
Interprocedural Data Flow Analysis in the Presence of
Pointers, Procedure Variables, and Label Variables

(extended abstract)

William E. Weihl*

IBM Thomas J. Watson Research Center

Yorktown Heights, New York 10598

ABSTRACT

Interprocedural data flow analysis is complicated

by the use of procedure and label variables in

programs and by the presence of aliasing among

variables. In this paper we present an algorithm for

computing possible values for procedure and label

variables, thus providing a call graph and a control

flow graph. The algorithm also computes the possible

aliasing relationships in the program being analyzed.

We assume that control flow information is not

available to the algorithm; hence, this type of analysis

may be termed “flow-free analysis. ” Given this

assumption, we demonstrate the correctness of the

algorithm, in the sense that the information it produces

is conservative, and show that it is as precise as

possible in certain cases. We also show that the

problem of determining possible values for procedure

variables is P-space hard. This fact indicates that any

algorithm which is precise in all cases must also run

very slowly for some programs.

* Author’s current address: MIT Laboratory for

Computer Science, 545 Technology Square,

Cambridge, MA 02139. This work was performed

to fulfill the S.M. degree thesis requirements under

the VI-A program, a cooperative program of the

MIT Department of Electrical Engineering and

Computer Science. The work was supported in part

by a graduate fellowship from the Fannie and John

Hertz Foundation.

Per~i ssion to copy without fee al 1 or part of
this material is wanted provided that the copies
are not made or distributed for direct commercial
advantage, the ACMcopyright notice and the title
of the publication and its date appear, and no-
tice is given that copying is by permission of
the Association for Computing Machinery. To copY
otherwise, or to republish, requires a fee and/
or specific permission.

@]980 ACM 09791-01 1-7/80/0100-0083 $00.75

1.INTRODUCTION

Program optimization in the presence of procedure

calls is increasingly important because of the current

emphasis on modularity and abstraction in program

design. Since these design methodologies implya heavy

use of procedures and procedure calls, it is essential

that analysis techniques used to compile these

programs perform well when calls are used. This is

important for several reasons. Among these are the

facts that procedures are often fairly general, so that

better code can be produced for them given the

contextual information implied by their use in the

program, that procedure calls imply some overhead

which it might be desirable to avoid, and that lack of

knowledge about a called procedure makes it difficult

to determine information about the procedure which

contains the call.

Standard data flow analysis techniques [2, 4, 9]

have many problems when applied to programs

containing procedure calls. The reason for this is that

a procedure call is essentially a statement whose

effects cannot be determined upon examining only the

statement itself. Rather, the body of the procedure

must be examined as well. Failure to examine the

body of the procedure may result either in no

optimization being performed, or in optimization being

performed in small sections of the program which

contain no procedure calls, with very pessimistic

assumptions being made about the use of parameters

and global variables. If the latter is the case then

many valuable optimizations may be lost; for example,

the presence of a procedure call within a loop might

prevent code which is invariant inside the loop from

being moved outside it.

These deficiencies have led to the development of

a number of methods for interprocedural data flow

analysis [3, 6, 7, 10] which produce summaries of the

effects of each procedure (e. g., an indication of which

variables are used, modified, etc.). These summaries

83

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
© 1980 ACM 0-89791-011-7…$5.00

are used when analyzing invoking procedures, avoiding

the problems mentioned above.

The methods proposed by Barth and Banning have

a number of advantages over that proposed by Allen,

including greater speed, fewer passes required over the

code, and the handling of recursion. Rosen’s method,

though slower than the others mentioned here, can

produce more precise information. Unfortunately

these methods are not sufficiently general to be used

for many languages. Specifically, all of these methods

require a call graph. However, if procedure variables

are included in the language, the call graph cannot be

obtained through a simple scan of the text of the

program being compiled. Further complications occur

when aliasing [12] among variables in the program is

possible. This can result from mechanisms such as

pointers and call-by-reference parameter passing.

These two mechanisms are the ones considered in this

paper. As an example of the problems which aliasing

can cause, a call on a procedure variable using

call-by-reference could have the effect, depending on

the value of the procedure variable at the time of the

call, of assigning a procedure value to one of the

parameters of the call. This fact must be taken into

account in constructing the call graph, for if procedure

A contains a call on procedure variable X, the call

graph must contain arcs from the node for procedure

A to the nodes for each procedure which X can have

as its value.

Another language feature which complicates the

situation is the use of label variables. Such a feature

prevents the construction of a control flow graph until

the possible values of all label variables in the program

have been determined. Since a control flow graph is

required for standard data flow analysis, it is necessary

for some part of the analysis phase of the compiler to

compute this range information for label variables

before standard data flow analysis is performed.

2. RELATED WORK

Very little work has been done on the problem of

handling procedure variables and pointers in

performing interprocedural data flow analysis.

Spillman [12] is the only one who addresses the

problems associated with these language features.

However, there are a number of limiting aspects to

Spillman’s work. First, the algorithm requires iteration

in the presence of recursion. This can lead to large

time requirements. Second, the algorithm is presented

at a low level, making it difficult both to understand

and to verify. Finally, the algorithm as presented is

specific to certain features of PL/1. This, combined

with the low level of presentation, makes it difficult to

adapt the algorithm for use in compiling other

languages.

Ryder [11] presents an algorithm which determines

the call graph for a program with procedure

parameters. The algorithm is designed to be used with

Fortran and is meant to be portable across a wide

range of machines. The portability constraint leads to

limitations on the use of in-core storage; these

limitations influenced the design of the algorithm. The

intent to use the algorithm for Fortran leads to the

assumption that there is no aliasing and no recursion.

These factors all limit the general applicability of the

algorithm.

The methods proposed by Allen, Barth, Banning,

and Rosen solve the problems associated with

procedure variables and pointers to varying degrees,

usually by placing restrictions on the use of these

features in the programs to be compiled. In the

extreme case these features are not allowed at all.

3. PROPOSED SOLUTION

We propose to deal with the problems introduced

byp,ointers, procedure variables, and label variables by

first computing range information (i.e., lists of possible

values) for procedure variables, thus providing a call

graph, and then using one of the known methods, such

as Barth’s, for generating summaries. It is necessary to

compute aliasing patterns as well as range information

for pointers while computing range information for

procedure variables, simply because procedure

variables can acquire values as a result of aliasing with

other variables. All of this information will be

computed without taking control flow information into

account. It will subsequently be used to compute

range information for label variables and to generate

summaries for procedures, prior to generating a control

flow graph.

The context in which this work has been done is

that of the Experimental Compiling System (ECS)

project of the Computer Sciences Department at IBM’s

Watson Research Center. An overview of this project

is given in [5]. Briefly, the goal of the project is to

build a general purpose optimizing compiler which,

given the appropriate source language definition and

target machine description, can compile programs for

that source language into code for that target machine,

Clearly it will not be possible to compile all languages

for all machines. However, it is hoped that it will be

possible to compile a large class of languages for a

large class of machines. For this reason the analysis

and optimization phases should be formulated in a

manner which is as independent as possible of language

and machine.

The ECS compiler attempts to treat primitives of

the intermediate language and previously analyzed

procedures as uniformly as possible, at least as far as

84

analyzing a program which uses them. This is

accomplished by associating with each primitive and

each analyzed procedure a summary of its effects.

Information contained in such a summary includes lists

of variables which are used, modified, and preserved,

as well as an indication of the copies which may be

performed when the primitive or procedure is invoked.

For example, the summary for a primitive which moves

data from its second argument to its first argument

would specify that the primitive uses and preserves its

second argument, modifies its first argument, and

performs a copy of its second argument into its first

argument. The information about copies is used in

propagating procedure, label, and pointer values.

Thk means that in order to analyze a program, we

need either the code or a summary for every procedure

which it calls. This might seem to force a compilation

order for separately compiled programs, and to achieve

reasonable optimization of the programs, it does.

However, it is desirable to be able to compile programs

separately, and to allow this to be done in any order.

This creates two problems in analyzing a procedure.

First, the effects of the caller, such as aliasing of

parameters, may be unknown. Second, there may be

calls on procedures for which no summary exists. In

either case, the worst case must be assumed. In ECS

the second case is treated by creating a summary for

the unknown procedure, and ensuring that this

summary specifies all of the possible effects of the

procedure. The first case is somewhat more

complicated; in effect, the program is treated as if

there were a call on the procedure which causes all

possible parameter aliasing, including with external

variables. If any of the parameters are procedure

variables the problems are compounded. This is

because a call on the parameter could be a call to a

procedure which was passed as an actual parameter,

and the effects of this procedure are unknown. We

omit the details of the handling of such situations.

We assume that we are given a collection of

procedures, each of which consists of a set of

instructions. Each instruction consists of an opcode,

which indicates a call on either a primitive, a

previously analyzed procedure, a procedure in the

collection, or a variable, and a list of operands, each of

which is either a variable or a constant. Expressions

are not allowed as operands; rather, we assume that

the computation of expressions has been expanded into

sequences of instructions. Operands are assumed to be

passed by reference.

For each opcode which is a ,primitive or a

previously analyzed procedure we assume that there

exists a summary for that opcode. This summary must

specify all of the possible copies among parameters

and globals in which a call on the opcode could result.

We make no assumptions about the possible flow of

control between instructions in a single procedure.

Given such a collection of procedures, the problem

is to compute sets of possible values for procedure

variables, sets of possible values for label variables,

sets of variables which may be addressable through

pointer variables, and sets of possible aliases for all

variables. In the next section we show that this

problem is inherently very difficult. In succeeding

sections we present our solution in stages,

demonstrating its correctness and evaluating its

precision and time requirements. Following this we

discuss briefly some characteristics of the alias

relationships as computed by our method, and then

summarize our results.

4. COMPLEXITY

In this section we show that the problem of

determining possible values for procedure variables is

P-space hard. We assume some familiarity with the

term “P-space hard”. A definition of this term and a

discussion of its significance can be found in [1].

In fact, we prove the following theorem, which

makes a stronger statement.

T%eorem: Determining possible values for procedure

parameters for programs in which there is no aliasing

among variables, no nesting of procedure declarations,

and no significant flow of control, and in which every

procedure is formally reachable, is a P-space hard

problem.

This theorem is significant for a number of

reasons. First, it indicates that it is extremely unlikely

that there is any efficient method for computing

possible values for procedure variables. Second, and

perhaps more important, it shows that even when

assignment statements, aliasing, and nesting of

procedure declarations are not allowed, it is still

unlikely that an efficient method exists. Furthermore,

this is still true when there is no significant control

flow in the program being examined, other than that

implied by the call graph. These results lead one to

search for solutions to the problem which are

approximate and reasonably efficient, such as the one

presented in this paper. These solutions may not

produce exact information, but they must produce safe

information; i.e., information which is conservative in

that the possible values determined should be a

superset of the exact possible values. We make the

restriction that all procedures be formally reachable

since this is an assumption which is often made in

compilers.

85

Proof We make use of a theorem proved by

Winklmann [16], in which he shows that deciding the

property of formal reachability in programs without

nested procedure declarations is a P-space hard

problem. Formal reachability is defined in terms of a

formal execution tree, which is a tree of calls where

the nodes of the tree are pairs consisting of procedures

and their environments. (This is not the same as

reachability defined in terms of a call graph as it is

usually used in compilers.)

Winklmann shows this by constructing a program P

for a given Turing machine M, polynomial s, and input

w, such that a procedure HALT in P is formally

reachable if and only if M, when started in its initial

state with w written on its tape and its head scanning

the leftmost symbol of w, halts without its head ever

moving outside the s(n) squares to the right of, and

including, the tape square scanned at the start, where n

is the length of w. P satisfies all of the requirements

given in the statement of the theorem except for the

restriction that all procedures be formally reachable,

and can be constructed in polynomial time from a

description of the Turing machine M, the input w, and

the polynomial s. In addition, P has the property that

there is a procedure Qf such that Qf is formally

reachable in P if and only if M, when executed with

input w, enters its final state without its head ever

leaving the boundaries stated above, Qf contains a

single call to the procedure HALT.

Deciding whether HALT is formally reachable is

therefore as difficult as deciding whether M halts in

the required manner. Furthermore, HALT is formally

reachable if and only if Qf is formally reachable.

Since the first parameter of Qf has no possible values

if Qf is not formally reachable, and has exactly one

possible value if Qf is formally reachable, it follows

that determining whether a given procedure parameter

has a non-empty set of possible values is a P-space

hard problem. This problem can be easily solved given

the set of possible values for the procedure parameter,

so determining sets of possible values for procedure

parameters must also be P-space hard.

We have not yet proved the theorem, since P does

not satisfy the restriction given in the statement of the

theorem that all procedures in P must be formally

reachable. However, it is possible to transform P into

a program P‘ in which all procedures are formally

reachable, and about which we can ask the same kind

of question which we asked about P. Furthermore, the

construction of P ! from P can be done in time linear

in the length of P. Details of this construction can be

found in [15].

The basic idea in constructing P t is to introduce

calls to every procedure in P, but to do so in such a

way that it is still possible to talk about the formal

execution of P‘ simulating the execution of the Turing

machine M on input w. Since it will then be the case

that Qf is always called at least once, the question

which we will ask about P‘ is whether the first

parameter to Qf has more than one possible value.

This will be true if and only if Qf is called more than

once, which will be true if and only if M, when

executed on input w, halts in the prescribed manner.

Therefore, answering this question is P-space hard, and

since this question can be easily answered given sets of

possible values for procedure parameters, the theorem

f Ollows.

5. THE METHOD

As stated earlier, we will present the method in

stages. We begin with the simplest case, a single

procedure with no aliasing, and gradually allow more

complexity in the program being analyzed until we

have included reference parameters, pointers, and calls

on procedure variables.

5.1. NO ALIASING

We will first consider propagating values within a

single procedure. Given that there is a summary for

every instruction in the procedure, create a relation

named PVAL and initialize it to all pairs (A,B) such

that B is copied into A. B may be an constant or a

variable; A must be a variable. A pair (X,A) in PVAL

means that X has possible value A. PVAL ranges over

the variables in the program for which we wish to

determine values and over the values which we are

interested in propagating. We determine which copies

are possible by examining the instructions in the

procedure. For each instruction, consider each copy in

the summary for the opcode of the instruction. If one

of the elements of the copy is a formal parameter of

the opcode, substitute the corresponding operand of

the instruction. The resulting copy gives a pair which

should be placed in PVAL. To propagate values,

replace PVAL by its transitive closure PVAL+. For

variable X and constant A, the resulting relation gives

an answer to the question of whether A is a possible

value of X.

We claim that propagating values in this manner,

for this limited case, is both correct and as precise as

possible. To show that it is correct, suppose that a

variable X has value A at some point during the

execution of the program. For X to have value A, the

execution of the program must include a sequence of

assignments Xi+ 1 : = Xi, with X. being A and X, being

X. If this is the case, then each of these assignments

must appear as a copy in the summary of some

instruction in the program. Therefore each appears as

a pair in the initial PVAL relation. From this it

follows that the transitive closure of PVAL must

86

include the pair (X, A). Therefore the information

computed is correct.

To show that it is as precise as possible, suppose

that there is a pair (X,A) in the transitive closure of

PVAL. There must exist a sequence of pairs (Xi+l ,Xi)

in the initial PVAL relation, with XO being A and Xn

being X. Each of these pairs corresponds to a copy

specified by the summary for some instruction in the

procedure. Since we are making no assumptions about

the possible flow of control between instructions in the

program, any sequence of instructions must be

considered possible. In particular, the sequence of

instructions which corresponds to the given sequence

of copies must be considered possible. This means

that, ignoring control flow information, X may have A

as value. Therefore the information computed is

precise.

The complexity of this algorithm is bounded by the

complexity of computing the non-reflexive transitive

closure of an n x n matrix, with n being the total

number of variables and values involved in the

propagation. Under the assumptions made up to this

point, this is asymptotically the best possible algorithm

for computing this information. We can show this by

demonstrating that computing this information is of the

same complexity as computing the transitive closure of

a matrix.

We consider a single procedure and assume that

we have no control flow information. If P(n) is the

time to propagate values for a program containing n

variables and constants, and T(n) is the time to

compute the transitive closure of an n x n matrix, we

must show that there exists a constant c such that

T(n) < cP(n). Suppose that we have an n Xn binary

matrix M and we wish to compute its transitive

closure. We first create variables Xi and constants Ai,

for 1 s i s n. For each Xi we create an instruction

whose summary indicates a copy to Xi from Ai. For

each 1 in the matrix, say at position (i,j), we create an

instruction whose summary indicates a copy to Xi from

Xj. These instructions constitute the procedure for

which we wish to propagate values. We claim that Xi

has possible value Aj if and only if there is a 1 in

position (i,j) in the transitive closure of M. This

implies that T(n) s P(2n). Since P(n) is bounded by

the time to compute transitive closure, and this is

0(n3), we can assume that P(2n) s 8P(n). From this

we conclude that T(n) < 8P(n).

Now consider the situation in which the program

to be analyzed consists of multiple procedures, and in

which instructions may be calls on primitives,

previously analyzed procedures, or procedures in the

given collection. Operands to primitives and

previously analyzed procedures are passed by reference

while operands to procedures in the collection are

passed by value. Propagating values in this situation is

almost identical to propagating values in the case of a

single procedure. The only difference is that we must

account for the transmission of values from actual

parameters to formal parameters. This can be done in

initializing the relation PVAL. For each call on a

procedure P in the collection, where P is declared with

formal parameters Xi, and the call has corresponding

operands Yi, add the pairs (Xi,Yi) to PVAL. For each

other instruction initialize PVAL as before. Then form

the transitive closure PVAL+. We claim that, as in the

case of a single procedure, this computes correct and

completely precise information, and does so

asymptotically as quickly as possible. The proof is

quite similar to the previous proof; we omit the details.

5.2. CALL BY RE.TERENCE

We now wish to allow parameters to procedures in

the collection to be passed by reference. This means

that when a value Y is copied into a variable X, there

is an implied copy of Y into each alias of X. There

are now two different effects to consider. The first is

the modification of a variable by assignment to it. The

second is the association of a formal parameter with an

actual parameter by a call to the procedure which

owns the formal. To keep track of this information,

we create two relations called MODVAL and

AFFECT. A pair (X,A) in MODVAL means that X is

assigned value A. A pair (X,A) in AFFECT means

that X may be aliased to A and to every other variable

which may be aliased to A. However, it can be the

case that there is some variable which may be aliased

to X but not to A. The characterization of parameter

aliasing with AFFECT was first suggested by Barth

[7]. MODVAL is initialized to all copies which are
specified in the summaries of instructions in the

program. AFFECT is initialized to all formal-actual

parameter pairs which result from calls to procedures

in the collection. Assume for the moment that

constants are never used as actual parameters for calls

to procedures in the collection. We will relax this

restriction in the final version of the algorithm and will

explain the reason for it at that time. Barth shows that

the ALIAS relation, which indicates the possible

aliasing relationships among variables, may be

computed by the expression AFFECT* o (AFFECT*) T.

We claim that the following computation results in

PVAL specifying correct possible values:

PVAL := (AFFECT V ((AFFECT*) T oMODVAL)) ‘,

where R* denotes the reflexive transitive closure of the

relation R, RT denotes the transpose of R, and R+

denotes the non-reflexive transitive closure of R. We

first note a theorem by Barth [7], which states that a

modification of a variable can affect any actual

parameters, including the variable itself, which

87

correspond to the variable, as well as any formal

parameters which correspond to any of those actuals.

Observe that if the variable is not a formal parameter

then the set of corresponding actuals will include only

the variable itself. Furthermore, a modification of a

variable can affect only these variables. He then goes

on to show that AFFECT* gives, for each formal

parameter, all of the possible corresponding actuals.

Now suppose that variable X can have possible

value A at some point in the execution of the program.

There must be a sequence of calls and assignments

which resulted in the assignment of A to X. For each

call in the sequence which matches formal Y with

actual Z, the pair (Y,Z) is in AFFECT and therefore

in PVAL. For each assignment of Z to Y in the

sequence, the pair (Y,Z) is in MODVAL and therefore

in PVAL. Furthermore, if W is aliased to Y, there

exists a U such that W AFFECT* U and

Y AFFECT* U, as shown by Barth. The pair (U,Z)

is therefore in PVAL, since we know that

U (AFFECT*) T o MODVAL Z. The pair (W,U) is also

in PVAL, since each pair in AFFECT is in PVAL.

Since PVAL is closed, the pair (W,Z) must be in

PVAL. Therefore, each pair corresponding to the

values transmitted by each action in the execution

sequence of the program is in PVAL. This implies

each pair corresponding to the values transmitted by

the sequence as a whole must be in PVAL. In

particular, the pair (X,A) is in PVAL. Therefore the

information computed is correct. Since the complexity

of boolean matrix multiplication is the same as that of

transitive closure, the complexity of this algorithm is,

like the previous versions of the algorithm, bounded by

the time to compute the transitive closure of an n x n

matrix. Furthermore, since this algorithm computes

the same information for a single procedure as the

previous algorithm, it can be argued that this algorithm

is asymptotically the fastest possible algorithm for

computing the information which it produces.

This algorithm does not compute completely

precise information. The imprecision stems from the

use of AFFECT to characterize parameter aliasing, and

is discussed by Barth in [7]. As a simple example of

the imprecision, consider the skeleton program in

figure 1. In this example, A should be assigned Q by

the first call on P, and B should be assigned R by the

second call on P. However, the method determines

procedure P(S,T); . . . S:=T; . . . ;

procedure Q;

procedure R;

procedure variable A,B;

P(A,Q);

P(B,R);

Figure 1

that both A and B have possible values Q and R. This

results from the fact that, based on the assignment of

T to S, we propagate all values of T to S and then to

all actual parameters for S. The basic reason for this

is that separate calls on a procedure are not treated

separately.

5.3. POINTER VARIABLES

We now introduce pointer variables into the

programs being analyzed. We do so in two steps, first

considering a single procedure and then allowing

multiple procedures with parameters passed by

reference. As mentioned earlier, it is necessary to

augment the summary information kept for primitives

and previously analyzed procedures to give some

information about indirect accesses through variables.

To simplify the summaries no information will be kept

about the number of levels of indirection involved in

accessing storage through a pointer, e.g., in accessing

an element of a list. Instead, a distinction is made

only between a direct access of a variable and an

access of storage via some positive number of

indirection on a variable.

The summaries must now distinguish between four

types of copies. Letting P and Q denote variables and

*P and *Q denote storage accessible through the

variables, these four types are as follows:

l) P:=Q

2) P := *Q

3) *P := Q

4) *P := *Q

Two other types of copies are also allowed. These

involve the assignment of the address of a variable to

another variable or to storage accessible through

another variable. These are as follows:

5) P := addr(Q)

6) *P : = addr(Q)

We will utilize the relations AFFECT and MODVAL.

Previously these relations dealt with the variables and

values which were interesting in terms of propagating

values. To handle pointers and the transmission of

values via assignments to storage accessible through

pointers, we introduce dummy “variables” for each

pointer variable. For a pointer variable P this dummy

variable is meant to represent the storage accessible

through P and will be denoted by *P. To propagate

aliasing information correctly based on the assignment

of the address of a variable to another variable, we

introduce dummy literals for each variable whose

address is copied. For a variable Q whose address is

copied (cases 5 and 6 above), this literal will be

denoted by AQ and represents the address of Q.

88

l) P:=Q

Add the pair (P,Q) to MODVAL.
Add the pair (* P,*Q) to AFFECT,

2) P := *Q

Add the pair (P,*Q) to MODVAL.

Add the pair (* P,*Q) to AFFECT.

3) *P := Q

Add the pair (*P,Q) to MODVAL.

Add the pair (* P,*Q) to AFFECT.

4) *P := *Q

Add the pair (* P,*Q) to MODVAL.

Add the pair (* P,*Q) to AFFECT.

5) P := addr(Q)

Add the pair (P,AQ) to MODVAL.

Add the pair (*P,Q) to AFFECT.

Add the pair (* P,*Q) to AFFECT.

6) *P := addr(Q)

Add the pair (*P,AQ) to MODVAL.

Add the pair (*P,Q) to AFFECT.

Add the pair (* P,*Q) to AFFECT.

Figure 2

Figure 2 describes the initialization of AFFECT

and MODVAL for each type of copy. If one element

of a copy, say X, is not a pointe~ ‘variable, then all

pairs involving *X should be ignored. TO give some

intuition about the reasons for initializing the relations

in this manner, consider the simple assignment P : = Q.

If P and Q are pointer variables, this has two effects.

First, it results in P (and any alias of P) acquiring the

value contained in Q. It also causes any storage

accessible through Q to be accessible through P, from

which it follows that every alias of *Q is an alias of

*P,

There are many similarities between the effects

which occur due to parameter aliasing and those

occuring due to the use of pointers. If there are

several assignments to a pointer P, say from Q and R,

then *P is aliased to both *Q and *R, but *Q and *R

are not necessarily aliased. On the other hand, if p is

assigned to several pointers, say Q and R, then *Q and

*R are both aliased to *P and, since Q and R may be

assigned the same value, *Q and *R are aliased to each
other. These two situations are very similar to two

situations which can occur with reference parameters,

the first being when two different actual parameters

are passed to the same formal parameter, and the

second being when a single actual is passed to two

formals, In fact, parameter aliasing behaves much like

pointer aliasing, something which makes more sense

when we consider the fact that a call binds the formal

parameters to the locations occupied by the
corresponding actual parameters for the duration of

the call. In effect, for formal X and actual Y, there is

an assignment of the form addr(X) : ❑ addr(Y).

Taking addr(X) to be a variable, so that the storage

accessible through it is simply X, we see that the

initialization for such a copy is exactly that used in

initializing the relations for a call using

call-by-reference; i.e., add the pair (X,Y) to AFFECT.

However, the algorithm which we used to

propagate values for reference parameters is not

sufficiently general to handle pointers. Although the

effects are very similar in the two cases, there is one

crucial difference. We mentioned that the binding of a

formal parameter to an actual parameter is in effect an

assignment of the address of the actual to the address

of the formal. Considering these two addresses to be

variables, this almost models the situation which occurs

with pointers. The difference with pointers is that the

variables which contain addresses can be aliased as

well, and so assignments to a pointer variable must be

propagated to all of the aliases of the variable. This

includes assignments of the address of a variable (cases

5 and 6). Furthermore, for any variable which is

assigned the address of another variable, it is necessary

to ensure that the appropriate aliasing is computed

between the second variable and the storage accessible

through the first variable.

The method which we choose to solve this problem

is to iterate. For each modification to a variable which

we discover, we will add the aliasing relationships

implied by that modification and then iterate to see if

this produces any more modifications. This produces

the algorithm in figure 3. The function ind returns the

object which denotes storage accessible via one level of

indirection on X. If X is of the form AY, Y is

returned. If X is of the form Y and Y is a pointer

variable, *Y is returned; if Y is not a pointer variable

then the pair should be ignored. Finally, if X is of the

form *Y, *Y itself is returned.

For each modification X := Y, this explicitly

propagates the implied aliasing information to all Z

such that X AFFECT* Z. The propagation to other

aliases of X, e.g., to those Z such that

Z AFFECT* X, is already done by virtue of the fact

that whenever we have Z AFFECT* X we also have

initialize AFFECT and MODVAL as indicated above.

repeat

M : = (AFFECT*) T o MODVAL

for each (X,Y) in M

Add (ind(X),ind(Y)) to AFFECT

Add (ind2(X),ind2(Y)) to AFFECT

until there is no change in AFFECT

PVAL : = (AFFECT v ((AFFECT*) T oMODVAL))+

Figure 3

89

Z AFFECT *X. Adding (* X,*Y) to AFFECT and

then recomputing the closure of AFFECT will give

Z AFFECT *Y, as desired.

The key to demonstrating the correctness of this

algorithm lies in the definition of AFFECT.

Remember that a pair (X,Y) in AFFECT means that

every alias of Y is also an alias of X. Now suppose

that variable X has value A at some point in the

execution of the program. There must be a sequence

of assignments which results in the assignment of A to

x. Assume that for the ith assignment in the

sequence, all of the possible aliasing which can result

from previous assignments is embodied in AFFECT.

We will show that the same is true for the aliasing

which results from the ith assignment. The proof of

the correctness of the computation of PVAL is then

identical to the proof used for reference parameters.

We first note that for each possible assignment

which appears in the program, AFFECT is initialized

such that if an assignment is the first in the sequence,

the aliasing computed from AFFECT is correct after

considering that assignment. The ith assignment in the

sequence, however, could assign a value not just to the

explicit target of the assignment, but also to any aliases

of that target. Assuming that AFFECT contains at

least the aliasing information resulting from the

previous i-1 assignments, and that the target of the ith

assignment is W, the computation of M finds all

possible modifications of those Y such that

W AFFECT* Y. The aliasing implied by these

modifications is then entered into AFFECT. We must

show that forming the closure of AFFECT computes

all aliasing which could result from the ith assignment.

Since W may alias any Z for which there exists a Y

such that W AFFECT* Y and Z AFFECT* Y, we

must show that the pairs entered in AFFECT by the

loop over the pairs in M cause the aliasing for each

such Z to be correct. We have shown that this is true

for each Y such that W AFFECT* Y. Since, as may

be easily verified, *Z AFFECT* *Y is true if

Z AFFECT* Y is true, the aliasing which was entered

for Y is transferred to Z when the closure of AFFECT

is recomputed. This means that the aliasing is correct

after considering the ith assignment, from which we

can deduce that the aliasing is correct after considering

the sequence of assignments. Therefore the

computation of PVAL is correct, and so A is

determined as a possible value for X.

We claim that this algorithm is precise as well as
correct, given the assumption that no information

about control flow is available. Observe that a pair

(X,Y) in AFFECT means that every alias of Y, as

computed by the expression AFFECT* o (AFFECT*) T,

is also an alias of X. Now observe that this is actually

the case for every pair which is placed into AFFECT

because of a modification. From this it follows that

the aliasing is precise, which implies that the

computation of PVAL produces precise information.

The reason why the aliasing information computed

is precise for pointers but not for reference parameters

is that the call structure of the program contains

information about the relative lifetimes of the alias

relationships for parameters. Unless control flow

information is considered, no such information is

available for aliasing due to pointers within a single

procedure.

Allowing multiple procedures in the collection with

parameters passed by reference requires a change only

in the initialization of AFFECT. No change in the

propagation algorithm itself is required. For each call

with operands Yi to a procedure with formal

parameters Xi, the pairs (Xi>Yi) and (* Xi, *Yi) should

be added to AFFECT. The initialization for all other

statements is as above. We omit the details of the

proof of correctness for this version of the algorithm.

The algorithm has the same imprecision as it did for

programs with reference parameters and without

pointers.

Before discussing the time requirements of this

algorithm, we make an observation about the algorithm

itself. This is that it is not necessary to recompute the

transitive closure of AFFECT each time through the

loop, nor is it necessary to consider the effects on M

of a pair in AFFECT whose effects have already been

considered. In other words, we can propagate the

effects of modifications incrementally. This leads to

the equivalent version of the algorithm given in figure

4. In this algorithm, we keep track of all recently

discovered aliasing relationships and determine any

modifications implied by these relationships. We then

compute the aliasing relationships implied by these

Initialize AFFECT and MODVAL as indicated above.

AFFECT : = AFFECT+

NEWA : = AFFECT

do while NEWA * @

M : = NEWAT oMODVAL

NEWA : = qJ

for each (X,Y) in M

Add (ind(X),ind(Y)) to NEWA

Add (ind2(X),ind2(Y)) to NEWA

Remove those pairs from NEWA that are already in

AFFECT.

Add each pair in NEWA to AFFECT and reform the
closure of AFFECT.

Let NEWA be all those pairs which were added to

AFFECT by the previous statement,

end

F’VAL :. (AFFECT V ((AFFECT*) T oMODVAL))+

Figure 4

90

modifications, and continue this process until no new

aliasing is discovered.

Let n be the size of the domain of the relations.

Let e be the total number of pairs in AFFECT* when

the algorithm finishes. The initial closure of AFFECT

can be done in time T(n). The computation of the

contribution of a single pair in NEWA to M can be

done in time n. Every pair in AFFECT appears in

NEWA at this point in the program at most once.

Therefore the total time spent in the computation of M

for all iterations of the outermost loop is at most ne.

The loop over the elements of M can be done as M is

computed, and so the total time spent in this loop is at

most ne. The time spent deleting those pairs in NEWA

which are already in AFFECT is proportional to the

number of such pairs. There are at most 2ne such

pairs for all iterations of the outermost loop, since the

total number of pairs placed in M for all iterations of

the outermost loop is at most ne. Finally, the forming

of the closure of AFFECT can be done in time at most

n for each pair which is added to AFFECT, whether it

is in NEWA or is added in forming the closure after

adding a pair in NEWA. There are at most e such

pairs, so the total time spent forming the closure of

AFFECT for new pairs is at most ne. The

computation of PVAL can be done in time O(T(n)).

The total time for the algorithm as a whole is therefore

O(T(n) +-ne).

5.4. CALLS ON PROCEDURE VARIABLES

The final step is to consider propagating values

through calls on procedure variables. The basic

problem with a call on a procedure variable is that at

the time the call is encountered in scanning the

program, the possible values for the variable, and

hence the actual procedures which might be called by

the statement, are unknown. Therefore it is not

possible to immediately associate the actual parameters

of the call with the formal parameters of the procedure

being called. To avoid rescanning the program several

times, we need a mechanism to keep track of the

actual parameters of calls on procedures variables.

When a value is determined for a procedure variable,

we can then associate the actual parameters of the

calls on the variable with the formal parameters of the

value.

The mechanism which we choose to accomplish

this is to create, for each procedure variable, dummy

formal parameters. For a given procedure variable X

which is called with m actual parameters, we create m

dummy formal parameters XFij for 1 sism. We also

create dummy variables *XFi for each dummy formal

parameter, representing the storage accessible through

the dummy formal. The number of dummy formal

parameters which need to be created can be

determined by an initial scan of the program which

keeps track of the number of actual parameters passed

to each procedure variable. If the source language

requires complete type specifications of procedure

variables, i.e., that the types of the parameters be

specified as well, then the number of dummy formal

parameters which are needed for each procedure

variable can be determined from the declaration of the

variable. Also, entries *XFi only need to be created

for those parameter positions which have pointer types.

Having created dummy formal parameters for each

procedure variable, the initialization required for a call

on a procedure variable is exactly that for a call cfi G

procedure in the collection. If the call has actual

parameters Yi and is to procedure variable X with

dummy formal parameters XFi, the pairs (XFi,Yi) and

(*xFi,*Yi) should be added to AFFECT.

If we consider a procedure variable X to be a

procedure with formal parameters XFi which contains

a single statement, that statement being a call on the

current value of X with actual parameters XFi, it

should be clear that each time a value A is determined

for X we should associate the formal parameters of A

with the dummy formal parameters of X as

formal-actual pairs. One way in which this can be

done, as suggested by Kenneth Walter [13], is to

create relations FPARMi, one for each parameter

position. A pair (X,Y) in FPARMi means that X has

ith formal parameter Y. For each procedure A in the

collection with formal parameters Yi, the pair (A,Yi) is

placed in FPARMi for each parameter position i. For

each procedure variable X with dummy formal

parameters XFi, the pair (X,XFi) is placed in FPARMi

for each parameter position i. Now suppose that A is

determined as a possible value for X. If Yi is the ith

formal parameter of A, and A is a possible value for

X, and X has ith formal parameter XFi, then the pairs

(Yi,XFi) and (* Yi,*XFi) should be added to AFFECT.

The expression FPARMi T o PVALT o FPARMi computes

the pair (Yi$XFi). This leads to the algorithm in figure

5. This algorithm, like the one developed for pointers,

Initialize AFFECT and MODVAL as indicated above.

repeat

M : ❑ (AFFECT*) T oMODVAL

for each (X,Y) in M

Add (ind(X),ind(Y)) to AFFECT

Add (ind2(X),ind2(Y)) to AFFECT

PVAL : = (AFFECT v ((AFFECT*) T 0MODVAL))+

for each parameter position i

P : = FPARMiT oF’VAL~ oFPARMi

for each (X,Y) in P

Add (X,Y) to AFFECT

Add (ind(X),ind(Y)) to AFFECT

until there is no change in AFFECT

PVAL : = (AFFECT v ((AFFECT*) T oMODVAL)) +

Figure 5

91

can be transformed into an equivalent algorithm which

propagates information incrementally. A similar time

bound can also be derived for it. Its correctness

should be fairly clear given the correctness of the

algorithm for programs without calls on procedure

variables, and we omit the proof.

We mentioned earlier that actual parameters to

calls on procedures in the collection or on procedure

variables should be restricted to be variables and not

constants. The reason for this was to avoid

unnecessarily complicating the discussion of aliasing,

since constants are passed by value under

call. by-ref erence. The solution to this is to initialize

PVAL with all pairs (X,A) such that there is a call to

a procedure (or procedure variable) with formal

parameter X and corresponding actual parameter A.

No entry is made in AFFECT for such pairs. The

computation of

pvAL :. (AFFECT v ((AFFECT*)’ oMODVAL)) +

is then changed to assign

(pVAL v AFFECT v ((AFFECT*)’ .MODVAL))+

to PVAL. In this way constant actual parameters are

propagated but no values may be attributed to them

due to modification of the corresponding formals.

6. THE ALIAS RELATION

The ALIAS relation, as mentioned earlier, can be

computed by the expression

(AFFEcT*) o (AFFEcT*)T [71.

This relation gives an answer to the question “Is it

possible at some point in the program for variable A to

be aliased with variable B?” The obvious ways to store

this relation, e.g., as a boolean matrix, or as a list for

each variable of the variables to which it might be

aliased, take space which is roughly proportional to the

square of the number of variables. In many situations,

however, it is the case that there are sets of variables

which are equivalent under this relation. We define

equivalence of two variables to mean that they may be

aliased to each other and that the sets of variables to

which they may be aliased are identical. Each such

class could potentially be stored in space linearly

proportional to the number of variables in it, rather

than to the square of that number, The amount of

storage required for the ALIAS relation is then C2

rather than V2, where c is the number of classes (which

may be of unit size) and v is the number of variables.

This is especially useful in ECS because of the large

number of temporaries which are generated for

constructs such as array indexing, and which fall into

fairly large classes of equivalent variables.

We prove the following theorem, which gives a

necessary and sufficient condition for two variables to

be equivalent as defined above.

Theorem: Given the relation AFFECT, consider it as

a graph and find its maximal strongly connected

components. Replace each such component with a

new node identified with the component. This leaves a

directed acyclic graph (DAG). Define a sink in the

DAG to be a node which has no edges coming out of

it. A node X in the original graph is a sink if the node

identified with the strongly connected component

containing X is a sink in the DAG. We say that node

A reaches node B if there is a path, possibly of length

zero, in the graph from A to B. Two nodes in the

original graph are equivalent if and only if they reach

the same set of sinks [8].

Proofi We will consider AFFECT and ALIAS as

graphs, derived in the obvious way from the relations

previously discussed, and will give the proof in terms

of nodes and edges of these graphs. AFFECT is a

directed graph, while ALIAS may be considered as an

undirected graph, since the ALIAS relation is

symmetric. This is easily seen from the definition of

ALIAS. When we speak of an edge in ALIAS, we

henceforth mean an undirected edge. Also, when we

speak of a node X reaching a node Y, we mean that

there is a path from X to Y in AFFECT, unless stated

otherwise. A path is defined as a possibly empty

sequence of edges.

We note that there is an edge between node X and

node Y in ALIAS if and only if there exists a node Z

such that X reaches Z and Y reaches Z. This follows

immediately from the definition of ALIAS in terms of

AFFECT. Two nodes X and Y are equivalent if and

only if the following three conditions hold: there is an

edge between X and Y in ALIAS; for each edge

between X and some node Z in ALIAS there is an

edge between Y and Z; for each edge between Y and

some node Z in ALIAS there is an edge between X

and Z. In other words, two nodes are equivalent if

and only if they alias each other and the sets of nodes

which they alias are identical.

Lemma: X ALIAS Y is true if and only if there

exists a sink Z such that X reaches Z and Y reaches Z.

Proof of Lemma: From the definition of ALIAS, it is

clear that X ALIAS Y is true if and only if there

exists a node W such that X reaches W and Y reaches

W. Therefore, if there exists a sink Z such that X

reaches Z and Y reaches Z, it follows that

X ALIAS Y is true. We now show that such a Z

exists if X ALIAS Y is true. Let W be such that X

reaches W and Y reaches W. Consider the DAG

derived from AFFECT in the statement of the

theorem. Let U be the node in the DAG which is

92

identified with the strongly connected component

containing W. U must reach some sink V in the DAG.

Let Z be a node in the strongly connected component

identified with V. Since U reaches V in the DAG, it

follows that W reaches Z. This means that X reaches

Z and Y reaches Z. V is a sink, implying that Z is a

sink, and so Z is the desired node.

We now prove the theorem, first showing that if X

and Y reach the same set of sinks they are equivalent,

and then showing that if they reach cliff erent sets of

sinks, they are not equivalent.

Suppose that X and Y reach the same set of sinks.

Since this set is necessarily non-empty, they are aliased

to each other. Suppose that X ALIAS W is true. Let

Z be a sink such that X reaches Z and W reaches Z, as

in the lemma. Since X reaches Z, it follows by

hypothesis that Y also reaches Z. By the lemma, it

follows that Y ALIAS W must be true. Similarly, if

Y ALIAS W is true it follows that X ALIAS W is

true. Therefore X and Y are equivalent.

Now suppose that X and Y are equivalent.

Furthermore, suppose that there exists a sink Z which

one of them, say X, reaches, and which the other one,

say Y, does not reach. By the lemma, it follows that

X ALIAS Z is true, since a sink reaches itself.

Furthermore, there is no W such that Y reaches W and

Z reaches W, since Z reaches only itself, being a sink,

and Y does not reach Z. Therefore Y ALIAS Z is not

true. This gives a contradiction, since we have found a

node Z such that X ALIAS Z is true and Y ALIAS Z

is not true, implying that X and Y are not equivalent.

This completes the proof of the theorem.

This theorem leads naturally to a reasonably

efficient method for computing the sets of equivalent

variables. These sets can then be used for storing the

ALIAS relation. Strongly connected components can

be computed in time O (max(n,e)), where n is the

number of nodes in AFFECT and e is the number of

edges [1]. Deciding which nodes are sinks can be

done by first forming the reflexive transitive closure of

AFFECT, and then checking each strongly connected

component to see if there is an edge from any node in

the component to a node in another component. If

there is no such edge then the component, and each

node in it, is a sink.

A technique described by Wegman and Carter [14]

can then be used to partition the nodes into classes

based on the sets of sinks which they reach. This

technique involves hashing the sinks which a given

node reaches, exclusive-oring the results of the hash

together to get a new representation of the set. Having

found the new representation of the set of sinks

reached by each node, the nodes can be partitioned

very quickly based on the equality of these

representations by using a hash table. For those nodes

whose sets of sinks have the same such representation,

the actual sets should be compared. This is because

the representation is guaranteed to be unique only

within a specified probability [14].

7. SUMMARY

In this paper we have presented an approach to

interprocedural data flow analysis for programs which

use pointers, label variables, and procedure variables.

We have stated as the major obstacle to such analysis

the problems of determining the call graph, the control

flow graph, and the alias relationships in the program,

and have presented an algorithm for determining these

program characteristics. Subject to the basic

assumption that information about control flow is not

available, we have shown that the algorithm is precise

for programs containing simple assignments and

multiple procedures, with parameters passed by value.

Assuming that information about the number of levels

of indirection involved in accessing storage through a

pointer is not available, we have shown that the

algorithm is precise for programs containing pointer

variables, as long as the program consists of a single

procedure. The algorithm is in fact precise for

programs containing multiple procedures and pointer

variables as long as pointers are not passed as

parameters. When pointers may be passed as

parameters, or parameters are passed by reference, the

information produced by the algorithm is no longer as

precise as possible. Similarly, when the program may

contain calls to procedure variables the information

produced lacks some precision.

We have also shown that the problem of

determining possible values for procedure variables is

P-space hard. This fact makes it unlikely that a

method exists which is both precise and reasonably

efficient. In certain cases we have shown that the

algorithm is asymptotically as efficient as possible. We

have also discussed some characteristics of the aliasing

information which is produced, and have shown how

these characteristics can be used to store the

information more efficiently.

It is still an open question whether it is possible to

produce better information without any loss of

efficiency. It is also open as to whether iteration is

required in cases involving aliasing and calls on

procedure variables. It may be that the information

produced can be computed in time bounded by the

time to compute the transitive closure of an n x n

matrix. It is also possible that certain restrictions on

the use of procedure variables and reference

parameters may make it possible to compute the

desired information both precisely and efficiently.

93

8. ACKNOWLEDGEMENTS

The author would like to thank Bill Harrison for

suggesting this work. He, Louise Trevillyan, and Larry

Carter deserve thanks for the many helpful suggestions

which they made as these algorithms were being

developed. Steve Ward also provided many

suggestions on the work. Jeanne Ferrante, Janet Fabri,

Fran Allen, John Guttag, and the others mentioned

above also deserve thanks for their comments on

previous drafts of this manuscript which greatly

improved the presentation. Mark Wegman provided

some key insights in analyzing the time requirements of

the algorithm. Finally, IBM itself should be thanked

for providing the opportunity to do this work through

the MIT VI-A cooperative program.

9. REFERENCES

1.

2.

3.

4.

5.

6.

Aho, A. V., Hopcroft, J. E., and Unman, J.D.

Design and Analysis of Computer Algorithms,

Addison-Wesley, 1974,

Aho, A.V. and Unman, J.D. Principles of

Compiler Design, Addison-Wesley, 1977.

Allen, F.E. Interprocedural Data Flow Analysis.

Proceedings IFIP Congress 74, North Holland

Publishing Company, Amsterdam, 398-402.

Allen, F.E. and Cocke, J. A Program Data Flow

Analysis Procedure. CACA4 19, 3 (March

1976), 137-147.

Allen, F. E., et. al. The Experimental Compiling

Systems Project. IBM Research Report RC67 18,

T.J. Watson Research Center, Yorktown Heights,

N.Y. September 1977.

Banning, J.P. A Method for Determining the

Side Effects of Procedure Calls. Ph.D. Thesis,

7.

8.

9.

10.

11.

12.

13,

14.

15

16

Stanford University. Report No. 213, Stanford

Linear Accelerator Center (August 197 8).

Barth, J. Interprocedural Data Flow Analysis

Based on Transitive Closure. Univ. of California

at Berkeley, Computer Science Dept., Tech. Rep.

UCB-CS-76-44, September 1976.

Carter, J.L. Private Communication.

Graham, S.L. and Wegman, M. A Fast and

Usually Linear Algorithm for Global Flow

Analysis. JA CM 23, 1 (January 1976), 172-202.

Rosen, B.K. Data Flow Analysis for Procedural

Languages. JACA4 26, 2 (April 1979), 322-344.

Ryder, B.G. Constructing the Call Graph of a

Program. IEEE Transact ions on Soft ware

Engineering SE-5, 3 (May 1979), 216-226.

Spillman, T.C. Exposing Side-Effects in a PL/I

Optimizing Compiler. Proceedings IFIP

Conference 1971, North Holland Publishing

Company, Amsterdam, 376-381.

Walter, K.G. Recursion Analysis for Compiler

Optimization. CACM 19, 9 (September 1976),

514-516.

Wegman, M. N., and Carter, J.L. New Classes

and Applications of Hash Functions. Proceedings

2 Oth Annual Symposium on Foundations of

Computer Science (October 1979), 175-182.

Weihl, W .E. Interprocedural Data Flow Analysis

in the Presence of Pointers, Procedure Variables,

and Label Variables. S. M. Thesis, Massachusetts

Institute of Technology (to be published).

Winklmann, K.A. A Theoretical Study of Some

Aspects of Parameter Passing in ALGOL60 and

in Similar Programming Languages. Ph.D.

Thesis, Purdue University (August 1977).

94

