
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee
ICOOOLPS ’09 Genova, Italy
Copyright © 2009 ACM 978-1-60558-541-3-X/07/2009 ... $10.00

Automatic Vectorization Using Dynamic Compilation and
Tree Pattern Matching Technique in Jikes RVM

 Sara El-Shobaky Ahmed El-Mahdy Ahmed El-Nahas
Department of Computer and Systems Engineering

Faculty of Engineering
Alexandria University

Alexandria 21544, Egypt
E-mail: {sara.elshobaky, ahmed.elmahdy, ahmed.nahas}@alex.edu.eg

ABSTRACT
Modern processors incorporate SIMD instructions to improve the
performance of multimedia applications. Vectorizing compilers
are therefore sought to efficiently generate SIMD instructions.
With the existence of different families of SIMD instruction sets,
the task of compiler writers is more complex. Moreover virtual
machines, such as JVMs, are currently widely used for increasing
the portability of programs across different platforms; performing
SIMDization on these virtual machines would further require 'fast'
compilation. This paper selects an efficient retargetable
compilation technique, based on tree-pattern matching, which
generates efficient SIMD code on static compilers, and studies its
utility on the Jikes RVM. The paper extends BURS system used in
Jikes optimizing compiler accordingly, and adds new rules for
manipulating subword data for the IA-32 architecture. Initial
experimental results show an overall speedup at runtime despite
dynamic compilation overheads.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors---Run-time
environments, Translator writing systems and compiler generators;
C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors)---Single-instruction-stream,
multiple-data-stream processors (SIMD).

General Terms
Languages, Design

Keywords
Vectorization, Dynamic Compilation, Java

1. INTRODUCTION
Vectorization is the process of converting a computer program
from a scalar form into a vector form. A scalar program has
arithmetic and logic instructions that operate on scalar operands
(usually in pairs); whereas corresponding instructions in the

vector program operates on ‘vector’ operands, each consisting of
multiple scalar sub-operands.

Current processors incorporate a form of vector processing
usually called SIMD processing, where multiple scalar operands
are packed into a single register. Such hardware allows for fast
computation especially for homogenous data arrays. Achieving
such performance relies on the quality of vectorization technique.

Currently, vectorization is generally manually done by the
programmer using compiler intrinsic. While such technique
allows for utilizing the underlying SIMD architecture, it increases
the complexity of programming and more importantly decreases
the portability of the vectorized program.

Automatic vectorization techniques, on the other hand, tackle
those issues, however, at the expense of being platform
dependent. That increases the cost of retargeting the compilers for
different SIMD processors.

A notable technique in the literature that provides for retargeting
is that proposed by Leupers [8,9]. The technique relies on using
tree-pattern matching to generate SIMD code; that potentially
reduces the task of retargeting to merely writing a set of ‘rules’ for
the target machine. However, the technique has been
demonstrated on ‘static’ compilers, allowing portability of
programs at the source-level.

This paper investigates the case of dynamic vectorization, where
vectorization happens ‘on-the-fly’ while the program executes.
Such model is currently used in Java and .Net systems and has the
benefit of providing portability at the binary-level (not at the
source level as traditional compilation techniques). The
investigation focuses on Leupers’ technique being highly
retargetable, and assesses the run-time compilation complexity
and achievable speedups.

This paper chooses the Jikes Research Virtual Machine
(RVM) [2] as the underlying dynamic compilation system; Jikes
RVM provides a flexible open test-bed for developing novel
dynamic compilation optimizations. It also provides facilities for
tracing, and measuring various compilation aspects. Moreover, it
utilizes a tree-pattern code generator BURS (Bottom-Up
Rewriting System) [4, 5] which fits nicely with Leupers’
technique. It also includes many optimizations such as loop
unrolling and data dependence graph analysis which simplifies
our task.

The paper is organized as follows: Section 2 shows related work;
Section 3 gives an overview of the Jikes Research Virtual
Machine; Section 4 describes briefly the code selection technique
proposed by Leupers. Section 5 contains description of the
proposed method. Section 6 lists the limitations of the capabilities
of the method. Section 7 presents the results of experiments with
the implemented system. Section 8 concludes the paper.

2. RELATED WORK
Distinct optimization techniques have been proposed to exploit
SIMD instructions. In Krall and Lelait’s [1] technique, a loop is
unrolled and instructions from successive iterations that have
adjacent memory references and independent are packed into one
SIMD instruction [1]. This technique relies on the knowledge of
the target instruction set which limits the unroll factor.

In the Intel C++/Fortran compiler [12], vectorization is
decomposed into three phases: analysis, restructuring, and vector
code generation; with a strong interaction between the first two
phases. The program analysis phase performs control-flow, data-
flow and data-dependence analysis to provide the compiler with
useful information on where implicit parallelism in the source
program can be exploited. Program restructuring phase focuses on
converting the source program into a form that is more amenable
to analysis and, eventually, vectorization. Then finally, vector
code generation phase generates vector code for all vectorizable
loops.
The GCC vectorizer [13,14] implements a loop-based
vectorization technique with the adoption of a tree SSA (Static
Single Assignment) optimization. The vectorizer applies a set of
analyses on each loop, followed by the actual vector
transformation for the loops that had successfully passed the
analysis phase.
The SUIF vectorizer [15] implements a two phase source-to-
source optimizer for multimedia instructions. In the first phase
parallel loops are identified and instructions in the loop bodies are
converted into vector instructions working on infinite length
vectors. In the second phase, the code generation is applied to
transform the vector operations into function calls. And vector
operations that cannot be transformed will be converted back to
parallel loops.

None of the above techniques uses tree pattern matching to
generate SIMD instructions. Using tree pattern matching has the
benefit of easier retargetability which is an advantage with the
many different SIMD instruction sets in the literature. We
therefore use Leupers’ tree pattern matching in our dynamic
compilation investigation.

3. THE JIKES RESEARCH VIRTUAL
MACHINE (RVM)
The Jikes RVM is designed for use in research on fundamental
virtual machine design issues. It provides a flexible testbed to
prototype new virtual machine technologies and to experiment
with a large variety of design alternatives.

There are three different types of compilers in Jikes RVM: one of
them is the optimizing compiler which is a dynamic compiler; it
compiles methods while an application is running to generate

optimized code. Therefore, this optimizing compiler is the
dynamic compiler used to implement the proposed vectorization
technique.

The structure of the optimizing compiler is shown in Figure 1.
The optimizing compiler begins by translating Java bytecodes into
a high-level intermediate representation (HIR). HIR is a register-
based intermediate representations which provides greater
flexibility for code motion and code transformation than do tree or
stack-based representations.

After performing some high-level optimizations, HIR is converted
to a low-level intermediate representation (LIR) whose operations
are specific to the virtual machine's object layout and parameter-
passing conventions. A dependence graph is constructed for each
basic block. The dependence graph is used for instruction
selection. Each node of the dependence graph is an LIR
instruction, and each edge corresponds to a dependence constraint
between a pair of instructions.

After low-level optimization, the LIR is converted to machine-
specific intermediate representation (MIR). The dependence
graphs for the extended basic blocks of a method are partitioned
into trees. These are fed to a bottom-up rewriting system (BURS),
which produces the MIR. Then symbolic registers are mapped to
physical registers. A prologue is added at the beginning, and an
epilogue at the end, of each method. Finally, executable code is
emitted.

BURS, a code-generator generator, is a tree pattern matching
system for instruction selection. Instruction selection for desired
target architecture is specified by a tree grammar. Each rule in the
tree grammar specifies the tree pattern to be matched, an
associated cost (reflecting the size of instructions generated and
their expected cycle times), and code-generation action (flags for
the operation and the code to emit).

The tree-pattern matching performed uses dynamic programming
to find a least-cost parse for any input tree. The rules are used in
generating a parser which transforms the LIR into MIR.

The JBURG Program is a program in the Jikes RVM optimized
compiler system that generates a fast tree parser using BURS.
JBURG allows good instruction selection. However, it cannot be
used to write productions for vector operations that need matching
coverings in an entire tree of operations. Leupers has shown how
with a modified BURS system one can achieve this result.

4. CODE SELECTION TECHNIQUE
Leupers [8, 9] presented a new code selection technique capable
of exploiting SIMD instructions when compiling plain C code. It
permits taking full advantage of SIMD instructions for multimedia
applications, while still using machine independent source code.
Most compilers use tree pattern matching with dynamic
programming for code selection. This technique uses an
intermediate program representation consisting of data flow trees.
However, tree pattern matching with dynamic programming is not
directly applicable for generation of SIMD instructions. In general
SIMDization requires to simultaneously covering multiple Data
Flow Trees (DFTs) instead of processing one DFT after another.
This means that code selection has to be performed on full data-
flow graphs (DFGs) instead of only DFTs as in traditional
compiler technology.

Leupers showed a traditional technique of code selection for
Media Processor with SIMD Instructions. He used SIMD
instructions by considering the 32-bit data registers to be
composed of either two 16-bit sub-registers or four 8-bit sub-
registers, So that any full register in C programming language
may store either four “byte” data type, two “short data type, or a
single “integer” at a time.

The solution that Leupers prefers and then used in the current
work is to generate SIMD instructions already in the code
generation process during the code selection phase. It maps the
machine independent intermediate representation of a program
into machine specific instruction. However, The new generated
code operates only on symbolic 32-bit registers, in a manner that
make the existing instruction scheduling and register allocation
techniques can still be used.

Code selection is concerned with mapping an intermediate
representation (IR) of the source program to machine instructions
of the target processor. This task can be viewed as covering the IR
by machine instruction pattern. Most current code selection
techniques are based on tree covering and operate on DFT based
on IRs of basic blocks; where the basic block is a straight-line
piece of code without any jumps. Tree covering in general
produces suboptimal covers for basic blocks. Since basic blocks
generally appear in the form of data flow graphs (DFGs), DFG
have to be split into DFTs. This is performed by cutting DFGs at
nodes representing multiple uses of values.
In the process of DFG covering, the given DFG is partitioned into
multiple DFTs by cutting the DFG at the common sub-
expressions (CSE) edges and computing optimal covers for each
single DFT. This traditional approach is not directly capable of
generating SIMD instructions, because this in general requires the
consideration of multiple DFTs at a time.

Leupers overcome this problem by permitting the generation of
alternative solutions during tree pattern matching. This approach
is used instead of annotating only single optimal rule to each DFG
node. All optimal rules are annotated including those for SIMD
instructions, and only later determine the best rule globally for
whole DFG. In order to achieve this, a dedicated nonterminal
symbols is introduced in the tree grammar, which denote the
different possibilities of using register. By applying this approach,
these registers can be used as a full 32-bit register or as two
separate 16-bit registers.

5. PROPOSED IMPLEMENTATION
The proposed implementation uses loop unrolling to duplicate the
loop body into a certain number of instances. Corresponding
instructions from different iterations are then, when possible,
packed together into SIMD instructions using the tree pattern
matching technique. The proposed technique is implemented
using Jikes RVM and generates SIMD instructions, capable to run
on the IA-32 architecture.

The automatic vectorization is performed as follows: Loop
unrolling is done by the Jikes RVM optimizing compiler during
the phase for converting the bytecode into HIR. All we need here
is to flag the basic blocks which contains the unrolled loops. This
flag is then used during the phase for conversion of LIR to MIR to
detect parts of code that are candidates for SIMDization and need

further processing. Thus, the phase for converting from LIR to
MIR must then be modified to enable generation of SIMD code.

Tree pattern matching with dynamic programming is not directly
applicable to generate SIMD instructions as this requires matching
coverings of multiple DFTs. This means that code selection has to
be performed on full data-flow graphs (DFGs) instead of separate
DFTs as in traditional compiler technology.
To solve this problem, the modified BURS of Leupers is used.
This requires the writing of new rules for matching similar BURS
trees of nodes that may be packed into SIMD instructions, saving
alternative coverings of some DFG’s instead of just one as in
original Jikes RVM, as well as adding procedures for checking
constraints that has to be enforced if some instructions can be
SIMDized. Figure 1 shows the structure of the Jikes RVM
optimizing compiler; the figure highlights the phase where such
modifications are made.

Next sub-sections describe the modifications done in the phase of
conversion from LIR to MIR in the Jikes RVM optimized
Compiler.

Figure 1. Modifications on the internal structure of Jikes

RVM optimizing compiler

5.1 Adding New Rules to the IA-32 BURS
Rules to Perform SIMDization
During the conversion from LIR to MIR, a basic block is
transformed into DFGs. Then, those DFGs are transformed into
DFTs [10].

During DFG covering process, each node is covered by the best
cost rule that emits instructions to generate the appropriate MIR
code. In the case of basic block that contains an unrolled loop,
some similar DFTs will be generated corresponding to the
unrolled iterations of the loop body. Consider, for example, the
following unrolled loop that loads two short values from memory,

performs ‘and’ operation, then stores resulted values into
memory.

for (int i=0 ; i<N ; i+2){
 A[i] = (short) (B[i] & C[i]);
 A[i+1] = (short) (B[i+1] & C[i+1]);

}
The DFG representation of the basic block of the unrolled loop
will contain two similar BURS trees each having the same rules
that will cover the tree nodes during the DFG covering process.
Figure 2 shows one such tree.

Figure 2. BURS Tree for ‘And’ Operation on Short data type

The goal of the proposed technique is to detect those similar trees,
then, when possible, pack them together into one tree that
generates SIMD code.

The packing can be achieved by naming the first tree ‘the high
tree’ and the second symmetric tree ‘the low tree’. The ‘high tree’
is to be covered by special rules called ‘high rules’, and the ‘low
tree’ by another symmetric rules called ‘low rules’. Only ‘high
rules’ are to generate SIMD code. The ‘low rules’ are used to
keep information on the operands and used in matching of
covering without emitting any code. This mapping is described in
Figure 3.

Figure 3 Generated Code from High and Low trees in Case of

Short data type

As an example, consider an instruction for addition in LIR code
such as “INT_ADD”. This instruction adds two 32-bit registers

and also writes the result into a 32-bit register. This addition can
be expressed by the following rule:

• r: INT_ADD(r, riv)

Where the nonterminal symbols “r” and “riv” denote a full 32-bit
registers and “INT_ADD” is a terminal symbol. Furthermore,
when a SIMD instruction performs two 16-bit additions, two
separate rules for modeling this behavior are described by

• r_hi: INT_ADD(r_hi, riv_hi)
• r_lo: INT_ADD(r_lo, riv_lo)

Where ‘r_lo’ and ‘r_hi’’ are nonterminals that denote the lower
and upper 16-bit subregisters of a full register. Also, the same is
applicable for the other nonterminals ‘riv_hi’ and ‘riv_lo’. These
two new rules are used to cover such nodes in the high and low
trees respectively. The goal here is to make the high rule generate
SIMD instructions while the low rule emits no code.
Consequently, all other SIMD instructions are modeled in the
same manner.

In general, selected trees must have the following characteristics:
• The root node is covered by three rules cover; which are:

the normal rule cover, the high, and low rules which are
used for the vectorization purpose.

• Operands of load and store operations must be vectors not
scalar.

• Those loads/store operations perform load/store operations
of 16-bit or 8-bit operands from/to memory.

Also, to identify that two trees are symmetric and guarantee the
correctness of this packing process both trees are traversed in
parallel to see if the following list of constraints are satisfied :

A pair of nodes Ni, Nj in a DFG (instructions) can be packed
into one SIMD operation, if:

• There is no scheduling precedence between Ni and Nj

• Ni and Nj have same operator.

• According to the tree grammar rules, Ni may be located
in an upper sub-register , Nj may be located in a lower
sub-register.

• If Ni and Nj represents LOAD / STORE operation then
they load / store values from adjacent location of
memory.

Similar processing is to be done, in case of four symmetric trees
with operands of 8-bit data object. In this case, the first tree will
be the ‘high tree’ which emits the SIMD instructions, while the
remaining other three ‘low trees’ will be used only in matching
the coverings and do not emit any code. This is shown in figure 4.

In this work, new rules are written to perform vector operations
for load, store, addition, negation, logic operations, etc. These
rules are appended to the IA-32 BURS rules.

Figure 4 Generated Code from High and Low trees in Case of

Byte Data Type

5.2 Modifications in JBURG Program
JBURG is a program in Jikes RVM Optimizing Compiler that
generates parser from BURS rules.

In this section, we will describe the modification done in the
JBURG program to allow annotation of multiple optimal rules
instead of only single rule.

This JBURG program generates Java code that parses BURS
trees. During the tree parsing process, it annotates the optimal rule
cover for each DFG node. Therefore, the modified part allows
annotation of up to three optimal solutions for each node. Those
rules must have the same cost which is the lowest one, where the
first rule must be the normal rule used without the implementation
of vectorization then the second and the third are its
corresponding high and low rules respectively.

Those three covers are described by:

• First cover is the normal optimal solution with the best
cost cover. Example of such cover:

r: SHORT_ALOAD(r, riv) Cost =20
Where the cost number is the cost of matching the pattern
that reflects the size of instructions generated and their
expected cycle time.

• Second cover is the optimal High rule which must have
the same cost of the first cover. Example of such cover:

r_hi: SHORT_ALOAD (r, riv) Cost =20
• Third cover is the optimal Low rule which should have
the same cost as the first and second cover, while also it has
a symmetric template of the High rule except for the
nonterminal extensions. Example of such cover

r_lo: SHORT_ALOAD(r, riv) Cost =20
This modification has been applied in the JBURG program to
generate java code parser with a suitable structure to save all the
three optimal rules solution. As well, preserve the order of the
selected rules as shown in the above list for future consideration.

5.3 Modifications in Code Selection Technique
The code selection phase comes after DFG covering process with
the most optimal rules. During this phase, the best node cover is
determined to be selected from the available three alternatives. At
this point the unrolling flag already set during the loop unrolling

phase is checked to make a decision whether to continue through
the goal to maximize the use of SIMD instructions or not.

To ensure a valid packing of each pair of trees, the constraints
mentioned in section 5.1 are examined. Each pair of trees can be
packed in a SIMD instruction if the following conditions are
satisfied:

• The parallel loads and stores of sub-registers implemented by
SIMD instructions actually refer to adjacent data in memory.

• There is no scheduling precedence between nodes of each tree
pair.

The data dependence graph already constructed in the optimized
compiler of Jikes RVM is used; where each node in the graph
represents an LIR operation that can be mapped easily to a BURS
tree node, and each edge corresponds to a dependence constraint
between a pair of instructions. This graph contains different types
of dependency edges that are traversed to find dependences
between different tree pairs.

5.4 Generation of SIMD Code
If all constraints for correct vectorization are satisfied, SIMD code
for such pair of symmetric trees can be generated. To allow this
SIMD code generation, rules cover of such tree should be
changed. Since JBURG code was earlier modified to save three
different rule cover, then SIMD rule will be chosen from those
rules. For example the three covers for both root node of the
above tree in Figure 2 are as follows:

• stm:SHORT_ASTORE(INT_2SHORT(r),
OTHER_OPERAND(r,riv))

• stm: SHORT_ASTORE(INT_2SHORT(riv_hi),
OTHER_OPERAND(r, riv))

• stm: SHORT_ASTORE(INT_2SHORT(riv_lo),
OTHER_OPERAND(r, riv))

At this point, the root node of the first tree will change its rule
cover by the second option which is the ‘high rule’. As well, the
second tree root will change its rule cover by the third option
which is the ‘low rule’. After that, both trees are relabeled to make
sure that all children nodes are covered by the appropriate new
rules cover.

6. Limitations
The current implementation has some limitations that can be
implemented in the future work. These limitations are described
by:

• The current technique allows packing of two short data objects
or four byte data objects only into one 32-bit data object.

• The current work is applied only into the IA-32 machine
architecture.

• Supported operations includes: load, store, add, subtract, and,
or, not and the array_copy operation, while the add and subtract
operations are implemented assuming that a special hardware
eliminate the carry propagations.

• Each SIMD tree must contain at least a load and/or store
operations.

• To limit the checks needed to ensure that there is no
dependency, the loop body must contain one operation.
Besides, if the loop reads and modifies values of the same
array, array element inside the loop must be in the form of
affine array access (A[x*i+k] where x is always equal to one).

• All memory access are aligned or handled by the hardware.
• No support for constants and invariants (e.g., x [i]=6 or y).
• Supports only operations on one dimensional array.
• All memory accesses are consecutive (stride=1)

7. RESULTS
For initial evaluation of the system, we consider a simple loop and
a more complex loop that are typical in multimedia applications.
The first performs a simple logic operation on two arrays, and the
second performs an image composting operation. To assess
performance, we chose the static count of generated MIR
instructions and the total run time as performance metrics. The
former metric sheds light on the maximum speed up possible,
whereas the latter gives the actual overall speed up, taking into
consideration compilation time and various overheads.
The first loop performs ‘and’ operation on two short arrays as
follows:

for(int i=0; i<N ; i++)
 A3[i] = (short)(A1[i] & A2[i]);

The total number of MIR instructions decreases from 44 to only
27 instructions when SIMDization is used, giving a theoretical
maximum speed up [6] of 1.6. In case of the same loop but with
bytes data types, the number of instructions decreases from 78 to
only 29 instructions. In such case theoretical maximum speed up
is 2.68.
Table 1 shows the run time required for executing 108 ‘anding’
loop iterations. This large number is intentionally chosen to
decrease the effect of compilation time. The two columns
represent the results for anding two short data objects and two
bytes data objects respectively. This loop was tested using three
different compilation options: The first is compiling the loop
without unrolling optimization; the second is setting the unrolling
factor to one in case of short data objects, and two in case of byte
data objects; the third is applying the new vectorization technique,
which implies using the loop unrolling feature and generating
SIMD code.

Run time(ms) Short data-type Byte data-type
Simple Loop 378 378
Unrolled Loop 331 318
SIMD Loop 213 128

Table 1: Run time Comparisons of Vector Anding

As expected the run time required to execute unrolled loop is
better than the original loop due to decreasing the number of loop
overheads. On the other hand, generating SIMD code improves
performance significantly. In case of the short data-type, speed up
gained by using loop unrolling is around 1.14. But when using
SIMD code the speed up ratio from unrolled loop to the SIMD
one is 1.6, which is the same as when comparing static instruction

counts. On the other hand, in case of byte data-type the speed up
ratio between unrolled loop and the SIMD one is 2.5, which is
close to the static instruction count result (2.68).

Figure 5 presents the run time speedup when using our
implementation with different data types. As shown, the speed up
of anding 8-bit data objects is greater than anding 16-bit data
objects, which is expected due to fixed machine word size.

Figure 5 Speed up graph for short and byte data-types

Decreasing the compilation time is highly recommended since it
affects the overall execution time. Figures 6 and 7 represent the
total execution time of the ‘anding’ loop in both short and byte
data-types respectively. The two curves represent executing the
loop in two different conditions: Firstly, by applying the new
vectorization technique, and secondly, without applying it. The
overhead of compilation with the new technique is amortized by
the run time reduction due to SIMDization. However, achieving
the maximum potential speed up requires substantial number of
loop iterations (in the order of 107 loop iterations).

Figure 6 Graph of total execution time of vector and with

short data-type
The worst case would appear in case of loop carried dependence.
In such case an extra compilation time using the new vectorization
technique will occur. While, the run time of the program does not
change since there is no exploitation of SIMD code. For example
in case of figure 6 and 7 loops, if a dependency exists, no runtime
reduction will occur, but only a small compilation overhead which
is no more than 20 ms will be introduced.

Figure 7 Graph of total execution time of vector and with

byte data-type
The second loop we analyzed is the ‘image compositing’ loop.
Image composting generally combines two images to create
special effects. The loop we considered performs ‘fade-in-fade-
out’ effect. The computation performed between images A and B
represented as:
 C = fade * (A-B) + B
Where A, B are two input images, and C is the resultant blended
image.
SIMD instructions are exploited by packing four byte instructions
into one SIMD instruction. Table 2, below, shows a run time
breakdown for executing the loop; the run time speed up resulted
is 1.14. This small speed up is due to the overhead of other non
SIMDized instructions, loop branching and boundary checks. As a
result the total compilation time increased. The new vectorization
technique has larger compilation time compared to original
unmodified Jikes RVM. That is due to the modifications in the
instruction selection phase. The modified selection phase took
47ms more; 7 ms for finding tree pairs and checking SIMD
constraints, 40 ms overhead of covering all DFGs nodes with
multiple rules.

Time SIMD Without SIMD
Total compilation time (ms) 11665 11601

Instruction selection (ms) 1394 1347

Run time (ms) 18.179 20.703

Table2: Compilation time and runtime of the composite loop

8. CONCLUSION
This paper presents initial results for a dynamic compilation
scheme that systematically vectorizes loops in the absence of
memory alignment constraints. Experimental results indicate
speedup factors 1.6 for 2 data objects per vector and 2.5 for 4 data
objects per vector for a simple loop. And a speed up of 1.14 for a
more complex loop example. Compilation time required to
perform SIMDization slightly increases the overall execution time
required to run a program in Jikes RVM. This overhead in
addition to normal dynamic compilation overhead can be
negligible with large number of loop iterations leading to
significant improve in performance (by exploiting SIMD

instruction). However, SIMDization overhead still occurs if
conditions required to pack a SIMD pair is not satisfied.

REFERENCES
[1] Krall, A. and Lelait, S. 2000. Compilation Techniques for

Multimedia Processors. Int. J. Parallel Program. 28, 4 (Aug.
2000)

[2] IBM. Jikes Research Virtual Machine (RVM).
http://jikesrvm.org/User+Guide, 2005.

[3] Michael G. Burke , Jong-Deok Choi , Stephen Fink , David
Grove , Michael Hind , Vivek Sarkar , Mauricio J. Serrano ,
V. C. Sreedhar , Harini Srinivasan , John Whaley, The
Jalapeño dynamic optimizing compiler for Java,
Proceedings of the ACM 1999 conference on Java Grande,
p.129-141, June 12-14, 1999, San Francisco, California,
United States

[4] Fraser, C. W., Hanson, D. R., and Proebsting, T. A. 1992.
Engineering a simple, efficient code-generator generator.
ACM Lett. Program. Lang. Syst. 1, 3 (Sep. 1992)

[5] Christopher W. Fraser , Robert R. Henry , Todd A.
Proebsting, BURG: fast optimal instruction selection and
tree parsing, ACM SIGPLAN Notices, v.27 n.4, p.68-76,
April 1992

[6] Zhao, J., Rogers, I., Kirkham, C., Watson, I.: Loop
parallelization for the Jikes RVM. In:. Proc. of the 6th
International Conference on Parallel and Distributed
computing, Applications and Technologies, 2005

[7] Hennessy, J. L. and Patterson, D. A. 2002 Computer
Architecture: a Quantitative Approach. 3rd. Morgan
Kaufmann Publishers Inc.

[8] Rainer Leupers, Code selection for media processors with
SIMD instructions, Proceedings of the conference on
Design, automation and test in Europe, p.4-8, March 27-30,
2000, Paris, France

[9] Rainer Leupers, Steven Bashford, Graph-Based code
selection techniques for embedded systems, March 2004.

[10] Steven Bashford , Rainer Leupers, Constraint driven code
selection for fixed-point DSPs, Proceedings of the 36th
ACM/IEEE conference on Design automation, p.817-822,
June 21-25, 1999, New Orleans, Louisiana, United States

[11] Steven S. Muchnick, Advanced compiler design and
implementation, Morgan Kaufmann Publishers Inc., San
Francisco, CA, 1998

[12] Bik, A. J., Girkar, M., Grey, P. M., and Tian, X. 2002.
Automatic intra-register vectorization for the Intel
architecture. Int. J. Parallel Program. 30, 2 (Apr. 2002).

[13] Dorit Naishlos. Autovectorization in gcc. In the GCC
Developer's summit, pages 105-118, June 2004.

[14] P. Lesnicki, M. Cornero, A. Cohen, G. Fursin, A. Ornstein,
and E. Rohou. Split compilation: an application to just-in-
time vectorization. In Workshop on GCC for Research in
Embedded and Parallel Systems (GREPS'07), Brasov,
Romania, September 2007.

[15] An Optimizer for Multimedia Instruction Sets (A
Preliminary Report) – Cheong, Lam – 1997

