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ABSTRACT 
Modern processors incorporate SIMD instructions to improve the 
performance of multimedia applications. Vectorizing compilers 
are therefore sought to efficiently generate SIMD instructions.  
With the existence of different families of SIMD instruction sets, 
the task of compiler writers is more complex. Moreover virtual 
machines, such as JVMs, are currently widely used for increasing 
the portability of programs across different platforms; performing 
SIMDization on these virtual machines would further require 'fast' 
compilation. This paper selects an efficient retargetable 
compilation technique, based on tree-pattern matching, which 
generates efficient SIMD code on static compilers, and studies its 
utility on the Jikes RVM. The paper extends BURS system used in 
Jikes optimizing compiler accordingly, and adds new rules for 
manipulating subword data for the IA-32 architecture. Initial 
experimental results show an overall speedup at runtime despite 
dynamic compilation overheads.  

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors---Run-time 
environments, Translator writing systems and compiler generators;  
C.1.2 [Processor Architectures]: Multiple Data Stream 
Architectures (Multiprocessors)---Single-instruction-stream, 
multiple-data-stream processors (SIMD). 

General Terms 
Languages, Design 

Keywords 
Vectorization, Dynamic Compilation, Java  

1. INTRODUCTION 
Vectorization is the process of converting a computer program 
from a scalar form into a vector form. A scalar program has 
arithmetic and logic instructions that operate on scalar operands 
(usually in pairs); whereas corresponding instructions in the 

vector program operates on ‘vector’ operands, each consisting of 
multiple scalar sub-operands.  

Current processors incorporate a form of vector processing 
usually called SIMD processing, where multiple scalar operands 
are packed into a single register.  Such hardware allows for fast 
computation especially for homogenous data arrays. Achieving 
such performance relies on the quality of vectorization technique. 

Currently, vectorization is generally manually done by the 
programmer using compiler intrinsic. While such technique 
allows for utilizing the underlying SIMD architecture, it increases 
the complexity of programming and more importantly decreases 
the portability of the vectorized program. 

Automatic vectorization techniques, on the other hand, tackle 
those issues, however, at the expense of being platform 
dependent. That increases the cost of retargeting the compilers for 
different SIMD processors. 

A notable technique in the literature that provides for retargeting 
is that proposed by Leupers [8,9]. The technique relies on using 
tree-pattern matching to generate SIMD code; that potentially 
reduces the task of retargeting to merely writing a set of ‘rules’ for 
the target machine. However, the technique has been 
demonstrated on ‘static’ compilers, allowing portability of 
programs at the source-level. 

This paper investigates the case of dynamic vectorization, where 
vectorization happens ‘on-the-fly’ while the program executes.  
Such model is currently used in Java and .Net systems and has the 
benefit of providing portability at the binary-level (not at the 
source level as traditional compilation techniques). The 
investigation focuses on Leupers’ technique being highly 
retargetable, and assesses the run-time compilation complexity 
and achievable speedups.  

This paper chooses the Jikes Research Virtual Machine 
(RVM) [2] as the underlying dynamic compilation system; Jikes 
RVM provides a flexible open test-bed for developing novel 
dynamic compilation optimizations. It also provides facilities for 
tracing, and measuring various compilation aspects. Moreover, it 
utilizes a tree-pattern code generator BURS (Bottom-Up 
Rewriting System) [4, 5] which fits nicely with Leupers’ 
technique. It also includes many optimizations such as loop 
unrolling and data dependence graph analysis which simplifies 
our task.  



The paper is organized as follows: Section 2 shows related work; 
Section 3 gives an overview of the Jikes Research Virtual 
Machine; Section 4 describes briefly the code selection technique 
proposed by Leupers.  Section 5 contains description of the 
proposed method.  Section 6 lists the limitations of the capabilities 
of the method. Section 7 presents the results of experiments with 
the implemented system.  Section 8 concludes the paper. 
 

2. RELATED WORK 
Distinct optimization techniques have been proposed to exploit 
SIMD instructions. In Krall and Lelait’s [1] technique, a loop is 
unrolled and instructions from successive iterations that have 
adjacent memory references and independent are packed into one 
SIMD instruction [1]. This technique relies on the knowledge of 
the target instruction set which limits the unroll factor.  

In the Intel C++/Fortran compiler [12], vectorization is 
decomposed into three phases: analysis, restructuring, and vector 
code generation; with a strong interaction between the first two 
phases. The program analysis phase performs control-flow, data-
flow and data-dependence analysis to provide the compiler with 
useful information on where implicit parallelism in the source 
program can be exploited. Program restructuring phase focuses on 
converting the source program into a form that is more amenable 
to analysis and, eventually, vectorization. Then finally, vector 
code generation phase generates vector code for all vectorizable 
loops. 
The GCC vectorizer [13,14] implements a loop-based 
vectorization technique with the adoption of a tree SSA (Static 
Single Assignment) optimization. The vectorizer applies a set of 
analyses on each loop, followed by the actual vector 
transformation for the loops that had successfully passed the 
analysis phase. 
The SUIF vectorizer [15] implements a two phase source-to-
source optimizer for multimedia instructions. In the first phase 
parallel loops are identified and instructions in the loop bodies are 
converted into vector instructions working on infinite length 
vectors. In the second phase, the code generation is applied to 
transform the vector operations into function calls. And vector 
operations that cannot be transformed will be converted back to 
parallel loops. 

None of the above techniques uses tree pattern matching to 
generate SIMD instructions. Using tree pattern matching has the 
benefit of easier retargetability which is an advantage with the 
many different SIMD instruction sets in the literature. We 
therefore use Leupers’ tree pattern matching in our dynamic 
compilation investigation.  
 

3. THE JIKES RESEARCH VIRTUAL 
MACHINE (RVM) 
The Jikes RVM is designed for use in research on fundamental 
virtual machine design issues. It provides a flexible testbed to 
prototype new virtual machine technologies and to experiment 
with a large variety of design alternatives.  
 
There are three different types of compilers in Jikes RVM: one of 
them is the optimizing compiler which is a dynamic compiler; it 
compiles methods while an application is running to generate 

optimized code. Therefore, this optimizing compiler is the 
dynamic compiler used to implement the proposed vectorization 
technique.  

The structure of the optimizing compiler is shown in Figure 1. 
The optimizing compiler begins by translating Java bytecodes into 
a high-level intermediate representation (HIR). HIR is a register-
based intermediate representations which provides greater 
flexibility for code motion and code transformation than do tree or 
stack-based representations.  

After performing some high-level optimizations, HIR is converted 
to a low-level intermediate representation (LIR) whose operations 
are specific to the virtual machine's object layout and parameter-
passing conventions. A dependence graph is constructed for each 
basic block. The dependence graph is used for instruction 
selection. Each node of the dependence graph is an LIR 
instruction, and each edge corresponds to a dependence constraint 
between a pair of instructions.  

After low-level optimization, the LIR is converted to machine-
specific intermediate representation (MIR). The dependence 
graphs for the extended basic blocks of a method are partitioned 
into trees. These are fed to a bottom-up rewriting system (BURS), 
which produces the MIR. Then symbolic registers are mapped to 
physical registers. A prologue is added at the beginning, and an 
epilogue at the end, of each method. Finally, executable code is 
emitted.  

BURS, a code-generator generator, is a tree pattern matching 
system for instruction selection. Instruction selection for desired 
target architecture is specified by a tree grammar. Each rule in the 
tree grammar specifies the tree pattern to be matched, an 
associated cost (reflecting the size of instructions generated and 
their expected cycle times), and code-generation action (flags for 
the operation and the code to emit).  

The tree-pattern matching performed uses dynamic programming 
to find a least-cost parse for any input tree. The rules are used in 
generating a parser which transforms the LIR into MIR. 

The JBURG Program is a program in the Jikes RVM optimized 
compiler system that generates a fast tree parser using BURS. 
JBURG allows good instruction selection.   However, it cannot be 
used to write productions for vector operations that need matching 
coverings in an entire tree of operations.  Leupers has shown how 
with a modified BURS system one can achieve this result. 

  

4. CODE SELECTION TECHNIQUE  
Leupers [8, 9] presented a new code selection technique capable 
of exploiting SIMD instructions when compiling plain C code. It 
permits taking full advantage of SIMD instructions for multimedia 
applications, while still using machine independent source code. 
Most compilers use tree pattern matching with dynamic 
programming for code selection. This technique uses an 
intermediate program representation consisting of data flow trees. 
However, tree pattern matching with dynamic programming is not 
directly applicable for generation of SIMD instructions. In general 
SIMDization requires to simultaneously covering multiple Data 
Flow Trees (DFTs) instead of processing one DFT after another. 
This means that code selection has to be performed on full data-
flow graphs (DFGs) instead of only DFTs as in traditional 
compiler technology. 



Leupers showed a traditional technique of code selection for 
Media Processor with SIMD Instructions. He used SIMD 
instructions by considering the 32-bit data registers to be 
composed of either two 16-bit sub-registers or four 8-bit sub-
registers, So that any full register in C programming language 
may store either four “byte” data type, two “short data type, or a 
single “integer” at a time.  

The solution that Leupers prefers and then used in the current 
work is to generate SIMD instructions already in the code 
generation process during the code selection phase. It maps the 
machine independent intermediate representation of a program 
into machine specific instruction. However, The new generated 
code operates only on symbolic 32-bit registers, in a manner that 
make the existing instruction scheduling and register allocation 
techniques can still be used. 

Code selection is concerned with mapping an intermediate 
representation (IR) of the source program to machine instructions 
of the target processor. This task can be viewed as covering the IR 
by machine instruction pattern. Most current code selection 
techniques are based on tree covering and operate on DFT based 
on IRs of basic blocks; where the basic block is a straight-line 
piece of code without any jumps. Tree covering in general 
produces suboptimal covers for basic blocks. Since basic blocks 
generally appear in the form of data flow graphs (DFGs), DFG 
have to be split into DFTs. This is performed by cutting DFGs at 
nodes representing multiple uses of values. 
In the process of DFG covering, the given DFG is partitioned into 
multiple DFTs by cutting the DFG at the common sub-
expressions (CSE) edges and computing optimal covers for each 
single DFT. This traditional approach is not directly capable of 
generating SIMD instructions, because this in general requires the 
consideration of multiple DFTs at a time.  

Leupers overcome this problem by permitting the generation of 
alternative solutions during tree pattern matching. This approach 
is used instead of annotating only single optimal rule to each DFG 
node. All optimal rules are annotated including those for SIMD 
instructions, and only later determine the best rule globally for 
whole DFG. In order to achieve this, a dedicated nonterminal 
symbols is introduced in the tree grammar, which denote the 
different possibilities of using register. By applying this approach, 
these registers can be used as a full 32-bit register or as two 
separate 16-bit registers. 

 

5. PROPOSED IMPLEMENTATION 
The proposed implementation uses loop unrolling to duplicate the 
loop body into a certain number of instances. Corresponding 
instructions from different iterations are then, when possible, 
packed together into SIMD instructions using the tree pattern 
matching technique. The proposed technique is implemented 
using Jikes RVM and generates SIMD instructions, capable to run 
on the IA-32 architecture.  

The automatic vectorization is performed as follows: Loop 
unrolling is done by the Jikes RVM optimizing compiler during 
the phase for converting the bytecode into HIR.  All we need here 
is to flag the basic blocks which contains the unrolled loops. This 
flag is then used during the phase for conversion of LIR to MIR to 
detect parts of code that are candidates for SIMDization and need 

further processing. Thus, the phase for converting from LIR to 
MIR must then be modified to enable generation of SIMD code.   

Tree pattern matching with dynamic programming is not directly 
applicable to generate SIMD instructions as this requires matching 
coverings of multiple DFTs. This means that code selection has to 
be performed on full data-flow graphs (DFGs) instead of separate 
DFTs as in traditional compiler technology. 
To solve this problem, the modified BURS of Leupers is used. 
This requires the writing of new rules for matching similar BURS 
trees of nodes that may be packed into SIMD instructions, saving 
alternative coverings of some DFG’s instead of just one as in 
original Jikes RVM, as well as adding procedures for checking 
constraints that has to be enforced if some instructions can be  
SIMDized. Figure 1 shows the structure of the Jikes RVM 
optimizing compiler; the figure highlights the phase where such 
modifications are made. 
  
Next sub-sections describe the modifications done in the phase of 
conversion from LIR to MIR in the Jikes RVM optimized 
Compiler.  

 
Figure 1. Modifications on the internal structure of Jikes 

RVM optimizing compiler 
 

5.1 Adding New Rules to the IA-32 BURS 
Rules to Perform SIMDization 
During the conversion from LIR to MIR, a basic block is 
transformed into DFGs. Then, those DFGs are transformed into 
DFTs [10]. 

During DFG covering process, each node is covered by the best 
cost rule that emits instructions to generate the appropriate MIR 
code. In the case of basic block that contains an unrolled loop, 
some similar DFTs will be generated corresponding to the 
unrolled iterations of the loop body. Consider, for example, the 
following unrolled loop that loads two short values from memory, 



performs ‘and’ operation, then stores resulted values into 
memory. 

for (int i=0 ; i<N ; i+2){ 
 A[i]      = (short) ( B[i]     & C[i]     ); 
 A[i+1] = (short) (B[i+1] & C[i+1]); 

} 
The DFG representation of the basic block of the unrolled loop 
will contain two similar BURS trees each having the same rules 
that will cover the tree nodes during the DFG covering process. 
Figure 2 shows one such tree. 

 
Figure 2. BURS Tree for ‘And’ Operation on Short data type 

 

The goal of the proposed technique is to detect those similar trees, 
then, when possible, pack them together into one tree that 
generates SIMD code.  

The packing can be achieved by naming the first tree ‘the high 
tree’ and the second symmetric tree ‘the low tree’. The ‘high tree’ 
is to be covered by special rules called ‘high rules’, and the ‘low 
tree’ by another symmetric rules  called ‘low rules’. Only ‘high 
rules’ are to generate SIMD code. The ‘low rules’ are used to 
keep information on the operands and used in matching of 
covering without emitting any code. This mapping is described in 
Figure 3.  

 
Figure 3 Generated Code from High and Low trees in Case of 

Short data type 

 

As an example, consider an instruction for addition in LIR code 
such as “INT_ADD”. This instruction adds two 32-bit registers 

and also writes the result into a 32-bit register. This addition can 
be expressed by the following rule: 

• r: INT_ADD(r, riv) 

Where the nonterminal symbols “r” and “riv” denote a full 32-bit 
registers and “INT_ADD” is a terminal symbol. Furthermore, 
when a SIMD instruction performs two 16-bit additions, two 
separate rules for modeling this behavior are described by 

• r_hi:  INT_ADD(r_hi, riv_hi) 
• r_lo:  INT_ADD(r_lo, riv_lo) 

Where ‘r_lo’ and ‘r_hi’’ are nonterminals that denote the lower 
and upper 16-bit subregisters of a full register. Also, the same is 
applicable for the other nonterminals ‘riv_hi’ and ‘riv_lo’. These 
two new rules are used to cover such nodes in the high and low 
trees respectively. The goal here is to make the high rule generate 
SIMD instructions while the low rule emits no code. 
Consequently, all other SIMD instructions are modeled in the 
same manner. 

In general, selected trees must have the following characteristics: 
• The root node is covered by three rules cover; which are: 

the normal rule cover,  the high, and low rules which are 
used for the vectorization purpose. 

• Operands of load and store operations must be vectors not 
scalar. 

• Those loads/store operations perform load/store operations 
of 16-bit or 8-bit operands from/to memory. 

 

Also,  to identify that two trees are symmetric  and guarantee the 
correctness of this packing process both trees are traversed in 
parallel to see if the following list of constraints are satisfied :  

A pair of nodes Ni, Nj in a DFG (instructions) can be packed 
into one SIMD operation, if: 

• There is no scheduling precedence between Ni and Nj  

• Ni and Nj    have same operator. 

• According to the tree grammar rules, Ni may be located 
in an upper sub-register , Nj  may be located in a lower 
sub-register. 

• If Ni and Nj represents LOAD / STORE operation then 
they load / store values from adjacent location of 
memory. 
 

Similar processing is to be done, in case of four symmetric trees 
with operands of 8-bit data object.  In this case, the first tree will 
be the ‘high tree’ which emits the SIMD instructions, while the 
remaining other three ‘low trees’ will be used only in matching 
the coverings and do not emit any code. This is shown in figure 4. 

In this work, new rules are written to perform vector operations 
for load, store, addition, negation, logic operations, etc. These 
rules are appended to the IA-32 BURS rules. 

 



 
Figure 4 Generated Code from High and Low trees in Case of 

Byte Data Type 
 

5.2 Modifications in JBURG Program 
JBURG is a program in Jikes RVM Optimizing Compiler that 
generates parser from BURS rules.  

In this section, we will describe the modification done in the 
JBURG program to allow annotation of multiple optimal rules 
instead of only single rule.  

This JBURG program generates Java code that parses BURS 
trees. During the tree parsing process, it annotates the optimal rule 
cover for each DFG node. Therefore, the modified part allows 
annotation of up to three optimal solutions for each node. Those 
rules must have the same cost which is the lowest one, where the 
first rule must be the normal rule used without the implementation 
of vectorization then the second and the third are its 
corresponding high and low rules respectively. 

Those three covers are described by: 

• First cover is the normal optimal solution with the best 
cost cover.  Example of such cover: 

r:  SHORT_ALOAD(r, riv)  Cost =20 
Where the cost number is the cost of matching the pattern 
that reflects the size of instructions generated and their 
expected cycle time. 

• Second cover is the optimal High rule which must have 
the same cost of the first cover. Example of such cover: 

r_hi:    SHORT_ALOAD (r, riv)   Cost =20 
• Third cover is the optimal Low rule which should have 
the same cost as the first and second cover, while also it has 
a symmetric template of the High rule except for the 
nonterminal extensions. Example of such cover 

r_lo:   SHORT_ALOAD(r, riv)   Cost =20 
This modification has been applied in the JBURG program to 
generate java code parser with a suitable structure to save all the 
three optimal rules solution. As well, preserve the order of the 
selected rules as shown in the above list for future consideration. 

5.3 Modifications in Code Selection Technique 
The code selection phase comes after DFG covering process with 
the most optimal rules. During this phase, the best node cover is 
determined to be selected from the available three alternatives. At 
this point the unrolling flag already set during the loop unrolling 

phase is checked to make a decision whether to continue through 
the goal to maximize the use of SIMD instructions or not.  

To ensure a valid packing of each pair of trees, the constraints 
mentioned in section 5.1 are examined.  Each pair of trees can be 
packed in a SIMD instruction if the following conditions are 
satisfied: 

• The parallel loads and stores of sub-registers implemented by 
SIMD instructions actually refer to adjacent data in memory.  

• There is no scheduling precedence between nodes of each tree 
pair.  

The data dependence graph already constructed in the optimized 
compiler of Jikes RVM is used; where each node in the graph 
represents an LIR operation that can be mapped easily to a BURS 
tree node, and each edge corresponds to a dependence constraint 
between a pair of instructions.  This graph contains different types 
of dependency edges that are traversed to find dependences 
between different tree pairs. 

5.4 Generation of SIMD Code 
If all constraints for correct vectorization are satisfied, SIMD code 
for such pair of symmetric trees can be generated. To allow this 
SIMD code generation, rules cover of such tree should be 
changed. Since JBURG code was earlier modified to save three 
different rule cover, then SIMD rule will be chosen from those 
rules. For example the three covers for both root node of the 
above tree in Figure 2 are as follows: 

• stm:SHORT_ASTORE(INT_2SHORT(r), 
OTHER_OPERAND(r,riv)) 

• stm: SHORT_ASTORE(INT_2SHORT(riv_hi), 
OTHER_OPERAND(r, riv)) 

• stm: SHORT_ASTORE(INT_2SHORT(riv_lo), 
OTHER_OPERAND(r, riv)) 

At this point, the root node of the first tree will change its rule 
cover by the second option which is the ‘high rule’. As well, the 
second tree root will change its rule cover by the third option 
which is the ‘low rule’. After that, both trees are relabeled to make 
sure that all children nodes are covered by the appropriate new 
rules cover.  

6. Limitations 
The current implementation has some limitations that can be 
implemented in the future work. These limitations are described 
by: 

• The current technique allows packing of two short data objects 
or four byte data objects only into one 32-bit data object. 

• The current work is applied only into the IA-32 machine 
architecture. 

• Supported operations includes: load, store, add, subtract, and, 
or, not and the array_copy operation, while the add and subtract 
operations are implemented assuming that a special hardware 
eliminate the carry propagations. 

• Each SIMD tree must contain at least a load and/or store 
operations. 



• To limit the checks needed to ensure that there is no 
dependency, the loop body must contain one operation. 
Besides, if the loop reads and modifies values of the same 
array, array element inside the loop must be in the form of 
affine array access (A[x*i+k] where x is always equal to one).  

• All memory access are aligned or handled by the hardware. 
• No support for constants and invariants (e.g., x [i]=6 or y). 
• Supports only operations on one dimensional array. 
• All memory accesses are consecutive (stride=1) 

 

7. RESULTS 
For initial evaluation of the system, we consider a simple loop and 
a more complex loop that are typical in multimedia applications. 
The first performs a simple logic operation on two arrays, and the 
second performs an image composting operation. To assess 
performance, we chose the static count of generated MIR 
instructions and the total run time as performance metrics. The 
former metric sheds light on the maximum speed up possible, 
whereas the latter gives the actual overall speed up, taking into 
consideration compilation time and various overheads. 
The first loop performs ‘and’ operation on two short arrays as 
follows:  

for(int i=0; i<N ; i++) 
     A3[i] = (short)(A1[i] & A2[i]);  

The total number of MIR instructions decreases from 44 to only 
27 instructions when SIMDization is used, giving a theoretical 
maximum speed up [6] of 1.6. In case of the same loop but with 
bytes data types, the number of instructions decreases from 78 to 
only 29 instructions. In such case theoretical maximum speed up 
is 2.68. 
Table 1 shows the run time required for executing 108 ‘anding’ 
loop iterations. This large number is intentionally chosen to 
decrease the effect of compilation time. The two columns 
represent the results for anding two short data objects and two 
bytes data objects respectively. This loop was tested using three 
different compilation options: The first is compiling the loop 
without unrolling optimization; the second is setting the unrolling 
factor to one in case of short data objects, and two in case of byte 
data objects; the third is applying the new vectorization technique, 
which implies using the loop unrolling feature and generating 
SIMD code. 
 

Run time(ms) Short data-type  Byte data-type 
Simple Loop 378 378 
Unrolled Loop 331 318 
SIMD Loop 213 128 

Table 1: Run time Comparisons of Vector Anding 
 

As expected the run time required to execute unrolled loop is 
better than the original loop due to decreasing the number of loop 
overheads. On the other hand, generating SIMD code improves 
performance significantly. In case of the short data-type, speed up 
gained by using loop unrolling is around 1.14. But when using 
SIMD code the speed up ratio from unrolled loop to the SIMD 
one is 1.6, which is the same as when comparing static instruction 

counts. On the other hand, in case of byte data-type the speed up 
ratio between unrolled loop and the SIMD one is 2.5, which is 
close to the static instruction count result (2.68). 

Figure 5 presents the run time speedup when using our 
implementation with different data types. As shown, the speed up 
of anding 8-bit data objects is greater than anding 16-bit data 
objects, which is expected due to fixed machine word size.  

 
Figure 5  Speed up graph for short and byte data-types 

Decreasing the compilation time is highly recommended since it 
affects the overall execution time. Figures 6 and 7 represent the 
total execution time of the ‘anding’ loop in both short and byte 
data-types respectively. The two curves represent executing the 
loop in two different conditions: Firstly, by applying the new 
vectorization technique, and secondly, without applying it. The 
overhead of compilation with the new technique is amortized by 
the run time reduction due to SIMDization. However, achieving 
the maximum potential speed up requires substantial number of 
loop iterations (in the order of 107 loop iterations). 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6  Graph of total execution time of vector and with 

short data-type 
The worst case would appear in case of loop carried dependence. 
In such case an extra compilation time using the new vectorization 
technique will occur. While, the run time of the program does not 
change since there is no exploitation of SIMD code.  For example 
in case of figure 6 and 7 loops, if a dependency exists, no runtime 
reduction will occur, but only a small compilation overhead which 
is no more than 20 ms will be introduced. 



 
 
 
 
 
 
 
 
 
 
 

 
Figure 7  Graph of total execution time of vector and with 

byte data-type 
The second loop we analyzed is the ‘image compositing’ loop. 
Image composting generally combines two images to create 
special effects. The loop we considered performs ‘fade-in-fade-
out’ effect. The computation performed between images A and B 
represented as:  
                C = fade * (A-B) + B 
Where A, B are two input images, and C is the resultant blended 
image.  
SIMD instructions are exploited by packing four byte instructions 
into one SIMD instruction. Table 2, below, shows a run time 
breakdown for executing the loop; the run time speed up resulted 
is 1.14. This small speed up is due to the overhead of other non 
SIMDized instructions, loop branching and boundary checks. As a 
result the total compilation time increased. The new vectorization 
technique has larger compilation time compared to original 
unmodified Jikes RVM. That is due to the modifications in the 
instruction selection phase. The modified selection phase took 
47ms more; 7 ms  for finding tree pairs and checking SIMD 
constraints, 40 ms overhead of covering all DFGs nodes with 
multiple rules. 

Time SIMD  Without SIMD
Total compilation time (ms) 11665 11601 

Instruction selection (ms) 1394 1347 

Run time (ms) 18.179 20.703 

Table2: Compilation time and runtime of the composite loop 

8. CONCLUSION 
This paper presents initial results for a dynamic compilation 
scheme that systematically vectorizes loops in the absence of 
memory alignment constraints. Experimental results indicate 
speedup factors 1.6 for 2 data objects per vector and 2.5 for 4 data 
objects per vector for a simple loop. And a speed up of 1.14 for a 
more complex loop example. Compilation time required to 
perform SIMDization slightly increases the overall execution time 
required to run a program in Jikes RVM. This overhead in 
addition to normal dynamic compilation overhead can be 
negligible with large number of loop iterations leading to 
significant improve in performance (by exploiting SIMD 

instruction). However, SIMDization overhead still occurs if 
conditions required to pack a SIMD pair is not satisfied.  
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