
Real-Time Disk Scheduling for Block-Stripping I 2 0 RAID

Tei-Wei Kuo, Ji-Shin Raot, Victor C. S. Lee$, and Jun Wut
Department of Computer Science and Information Engineering

National Taiwan University, Taipei, Taiwan 106, ROC
+Department of Computer Science and Information Engineering

National Chung Cheng University, Chiayi, Taiwan 621, ROC
$Department of Computer Science, City University of Hong Kong

83 Tat Chee Avenue, Kowloon, Hong Kong

Abstract

T h e emerging of Intell igent I / 0 (120) architecture
provides a standard for high-performance I/O subsys-
t e m s and introduces intelligence a t t h e hardware level.
With a n embedded processor, I 2 0 adaptors can o f l o a d
t h e m a j o r 1/0 processing workload f r o m t h e CPU and,
a t the s a m e t i m e , increase the 1/0 performance. T h i s
paper addresses t h e essential issue in t h e design of disk
scheduling for I 2 0 RAID-0 devices. W e explore on-
l ine real-time multi-disk scheduling f o r I 2 0 requests
and propose highly eff icient algorithms to m i n i m i z e the
n u m b e r of deadline violations and , a t the s a m e t i m e , t o
improve t h e response t i m e s of requests. T h e proposed
methodologies are verified by a series of exper iments
u n d e r realistic and randomly generated workloads.

1 Introduction

Traditional work on disk scheduling has been fo-
cused on single disk systems, such as SCAN, Shortest-
Seek-Time-First (SSTF), Circular SCAN (C-SCAN),
and FIFO [ll], where SCAN services disk requests on
the way from one side of the disk to the other side and
then on the way back, etc. C-SCAN is a variation of
SCAN, except that C-SCAN always services disk re-
quests from one side to the other side, and as soon as
the r/w head reaches the other side, it immediately re-
turns to the beginning of the disk, without servicing
any request on the return trip. SSTF always services
the request closest to the current r/w head position.
FIFO services requests according to their arrival or-
der. Andrews, et al., [l] showed that the optimization
problem for single disk scheduling is an asymmetric
traveling salesman problem and provided approxima-
tion algorithms.

217
0-7695-1221-6/01 $10.00 0 2001 IEEE

Recently, researchers start proposing various real-
time disk scheduling algorithms based on the request
deadlines, e.g., [2, 3, 4, 5, 6, 7, 101. Chen, et
al. [5] proposed a weighted-function-based algorithm
called Shortest-Seek- T ime-Ear l ies t -Deadl ine-By- Value
(SSEDV) by considering request deadlines and their
seek times. Reddy and Wyllie [lo] explored the con-
tention of SCSI bus, in which priorities are defined
as a weighted function of their deadlines. Bruno, et
al. [3] proposed a two-level scheduling mechanism,
in which each session/process has a deadline-based
queue,and jobs are sorted according to their deadlines.
The most urgent job in each deadline-based queue is
inserted into the system queue, where the system ser-
vices jobs in the system queue in a SCAN fashion.
Hwang and Shin [7] proposed a deadline-driven algo-
rithm, in which requests are partitioned into groups
based on their urgency. Urgent requests are always
serviced first. Abbott and Garcia-Molina [2] proposed
a SCAN-like deadline-driven algorithm. The algorithm
first picks up a request with the closest deadline and
then services all requests residing at cylinders between
the current cylinder and the cylinder of the request
with the closest deadline. Chang, et a1 [4] proposed
a deadline-monotonic SCAN algorithm which guaran-
tees hard deadlines of disk access, where the workload
distribution (such as deadlines, disk addresses, etc)
of disk access is known. Although researchers have
proposed various excellent algorithms for single disk
scheduling, little work has been done for multiple-disk
scheduling, especially for real-time RAID applications.
In particular, Weikum and Zabback [12] studied the
impacts of stripping size on RAID concurrency and
performance, for non-real-time applications. Cheng, et
al. [6] proposed to synchronize all disks for real-time
RAID scheduling. Sequential access is favored, a t the
cost of random access.

The goal of this research is to explore real-time disk
scheduling for I 2 0 RAID-0 devices with low run-time
overheads, where RAID-0 stands for the redundant ar-
ray of independent disks with a block-stripping scheme.
We consider I20 RAID-0 devices which adopt a less-
powerful embedded processor for disk scheduling. Since
requests on I 2 0 RAID-0, in general, have soft real-
time deadlines, a disk scheduling algorithm must not
only maximize the 1/0 performance, e.g., in terms of
throughput or response time, but also minimize the
number of requests which miss their deadlines. The
major contribution of this work is on the exploring of
on-line real-time multi-disk scheduling, which is suit-
able to I 2 0 devices adopting a less-powerful embedded
processor. We not only propose an incremental real-
time multi-disk scheduling algorithm but also include
an approximate version with a linear time complexity
for real-time and non-real-time data access. We have
shown that our proposed methodologies are both effi-
cient and effective in scheduling I 2 0 RAID-0 requests.

The rest of this paper is organized as follows: Sec-
tion 2 illustrates the I 2 0 system architecture and
its RAID implementation. Section 3 first defines
I20 RAID-0 requests and the performance goal. We
then propose our incremental multi-disk scheduling
algorithm called Value-Based Real- Time Job-Group
Scheduling algorithm (VRT-JG). An iterative proce-
dure is proposed to reorder jobs of requests in each
disk queue with an objective to minimize the number
of deadline violations and, at the same time, to op-
timize the response times of requests. In Section 4,
the capability of the proposed algorithm is evaluated
by a series of experiments under randomly generated
workloads, for which we have some encouraging results.
Section 5 is the conclusion.

2 Intelligent Input/Output System Ar-
chit ect ure

2.1 Intelligent Input/Output Architecture

The Intelligent 1/0 (120) specifications are pro-
posed by major players in the industry, such as Mi-
crosoft, Intel, Hewlett-Packard, 3COM, Compaq, etc,
as a standard for the next-generation 1/0 subsystems.
The introducing of the I 2 0 specifications provides in-
telligence a t the hardware level and standardize plat-
forms for all segments of the industry. They spec-
ify an architecture that is operating-system-vendor-
independent and adapts to existing operating systems,
such as Microsoft Windows NT and 2000. The I 2 0

ACARD AEC 6850

Figure 1: An I 2 0 hardware architecture

specifications enable the OS vendors to produce a sin-
gle driver for each class of devices and concentrate on
optimizing the OS portion of the driver. With an em-
bedded processor, I20 adaptors can ofload the major
1/0 processing workload from the CPU and, a t the
same time, increase the 1/0 performance.

We shall illustrate the architecture of the I20 spec-
ifications by an example product ACARD AEC 6850,
which is to be released to the market by the ACARD
Corp. ACARD AEC 6850 is an I20 RAID adaptor,
which can manage up to 75 hard disks. Its hardware
architecture is as shown in Figure 1. There are two
major components separated by a dash line: Host and
Target. A host can be any P C running a popular OS
such as Windows 2000. The host can have other 1/0
adaptors for other 1/0 devices. The target is an I20
adaptor, such as ACARD AEC 6850 in this example.
The interface between the I 2 0 adaptor and the host
is currently defined as a PCI bus. ACARD AEC 6850
has an embedded processor, such as Intel i960, memory,
and up to 5 SCSI adaptors. Each SCSI adaptor may
be connected to 15 disks. (Note that IDE disks might
be adopted in similar products.) The memory space of
an I 2 0 adaptor can be mapped to the memory address
domain of the host so that the host and the target can
communicate by DMA.

The I 2 0 architecture splits drivers into two parts:
OS-Specific Module (OSM) and Device Driver Module
(DDM), as shown in Figure 2. OSM is implemented

2 18

1 HOST 1 DDi 1 OSM HDM

Figure 2: I20 driver modules

a t the host side, and DDM is at the target side. OSM
provides an interface to the host operating system and
is usually supplied by OS vendors. OSM communicates
with DDM via messages (on the top of a PCI bus). An
I20 real-time operating system (IRTOS) (and its re-
lated programs) runs on the I 2 0 adaptor's processor to
receive 1/0 requests from the host via OSM and sched-
ule disk services. All disk operations are initiated by
invoking appropriate DDM handler functions. DDM
may consist of two parts: Intermediate Service Mod-
ule (ISM) and Hardware Device Module (HDM). HDM
contains hardware-specific code to manage device con-
trollers, and ISM lets hardware vendors add more func-
tionality to plain devices (stacked over HDM), e.g.,
having real-time disk scheduling or resource manage-
ment [SI.

2.2 Intelligent Input/Output RAID

RAID Device Queue

A
B

i

Disk1 Queue Disk2 Queue Disk3 Queue Disk3 Queue

Figure 3: The event flow in an I 2 0 RAID-0 device

I20 devices are designed to fulfill the demand of
high-performance I/O, and one of the most important
applications is I20 RAID'S. An 120 RAID device, such
as ACARD AEC 6850, may need to manage a number
of disks with data stripping technology. In particular,
we are interested in RAID-0, in which data are stripped
in units of blocks such that an 1/0 request may be ser-
viced by several disks simultaneously. For the purpose
of this section, an 1/0 request is tentatively defined as

a collection of i jobs (for i 2 l), which may be serviced
by dif€erent disks.

Event Dispatching

iFuncmn Handler I Level 4
8-

~ Function Handler 1
I
4

Figure 4: Message dispatching in an I 2 0 RAID-0 de-
vice

We shall illustrate the system operation in terms
of an I 2 0 RAID-0 device with four disks. According
to the I 2 0 specifications, there is an event queue for
the entire RAID device and each of its disks, as shown
in Figure 3. Each of the queues is a priority queue,
where event priorities are determined by applications
(via OSM). An IRTOS (and its related programs) is
an event-triggered system. When the host issues an
1/0 request via OSM, the request is transformed into
a message and inserted into the corresponding message
queue, as shown in Figure 4. The message insertion
will trigger the execution of the corresponding system
thread to process the message and insert an event into
the event queue for the entire RAID device, as shown
in Figure 3. The event carries all of the necessary in-
formation for the 1/0 request received via OSM. In
general, there is a thread associated with each event
queue. The event insertion will trigger the execution
of the thread assigned to the RAID device event queue.
As a result, the 1 / 0 request will be decomposed into a
collection of jobs, and an event for each of the jobs will
be inserted into the event queue of the corresponding
disk. Threads which are assigned to the event queues
of the disks will then become ready to process their
events and invoke DDM handler functions to initiate
1/0 operations.

3 Real-Time RAID-0 Scheduling

Traditional disk scheduling focuses on single disk
systems. The main performance metrics are response
time and throughput for non-real-time disk services
and miss ratio and response time for real-time data
access. Little work has been done for multiple-disk
scheduling, especially for real-time applications. In this

219

paper, we are interested in I20 RAID devices, in which
multiple disks are adopted to maximize the 1/0 band-
width. Disks with/without internal scheduling, such as
SCSI and IDE disks, are potential drives for our target
I20 RAID devices. A simple but effective scheduling
algorithm for multiple disks must be adopted and run
on the embedded processor of the I 2 0 RAID device
to meet the hard deadline of each request and, a t the
same time, to minimize requests’ response time.

An important objective of I20 RAID devices is to
push down the 1/0 functionality to a lower level, i.e.,
the I 2 0 controller level, such that high-performance
storage devices can be obtained. Data stripping is
a popular technology to distribute data over multiple
disks to utilize parallelism to maximize 1/0 bandwidth.
The objective of this work is on real-time RAID-0 disk
scheduling, i.e., real-time scheduling of 1/0 requests
with block stripping. Under the I 2 0 specifications,
each 1/0 request has a reasonable deadline, and an
1/0 request may be up to 4 G B (the byte count is
of 4 bytes in BsaBlockRead request message) [8]. In
other words, a request can be scattered over several
disks. The deadline setting of an I /0 request depends
on many factors, such as the types of requests, request
slack (called TimeMultiplier in the I 2 0 specifications),
etc. For example, the deadline of a read (and write)
request is defined as

TimeMultiplier x (R W V T i m e o u t Base+
(RWVTimeout x s i z e / 6 4 K)) ,

where RWVTimeou tBase and RWVTimeou t are two
constants set by OSM during system initialization, and
s i ze and TimeMultiplier are the byte count and the
slack of the 1/0 request, respectively. The deadline of
a cache flush request for a specified DDM is defined as
TimeMultiplier x t imeoutBase , where t i m e o u t a a s e
is another constant set by OSM during system initial-
ization. The deadlines of 1 / 0 requests are, in general,
soft deadlines and reasonably large. However, in some
implementation, the deadline violation of certain 1/0
requests may result in a system reset.

3.1 System Model and Overview

Each I20 1/0 request can be modeled by four pa-
rameters ri = (arri , L B A i , s i , d i) , where arri, L B A i ,
s i , and di are the arrival time, the starting logical block
address (LBA), the size in bytes, and the deadline of
the 1/0 request r i , respectively. With block stripping,
an I20 adaptor must re-number the logical block ad-
dresses of blocks over its disks, where the logical block
address starts with 0. Suppose that there are N disks
managed by an I 2 0 adaptor, and the block stripe size

Block 42

Disk 1

Disk 2

Disk 3

Disk 4

Figure 5: Block stripping when the no. of disks is four.

(or physical block size) be B. A common approach is to
assign the j t h LBA of the i th disk as the kth LBA of the
I 2 0 device (for 0 5 j 5 Max-LBA-Diski and 1 5 i 5
N) , where k = (N * B * L (j / B) J + (i - 1) * B + (j%B)) .
An I 2 0 device is defined as an I 2 0 adaptor and its
managed disks, and % is a mod operator. For exam-
ple, a re-numbering scheme of LBA over four disks is
shown in Figure 5, where the block stripe size is 32
sectors, and each sector on an ordinary P C disk is of
512B. The LBA number of a block for an 120 device
is called an I 2 0 LBA number or LBA number, when
there is no ambiguity. The LBA number of a block for
a disk (managed by the I 2 0 adaptor) is called a real
LBA number.

The four parameters of an I 2 0 1/0 request ri =
(arri , L B A i , si, di) can be further abstracted as a col-
lection of jobs executing on different disks (or a sin-
gle disk if the 1/0 request is of a small size). That
is, an I20 1/0 request ri can be re-defined as a tu-
ple (arri , { J i , l , . . . , Ji,n,}, &), where each job Ji,j has
a disk number dski,j to execute the job, a size in bytes
si , j , and a real LBA number RLBAi>j as its starting
LBA on its assigned disk. The completion time of an
I20 1/0 request ri is the maximum completion time of
all of its jobs. Therefore, in order to meet the deadline
of an I 2 0 1/0 request ~ i , every job Ji,j must complete
its 1/0 transfer of si,j bytes (starting from the real
LBA address RLBAi , j on disk dsk i , j) no later than
the deadline di.

In this paper, we are interested in an I20 RAID-
0 device (with a model number ACARD AEC 6850),
which is built under a joint project with the ACARD
Corp. We consider I 2 0 RAID-0 products which might
be built with IDE disks (because of cost consideration)
or SCSI disks. A disk queue is associated with each

220

disk, and the corresponding disk services the job at the
head of the disk queue. A real-time RAID-0 scheduler,
which runs on the processor of the I20 RAID-0 device,
must schedule jobs over multiple disks in a real-time
fashion. The purpose of real-time RAID-0 scheduling
is to minimize the miss ratio and the response times of
1/0 requests. With a less powerful processor, such as
Intel i960 or ARM, usually adopted in an I 2 0 device,
we shall explore efficient multiple-disk scheduling algo-
rithms, especially used in an incremental way. We will
also adopt performance metrics which reflect not only
miss ratio and response time of requests but also their
byte-counts.

The basic idea of the real-time RAID-0 scheduling
algorithm proposed in this paper is to optimize a value
function for inserting jobs of each incoming 1/0 request
into proper positions of disk queues such that the miss
ratio and response times of all pending requests and the
incoming request can be minimized. The incremental
algorithm should try to "sink" each job of an incom-
ing request from the end of its assigned disk queue to
a proper location in the queue. We will demonstrate
the strength of our job-group scheduling approach with
other traditional and real-time disk scheduling algo-
rithms under randomly generated workloads.

3.2 Basic Mechanism - A Value-Driven
Approach

The value function for the job ordering in disk
queues at time t is defined as a value function of the
weighted miss ratio and the average weighted response
time of the current pending requests:

U (JO , t) = a * rueighted-miss-ratio+
(1 - c y) *.aug-weighted-resp, for 0 <_ cy 5 1

Let ~ (r i) and resp(r,) be the weight and the response
time of a request r, (e.g., w (r L) can be defined as the
number of sectors accessed by r ,) , respectively, and
aug-resp be the average response time of all completed
requests up to the current time t . J O denotes the
current job ordering in disk queues, and the response
time of a request is the difference of its arrival time
and the maximum completion time of the request's
jobs. weighted-miss-ratio and avg-weighted-resp are
defined as follows:

weighted-miss-ratio =

Cdeadline-missing pending requests
C a l l pending requests w (r k)

C a l l pending requests(resp(rl) * w (r ~)) /
(aug-resp * Call pending requests w (r k))

aug-weighted-resp =

The rationale behind the definitions of weighted-
miss-ratio and avg-weighted-resp is to reflect the sizes
of requests in performance evaluation, where a large-
byte-count request contributes more on disk bandwidth
(as far as disk scheduling is concerned). In this pa-
per, deadline-to-be-missing requests are called tardy
requests.

A basic real-time RAID-0 scheduling algorithm
called Value-Based Real- Tame Job- Group Scheduling
algorithm (VRT-JG) is defined as follows: Let JO de-
note the current job ordering when a new request r,,,
arrives at time t , and JSiTitical be the maximum collec-
tion of jobs in request ri which have the worst comple-
tion time. Note that the size of JStritical is no less than
1. For the rest of this paper, when there are several jobs
of r,,, being assigned on the same disk,we merge those
jobs into one job with a large size although the LBA's
accessed by the merged job are not consecutive.

VRT-JG(JO, T,,,)

JO' = JO with jobs of r,,,, appended at the end
of every corresponding disk queue;

Value = Value" = v (JO ' , t) ;
JO" = JO';
Do

Value = Value";
JO' = JO";
JSk',":""lbe the maximum collection of jobs

in rneW which has the worst
completion time under the job
ordering JO';

Let JO" be the job ordering JO' by
switching each job JS;:$t;"' in JSZ:$cal
with the job of another pending request
which is immediately before J S ~ ~ ~ ~ " '
in the same queue;

Value" = U (JO", t) ;
While (Value" 5 Va lue) ;
Return JO' ;

The VRT- JG algorithm is a simple greedy algorithm
which keep moving 'jobs of the incoming request r,,,
forward in the queues if there is some improvement on
the value function. However, there is one major short-
coming of the VRT-JG algorithm. The calculation of
the value function is not trivial. Note that the calcu-
lation of the average (real) response time of all com-
pleted requests up to the current time t (i.e., avg-resp)
can done incrementally in a constant time. The cal-
culation of the average weighted response time of all
pending jobs is of a complexity O(Q * N), where Q
and N are the number of disk queues and the number
of pending tasks, respectively. The calculation of the

221

weighted miss ratio, given response times of all pending
requests, is of a complexity O (N) . Thus, the calcula-
tion of the value function is O(Q * N) . Because the
finding of JSczca l is of a complexity O (Q) , given the
response times of jobs of rneW (otherwise] it is of a com-
plexity O (N * Q)), the time complexity of the VRT-JG
algorithm is O (N * Q * R) , where R is the number
of rounds in switching jobs (R 5 N) . To reduce the
complexity of the disk scheduling algorithm, we have
explored the approximation of the value function. Due
to space limit, the detail is not included in this paper.
We surmise that the VRT-JG algorithm with an ap-
proximate value function has a linear time complexity
O (N) .

4 Performance Evaluation

4.1 Performance Metrics and Data Sets

The experiments described in this section are meant
to assess the capability of the VRT-JG algorithm in
scheduling I 2 0 RAID-0 requests. We have imple-
mented a simulation model for a I20 RAID-0 device
under realistic benchmarks and randomly generated
workloads. Due to space limit, the results under bench-
marks are not included. We compare the performance
of the VRT-JG algorithm, the earliest deadline first
algorithm (EDF), the least slack time first (LSF) [9],
and the well-known disk scheduling algorithm] such as
FIFO, C-LOOK, and SSTF.

The primary performance metric is the weighted ra-
tio of requests that miss deadlines, referred to as the
Weighted Mass Ratio.

Weighted-Miss-Ratio =

Cdeadline-missing requests w (r a) / Call requests w (r k) .

Another performance metric is the average weighted
response time of requests, referred to as the
A VG- Weighted-Resp.

AVG-WeightedResp = Call r e q u e s t s (~ e ~ p (~ i) *
w(ri)) / (avg-resp * Call requestsW(rk)),

where avg-resp is the average response time of all re-
quests in the system so far. We also adopt the per-
formance metric throughput, which is similar to perfor-
mance metrics used in traditional disk scheduling] re-
ferred to as the Throughput. Throughput is calculated
as the average number of bytes which are accessed in
a second. Another primary performance metric is the
ratio of requests that miss deadlines, referred to as the
Miss Ratio. Let numi and missi be the total number of

1 Parameters I Value U

Table 1: Simulation Parameters.

task requests and deadline violations during an exper-
iment] respectively. Miss Ratio is calculated as z.
The other performance metric is the average response
time of requests, referred to as the AVG-Resp.

The randomly generated data sets were generated
based on the parameters of real disks and a commercial
I20 product ACARD AEC 6850. The deadlines of re-
quests were calculated based on the I20 specifications,
where TimeMultiplier ranged from 1 to 30. The ar-
rivals of requests followed the Possion distribution with
a mean ranging from 3ms to 7ms. Each request may
request data of a size ranging from 1 sector to 512 sec-
tors. The block strip size (or physical block size) is
32 sectors. Four HP97560 SCSI disks were adopted,
and their sustained transfer rate was 2MBISec . The
simulation time was 100,000ms. The simulation pa-
rameters are summarized in Table l.

4.2 Experimental Results

Figure 6 shows the weighted miss ratio of requests
under VRT-JG, EDF, LSF, FIFO, C-LOOK, and
SSTF, where VRT-JG(x) meaned VRT-JG with a = 5.
VRT-JG(1) out-performed other algorithms, regardless
of the disk workload. It was because VRT-JG(1) tried
to optimize the weighted miss ratio. FIFO, LSF, and
EDF had the worst weighted miss ratio among all algo-
rithms. It was mainly because they moved disk heads
a lot and did not consider each request as a unit in
multiple disk scheduling. The rest were between VRT-
JG(1) and C-LOOK. When the system was not over-
loaded, i.e., the inter-arrival interval was more than

222

1 1
.I

80 ~

12 17 22 27
Arrival interval (ms)

Figure 6: The weighted miss ratio of simulated algo-
, rithms

1

0.8

- 8 0.6
0

L
0.4

0.2

I '-

40
12 l7 Arrival interval 22 (ms) 27

Figure 8: The weighted average response time of sim-
ulated algorithms

request size), as shown in Figure 9, SSTF was the best
because of the optimization of disk seek time.

1600

1400
A /+FIFO \

\
4 EDF

I-A-SSTF 1
c 1200
E

' 800

600

I

E '-

a" 400

%

U)

17 22 27
Arrival interval (ms)

Figure 7: The miss ratio of simulated algorithms
I 12 17 22 27

Arrival interval (ms)

21ms, VRT-JG(1) improved the weighted miss ratio
by over 15% over SSTF. When the system was over-
loaded, VRT-JG(1) improved the weighted miss ratio
by over 17% over SSTF. When theperformance metric
was the miss ratio, as shown in Figune 7, FIFO, LSF,
EDF, and C-LOOK were the worst, and VRT-JG(1)
was the best. In general, the consideration of each re-
quest as a scheduling unit did improve the weighted
miss ratio. We must emphasize that we did not try
to optimize the disk head movement in this paper, as
done by C-LOOK and SSTF. With the consideration
of head movement, the performance of VRT-JG would
be surely improved further.

Figure 8 shows the weighted average response time
of requests under VRT-JG, EDF, LSF, FIFO, C-
LOOK, and SSTF. It was interesting to see that all al-
gorithms had similar performance in terms of weighted
response time. However, when consider the response
time of all requests (without having a weight on the

Figure 9: The average response time of simulated al-
gorit hms

When the system became overloaded, i.e., the inter-
arrival interval was no less than 22ms, the weighted re-
sponse time of VRT-JG, except VRT-JG(l), dropped
suddenly, as shown in Figure 8. It was because the av-
erage response time of all requests in the system sud-
denly increased, compared to that before the system
overload. VRT-JG(1) was not affected because cy = 1
such that the average response time of all requests
was not considered in the value function. Later on,
since the average response time of all requests tended
to settle down, the weighted response time stablized
again. Figure 10 shows the throughput of VRT-JG,
EDF, LSF, FIFO, C-LOOK, and SSTF. The perfor-
mance of SSTF was significantly better than the other,'
and VRT-JG(1) was the second. However, all algo-

223

rithms performed similarly when the system was not
overloaded.

2200”

l____l_

+FIFO
+ EDF

\ + SSTF

+ VRT-JG(0)
+VRT-JG(5) 1

-VRT-JG(l) t * C-LOOK

+ VRT-JG(0)
+VRT-JG(5) 1

-VRT-JG(l) t * C-LOOK

12 17 22 27
Arrival interval (ms)

Figure 10: The throughput of simulated algorithms

5 Conclusion

This paper targets an essential performance issue
in the design of I 2 0 RAID devices, where RAID is
one of the most important implementations for I 2 0
devices. Our goal is to improve the performance of
I 2 0 RAID-0 devices and to verify our results under a
realistic product ACARD AEC 6850, which is a high-
performance I 2 0 RAID-0 adaptor to be released to
the market by the ACARD Corp. We explore real-
time multi-disk scheduling under I 2 0 RAID-0 to im-
prove the 1/0 performance and, at the same time, to
minimize the number of deadline violations. We illus-
trate the system architecture of I 2 0 devices and define
the performance goal. We then propose our incremen-
tal multi-disk scheduling algorithm called Value-Based
Real- Tame Job-Group Scheduling algorithm (VRT-JG)
for I20 RAID-0 requests. The capability of the pro-
posed algorithm is evaluated by a series of experiments
under randomly generated workloads, for which we
have some encouraging results. In particular, VRT-
JG(1) outperforms other disk scheduling algorithms in
terms of the weighted miss ratio and the miss ratio,
regardless of the disk workload.

For the future research, we shall further explore real-
time multi-disk scheduling to fit different I20 RAID
devices which might adopt embedded processors with
different computing power. We shall also explore multi-
disk scheduling for other types of 120 RAID devices,
such as those for mirroring and parity-based stripping
schemes.

224

References

[l] M. Andrews, M.A. Bender, L. Zhang, ”New Al-
gorithms for the Disk Scheduling Problem,” The
37th Annual Symposium on Foundations of Com-
puter Science, 1996, pp. 550-559.

[2] R.K. Abbott and H. Garcia-Molina, ”Schedul-
ing 1/0 Requests with Deadlines: a Performance
Evaluation,” IEEE 1 lth Real- Time Systems Sym-
posium, Dec. 1990, pp. 113-124.

[3] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and
A. Silberschatz, ”Disk Scheduling woth Quality of
Service Guarantees,” IEEE Int. Conf. on Multi-
media Computing and Systems, 1999, pp.400-405.

[4] R.-I. Chang, W.-K. Shih, and R.-C. Chang,
“Deadline-Modification-SCAN with Maximum-
Scannable-Groups for Multimedia Real-Time Disk
Scheduling,” IEEE 19th Real- Time Systems Sym-
posium, Dec. 1998, pp. 40-49.

[5] S. Chen, J.A. Stankovic, J.F. Kurose, and D.F.
Towsley, “Performance Evaluation of Two New
disk scheduling Algorithms for Real-Time Sys-
tems,” Journal of Real-Time Systems, 3(3):307-
336, 1991.

[6] P. Chang, H. Jin, X. Zhou, Q. Chen, and J .
Zhang, ” HUST-RAID: High Performance RAID
in Real-Time System,” IEEE Pacific Rim Conf.
on Communication, Computers, and signal Pro-
cessing, 1999, pp. 59-62.

[7] K. Hwang and H. Shih, ”Real-Time Disk Schedul-
ing Based on Urgent Group and Shortest Seek
Time First,” The 5th Euromicro Workshop on
Real- Time Systems, 1993, pp. 124-130.

[8] 120 specifications.

[9] A.K. Mok, “Fundamental Design Problems for the
Hard Real-Time Environment,” MIT Ph.D. Dis-
sertation, Cambridge, MA, 1983.

[lo] A.L. N. Reddy and J.C. Wyllie, “I/O Issues in
Multimedia System,” IEEE Transactions on Com-
puters, March 1994.

[11] A. Silberschatz and P.B. Glavin, “Operating Sys-
tem Concepts”, 4th Ed., Addison Wesley, 1994.

[12] G. Weikum and P. Zabback, ”Tuning of Stripping
Units in Disk-Array-Based File Systems,” Second
Int. Workshop on Research Issues on Data Engi-
neering, 1992: Transaction and Query Processing,
1992, pp. 80-87.

