one; val 7! two

�3 ::= k 7! (compare 7! one; val 7! two)

The type of the prototype is unchanged, except for the view:

�(�)[compare : � ! bool; val : int]
fcompare;valg

fkg

When a method is de�ned or overridden, the new method
body is typed assuming that selftype is some type � which
has at least the views K (here fkg) of the prototype. So, we
can now de�ne a method compare that compares the value
of the methods val of the object itself and of an object of
the same type. The method val will be invoked via the
view k that both objects are known to possess. The method
de�nition is written:

y3:compare()&(x : �)�(y : �)x:kval = y:kval

It evaluates into a prototype y4:

y4 ::= �(x : �)[L4jL2]
'2
�3

where L4 ::= one = �(y : �)(x:kval = y:kval)
L2 ::= one : � ! bool; two : int
'2 ::= compare 7! one; val 7! two

�3 ::= k 7! (compare 7! one; val 7! two)

295

Let us �nish the construction of the prototype by the def-
inition of the method val, and the hiding of this method:
(y4:val()&(x : �)5) n val. This expression evaluates into:

y5 ::= �(x : �)[L5jL2]
'5
�3

where L5 ::= one = �(y : �)(x:kval = y:kval);
two = 10

L2 ::= one : � ! bool; two : int
'5 ::= compare 7! one

�3 ::= k 7! (compare 7! one; val 7! two)

Both methods are now de�ned, so the prototype has type:

�(�)[compare : � ! bool];fkg

The reader may observe that this incremental construction
of a prototype suggests a way of encoding classes in this
calculus. The translation of a class de�nition would start
from the value of the parent class. First, all new methods
would be added as abstract methods. Second, a view would
be de�ned so that methods can invoke one another. Third,
the methods would be de�ned, or overridden. Finally, the
private methods would be hidden. (More generally, a class
would be encoded as a function taking some initialization
argument and building a prototype this way.)

Let us continue the example. As all its methods are de�ned,
the prototype y5 can also be considered as an object, of type

�(�)[compare : � ! bool]fkg

We de�ne the object y6 similarly, as the result of the evalu-
ation of the expression (y4:val()&(x : �)7) n val.

The object y5 has a method compare of type � ! bool

where the type � is selftype. The object y6 of same type
as y5 can therefore be passed as argument to this method:
the expression y5:compare(y6) is well-typed. The type of the
object y5 ensures that both objects y5 and y6 have a view
k as expected by the method compare, so the evaluation of
this expression will not get stuck.

During the evaluation of the expression y5:compare(y6), the
expression y5:kval will be also evaluated. For this, the dic-
tionary �3(k) corresponding to the view is �rst computed.
The external method name val is translated using this dic-
tionary in the internal method name �3(k)(val). This in-
ternal method name is used to extract the method body
L5(�3(k)(val)). The evaluation then continues as for a di-
rect method invocation: the object type is substituted for
selftype and the object for self in the method body.

3.1.3 Abstract views
In the previous example, the method val was hidden from
the main interface of the prototype, but it could still be
accessed via the view k. So as to make this method really
private, we need to �nd a way to prevent the use of the view
k. The solution we adopt is to make the view abstract, using
a mechanism similar to the one for abstract types [5].

We start from the function below, which could be used to
de�ne the previous objects y5 and y6.

f ::= �(z : int)((y4:val()&(x : �)z) n val)

This function has type:

int ! �(�)[compare : �! bool];fkg

We �rst create a package of type:

�0 = 9(k0)(int ! �(�)[compare : �! bool];fk0g)

Note that the view k does not appear in this type anymore.
The package is created by the expression below:

p ::= pack f as �0 hiding fkg

We then open this package in the remainder a of the pro-
gram:

open p as [k1; g] in a

In the expression a, the packaged function is named g and
its type is:

int ! �(�)[compare : �! bool];fk1g

In this type, the view k1 is abstract: no method can be
invoked via this view. But, still, if we de�ned two objects
y7 ::= g(5) and y8 ::= g(7), it is possible to invoke the
method compare of y7 with argument y8: y7:compare(y8).
Indeed, this expression is well-typed, and furthermore the
calculus ensures that any object of the same type as y7 has
a view k as expected by the method compare.

The reader may have noticed that the pack construction
takes a set of views to be abstracted, not just one view.
This allows to hide this set of views, for instance in the type
of a prototype. Indeed, this type would otherwise rapidly be
cluttered by views as each time a set of methods is added to
a prototype, a view need to be also added so that the new
methods can invoke one another. Furthermore, all these
views could prevent to manipulate in a uniform way several
prototypes with a di�erent origin. With this construction,
all prototypes with a view k0 can be given a type of the
form 9(k)�(�)[L]Afk0;kg (for some L and A). It would not
have been possible to use subtyping instead to hide a view
of a prototype in a generic way. Indeed, this would not be
safe in presence of binary methods: in a prototype of type

�(�)[m : � ! � ;L]AK

the method m may expect to be applied to an object that
has at least the set of views K. Then, it is not sound to
apply it to an object that only has a subset of these views.

3.1.4 Modeling instance variables
Instance variable can be modeled in the calculus using two
methods, as usual: the method get returns the value of the
instance variable and the method set set this value:

�(x : �)[LjL]'�
where L ::= one = 5;

two = �(y : int)(x:kget()&(x0 : �0)y)
L ::= one : int; two : int ! �
' ::= get 7! one; set 7! two

� ::= k 7! (get 7! one; set 7! two)

The method set expect an argument y and override the
body of the method get, via the view k, with a new body
returning the value of y. The type of this object is:

�(�)[get : int; set : int ! �]fkg

296

The calculus does not include any operator allowing to over-
ride a method via the main interface of an object. One
reason for this is that, though such an operation would be
sound with the current subtyping rules, it would be unsound
with depth subtyping. On the other hand, overriding via a
view would remain safe, as a view has a �xed type.

3.1.5 Objects without binary methods
In the calculus, views are needed for typing binary meth-
ods, and also in prototypes for de�ning mutually recursive
methods. But, looking at the previous examples, one may
think that views would pervasively clutter all object types
even when they are not needed anymore for manipulating
the object. However, the subtyping rules always allows to re-
move all views from an object type without binary method.
So, for instance, the following subtyping relation holds:

�(�)[get : int; set : int ! �]fkg
�

�(�)[get : int; set : int ! �];

The subtyping rules for an object without views is the same
as in the previous calculus and are standard.

It is desirable to consider self as a regular object, and in
particular to be able to apply it to a function de�ned outside
a method body. However, self is not given an object type,
but rather it is only assumed that it at least a given set of
views. So, it cannot be directly applied to a function such
as the one below:

f ::= �(y : �(�)[val : int];)y:val

This is nevertheless possible in an indirect way when the
object has no binary method. For instance, let us consider
the prototype below.

z ::= �(x : �)[LjL]'�
where L ::= one = 5;

L ::= one : int; two : int
' ::= val 7! one; use 7! two

� ::= k 7! (val 7! one; use 7! two)

We assume that the view k has type

�(�)[val : int; use : int]

We want to de�ne the method use of the prototype z so that
it apply the function f to self. As we said just above, inside
the body of the method use we only know that self has a
view k, so it is not possible to directly apply the function to
self as follows:

z:use()&(x : �)f(x)

This would actually not even be sound as the method val

could be latter hidden from the main interface of the proto-
type (and therefore would not be bound in the main dictio-
nary anymore). However, a subtyping rule allows to consider
self x as having the type �(�)[;]fkg. (This is only possible
because selftype only occurs in covariant position in the type
of the view k.) Then, the construction xjk can be used to
replace the main dictionary of the object x by the dictio-
nary associated to the view k. The expression xjk has type
�(�)[val : int; use : int]fkg. By subtyping, it has also type
�(�)[val : int];, and so we can apply the function f to this
expression:

z:use()&(x : �)f(xjk)

3.1.6 Friend Functions
A friend function is a function that has a privileged access
to objects of a class. The existence of such privileged ac-
cess is of particular importance for privacy. Indeed, if for
instance two objects needed to interact between each other,
all methods necessary for this interaction would otherwise
have to remain public. The usual trick to encode friend func-
tions in a structural typing setting is to use a method repr

that returns the whole internal state of the object [15]. So
that only friend functions can access this state, the type of
this method is hidden using an abstract type. However, this
technique defeats our goal of being able to hide arbitrary
methods. Indeed, if the method is hidden in a subclass,
the friend function will not be able to manipulate objects of
this subclass. Another possibility is to embed the class and
its friend functions into a module than does not export the
class, but only a constructor for the objects of the class [9].
Any method of the class can be hidden in the type of the con-
structor by making it partially abstract. However, this tech-
nique precludes any further subclassing. Thus, both these
solutions are unsatisfactory. We show how public views can
be used to implement friend functions without any of these
limitations. We have actually presented all the necessary
ingredients. We �rst de�ne a class c taking an initialization
argument y and returning a prototype with a method val

whose value is the value of the class argument.

c ::= �(y : int)

h�(x : �)[;j;];; + (val : &(�)int)ik:val()&(x : �)y

The prototype is de�ned using the following view:

k : �(�)[val : int]

The class has type:

int ! �(�)[val : int];fkg

We now de�ne a function f invoking the method val of its
argument via the view k.

f ::= �(x : �(�)[;]fkg)x:kval

We want to prevent the access to the method val of the
class c from anywhere but the function f .

First, a wrapper takes care of hiding the method val from
the main interface of the prototype returned by the class c.
(It is still accessible via the view k.)

c0 ::= �(z : int)(c(z)) n val

Then, the class and the function are both put in an object
(this object can be viewed as a record, or a module).

m ::= (�(x : �)[;j;];;
+ (c : &(�)(int ! �(�)[;];fkg))

:c()&(x : �)c0)
+ (f : &(�)(�(�)[;]fkg ! int))
:f()&(x : �)f

The view is then hidden by an abstract view k0:

p ::= pack m as �0 hiding fkg

where

�0 ::=

9(k0)�(�)[c : int ! �(�)[;];fk0g; f : �(�)[;]fk0g ! int];

297

a ::= x Variable

j �(x : �)a Abstraction

j a(a0) Application

j �(x : �)[LjL]'� Object

j a+ (l : &(�)�) Method addition

j a n l Method hiding

j a:l Method selection

j a:kl Method selection in view

j a:l()&(x : �)a0 Method override

j a:kl()&(x : �)a0 Method override in view

j �(k : t)a View binding

j haik View addition

j ajk View replacement

j pack a as � hiding K Packing

j open a as [k; x] in a0 Unpacking

� ::= � Type variable

j � ! � 0 Function type

j tK Object type

j tAK Prototype type

j 9(k)� View abstraction

t ::= �(�)[L] Interface type

L ::= ; j L; (l = a) Method table

L ::= ; j L; (l : �) Method type table

' ::= ; j '; (l 7! l) Dictionary

� ::= ; j �; (k 7! ') Dictionary table

K ::= ; j fk; : : : ; kg View set

Figure 5: Syntax

Finally, the class and the function are made available to the
remainder a of the program:

open m as [k1; m1] in a

The type of the class m1:c is

int ! �(�)[;];fk1g

The type of the function m1:f is

�(�)[;]fk1g ! int

The type system ensures that only objects derived from the
class can have the view k0. As views cannot be removed
from objects, all these object have a view k, as expected by
the function m1:f, so it would be sound to apply them to
this function.

3.2 Formalization

(Sub-Refl)

� ` � � �

(Sub-Arrow)

� ` �1 � �2 � ` � 02 � � 01
� ` � 01 ! �1 � � 02 ! �2

(Sub-Proto)

� ` �(�)[L]K � �(�)[L0]K0

� ` �(�)[L];K � �(�)[L0]K0

(Sub-Object)

L0 � L co�(L
0) K0 � K

8k 2 K0 � (k : �(�)[L00]) 2 � ^ co�(L
00)

� ` �(�)[L]K � �(�)[L0]K0

(Sub-Match)

� ` � <# K
8k 2 K � (k : �(�)[L00]) 2 � ^ co�(L

00)

� ` � � �(�0)[;]K

Figure 7: Subtyping rules

(Match-Var)

(� <# K) 2 � K0 � K

� ` � <# K0

(Match-Obj)

K0 � K

� ` �(�)[L]K <# K0

Figure 8: Matching rules

The calculus is an extension of the calculus presented in the
�rst section. The formalization reuses the same notations.

3.2.1 Syntax
The syntax of the calculus is presented in �gure 5. It as-
sumes an in�nite set of views k. We recall that a dictionary
table � is a �nite partial function from views k to dictionar-
ies '.

3.2.2 Static semantics
The static semantics de�nes a typing judgment � ` a : � and
a subtyping judgment � ` � � � 0, where an environment �
is a sequence of bindings. An environment contains both
value bindings and view bindings. It also contains what we
call matching hypothesis, that is the hypothesis that a type
� has at least the set of views K (this is not the same notion
of matching as the one introduced by Kim Bruce [4], but
the two notions have similarities: types that match a given
set of views have a similar shape, but are not necessarily
subtypes of a same type).

� ::= ; Empty environment

j �; (x : �) Value binding

j �; (� <# K) Matching hypothesis

j �; (k : t) View binding

j �; (k) Abstract view binding

The typing rules are given in �gures 6, 7, and 8. As in the
previous calculus (Section 2.2.2), all judgment are assumed
to be closed and no variable are ever bound twice in an
environment.

298

(Var)

(x : �) 2 �

� ` x : �

(Abs)

�; (x : � 0) ` a : �

� ` �(x : � 0)a : � 0 ! �

(App)

� ` a : � 0 ! � � ` a0 : � 0

� ` a(a0) : �

(Sub)

� ` a : � � ` � � � 0

� ` a : � 0

(Proto)

L0 = L � ' A = domL0 n dom(L � ')
K = dom� domL � domL [range'
For all l in domL, �; (� <# K); (x : �) ` L(l) : L(l)
8k 2 dom� � (k : �(�)[L00]) 2 � ^ L00 = L � �(k)

� ` �(x : �)[LjL]'� : �(�)[L0]AK

(Extension)

� ` a : �(�)[L]AK

� ` a+ (l : &(�)�) : �(�)[L; (l : �)]A[flgK

(Restriction)

� ` a : �(�)[L]AK l 2 domL n A

� ` a n l : �(�)[LjdomLnflg]
A
K

(Selection)

� ` a : � � = �(�)[L]K
(l : � 0) 2 L

� ` a:l : � 0f�=�g

(View-Selection)

� ` a : � � ` � <# K
k 2 K (k : �(�)[L0]) 2 �

(l : � 0) 2 L0

� ` a:kl : �
0f�=�g

(Override)

� ` a : �(�)[L]AK
�; (� <# K); (x : �) ` a0 : L(l)

� ` a:l()&(x : �)a0 : �(�)[L]AnflgK

(View-Override)

� ` a : � � ` � <# K
k 2 K (k : �(�)[L0]) 2 �

�; (� <# K); (x : �) ` a0 : L0(l)

� ` a:kl()&(x : �)a0 : �

(View-Abs)

�; (k : t) ` a : �

� ` �(k : t)a : �

(View-Capture)

� ` a : �(�)[L]AK
(k : �(�)[L]) 2 �

� ` haik : �(�)[L]
A
K[fkg

(View-Replace)

� ` a : �(�)[L]K
k 2 K

(k : �(�)[L0]) 2 �

� ` ajk : �(�)[L
0]K

(Pack)

� ` a : �fK=kg

� ` pack a as 9(k)� hiding K : 9(k)�

(Open)

� ` a0 : 9(k)� 0

�; (k); (x : � 0) ` a : �

� ` open a0 as [k; x] in a : �

Figure 6: Typing rules

299

Method addition
(l0 62 domL [range' [

S
k2dom� range�(k))

�(x : �)[LjL]'� + (l : &(�)�) �!

�(x : �)[Lj(L; (l0 : �))]';(l=l0)
�

Method hiding

�(x : �)[LjL]'� n l �! �(x : �)[LjL]
'jdom'nflg

�

Override

�(x : �)[LjL]'�:l()&(x : �)a �!

�(x : �)[L; ('(l) = a)jL]'�

�(x : �)[LjL]'�:kl()&(x : �)a �!

�(x : �)[L; (�(k)(l) = a)jL]'�

Method invocation
(v = �(x : �)[LjL]'� and � = �(�)[L � ']dom�)

v:l �! L('(l))f�=�gfv=xg

v:kl �! L(�(k)(l))f�=�gfv=xg

View manipulations

h�(x : �)[LjL]'�ik �! �(x : �)[LjL]'�;(k=')

�(x : �)[LjL]'� jk �! �(x : �)[LjL]�(k)�

Application

(�(x : �)a)(v) �! afv=xg

Unpacking (v = pack v0 as 9(k)� hiding K)

open v as [k; x] in a �! afK=kgfv0=xg

View bindings (F 6= [])

F [�(k : t)a] �! �(k : t)F [a]

Figure 9: Reduction rules

We only present the most complex rules. To be able to
override a method l via a view k in an object a of type
� (rule View-Override), the object must have at least
a set of view K containing the view k, the view must be
bound in the environment to a type �(�)[L0] and the type
of the method body, assuming that self has at least the
method K, must be the type of the method k in L0. The
ruleView-Selection is modeled after ruleView-Override
(for accessing the type of the view) and rule Selection.
In the rule Proto, the �rst condition L0 = L � ' ensures
that the type L0 of the methods in the type of the proto-
type is the method type table L translated by the dictionary
'. The second condition A = domL0 n dom(L � ') asserts
that the abstract methods A are the external methods (do-
main of L0) which are not de�ned in the method table L.
The third condition K = dom� asserts that the views K
of the prototype are the domain of the function � map-
ping views to dictionaries. The fourth condition domL �
domL[range' together with the second condition ensures
that the equality domL = domL holds for a proper ob-
ject (where A = ;). This then ensures that the dictionary
can be soundly replaced in an object by any other dictio-
nary (in rule View-Replace). Fifth, each internal method
is typed in an environment where selftype � is an abstract
type and self x has type �. Finally, all views of the pro-
totype must be de�ned in the environment and their type
must match the internal type of the prototype, as translated
by the dictionary associated to the view (L00 = L � �(k)).
This latter condition together with the fourth condition en-
sures that all methods that can be accessed via the view
(rule View-Selection) are indeed de�ned.

The rule Sub-Object allows method and view hiding in
object types, as long as selftype is covariant in the resulting
object type and in the types of the views associated to the
object type. The rule Sub-Match is similar and formalizes
the idea that any object type that has at least a set of views
K is always a subtype of �(�0)[;]K, provided that this latter
type satis�es the same restrictions as the resulting type of
rule Sub-Object.

3.2.3 Dynamic semantics
The local reduction relation �! is de�ned in �gure 9. In
addition to the substitutions on values and types, the rules
de�ning this relation make use of a third substitution oper-
ation that replaces a view by a set of views. This operation
is such that:

KfK0=kg = K n fkg [K0 if k 2 K
= K otherwise.

and is otherwise similar to the other substitutions.

For method addition, a fresh internal method name l is cho-
sen. It must not be in the domain of the method type table
L so that not to override the type of another method, and
it must not be in the range of the dictionary ', or any of
the dictionaries �(k) so that only the method l be added
to the main interface (and not also all methods whose im-
age by ' is l), and so that the alternative interfaces remain
unchanged. The rule for an expression F [�(k : t)a] pushes
view bindings outwards, allowing the interaction of of the
expression a with the context F [].

300

The semantics is de�ned using the contexts E and F . The
context E lists the views introduced during the evaluation
while the context F indicates where the evaluation takes
place. E ::= []

j �(k : t)E
F ::= []

j F + (l : &(�)�)
j F n l
j F:l()&(x : �)a
j F:kl()&(x : �)a
j F:l
j F:kl
j hF ik
j F j

k

j F (a)
j v(F)
j pack F as � hiding K
j open F as [k; x] in a

Evaluation contexts are contexts of the form E[F []]: the
local reduction relation �! is extended to a one-step eval-
uation relation: a �! a0 i� there are expressions a1 and a01
such that a = E[F [a1]], a1 �! a01 and a0 = E[F [a01]].

Values are de�ned by the following sub-grammar of expres-
sions:

v ::= x Variable

j �(x : �)a Abstraction

j �(x : �)[LjL]'� Object

j pack v as � hiding K View abstraction

In addition to the rule for method addition, the rule push-
ing view bindings outwards introduces another source of
non-determinism, as several contexts F may be possible (as
in[20]). However, it is easy to convince oneself that the
choice of the context will not modify the result of the eval-
uation.

3.3 Soundness
We have proved the following soundness results:

Theorem 1 (Subject reduction). If � ` a : � and
a �! a0, then � ` a0 : � .

Theorem 2 (Progress). If ` a : � then a is E[v] for
some value v or a �! a0 for some expression a0.

The proofs are standard. The proof of subject reduction is
quite lengthy, as most reduction rules involve objects and
the typing rule for objects (rule Proto) is large. But there
is no speci�c di�culty.

3.4 Typing issues
3.4.1 Subtyping
The calculus has been designed so as to make type checking
straightforward. A consequence of this is that the subtyping
rule Sub-Object is more restrictive than what type sound-
ness alone would have required. Indeed, while this would
be sound, the rule does not allow the hiding of methods
when selftype is not covariant in a view of the object. If this

restriction was removed, the calculus would not have prin-
cipal types. Indeed, let us consider for instance an object x
of type

�0 = �(�)[n : int]fkg

where the view k, has type �(�)[m : � ! �]. Then x:km
has type �0 ! �0. If subtyping were allowed in this case, x
would also have type

�1 = �(�)[]fkg:

Then, x:km would also have type �1 ! �1, which is not com-
parable with type �0 ! �0. This di�culty could be avoided
using higher-order types: indeed, the type of x:km could be
� ! � for all � such that �0 � � � �1. Hiding arbitrary
method in a proper object with a binary method would also
be safe, but raises the same di�culty, as previously men-
tionned.

3.4.2 Type inference
We believe that the typing rules could be easily adapted
in order to make type inference possible, using row vari-
ables [19] in a similar way to Objective Caml [17, 16]. Of
course, subtyping would have to be explicit, but according
to our experience with Objective Caml, this is not a prob-
lem in practice. Furthermore, this would allow us to get rid
of the restrictions expose in the paragraph above. The type
of an object would be composed of two possibly extensible
rows: one for methods, the other one for views. We expect
that the typing of self would then not require any special
rule. Indeed, selftype could be modeled as an object type
with no method and an extensible row of views.

4. PROBLEMS WITH MULTIPLE INHER-
ITANCE

While this calculus can be used for a class-based language
with single inheritance, it unfortunately exhibits an anomaly
that makes problematic its use as a base for a language with
multiple inheritance. Indeed, abstraction can be broken un-
der certain circumstance.

Indeed, let us consider an object with a view k. This view
can be hidden from the type of the object using an abstract
view. One could think that there is then no way to use this
view of the object from outside anymore. In particular, one
would expect that the methods that can only be access via
this view cannot be rede�ned, and that the dictionary associ-
ated to this view in the object cannot be changed. However,
if the view is still available in the environment, nothing pre-
vent us from adding it again to the object. This will change
the dictionary associated to the view in the object: it will
become the same as the dictionary of the primary interface
of the object. And methods can then be rede�ned using this
view.

In a language with single inheritance, the scope of the views
can be controlled so as to avoid this problem. With multiple
inheritance, however, if a class inherits twice from another
class (either directly or indirectly), it will inherit from its
views twice. So, if a view have been hidden on only one of
the inheritance paths, it will still be visible in the class.

5. RELATED WORK

301

Riecke and Stone [18] have designed an object calculus with
object extension where methods can be arbitrarily hidden.
This is achieved using subsumption and by a privileged ac-
cess to other methods of self from a method de�nition. Their
calculus does not handle binary methods. Our calculus is
strongly inspired by this work. Indeed, we reuse the idea
of dictionaries for decoupling the internal naming from the
external naming of methods. Apart from its strong con-
nection, the calculi use completely di�erent mechanisms to
achieve their goal.

Moby [8] is an experimental object-oriented language. It
aims at providing a good interaction between classes and
modules. Like our language, it allows arbitrary method hid-
ing in classes. It is based on a variant of the �rst-order
version of Riecke and Stone calculus with stateful objects.
As a consequence, it does have the notion of selftype. An ex-
tension of Moby with inheritance-based subtyping has been
recently proposed by Fisher and Reppy [10]. The calcu-
lus they have developed to validate their design (XMOC) is
class-based. Classes play in this calculus a role similar to
views in our calculus. They propose in this paper a solution
for friend functions (written in Extended Moby) which is
very close to the one of Section 3.1.6.

Several calculi combining object extension with object sub-
sumption have been proposed, starting with the work of
Fisher and Mitchell [7]. They ensure soundness by having
two kind of object types, prototypes and proper objects, as
our calculus. They usually do not allow method hiding in
prototypes. This is the case for the calculus presented by
Gianantonio, Honsell and Liquori in [13], as well as the one
proposed by Bono, Bugliesi, Liquori and Dezani-Ciancaglini
in [1]. In the calculus presented by Bono and Fisher in [2],
it is possible to hide the type of any methods of a prototype.
This is achieved by wrapping prototypes within existentials.
Our calculus use the same idea to hide views (this idea is
initially due to Pierce and Turner [15]). However, the meth-
ods are not completely hidden: their names remain visible
and the prototype cannot be extended with new methods of
the same name.

A need for context-dependent behavior of objects has emerged
in the context of database languages: depending on the con-
text, an object would play di�erent roles, while retaining
its identity. This notion of roles has been formalized by
Ghelli and Palmerini [12]. They present a �rst-order cal-
culus with roles. It appears that views are similar to roles
though they have been introduced for a completely di�erent
purpose. Contrary to our calculus, however, each method of
an object belongs to exactly one role. Another di�erence is
that the roles form a hierarchy, and at the invocation of a
method l, the method selected is the method associated to
l in the minimum super-role of the current role.

Flatt, Krishnamurthi and Felleisen [11] make use of views
to de�ne powerful mixins (a mixin is a function from classes
to classes). However, their mixin language does not have
selftype.

6. CONCLUSION
This paper presents an object-oriented calculus allowing ar-
bitrary hiding of methods in prototypes. This calculus also

has binary methods and can be used to encode friend func-
tions. We believe that this is the �rst calculus smoothly
combining all these features. This demonstrates that good
modularity properties of an object-oriented language does
not necessarily come at the expense of its expressiveness.

Views are a key ingredient for the soundness of our calculus.
They are also an interesting feature for an object-oriented
language. Indeed, they bring more
exibility by allowing an
object to simultaneously possess several distinct interfaces.
We therefore believe that this notion could be used fruitfully
for other purposes.

Our calculus does not currently handle multiple inheritance.
We hope that multiple inheritance is possible even though
this might requires a signi�cantly di�erent semantics. This
is another important direction for future work.

7. REFERENCES
[1] V. Bono, M. Bugliesi, L. Liquori, and

M. Dezani-Ciancaglini. Subtyping constraint for
incomplete objects. In Proceedings of
TAPSOFT/CAAP, number 1214 in LNCS, pages
465{477. Springer-Verlag, 1997.

[2] V. Bono and K. Fisher. An imperative, �rst-order
calculus with object extension. In ECOOP, pages
462{497, 1998.

[3] K. B. Bruce, L. Cardelli, G. Castagna, T. H. O.
Group, G. T. Leavens, and B. Pierce. On binary
methods. Theory and Practice of Object Systems,
1(3):221{242, 1995.

[4] K. B. Bruce, A. Fiech, and L. Petersen. Subtyping is
not a good \match" for object-oriented languages. In
ECOOP, number 1241 in LNCS, pages 104{127.
Springer-Verlag, 1997.

[5] L. Cardelli and P. Wegner. On understanding types,
data abstraction and polymorphism. ACMCS,
17(4):471{522, Dec. 1985.

[6] K. Fisher, F. Honsell, and J. C. Mitchell. A lambda
calculus of objects and method specialization. Nordic
Journal of Computing, 1(1):3{37, Spring 1994.

[7] K. Fisher and J. Mitchell. A delegation-based object
calculus with subtyping. In Fundamentals of
Computation Theory (FCT'95), number 965 in LNCS,
pages 42{61. Springer-Verlag, 1995.

[8] K. Fisher and J. Reppy. Foundations for Moby classes.
Bell Labs Technical Memorandum, December 1998.

[9] K. Fisher and J. Reppy. The design of a class
mechanism for Moby. In A. Press, editor, Conference
on Programming Language Design and
Implementation, pages 37{49, 1999.

[10] K. Fisher and J. Reppy. Extending Moby with
inheritance-based subtyping. In ECOOP, number 1850
in LNCS, pages 83{107. Springer-Verlag, 2000.

302

[11] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes
and mixins. In Conference Record of POPL '98: The
25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 171{183,
San Diego, California, 19{21 Jan. 1998.

[12] G. Ghelli and D. Palmerini. Foundations for extensible
objects with roles. Presented at the FOOL'6
workshop, Jan. 1999.

[13] P. D. Gianantonio, F. Honsell, and L. Liquori. A
lambda calculus of objects with self-in
icted extension.
In A. S. Notices, editor, Proceedings of the conference
on Object-oriented programming, systems, languages,
and applications, pages 166{178, October 1998.

[14] R. Milner, J. Parrow, and D. Walker. A calculus of
mobile processes, I. Information and Computation,
100(1):1{40, Sept. 1992.

[15] B. C. Pierce and D. N. Turner. Statically typed
friendly functions via partially abstract types.
Technical Report ECS-LFCS-93-256, University of
Edinburgh, LFCS, Apr. 1993. Also available as
INRIA-Rocquencourt Rapport de Recherche No. 1899.

[16] D. R�emy. Type inference for records in a natural
extension of ML. In C. A. Gunter and J. C. Mitchell,
editors, Theoretical Aspects Of Object-Oriented
Programming. Types, Semantics and Language Design.
MIT Press, 1994.

[17] D. R�emy and J. Vouillon. Objective ML: An e�ective
object-oriented extension to ML. Theory And Practice
of Object Systems, 4(1):27{50, 1998. A preliminary
version appeared in the proceedings of the 24th ACM
Conference on Principles of Programming Languages,
1997.

[18] J. G. Riecke and C. A. Stone. Privacy via
subsumption. Information and Computation, 2000. To
appear.

[19] M. Wand. Complete type inference for simple objects.
In D. Gries, editor, Second Symposium on Logic In
Computer Science, pages 207{276, Ithaca, New York,
June 1987. IEEE Computer Society Press.

[20] A. K. Wright and M. Felleisen. A syntactic approach
to type soundness. Technical Report COMP
TR91-160, Department of Computer Science, Rice
University, Houston, Texas, Apr. 1991.

303

