
Napoleon
Network Application Policy Environment

D. Thomsen, R. O’Brien, C. Payne
Secure Computing Corporation

2675 Long Lake Road
Roseville, MN 55 113

tl~ornsen@securecomputing.com

Abstract
Napoleon consists of three parts; a model for
specifying security policies for a heterogeneous set of
network resources: a graphical tool for manipulating
the model and software to translate the policy to target
security mechanisms. This paper focuses on how the
layered policy approach in the Napoleon model has
been generalized to allow for adding additional layers.
For the Napoleon tool a new approach for
manipulating the role hierarchy is discussed.

1 Introduction
Napoleon is a layered approach to Role-Based Access
Control (RBAC). Napoleon is named after the layered
dessert, rather than the French emperor. The DARPA
Information Assurance program funds the Napoleon
project.

Napoleon consists of three parts

. an RBAC model for unifying diverse access
control mechanisms into a single environment

. a Graphical User Interface (GUI) for
manipulating that model

. software to translate the policy from
Napoleon to specific access control
mechanisms

This paper discusses how the original Napoleon RBAC
model has evolved to incorporate semantic layers for
capturing policy for different users. The paper also
discusses a simplified approach for maintaining a role
hierarchy.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission andtor a fee.
WAC ‘99 lo/99 Fairfax, VA, USA
0 1999 ACM l-58113-180~1/99/0010...$5.00

1.1 Napoleon in Operation
The goal of the Napoleon effort is to provide
centralized security policy management for many
different access control mechanisms. Napoleon is not
designed to be a centralized clearinghouse for security
decisions. The applications are responsible for
enforcement. Napoleon is used to load the
applications with the policy they are going to enforce.
There are three steps in defining a policy with
Napoleon. First the Napoleon GUI is used to define
the policy. Next Napoleon translates the policy to the
application security mechanisms. Finally the
applications are responsible for enforcing the policy,
see Figure 1.

step I: step 2: step 3:
Policy definition Policy translation Policy enforcement

r!izl<

/I

~~slated policy b /I

/

Figure I: Steps in defining and enforcing a policy
with Napoleon

The rest of this section describes the original Napoleon
model for comparison purposes. Section 2 describes
the new Napoleon model. Section 3 describes issues
representing the Napoleon model to the user. Finally
Section 4 describes the policy translation process and
some of the lessons we have learned.

1.2 The Original Napoleon Model
The original Napoleon model had seven layers [11.
The model divided the task of creating the policy
between two groups, the local systems administrator
(local sysadmin) and the application developer. Policy
creation for each group was divided into a number of
sub-layers, see Figure 2.

145

Local 7. Enterprise Constraints
System 6. Key Chains

Administrator 5. Enterprise Keys

Application
Developer

4. Application Keys
3. Application Constraints
2. Object handles
1. Objects

Figure 2: Seven layers of the original Napoleon
model

Napoleon is based on layered sets of access. Detailed
permission sets are grouped into related sets. These
sets are grouped into larger sets, which may in turn be
incorporated into still larger sets. Creating arbitrary
sets of sets allows any policy to be expressed.
However, while this offers the greatest degree of
flexibility the lack of organization makes it difficult to
understand and maintain the policy. To aid in
understanding, Napoleon is divided into well-defined
layers. Each layer has a well-defined set of semantics
and constraints. More detail about these original layers
will be discussed as they come up in the revised model.

As research progressed using the Napoleon model we
found we were adding new layers to the model to
encapsulate new semantics, such as workflow or
application suites. Each new layer followed a basic
pattern. Incorporating this pattern into the Napoleon
model provides a generic approach to support multiple
layers of policy based on semantics. Instead of
dividing policy creation between two groups of users
the new model allows policy creation to be split
between many different groups based on semantic
layers.

2 Extending Napoleon with Semantic
Layers

First a brief discussion to motivate the need for adding
semantic levels. The first addition to the Napoleon
model was extensions to support workflow. A key
component of workflow is the step. A step is the set of
permissions needed to accomplish a given stage of a
workflow. A step is equivalent to a mini-role.
Workflow policies could be buiIt by both the
application developer and by the local sysadmin,
requiring two new layers.

Experience also indicated that another layer was
required to capture security policies associated with
suites of applications. Applications in the suite may
have common constraints and semantics. For example

they may all use a clipboard to move data between
applications. The pattern of accesses to the clipboard
is the same for each application. The architect of the
application suite is the person best suited to design the
clipboard policy. The architect combines the policy
components created by the application developer into a
new layer that spans all the applications in the suite.
This prevents the local sysadmin from having to
understand the clipboard policy. Another example is a
policy layer based on the environment in which the
application runs. Suppose to execute in a certain
environment a client application must communicate
with a server. The policy interactions between the
client and server are best captured in a policy layer for
the system architect rather than the local sysadmin.

After adding the new layers to the original model, we
were concerned that the simple Napoleon model was
growing more and more complex. However careful
examination of the new layers showed that the
underlying structure of each layer was the same.
Pieces of policy from supporting layers were combined
to produce policy for higher layers. The only
difference between layers was semantics. Recognizing
this pattern allowed us to create a generic Napoleon
model that can accommodate any number of semantic
layers based on the target environment.

The new Napoleon model adopts a generic approach
and instantiates the semantic layers that make sense for
the target environment. For example, some enterprises
may not have organized applications into suites; thus
they don’t need the application suite layer.

In most discussions of security policy there is an
underlying assumption that a small set of users define
the policy from start to finish. The Napoleon approach
is that distinct sets of users maintain different parts of
the policy based on their understanding and
responsibilities. In the original model there were two
target users, local sysadmins and application
developers. The new model divides policy
maintenance between any number of users. Each user
combines policy pieces from the supporting layers to
capture the policy constraints and semantics of their
layer. These security building blocks are then available
for other layers to build on.

To create a real world analogy, the building blocks are
called keys. A key represents the ability to access
some resource, just like in the real world where having
a key allows a person to open a door. Keys become an
atomic unit of the security policy. A key cannot be
divided into smaller access control pieces. As shown
in Figure 2 the application key forms the bottom,

146

Toe
Local
Policy

Semantic Policy n

Middle

r
.__

Semantic Policy I

More Dynamic

Bottom Application Policy Static

Figure 2: Generic Napoleon policy showing the general trend from static application policies to
dynamic local policies

followed by any number of middle layers and finally
the top layer, which binds users to the policy pieces. It
is important to note that keys are not capabilities. A
key is an abstract representation of some rights,
independent of the implementation mechanism. A
capability is data that states the bearer has the rights
defined in the capability. Capabilities can be passed to
other users. The Napoleon model manipulates keys to
define the policy. Once the policy is defined it is
translated into access control mechanisms.

Another common construct to all the layers is the
concept of a key chain. A key chain is not surprisingly
a collection of keys. A key chain can contain other
key chains. This allows the user to create a Partially
Ordered Set (POSET) equivalent to a role hierarchy.
Key chains may also have constraints associated with
them. If the constraint is satisfied, access in the key
chain is granted, otherwise it is denied.

A final common construct to all layers is the concept
of abstract key chains. The concept behind abstract
key chains is very similar to the object-oriented
concept of an abstract class. An abstract key chain is
an intermediary grouping of keys to reflect some
common policy elements. For example, there may be
an abstract key chain called ‘%ealth care provider” that
contains permissions common to doctors and nurses.
A user must never be assigned to the “health care
provider” key chain rather to either a doctor or a nurse.

The generic Napoleon model much like the Napoleon
dessert has a crust, any number of middle layers, and a
top layer. The crust or base is the application specific
access control information, the middle layers are the
flexible semantic layers, and the top layer is used by
the local sysadmin to assign users to the policy pieces.

2.1 The Crust (Application Layers)
The first layer of the Napoleon model is the application
specific access control mechanism. The goal of this
bottom layer is to encapsulate application specific
information so that it can be incorporated into the
higher layers in a uniform manner. This data could be

Unix permission bits, Access Control Lists (ACLs) on
a firewall, or sets of CORBA methods. The approach
is for the application developer to use their in depth
knowledge of the application to create security policy
pieces that can be used to assign access to users. For
example, in a health care system the application
developer groups the accesses needed by a physician
into a key. A doctor assigned to this key has all the
necessary permission to a patient record.

Internal to the application key the policy information
may be organized in any way that is convenient for the
application. Ideally the Napoleon GUI would be able
to display and manipulate the information in the key,
but it is not required. Each key has a text description
of the keys intended use, and what kind of access it
grants.

To illustrate lets look at two application specific layers.
To date we have created two types of application
specific keys; CORBA, and CORBA enforced by
DTEL++. For CORBA we developed a method for
mapping Napoleon concepts to CORBASEC version 2.
Unfortunately very few vendors have implemented
CORBASEC version 2. For now a custom security
server provides access control to methods.

Since CORBA is an emerging standard we wanted the
GUI to be able to understand and manipulate the
application specific access control mechanism. A
CORBA application key has four sub-layers plus
constraints, see Figure 3.

Figure 3: Application specific layers for CORBA

This is very similar to the original Napoleon model,
except that constraints are no longer a separate layer
[I]. Constraints are bound directly to key chains. The
Napoleon GUI reads in the CORBA Interface

147

Definition Language (IDL) file for the application [2].
From this file the tool discovers the objects that have
been defined for the application and their public
methods. Methods are grouped into sets based on the
semantics of the object. We call this layer handles.
Handles have also been called abilities [3]. Handles in
turn are grouped into keys. Keys can only contain
handles from within a single IDL file to control the
scope of the key. Finally key chains are groups of
keys that can span several IDL files. This allows the
application developer to structure their code
independent of Napoleon and incorporate all the
necessary privileges. Each key chain corresponds to
an application role and defines the methods that are
allowed to that role.

For CORBA in the DTEL++ environment the GUI is
very similar. DTEL++ is NAI Labs implementation of
Domain Type Enforcement for the CORBA object
oriented environment IS]. In addition to controlling
who can access methods DTEL++ controls who can
implement the method. This is designed to protect the
CORBA client from using hostile servers
masquerading as legitimate servers. The key viewer
for DTEL++ is identical to the standard CORBA
viewer except that when a key is created it can be
marked as an implement key. When the policy is
translated all the users assigned an implement key get
implement permission to the methods contained in the
key.

As noted in Figure 3 constraints can optionally be
associated with key chains. Constraints are used to
capture policy information that cannot be represented
as sets. Consider, for example, the fact that a role of
doctor can easily describe the kinds of access a doctor
needs to a patient record. However, it cannot express
the fact that a doctor can only access patient records
that have been assigned to them. These problems
parallel the object oriented concepts of class and
instance.

2.2 The Middle (Semantic Layers)
Once the application specific information has been
encapsulated into a Napoleon key, it can be combined
with other keys to form semantic layers. Each layer
starts with a set of keys and uses them to build up key
chains representing their policy. Once key chains have
been built, constraints may be associated with them.
The key chains for one layer become the keys of the
next layer up see Figure 4. Within a layer keys are
atomic units of policy. By drilling down to the next
layer the user can determine how the key was
composed.

key chain
ir, key

constraints

key chain
key

b key chain
key

constraints

App. key chain constraints

Figure 4: Interface between semantic layers

Unlike the Napoleon dessert the semantic middle
layers are not just stacked one on top of the other. The
relationship between semantic layers must be explicitly
defined. For example, the workflow policy for a
specific site may only cover the accounting and
medical record applications. Thus the workflow layer
only needs to use the policy components from
accounting and medical records.

The Napoleon model requires each policy layer to
explicitly import the policy components from the
layers on which they depend. The result is much like
the diagrams used to discuss layers in a software
system. However, a poset more accurately describes
the relationship between semantic layers, see Figure 5.
As the dotted line shows the local sysadmin may need
to bypass certain layers of policy to give people direct
access to the firewall.

Software stack view Poset view

LocaI S sadmin
Local Sysadmin /77

. . ..-. 4
,..,,i ./ ‘. ,> :. ..-’ r..:i-, < ..: Application Suite Application Suite
“<(:, ‘4 ,.,, 1 .,@ ;’ c . . .
: , ,\ ,# ‘.: f .,,;1 ;:” + .y&<~~,;~~~; e,i.. ..yJ .:“i,.:> “/ Workflow Workflow :: ,.,, g>z;;,.r L<.CI .(%

! i”
%.,

Firewall CORBA DTEL+ ? 1‘Y
Firewall CORBA DTEL+

Figure 5: Two ways of looking at the relationship between semantic layers.

148

Since the semantic layers form a poset, a single layer
could represent any policy represented in many layers.
The advantage of semantic layers over a standard role
hierarchy is that they impose well-defined structure.

Adding semantic layers to a role hierarchy does not
increase the depth of the hierarchy. However, the
depth of the hierarchy in each semantic layer is small,
usually two or three. While hierarchies are excellent
tools for programmers and researchers to use, a depth
of seven starts to tax the limits of understanding. Deep
hierarchies are even more problematic for system
administrators without a programming background.
Semantic layers allow users to focus on specific
portions of the hierarchy increasing policy
understanding.

Each semantic layer has the foIlowing properties

1.

2.

3.

4.

5.

6.

7.

Each layer produces a set of key chains that
can be exported to other layers as keys.
Each layer explicitly lists the other layers it is
importing keys from.
Within a layer keys cannot be modified.
Only the layer that created the key can modify
it.
Within a layer keys can be combined to form
key chains
Key chains can contain other key chains
(from the same layer)
Key chains can be marked as abstract,
meaning they are structural placeholders like
abstract classes. In the Napoleon context
whar this means is that these key chains are
not exported to the next layer.
A key chain may have constraints associated
with it. If constraints are associated with a key
chain the constraints must be satisfied before
access is granted.

Semantic layers clearly divide responsibility for policy
creation between several different users. However, it is
a static type of administration. The import and export
of policy components make semantic layers more
static. The static nature of semantic layers has little
impact because they are closely tied to static
application descriptions. In fact, the application keys
are part of the application interface that deals with
policy. The application keys change as frequently as
the application interface. Starting from the bottom of
the Napoleon model there is a general trend for the
lower layers to be more static because they are tied
closely with the application, and the upper layers to be
more dynamic.

Dynamic administration of role to role relationships in
RBAC policy has been addressed in the RRA97 model
[3]. In this approach administrators are given a range
of roles in the hierarchy to manage. A semantic layer

is equivalent to a range of roles. Many of the
challenging problems in maintaining policy
consistency are avoided because the new policy is
installed at the same time the latest version of the
application is. There is still the issue of how the
changes fit into the sysadmins’s policy. For example,
if the sysadmin depends on a “browse” key, if the
latest version of the application does not have it, the
sysadmin must recreate their policy. Migration tools
can be created to guide the sysadmin into choosing a
new key to replace the deleted key.

2.3 The Top (Assigning Users to Roles)
The final layer of the Napoleon model is identical to
the other layers except that at this level users can be
associated with the key chains. The top layer is the
only layer where the user role binding takes place. The
top layer is also assumed to be under the control of the
local sysadmin.

The top layer is more dynamic than the lower layers as
it must respond to the day to day operations of the
network. It is assumed that the local sysadmins are not
that familiar with the applications. The local
sysadmin must depend on the application developer to
create policy pieces that they can use to set up their
local policy. Invariably some pieces will not be
sufficient. When this is the case, the user can “dtil~
down” to the next lower layer and create a new key
chain that meets their requirements.

3 The Napoleon GUI
This section looks at the issues that arise from trying to
clearly display Napoleon concepts to different users
with different responsibilities and varying levels of
sophistication. When considering how to display
policy information to a user an important distinction
must be made between policies that are designed and
policies that evolve over time.

3.1 Designing Policy Versus Evolving
Policy

A basic premise of the Napoleon model is that the
semantic levels are designed. The application
developers and system architects must put as much
time developing the security policy pieces as they
would a good API. Application developers and system
architects are familiar with object oriented hierarchies.
Thus building and maintaining a good role hierarchy is
a task they are well suited to do.

On the other hand the skills of the local sysadmin can
vary greatly. They may have little or no experience
with inheritance concepts used by the role hierarchy.
More importantly sysadmins usually have a large
number of responsibilities that keep them extremely

149

busy. As a result they do not have a great deal of time
to devote to learning a new tool, and in particular they
do not have time to design a role hierarchy. In fact, a
role hierarchy for a local enclave can quickly change
due to the introduction of new applications or policy
directives. As a result, policy created by sysadmins
evolves over time to meet the needs of the
organization. Hence the GUI must accommodate both
a design and an evolutionary approach to policy
development.

The local sysadmin needs a simplified way to create
and maintain the local policy. A role hierarchy is
needed to express the potential policies, but a poset is a
confusing data structure for the sysadmin to maintain.
The most effective role hierarchies must be carefully
designed, which the sysadrnin does not have time to
do. To simplify the GUI we propose eliminating the
ability for key chains to contain other key chains for
the top sysadmin layer. This results in each key chain
simply having a list of keys.

This may seem like a drastic measure but let us look at
it in closer detail. If the lower semantic layers have
done their job, all the policy pieces should be there for
the local sysadrnin. As a result the role hierarchy for
the top layer is very shallow. Practical experience in
other environments shows that the role hierarchy is not
very deep, rarely more than three [6]. For such
shallow structures the benefit of the role hierarchy is
small compared to the gain in simplification.

Of course simplicity comes with a cost. Lack of a role
hierarchy makes three operations become more
difficult

a Visualizing the relationship between roles
0 Creating a new role
. Global policy changes that affect several roles

Each of these drawbacks are discussed in more detail
below, as well as how a hybrid solutionJhat creates a
role hierarchy by automatically creating a partial
ordering.

The drawbacks of eliminating role inheritance can be
mitigated by a hybrid approach that constructs a role
hierarchy from the lists of keys. Each key chain is a
set of keys. The Napoleon GUI can sort the key chains
into a partial ordering based on set containment. For
example, a key chain with keys {a, b, c} is more
powerful than a key chain with (b, c}. Key chains
with the most keys appear on top, key chains with
fewer keys on the bottom. Once the partial ordering is
calculated the information could be shown to the
sysadmin via the standard role hierarchy graph. The
benefit of this approach is that the sysadmin does not

have to maintain the role to role relationships
explicitly, the tool constructs the role hierarchy for the
user.

The first problem is visualization. A role hierarchy is
an excellent way to get a quick snapshot of the relative
privileges between roles. For a shallow role hierarchy
visualization is probably not an issue. However the
constructed role hierarchy easily can be displayed as a
standard role hierarchy with all the proper visual
semantics.

The second problem is creating a new role. In a role
hierarchy the new role is created by first determining
its parent. The role derives most of its content from
the parent. Without a role hierarchy there is no parent
so all of the keys for the new role have to be
specifically added. To make role creation simpler
without a role hierarchy we allow the user to select
keys or key chains to add to new key chains. In fact
we envision a general mechanism in which the user
can select sets of keys and delete them or move them
to a new key chain. Creating a new role starts with
creating an empty key chain. The user can then select
a set of keys from other key chains or a set of key
chains to copy into the new key chain. Since the
underlying structure is based on sets any duplicate
keys are eliminated.

The third difficulty arises from the fact that low level
constraints could be modified in a single place and
these changes would directly impact all the senior
roles. Consider the policy in Figure 6 with role
inheritance. Suppose the local policy changed and all
employees were allowed to browse the web. With a
role hierarchy the “browse” key could be added to the
employee node and the permission would
automatically flow up the hierarchy. Without role
inheritance there would only be three roles primary
physician, consulting physician and nurse, because the
abstract roles do not exist. Without role inheritance
the “browse” key must be added directly to the three
roIes. Initially adding two extra keys does not seem
like a great burden compared to eliminating the
complexity of maintaining a poset.

Global policy changes could be accomplished by
allowing the user to add or delete keys from the
constructed role hierarchy. The tool then translates
the operation from the constructed hierarchy to the
underlying roles. Creating a new role could also be
done using the constructed hierarchy to indicate the
parent and the role’s context. The constructed
hierarchy obtains the advantages of the role hierarchy
without the complexity of designing and maintaining
it.

150

Primary Physician Consulting Physician

Consulting Physician-

Physician (abstract) Nurse Primary Physician-

Employee (abstract) -

Role inheiritance I No inheiritance

Figure 6: Comparing role inheritance

Eliminating the role hierarchy only makes sense when
the policy is evolving. Clearly a designed policy is
more desirable, but design takes effort and so it is best
suited for a static environment so it does not have to be
redesigned. A well-designed role hierarchy represents
constraints, such as “all employees can access the
online vending machine.” However, when the GUI
calculates the partial ordering there are no semantics
associated with the relationship between roles.

Eliminating role inheritance simplifies maintenance
only if the operations of creation of new roles, and
adding global constraints are rare. If they happened
frequently a role hierarchy is the best approach. Scale
is another factor. Role hierarchies scale better than flat
lists as the number of roles goes up. So if our
assumptions about the number of sysadmin roles are
wrong a role hierarchy may be a better approach. In
fact, a hybrid approach is possible. A sophisticated
sysadmin may create a new semantic layer just below
the top layer. The new layer would have a role
hierarchy for capturing the more static sysadmin’s
constraints. The top layer retains the simplified
interface for the rapidly changing portions of the
policy.

3.2 Semantic Layer Viewers
While each semantic layer has to meet the conditions
outlined in section 2.2 how they are presented to the
user can very greatly. The distinguishing characteristic
of each layer is semantics, which implies each layer
could be presented differently based on those
semantics. For example, in the workflow layer the
order of the steps is important to the user but not to the
model. The viewer must include the step order
information to provide the user with the context they
need. Thus the Napoleon GUI supports each layer
having its own viewer.

Potentially each semantic layer could have its own
viewer. However, sometimes it is simply the grouping
of keys that provides semantics, such as in the case of
an application suite layer. In these cases a generic

viewer is needed that provides an interface for
manipulating keys and key chains. Often the cost of
creating a specific viewer for a layer is prohibitive. In
these cases the generic viewer can also be used.

The bottom application keys pose an interesting
problem. Each security mechanism, for the most part,
has already developed a way for viewing its policy.
Rather than duplicate the GUI of the original
mechanism in many cases it is possible to use the GUI
remotely from the Napoleon GUI. For exampIe, using
the firewall GUI to manipulate user ACLs on a proxy.
At other times the native viewing mechanism is too
complex or does not lend itself weII to being
encapsulated. In such cases an opaque key can be
created.

An opaque key is a construct for representing policy
pieces that cannot be manipulated by the user in the
Napoleon tool. The administrator cannot “drill down”
into the key, only the key’s description of its intended
use is provided. The opaque key represents some
access privilege. No access control information
resides in the opaque key. The access control details
are filled in when the policy is translated to the target
mechanism. The opaque key approach lets the user
assign predefined privileges for complex access
control mechanisms.

4 Translating Napoleon Policies
Once the policy has been specified in Napoleon it must
be translated to the application specific security
mechanisms. The translation process works much like
a compiler. A great deal depends on the security
mechanism supported.

To date we have completed three translators dealing
with controlling access to CORBA methods. The first
translator converted the Napoleon policy to the
security server created for the LOCK program. The
security server was modified from its original
operating system role, to provide decisions on
accessing methods. The second translator targeted the

151

Piedge work from the Open Group [7]. The final
translator targeted DTEL++ [5].

Currently the entire policy is translated to each target
mechanisms. In the future we will allow the parts of
the policy to translate to different mechanisms. For
exampie, Pledge may enforce part of the policy and
DTEL++ enforces the rest.

We have also designed the translator for Microsoft’s
COM/DCOM distributed object protocol [S]. To
enforce access control on methods in DCOM, we
provided DCOM interceptors that catch access
requests provide fine grained access control.

Our work with policy translation has shown us two
important lessons. The first is that sets provide an
excellent starting point for combining and working
with policy. Building a translator once the security
mechanism is in place is usually a simple matter of
conversion taking less that two weeks. The second
lesson we learned is a relational database is useful for
converting set based policies. The database allows us
to construct queries to pull out the relevant pieces. For
example the DTEL++ translation relies heavily on a
relational database to calculate the minimum number
of equivalence classes for DTEL++ types.

There are many challenges for policy translation that
still must be addressed. Opaque keys appear to be a
simple concept, but may cause difficulties in
translation. Constraints are another challenge for
policy translation. Most security mechanisms do not
support any form of constraints. Constraints are
critical to enforce sophisticated instance based policies.
We have sketched out an approach for augmenting
CORBA security with constraints, but issues remain as
to how complicated the constraints can be. When the
constraint is evaluated not all of the information
needed by the constraint may be available.

Once the policy has been translated it is shipped out to
the various access control mechanisms for
enforcement. Issues remain in reconciling the central
policy with the actual policy being enforced.

5 Conclusion
Research continues on enhancing the Napoleon model.
The addition of semantic layers simplifies the structure
and allows the model to clearly divide the process of
creating security policy among several different users.
One of the benefits of the Napoleon model is the
encapsuIation of application specific security
mechanisms into a unified environment. The
Napoleon GUI is experimenting with a flexible
approach combining the role hierarchy with a
simplified non-hierarchical layer for the systems
administrators. The Napoleon tool should greatly

simplify the task of policy creation and maintenance
for the over worked systems administrator.

References

[ll

PI

131

II41

L-3

[61

[71

PI

D. Thomsen, R. O’Brien, J. Bogle. “Role Based
Access Control Framework for Network
Enterprises,” Proceedings of the 141h annual
Computer Security Applications Conference, pp.
50-58, December 1998.

R. Orfali, D. Harkey, “Client/Server Programming
with Java and CORBA,” Wiley, New York, 1998.

R. Sandhu, Q. Munawer. “The RRA97 Model for
Role-Based Administration of Role Hierarchies,”
Proceedings of the 14’h annual Computer Security

Applications Conference, pp. 39- 49, December
1998.

T. Keefe, “Mapping Napoleon Concepts to
CORBASEC V2,” internal report, Secure
Computing Corporation, November 1998.

D. Sterne, G. Tally, C. McDonell, P. Pasture& D.
Sames, D. Sherman, E. Sebes, ‘Scalable Access
Control for Distributed Object Systems,” to appear
in Proceedings of the 8th USENIX Security
Symposium, Washington, DC, August 1999.

R. Awischus, “Role Based Access Control with
the Security Administration Manager (SAM),”
Proceedings of the second ACM Workshop on
Role-Based Access Control, pp. 61-68, November
1997.

M. Zurko, R. Simmon, “User-Centered Security,”
New Security Paradigms Workshop, September
1996.

R. Sessions, “COM and DCOM: Microsoft’s
vision for Distributed Objects,” Wiley, New York,
December 1997.

152

