
Abstract
 In this work, we propose a framework for

quantifying non-functional requirements (NFRs). This
framework uses quality characteristics of the
execution domain, application domain and component
architectures to refine qualitative requirements into
quantifiable ones. Conflicts are resolved during the
refinement process and more useful and realistic non-
functional requirements are produced.

In addition to providing the framework, we

present a case study of how the framework was used to
resolve conflicting requirements within a system that
provides a secure IP telephony service.

1. Introduction

Users of today’s computing and information

systems expect these systems to perform their tasks in
a timely manner, to provide accurate results
consistently, to provide secure transactions, and to be
available even when under attack. These enhanced
user expectations and the growing security threat to
such applications are driving researchers to investigate
ways to accurately specify these non-functional
requirements (NFRs) and incorporate them into the
design of software systems.

Incorporating non-functional requirements into
the design process is not a simple task. Researchers
face many challenges including accurately refining
requirements from abstract goals, formally specifying
requirements, incorporating these requirements into
models used for specifying functional requirements
and resolving design conflicts that arise from merging
multiple NFRs.

Researchers have begun to investigate ways by
which NFRs can be refined and incorporated into
designs, but little has been done within the areas of
quantifying NFRs and resolving conflicts among

competing NFRs. Conflicts occur because the
requirements are usually vaguely specified and
individually refined, without consideration to how
they may impact the others. Therefore, even after a
refinement process, unrealistic requirements may be
produced.

Given the growing demand for software that
provides real-time performance guarantees and is
resilient to denial of service (DoS) attacks, software
designers must be able to specify goals that are
realistic and achievable. To specify such goals,
information regarding the quality characteristics of the
execution environment, application domain,
architectural domain, and algorithmic domain are
needed. This quality information can be used to help
designers identify possible conflicts between
requirements and propose refinements to requirements
that conflict with domain specific quality information.
For example, an IP telephony application can
withstand an inter-arrival packet delay of
150milliseconds. Let’s assume that the execution
domain for this application is the Internet, where the
average one-way path delay is 75 milliseconds. Now
assume that software engineers are designing a secure
IP telephony application that has requirements for
authentication, confidentiality and integrity. Software
Engineers need to know whether the performance
overhead of the security algorithms will violate the
basic performance requirement. Given this example,
qualitative reasoning, may lead to an unknown
conclusion. Specific information regarding the
performance of encryption algorithms are needed to
identify and resolve possible conflicts among
requirements. These performance characteristics may
also enable engineers to define design tradeoffs.

In this work, we address the problem of
quantifying NFRs. Through our quantification process,
we resolve design conflicts that arise when trying to
satisfy multiple NFRs. In this paper, we focus on
performance and security requirements, but we feel
that our approach can be applied to a more

Quantifying Non-Functional Requirements: A Process Oriented
Approach

Raquel Hill, Jun Wang
Department of Computer Science/ NCSA
University of Illinois Urbana-Champaign
rlhill@uiuc.edu, wangj@ncsa.uiuc.edu

diverse set of requirements. Our approach builds upon
previous process oriented work by incorporating
domain specific quality information into the goal
refinement process. These domain characteristics are
numeric values that describe some feature of the
domain.

The remainder of this document is organized in
the following manner. In Section 2, we give an
overview of the process oriented approach. In section
3, we detail how we enhance this approach. In section
4, we present an example of how the enhancements
may be used to quantify non-functional requirements
and resolve conflicts. In section 5, we present our
conclusion and discuss future work.

2. Process Oriented Approach

Previous research may be either characterized as
process-oriented or product oriented. Process oriented
techniques aim to integrate non-functional
requirements into the design process while product
oriented approaches focus on evaluating the end
product to determine whether it satisfies the NFRs.

We build upon the process oriented work of
Mylopoulos et al [1,2,3]. Their work proposes a
framework for refining non-functional requirements
and incorporating them into the design process. The
approach is qualitative and uses ideas from qualitative
reasoning. Requirements are refined through the
process of constructing a goal graph. The goal graph
contains three mutually exclusive classes of goals:
non-functional requirement goals, satisficing goals and
argumentation goals. Non-functional requirement
goals include such categories as accuracy, security,
development costs, operating costs, hardware costs
and performance. Satisficing goals include categories
of design decisions that may be adopted in order to
satisfice one or more non-functional requirements. The
term satisfice refers to providing satisfactory designs,
not optimal ones [1]. Argumentation goals are formal
or informal claims that provide support or counter
evidence for a goal or goal refinement.

At the root of the graph is an abstract non-
functional requirement. The NFR may be further
refined into a set of more concrete NFRs. These
refined goals are the children of the root. Satisficing
goals may then be proposed as a means for satisfying
an NFR. The satisficing goal then becomes a node
within the graph. Correlation rules are used to express
implicit relationships between individual NFRs and
identify conflicts.

3. Quantification Enhancements

This work builds upon the process oriented

framework presented by Mylopoulos et al [1,2,3].
Specifically, we augment the domain analysis process
in order to gather specific information regarding the
quality characteristics of the execution domain,
application domain, architectural domains and
algorithmic domains. Additionally, we enhance the
goal refinement process by incorporating domain
characteristics and quantification nodes. A
quantification node is an intermediate node used to
express how domain characteristics interact with
NFRs. The quantification node either helps to refine
the parent goal, identify conflicts between the parent
goal and the domain characteristics, identify conflicts
among NFRs, or identify design tradeoffs among
multiple satisficing goals.

In the following sections, we describe what
information should be acquired during the domain
analysis process and how this information can be used.
In addition, we detail how quantification nodes work
and some of the relationships that they may be used to
express.

3.1 Acquiring Domain Characteristics

Domain analysis is a term used to describe the

systematic activity of identifying, formalizing and
classifying the knowledge in a problem domain [7]. It
is viewed as an activity that occurs prior to
requirements engineering. “While requirements
engineering is concerned with analyzing and
specifying the problem of developing a software
application, domain analysis is concerned with
identifying the commonalities between different
applications under the same domain” [7].

Our view of domain analysis encompasses those
domains which enable or provide supportive function
to the application domain. Therefore, we are interested
in acquiring quantifiable characteristics of the
application domain and related execution,
architectural, and algorithmic domains. We use these
characteristics to further constrain non-functional
requirement goals, thereby producing realistic and
achievable non-functional requirements.

During domain analysis, we seek answers to
questions such as ‘What are the essential performance
criteria for this type of application?’, ‘Where will the
application be utilized, and what are the performance
features of this environment, i.e. throughput, delay,
loss?’, and ‘What are the performance characteristics
of specific algorithms?’ Answers to such question
would vary based on the domain. For example,
domain analysis within the execution domain may

produce information regarding processor speed, radio
range for wireless devices, battery life for mobile
devices, average throughput, delay and loss
characteristics of the network, etc. In addition, domain
analysis within the application domain will hopefully
produce quantifiable characteristics that are inherent to
all applications of that type. An example of such an
application characteristic is the 150 millisecond one
way path propagation delay requirement for IP
telephony applications. Studies show that humans
tolerate delays in speech of approximately 150
milliseconds. After 150 milliseconds of delay, we
begin to talk over or interrupt the speech of the other
person. Furthermore, regarding the algorithmic
domain, we are interested in the performance of
algorithms that may be used to satisfy a specific non-
functional requirement. For example, performance
specifications of an encryption algorithm may be used
to assess the feasibility of employing the encryption
algorithm to provide confidentiality and protect the
data’s integrity.

3.2 Using Domain Characteristics

Domain characteristics may be used in a variety

of ways. We use them to quantify satisficing goals and
expose possible conflicts between NFR goals.
1. Quantifying satisficing goals. Recall that a
satisficing goal is a design decision that has been
chosen to satisfy a specific non-functional requirement
goal. Quantifying a goal involves assigning a
particular algorithm to perform the required function.
Specific performance characteristics for the algorithm
must be available before it can be assigned. After the
assignment, the satisficing goal assumes the
performance value of its assigned algorithm. When the
measurement platform and execution platform differ,
then the performance value of the algorithm is
estimated.
2. Conflicts between NFR goals. Conflicts
between NFR goals arise when the characteristics of
an algorithm assigned to a satisficing goal violate
another requirement.

3.3 Goal Graph Refinement

Goal graph refinement follows the process

oriented approach defined by Mylopoulos et al [1,2,3].
We assume that the NFR goals have been acquired
during the requirements elicitation process. Therefore
we focus only on refining those goals and
incorporating domain characteristics into the
refinement process.

We incorporate domain characteristics by using
domain nodes and quantification nodes. Domain
nodes store specific domain characteristics, while
quantification nodes illustrate the association between
two or more domain nodes. Argumentation goals are
used to relate the quantification nodes to NFR goals
and satisficing goals. Possible relationships include
summation, or, maximum, minimum, etc.
1. Summation. The value of the quantification
node is the sum of the values of each represented
domain node.
2. Or. The value of the quantification node is
equal to the value of one of the specified domains
nodes.
3. Maximum. The value of the quantification
node is the maximum of all specified domain nodes.
4. Minimum. The value of the quantification
node is the smallest of all specified domain nodes.

Figure 1 Associations between quantification
nodes, domain nodes, NFR goals, and
Argumentation goals

Figure 1 illustrates different associations between

quantification nodes, domain nodes, NFR goal, and
Argumentation goal. Figure 1(a) shows a NFR goal
directly depending on a domain node. Figure 1(b)
gives an example where one “summation”
quantification node is used to capture (sum up) three
domain characteristics. Figure 1(c) depicts an example
where a NFR goal is refined into a “minimum”
quantification node and an argumentation goal. In this
case, the NFR goal is satisficed only if the “minimum”
value of the quantification node is verified by the
argumentation goal. Finally, Figure 1(d) shows a case

where one quantification node is associated with
another quantification node and two domain nodes.

4. Refinement Example

We will use the IP telephony application as an

example to elaborate how the quantification
enhancements are added to the goal graph and how the
refinement is conducted. This example showcases
dependency relationships between satisficing goals
and domain nodes. In addition, it illustrates a
quantification node that expresses a summation
relationship between domain nodes.

4.1 Secure IP Telephony

Software engineers are designing a secure IP

telephony application that has additional requirements
for confidentiality (including both authentication and
data encryption), integrity, and availability. To meet
these additional security requirements, some security
algorithms have to be used, and extra performance
overhead is introduced. The designers must assess
whether the extra performance overhead of the
security algorithms will violate the basic performance
requirement. Therefore, there may be a conflict
between the basic performance requirement and the
additional security requirements.

Recall that an IP telephony application should
ensure a basic performance requirement that the inter-
arrival packet delay is less than 150ms. This
requirement is our application domain characteristic.

In addition, let’s assume that the execution
domain for this application is the Internet (WAN),
where the average one-way propagation delay is 75
ms. .

Given this example, the designers must determine
whether the extra performance overhead of the
security algorithms will violate the application
domain’s performance requirement. Specific
information regarding the performance of security
algorithms is needed to identify and resolve the
possible requirements conflict.

Note that in this example, we assume that we have
already obtained all requirements during the elicitation
process.

 Figure 2 shows a detailed goal graph for the
secure IP telephony example, with our quantification
enhancement. Specifically, two non-functional
requirements are refined: Performance[connection]
and Security[connection]. Performance[connection] is
decomposed into two goals: Bandwidth[connection]
and Delay[connection], while Security[connection] is

decomposed into Confidentiality[connection],
Integrity[connection], and Availability[connection].
Two satisficing goals, Encryption[connection] and
Authentication[connection] are proposed to further
refine Confidentiality[connection].

We use bold squares to represent the domain
characteristics. In Figure 2, we also identify three such
domain characteristics: Encryption-
Algorithms[connection], Authentication-
Methods[connection], and Propagation-
Delay[connection], which will be further broken down
in Figure 3. The satisficing goal,
Encryption[connection] depends on the domain node
Encryption-Algorithms[connection], while the
satisficing goal, Authentication[connection] depends
on the domain node, Authentication-
Methods[connection].

Now, we use two quantification nodes,
Processing-Delay[connection] and Total-
Delay[connection] (shown as triangles in the figure),
to capture the quantifiable characteristic of delay for a
connection. Since we are interested in summation of
delays, both quantification nodes are marked by “+”
signs. By using the quantification nodes, we clearly
describe the relationship between the total delay,
propagation delay, processing delay, and the delays of
security algorithms. The overall goal to choose
encryption algorithms and authentication methods to
meet the security requirement, while keeping the total
delay within the required delay bound.

Note that Figure 2 shows a snapshot of the goal
graph right before the expansion process, and we have
omitted the detailed refinements of the non-functional
goals of Bandwidth, Integrity, and Availability.

Figure 2 Goal graph of the IP telephony example

Figure 3 Example domain characteristics
breakdown

Figure 3 lists algorithm options for specific
security domains [8]. This information will be used to
assign specific algorithms to satisficing goals and
ultimately satisfy a subset of the requirements.

Figure 4 Goal graph of the IP telephony example,
after expansion process

During the goal graph expansion process, the

effect of each design decision is propagated from
offspring to parents via evaluation procedure (which
labels nodes as satisficed (S), denied (D),
undetermined (U), etc.) [2]. Figure 4 shows a snapshot
of the goal graph after the Delay and Confidentiality
non-functional goals are evaluated. In this case, we
choose PIII 766MHz desktop PCs as the hardware
platform. We use 256-bit-key AES algorithm as the
encryption algorithm and use signature as the
authentication method. According to the domain
characteristics shown in Figure 3, AES algorithm
takes 2 ms and the signature method takes 36 ms on
the chosen hardware platform. Therefore, the
processing delay will be 38 ms. Since the typical
propagation delay of the Internet is 75 ms, the total
delay (summation of the processing delay and the
propagation delay) will be 113 ms, which satisfies the
“less than 150 ms” delay requirement. Hence, the
Delay non-functional goal in Figure 4 has been
marked as “S”. Likewise, assuming that the AES
algorithm and the signature method can reach the
required security level, we mark the Confidentiality
goal as “S”, too.

The secure IP telephony example clearly shows

that our quantification enhancements are able to help
software engineers to identify and resolve possible
requirement conflicts in a more precise way, and to
define design tradeoffs.

5. Conclusion and Future Work
In this paper we have shown that specific domain

information can be used to quantify performance
related non-functional requirements. Quantification of
these requirements facilitates goal refinement, helps to
identify conflicts and design tradeoffs. In addition to
performance requirements, this framework can be used
to quantify any non-functional requirement that can be
expressed numerically.

In the future, we plan to investigate ways to
express the relative performance of algorithms. This
work would be most useful when performance
statistics have been obtained on obsolete hardware
platforms. Additionally, we plan to investigate ways
by which security and other requirements may be
numerically represented.

6. References

[1] J. Mylopoulos, L. Chung, and B. Nixon, “Representing
and Using Non-Functional Requirements: A Process-
Oriented Approach”, IEEE Transactions on Software
Engineering, 18(6), June 1992, pp. 483-497.

[2] L. Chung and B. Nixon, “Dealing with Non-Functional
Requirements: Three Experimental Studies of a Process-
Oriented Approach”, Proc. 17th International Conference on
Software Engineering, Seattle, Washington, April 1995, pp.
24-28.

[3] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos. Non-
functional Requirements in Software Engineering. Norwell,
Massachusetts: Kluwer Academic Publishers, 2000.

[4] L. Liu, E. Yu, and J. Mylopoulos, “Security and Privacy
Requirements Analysis within a Social Setting”, Proc.11th
IEEE International Requirements Engineering Conference
(RE'03), Monterey Bay, California, September 2003, pp.
151-161.

[5] R. C. Linger, N. R. Mead, and H. F. Lipson,
"Requirements Definition for Survivable Network Systems",
Proceedings of the International Conference on
Requirements Engineering, Colorado Springs, CO, April
1998.

[6] A. Lamsweerde, “Goal-Oriented Requirements
Engineering: A Guided Tour”, Proceedings of the IEEE
International Symposium on Requirements Engineering,
Toronto, August 2001, 249-263.

[7] P. Loucopoulos, V. Karakostas. Systems Requirements
Engineering. Maidenhead, Berkshire, UK: McGraw-Hill,
1995.

[8] Chui Sian Ong, “Quality of Protection for Multimedia
Applications in Ubiquitous Environments”, Master Thesis,
University of Illinois at Urbana-Champaign, 2003.

[9] J. Peters and W. Pedrycz. Software Engineering, An
Engineering Approach. John Wiley and Sons, Inc., 2000.

[10] I. Sommerville. Sofware Engineering, 6th ed. Addison-
Wesley, 2001.

