
Improving the Development of e-Business Systems by
Introducing

Process-Based Software Product Lines1

Joachim Bayer, *Mathias Kose, Alexis Ocampo

Fraunhofer Institute for Experimental Software Engineering (IESE)
Fraunhofer-Platz 1, D- 67663 Kaiserslautern, Germany

{joachim.bayer, alexis.ocampo}@iese.fraunhofer.de

*ehotel AG
Greifswalder Strasse 207, D-10405 Berlin, Germany

mkose@ehotel.de

In the e-Business domain, workflows are central artifacts that are used to spec-
ify application systems. To realize reuse at a large scale for e-Business applica-
tion systems, therefore, workflows need to be reused systematically. To this end
workflows must be classified, documented, and stored in a way that enables
their identification, evaluation, and adaptation in order to integrate them in an
application. Software product line engineering is an established and approved
software engineering approach that addresses these issues by handling a number
of similar software systems together, enabling large scale reuse during the de-
velopment and maintenance of the different systems covered by the product
line.

In this paper, we transfer the concepts of software product line engineering to
the domain of e-Business systems by applying the product line techniques to
workflows and present initial validation results.

1 Introduction

Survival in today’s highly dynamic business environments requires that organizations
continuously adapt their business processes. Success and growth rather than mere
survival require that this adaptation be rapid enough to realize the competitive advan-
tage offered by new business opportunities. The conduction of business in the internet
(e-business) including buying and selling but also services and collaboration can be
seen as one of these new important business opportunities. Mechanisms for rapid
description, implementation, and deployment of such business processes become
important. Currently, business processes are often represented by business process
models. Business processes models are partially implemented through workflows [9]

1 This work has been partially funded by the PESOA project (Process Family Engineering in

Service-Oriented Applications) funded by the German federal ministry of education and re-
search (BMBF) (Förderkennzeichen: 01 ISC 34E)

2 Joachim Bayer, Mathias Kose, Alexis Ocampo

and deployed and executed in workflow environments, which show graphically the
different steps of a business process (i.e., the business logic). According to [16], busi-
ness processes connect a set of business functions, where the connections are con-
trolled by business rules. Those business rules are specific for an enterprise and spe-
cific at a certain point in time. However, changes in business rules and objectives are
an everyday issue that demands capabilities to be able to react and adapt to such
changes. Therefore, new rules and objectives can inevitably result in a large number
of processes that vary in relatively minor ways. One way to control this proliferation
and its attendant risks is to analyze commonalities and differences between the differ-
ent process models in order to identify process variants and justifications for them
[13], and to systematically integrate them in a software product line [6].

The following sections describe briefly the basic concepts of product line engineer-
ing and the mapping that we have done to process-based product lines, describe the
details of the approach we have developed, and provide a preliminary validation (in
terms of an example of its use).

2 Conceptual Foundation

2.1 Product Line Engineering Concepts

The underlying idea of product line engineering is to reuse common parts of related
software systems. To this end, varying aspects of software systems, that is, differ-
ences among them are explicitly documented. Product line engineering distinguishes
two development phases – domain and application engineering – as presented in Fig-
ure 1. The initial activity, scoping, defines which systems are members of a product
line and which systems are outside the product line. Scoping is done by investigating
a set of concrete products, be it already existing, planned, or envisioned products. The
result of scoping is a set of products that make up the product line along with the
features of the different product line members.

Based on a scope definition, domain engineering identifies the common features
(commonalities) and the variable features (variabilities) of the identified products.
Commonalities define the skeleton of the systems in the product line; variabilities

Figure 1. Product Line Engineering

Joachim Bayer, Mathias Kose, Alexis Ocampo 3

bound the space of required and anticipated variations of the products in the product
line. Each artifact produced during domain engineering contains the commonalities
and specially labeled variabilities. These so-called variant-rich artifacts are stored in
the product line infrastructure.

During application engineering, the product line infrastructure is instantiated to
create a concrete product; the commonalities are reused and the variabilities are re-
solved for the specific product.

2.2 Process Based-Oriented Product Lines

A number of approaches for software product line engineering have been proposed
[4],[7],[12]. Application domains that use processes, such as workflow or technical
processes, as driving software development artifacts are, however, neglected to a
large extent by product line research. The main problem in applying product line
engineering techniques in such domains is that processes describe flows of activities
and, consequently, variability covers different flows. The techniques traditionally
proposed in product line engineering, however, provide means for the modeling of
static diagrams rather than for dynamic ones. For example, the modeling of variability
that results in different sub-processes that are exchanged for different products is not
well supported. Another issue is that software generation traditionally also focuses on
static models.

In this section, we present our approach for process-based product line engineer-
ing. The approach is based on PuLSE™ [2] (PuLSE™ is a registered trademark of
Fraunhofer IESE) that is an approach for product line engineering that is developed
and used in technology transfer projects since 1997. To adapt PuLSE™ for process-
based product line engineering, we combined it with variability mechanisms [14] and
software generation [8].

The core concepts of our approach to process-based product line engineering are
variant-rich workflows or processes, which are workflows or processes that contain
variabilities. To augment workflows used to model e-Business systems with the pos-
sibility to model variability in an explicit way, we use the approach proposed in [11].
This approach forms the basis for variability and decision modeling in PuLSE TM and

Figure 2. Process-based Product Line Concepts

4 Joachim Bayer, Mathias Kose, Alexis Ocampo

provides a systematic way to extend any given software engineering artifact to be
generic, that is, to enable the explicit modeling of variability in that artifact.

As presented in Figure 2, a product line infrastructure contains variant-rich proc-
esses and decision models. A variant-rich process contains variation points that repre-
sent its variability. A decision model contains the relationships among the variations
of a product line infrastructure. Such decision models contain decisions, which are
variation points that constrain the resolution of other variation points. A variant-rich
process contains process elements, for instance activities, inputs, outputs, or roles.
Those process elements that contain variation points are called variant-rich process
elements.

Figure 3 provides an example that illustrates these concepts. It shows the flow be-
tween the “Create Order”, “Pay Order”, and “Send Invoice” process elements of an
online shop. The “Pay Order” process element contains three alternatives (telephone,
credit card, and bank transfer). The process element has one interface that interacts
with the “Create Order” process element. At this point three alternatives split, and one
of them must be chosen in order to resolve this variation. The resolution of the varia-
tion determines the path taken by the flow. The three alternatives converge in another
interface that joins them. This interface is used to communicate the output of the “Pay
Order” process element. The same can be observed in the case of the “Invoice” proc-
ess element, an output that contains two alternatives (America or Europe), and two
interfaces. This means that depending on the continent of destination, the invoice to
be sent to the customer will have different fields of information (e.g., currency, ad-
dress). One optional variation point can be assigned to the “Email” output process
element. “Email” has only two alternatives i.e., yes or no. Therefore, once the varia-

Create Order
Pay Order
via Credit

Card

Pay Order
via Bank
Transfer

Pay Order
via

Telephone
Alt 2.1

Alt 1.1: If payment method = Telephone

Alt 1.2 : If payment method = Credit card

Alt 1.3 : If payment method = Bank transfer

Alt 1.2

Alt 1.3

Variant Rich Process

Alternative
Variation

Point

Decision
model

Pay Order

Alt 2.2

Invoice

Alt 2.1: If continent = America

Alt 2.2 : If continent = Europe

Alt 1.1

Send Invoice

Alternative
Variation

Point

Opt 1

Opt 1: If email = Yes

Optional
Variation

Point

Email

Printed

Document

Interface Interfaces Interface

Figure 3. Variant-rich Process Example

Joachim Bayer, Mathias Kose, Alexis Ocampo 5

tion points are resolved, the client has the possibility of receiving the invoice both as
printed document or email.

2.3 The Systematic Approach for Developing Process-Based Product Lines

Figure 4 shows our systematic approach for developing a process-based product line.
As mentioned above, the initial activity in product line engineering is scoping. The

underlying idea of scoping is on the premise that one shall obtain as much return on
investment as possible from the effort of establishing a process-based product line
infrastructure. Using as input an existing or a planned set of process-based products a
subset of such products is selected. Afterwards, the selected products are related to the
features that they should offer. This information is recorded in a domain scope defini-
tion.

The domain analysis begins by using the defined domain scope as input for identi-
fying relationships among features (e.g., consists-of, requires). Afterwards, in the
activity model features, such relationships are captured in a hierarchical structure [10]
or a tabular representation.

The resulting feature model can be used as basis for identifying and documenting
the requirements for those processes that will be part of the process-based product line
infrastructure. Such processes shall be conceived as building blocks that can be re-
used.

The domain design begins with the design processes activity. Here, using as input
the list of identified processes, a commonality analysis among processes is performed
in order to identify variant-rich process elements. At the moment there are not many
techniques or approaches on how to perform such a comparison. One idea can be

Domain
Scoping
Domain
Scoping

S
co

pi
ng

Model
Features
Model

Features

Identify
Processes
Identify

Processes

Model
Features
Model

Features

Identify
Processes
Identify

Processes

D
o

m
ai

n
 A

n
al

ys
is

Design
Processes
Design

Processes

Model
Decisions
Model

Decisions

D
o

m
ai

n
 D

es
ig

n

Implement
DS Generator
Implement

DS Generator

Implement
DS

Components

Implement
DS

Components

Implement
DS Generator
Implement

DS Generator

Implement
DS

Components

Implement
DS

Components

D
o

m
ai

n
Im

p
le

m
en

ta
ti

o
n

Specify
Product
Specify
Product

Configure
Product

Configure
Product

Apply
DS Generator

Apply
DS Generator

Build,
Integrate, and

Test

Build,
Integrate, and

Test

Apply
DS Generator

Apply
DS Generator

Build,
Integrate, and

Test

Build,
Integrate, and

Test

A
p

p
lic

at
io

n
A

n
al

ys
is

A
p

p
lic

at
io

n
D

es
ig

n
A

p
p

lic
at

io
n

Im
p

le
m

en
ta

tio
n

Project Management

Figure 4. Process-based Product Line Engineering

6 Joachim Bayer, Mathias Kose, Alexis Ocampo

taken from [12], where a systematic comparison of a set of software process models is
illustrated. The commonalities and variabilities detected among variant-rich process
elements are then integrated into their respective variant-rich process.

Relationships among variation points are identified and documented in the decision
model.

This way, a process-based product line infrastructure that contains variant-rich
processes elements, process elements, and a decision model has been produced.

The next step is domain implementation. It starts with the activity implement do-
main-specific generator that consists of identifying the domain-specific functional-
ities to be covered by a generator based on the commonalities and variabilities con-
tained in the process-based product line. Code fragments implementing these func-
tionalities are defined. They are connected to the process’ variabilities, that is, each
variation point is annotated by one or more code fragments.

Once the domain-specific functionalities have been identified, DS components are
implemented as follows: First, functionalities that are to be implemented by generic
components are identified based on the commonalities present in the process-based
product line. Such components are referred to as runtime components. Then, compo-
nents that are needed to process the generator’s output are identified. They are re-
ferred to as infrastructure components. Once the DS components are implemented, a
process-based product line infrastructure can be used for automatically generating
new products according to new requirements.

The first step to derive a concrete product from the product line infrastructure is
application analysis. It starts by specifying the new product based on the scope defini-
tion of the existing process-based product line infrastructure, and the feature model.
Those features that are estimated to be realizable are mapped to the actual products
from the process-based product line infrastructure. Such mapping must be docu-
mented in a product feature model. Those features that are not yet planned in the
process-based product line shall be documented in a list of not covered features,
which will be later integrated in the scope of the process-based product line.

The next step is to configure the product, in which the decision model is used for
resolving the variation points based on the new product features. The resolution of the
variation points and their relationships are documented in the resolution model.

Finally, the appliance of the domain-specific generator starts with importing data
from a resolution model, followed by triggering the generation of target code. If there
are additional variabilities that are not part of the process-based product line, for ex-
ample technical ones specific for the target platform, they can be configured and re-
solved before triggering the code generation.

The generated target code is subject to further processing by the use of infrastruc-
ture components, including the domain-specific ones. The resulting executables have
to be built and integrated with the needed runtime components. Together they form
the product that might be tested in order to complete the implementation.

More details on the approach can be found in [3].

Joachim Bayer, Mathias Kose, Alexis Ocampo 7

3 Validation

ehotel AG is a technology organization that specializes on developing software suit-
able for processing hotel reservations. It distinguishes because of its software devel-
opment experience and know-how in the traveling business but especially in the hotel
industry. ehotel AG develops and operates a software platform that supports hotel
booking operations. The platform can be accessed through a browser interface or
through a XML-/Web service interface. The XML-/Web service interface allows the
integration of the platform in external IT-Systems. The rationale behind having such
an interface was to integrate ehotel’s solution with as many different systems as pos-
sible such as traveling systems of large corporate groups, traveling services offered by
other web-Sites, or travel companies’ internal applications. It was found that those
systems supported a common hotel booking process. However, due to the different
needs and scenarios of such systems, different types of requirements applied for func-
tions such as search, select, reserve, or cancel. Each system type, therefore, needed a
customized version of ehotel’s product.

This is a classical situation where the product line approach can be used for better
reusability of software products. ehotel has followed this approach systematically in
the context of the PESOA project. The PESOA project’s main goal is the design and
prototype implementation of a platform for process family engineering and their ap-
plication in the e-business and automotive areas. This goal is addressed by enhancing
the approved technologies from the area of domain engineering, product line engi-
neering, and software generation with new methods from the area of workflow man-
agement. The following sections present example of artifacts produced when process-
based product line engineering was applied at ehotel in the context of the PESOA
project. We focus in the case study on analysis and design, and thus leave out imple-
mentation. More details on the case study can be found in [14].

8 Joachim Bayer, Mathias Kose, Alexis Ocampo

3.1 Domain Scope Definition

The selection of a subset of e-hotel’s process-based software was driven by the cus-
tomer’s point of view. Use cases helped to sketch this point of view and to identify
the following set of sub-processes: “informing”, “booking”, “canceling”, and “charg-
ing”. Figure 5 shows the respective use case diagram for the “informing” sub-process
that identifies the different ways ehotel customers can retrieve information.

3.2 Feature Model

A feature model captures and relates the characteristics of the different product line
members. Common and varying characteristics are distinguished in feature models.

Figure 6 shows an excerpt of the feature model for ehotel’s booking engine. The
features for the “informing” and the “booking” sub-processes are modeled in detail.
For the booking engine, there are common characteristics (denoted by full circles),
like hotel details expressing that every booking system provides the possibility to
acquire information on hotels. There are also optional characteristics (denoted by
hollow circles). For example, pictures, description, and map in the hotel details ex-
press that these are the different possibilities for hotel details that are provided by the
different booking systems. The third type of characteristics shown in the figure is
alternative. Alternatives denote different ways to realize characteristics from which
one is chosen for a specific booking system. In the example, an alternative feature is
the map that can be realized either as static map or as dynamic map. The figure shows
that for the varying characteristics all possible values are captured.

HKRWHO�6\ VWHP

HKRWHO�&XVWRP HU

* HW�+ RWHO�,QIRUP DWLRQ
LQWHUQDO�' %� 3HJDVXV

* HW�+ RWHO�,QIRUP DWLRQ
6KRSSLQJ�&DUG�5 HTXHVW

6KRSSLQJ�&DUG�5 HTXHVW
LQWHUQDO�' %�RQO\

6KRSSLQJ�&DUG�5 HTXHVW
LQWHUQDO�' %�DQG�0 DS

6KRSSLQJ�&DUG�5 HTXHVW
LQWHUQDO�' % 0 DS DQG

3HJDVXV

DFWRU! !
0 DS�

DFWRU! !
3 HJDVXV

Figure 5. Informing Use Case Diagram

Joachim Bayer, Mathias Kose, Alexis Ocampo 9

3.3 List of Processes

The next step in process-based product line engineering is the elicitation of processes
that are needed to provide the features collected in the previous step. The list of proc-
esses mostly reflects the hierarchical organization of the feature model. The list of
processes that was elicited based on the feature model in Figure 6 is:
• Informing

o Search
§ Standard
§ Extended

o Parameter
§ get countries
§ get cities
§ get Points-of-Interest (POIs)
§ get hotel chain

o Hotel details
§ get Pictures
§ get Description
§ get Map
§ existing bookings

• get All Bookings
• get booking details

• Booking
o online booking

§ guaranteed booking

Figure 6. Feature Model (modeled with fmp [1])

10 Joachim Bayer, Mathias Kose, Alexis Ocampo

§ uncertain booking
o inquiry

• Canceling
• Charging

These are the (sub-) processes that have been identified for the ehotel booking en-
gine and that will be modeled as variant-rich processes in the next step.

3.4 Variant-rich Processes

Variant-rich processes are the core artifact in a process-based product line. They de-
scribe the behavior of the different product line members and thus determine the
process-based product line. Variant-rich processes contain variation points to deter-
mine process elements that vary between different product line members. We use the
variability mechanisms described in [14] for modeling variation points. These vari-
ability mechanisms enable the expression of different types of variation using stereo-
types and other notation-specific modeling mechanisms.

Figure 7 shows the booking engine top-level process using the BPMN notation [4].
The top-level process contains “informing”, “booking”, “canceling”, and “charging”
as sub-processes. The process contains three types of variation points. The “charging”
and the “cancellation” sub-processes are optional, denoted by the Null stereotype that
expresses that the respective sub-processes are either present or not in a specific book-
ing engine. “Booking” has an abstract stereotype; this means that there are different
realizations possible for this sub-process.

The variable stereotype for the “informing” sub-process expresses that there are

Figure 7. Variant-rich Booking Engine Process

Joachim Bayer, Mathias Kose, Alexis Ocampo 11

variabilities within the sub-process. This is shown in Figure 8 that depicts the “in-
forming” sub-process. Figure 9 refines the “search” sub-process and shows for the
abstract activity perform search two possible realizations, a standard and an extended
search.

3.5 Decision Model

The variation points in the variant-rich processes must be resolved in order to derive
specific processes that describe concrete booking engines. This resolution is sup-

Figure 8. Variant-rich Informing Process

Figure 9. Variant-rich Searching Process

12 Joachim Bayer, Mathias Kose, Alexis Ocampo

ported by decision models that relate features to variation points and document how a
variation point must be resolved if a booking engine provides a given feature. Table 1
shows the decision model excerpt for the “searching” process shown in Figure 9.

Table 1. Decision Model Excerpt

ID Process Question process element Resolution Effect
yes Perform search =

extended search
Search-
ing.1

searching Is extended
search required?

Perform search

no Perform search =
standard search

The decision shown in Table 1 describes how the “searching” process is instanti-

ated for the two possible cases, standard and extended search. When the effect is
applied to the respective process, the abstract activity “perform search” in Figure 9 is
replaced by either a sub-process realizing the standard or the extended search, respec-
tively, depending on the decision taken.

The decision model is a collection of the decisions for all variation points in the
different variant-rich processes.

3.6 Product Feature Model

In the following, we describe the instantiation of the variant-rich processes for a hy-
pothetical ehotel customer that uses an instance of the ehotel booking engine derived
from the process-based product line infrastructure.

As a first step, the required features from the feature model (compare Figure 6) are
selected. The result is shown in Figure 10.

Figure 10. Product Configuration (modeled with fmp [1])

Joachim Bayer, Mathias Kose, Alexis Ocampo 13

3.7 Configured Product

Using the selected features, the decision model can be instantiated by answering the
different questions. The application of the appropriate effects on the variant-rich
processes resolves the processes leading to concrete processes for the product. In
Figure 11, the variant-rich search process in Figure 9 is instantiated using the features
selected in the product feature model in Figure 10. The result is a “search” process
providing extended search features.

4 Summary and Outlook

The booking engine plays a dominant role in the software system of the ehotel AG. A
large variety of functionalities are implemented because of different requirements of
individual users as well specific requirements of corporate customers. The result of
the different market requirements is of high complexity for the ehotel-system. The
process-based product line engineering shows a practical way to handle this complex-
ity.

Based on existing specific business processes a generic, variant-rich process is de-
rived. With feature diagrams and decision models this generic process can be config-
ured. By using software generators customer specific software instances can be pro-
duced.

Process-based product line engineering forces a better structuring of the existing
ehotel software system and future developments. After the setup of the process-based
product line infrastructure, a faster and more reliable delivery of a customized version
of the booking engine to new customer requirements is possible. The quality of the
overall software system is improved and the time to market is reduced. This improved
agility helps the ehotel AG on the customer side for example, to offer products to
niche markets and has therefore a positive impact to the company. Overall the plan-
ning process of the development is improved; this results in higher delivery reliability.
At the end ehotel achieves a higher customer satisfaction.

Figure 11. Search Process Instance

14 Joachim Bayer, Mathias Kose, Alexis Ocampo

Acknowledgements

We want to thank our colleagues in the PESOA project that supported us in the devel-
opment of the presented example, namely Paul Bouché (ehotel AG), Dennis Plötner
(ehotel AG), Thomas Hering (University of Leipzig), and Andrej Werner (University
of Leipzig). We especially want to thank Frank Puhlmann (Hasso-Plattner-Institut at
the University of Potsdam) for supporting the example development and for review-
ing an early version of the paper.

References

[1] M. Antkiewicz, K. Czarnecki.: FeaturePlugin: feature modeling plug-in for Eclipse, Pro-
ceedings of the 2004 OOPSLA workshop on eclipse technology eXchange, p.67-72, Octo-
ber 24-24, 2004.

[2] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen, and J. –M.
DeBaud. PuLSE: A Methodology to Develop Software Product Lines. In Proceedings of
the Fifth Symposium on Software Reusability (SSR’99), May 1999.

[3] J. Bayer, W. Buhl, C. Giese, T. Lehner, A. Ocampo, F. Puhlmann, E. Richter, A. Schnie-
ders, J. Weiland, M. Weske. Process Family Engineering: Modeling variant-rich proc-
esses. PESOA-Report No. 18/2005, Juni 2005.

[4] G. J. Chastek (ed). Software Product Lines. Proceedings of the Second International Soft-
ware Product Lines Conference (SPLC2), San Diego, California, USA, August 2002.

[5] Business Process Management Initiative (BPMI): Business Process Modeling Notation
(BPMN), Version 1.0, www.bpmi.org, Mai 2004.

[6] P. Clements and L. Northrop. Software Product Lines. Practices and Patterns. Addison-
Wesley, 2002.

[7] P. Donohoe (ed.) .Software Product Lines - Experience and Research Directions. Proceed-
ings of the First International Software Product Lines Conference (SPLC1), Denver, Colo-
rado, USA, August 2000.

[8] C. Giese, H. Overdick, W. Buhl. Realisierungsstrategien für Prozessfamilien: Werkzeuge
für Modellierung und Generierung. PESOA-Report No. 15/2005, Process Family Engi-
neering in Service-Oriented Applications, Juni 2005.

[9] D. Hollingsworth. The Workflow Reference Model. Technical report, Workflow Man-
agement Coalition, Hampshire, 1995.

[10] K. Kang, S. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson; “Feature-Oriented Domain
Analysis (FODA) Feasibility Study”. Technical Report CMU/SEI-90-TR-21, 1990.

[11] D. Muthig: A Light-weight Approach Facilitating an Evolutionary Transition Towards
Software Product Lines. Stuttgart: Fraunhofer IRB Verlag, 2002 (PhD Theses in Experi-
mental Software Engineering Vol. 11). Kaiserslautern, Univ., Diss., 2002.

[12] R. Nord (ed.). Software Product Lines. Proceedings of the Third International Conference
(SPLC 2004), Boston, MA, USA, August - September, 2004.

[13] A. Ocampo, F. Bella, J. Münch. Software process commonality analysis. Software Proc-
ess: Improvement and Practice. Vol. 10(3), pp. 273-285, 2005.

[14] D. Plötner, M. Kose, T. Hering, A. Werner. Prozesse im E-Business am Beispiel ausge-
wählter Geschäftsprozesse des Partners ehotel AG. PESOA-Report No. 20/2005, Juni
2005.

[15] F. Puhlmann, A. Schnieders.: Process Family Engineering: Variability Mechanisms,
Technical Report PESOA-Report No. TR 17/2005, Process Family Engineering in Ser-
vice-Oriented Applications, Jun. 2005.

Joachim Bayer, Mathias Kose, Alexis Ocampo 15

[16] G. van de Putte, T. Benedett, D. Gagic, P. Gersak, K. Krutzler, M. Perry. Intra-Enterprise
Business Process Management. IBM Corporation. IBM International Technical Support
Organization. IBM Reedbook. October 2001.

