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Abstract 

T h e  emerging of Intell igent I / 0  (120) architecture 
provides a standard for high-performance I/O subsys- 
t e m s  and  introduces intelligence a t  t h e  hardware level. 
With a n  embedded processor, I 2 0  adaptors can  o f l o a d  
t h e  m a j o r  1/0 processing workload f r o m  t h e  CPU and,  
a t  the  s a m e  t i m e ,  increase the  1/0 performance. T h i s  
paper addresses t h e  essential  issue in t h e  design of disk 
scheduling for I 2 0  RAID-0 devices. W e  explore on-  
l ine real-time multi-disk scheduling f o r  I 2 0  requests 
and propose highly eff icient algorithms to m i n i m i z e  the  
n u m b e r  of deadline violations and ,  a t  the  s a m e  t i m e ,  t o  
improve  t h e  response t i m e s  of requests. T h e  proposed 
methodologies are verified by a series of exper iments  
u n d e r  realistic and  randomly  generated workloads. 

1 Introduction 

Traditional work on disk scheduling has been fo- 
cused on single disk systems, such as SCAN, Shortest- 
Seek-Time-First (SSTF), Circular SCAN (C-SCAN), 
and FIFO [ll], where SCAN services disk requests on 
the way from one side of the disk to the other side and 
then on the way back, etc. C-SCAN is a variation of 
SCAN, except that C-SCAN always services disk re- 
quests from one side to  the other side, and as soon as 
the r/w head reaches the other side, it immediately re- 
turns to the beginning of the disk, without servicing 
any request on the return trip. SSTF always services 
the request closest to the current r/w head position. 
FIFO services requests according to  their arrival or- 
der. Andrews, et al., [l] showed that the optimization 
problem for single disk scheduling is an asymmetric 
traveling salesman problem and provided approxima- 
tion algorithms. 
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Recently, researchers start proposing various real- 
time disk scheduling algorithms based on the request 
deadlines, e.g., [2, 3, 4, 5, 6, 7, 101. Chen, et 
al. [5] proposed a weighted-function-based algorithm 
called Shortest-Seek- T ime-Ear l ies t -Deadl ine-By-  Value 
(SSEDV) by considering request deadlines and their 
seek times. Reddy and Wyllie [lo] explored the con- 
tention of SCSI bus, in which priorities are defined 
as a weighted function of their deadlines. Bruno, et 
al. [3] proposed a two-level scheduling mechanism, 
in which each session/process has a deadline-based 
queue,and jobs are sorted according to their deadlines. 
The most urgent job in each deadline-based queue is 
inserted into the system queue, where the system ser- 
vices jobs in the system queue in a SCAN fashion. 
Hwang and Shin [7] proposed a deadline-driven algo- 
rithm, in which requests are partitioned into groups 
based on their urgency. Urgent requests are always 
serviced first. Abbott and Garcia-Molina [2] proposed 
a SCAN-like deadline-driven algorithm. The algorithm 
first picks up a request with the closest deadline and 
then services all requests residing at  cylinders between 
the current cylinder and the cylinder of the request 
with the closest deadline. Chang, et a1 [4] proposed 
a deadline-monotonic SCAN algorithm which guaran- 
tees hard deadlines of disk access, where the workload 
distribution (such as deadlines, disk addresses, etc) 
of disk access is known. Although researchers have 
proposed various excellent algorithms for single disk 
scheduling, little work has been done for multiple-disk 
scheduling, especially for real-time RAID applications. 
In particular, Weikum and Zabback [12] studied the 
impacts of stripping size on RAID concurrency and 
performance, for non-real-time applications. Cheng, et 
al. [6] proposed to synchronize all disks for real-time 
RAID scheduling. Sequential access is favored, a t  the 
cost of random access. 



The goal of this research is to  explore real-time disk 
scheduling for I 2 0  RAID-0 devices with low run-time 
overheads, where RAID-0 stands for the redundant ar- 
ray of independent disks with a block-stripping scheme. 
We consider I20  RAID-0 devices which adopt a less- 
powerful embedded processor for disk scheduling. Since 
requests on I 2 0  RAID-0, in general, have soft real- 
time deadlines, a disk scheduling algorithm must not 
only maximize the 1/0 performance, e.g., in terms of 
throughput or response time, but also minimize the 
number of requests which miss their deadlines. The 
major contribution of this work is on the exploring of 
on-line real-time multi-disk scheduling, which is suit- 
able to  I 2 0  devices adopting a less-powerful embedded 
processor. We not only propose an incremental real- 
time multi-disk scheduling algorithm but also include 
an approximate version with a linear time complexity 
for real-time and non-real-time data  access. We have 
shown that our proposed methodologies are both effi- 
cient and effective in scheduling I 2 0  RAID-0 requests. 

The rest of this paper is organized as follows: Sec- 
tion 2 illustrates the I 2 0  system architecture and 
its RAID implementation. Section 3 first defines 
I20  RAID-0 requests and the performance goal. We 
then propose our incremental multi-disk scheduling 
algorithm called Value-Based Real- Time Job-Group 
Scheduling algorithm (VRT-JG). An iterative proce- 
dure is proposed to  reorder jobs of requests in each 
disk queue with an objective to minimize the number 
of deadline violations and, at the same time, to op- 
timize the response times of requests. In Section 4, 
the capability of the proposed algorithm is evaluated 
by a series of experiments under randomly generated 
workloads, for which we have some encouraging results. 
Section 5 is the conclusion. 

2 Intelligent Input/Output System Ar- 
chit ect ure 

2.1 Intelligent Input/Output Architecture 

The Intelligent 1/0 (120) specifications are pro- 
posed by major players in the industry, such as Mi- 
crosoft, Intel, Hewlett-Packard, 3COM, Compaq, etc, 
as a standard for the next-generation 1/0 subsystems. 
The introducing of the I 2 0  specifications provides in- 
telligence a t  the hardware level and standardize plat- 
forms for all segments of the industry. They spec- 
ify an architecture that is operating-system-vendor- 
independent and adapts to existing operating systems, 
such as Microsoft Windows NT and 2000. The I 2 0  

ACARD AEC 6850 

Figure 1: An I 2 0  hardware architecture 

specifications enable the OS vendors to  produce a sin- 
gle driver for each class of devices and concentrate on 
optimizing the OS portion of the driver. With an em- 
bedded processor, I20  adaptors can ofload the major 
1/0 processing workload from the CPU and, a t  the 
same time, increase the 1/0 performance. 

We shall illustrate the architecture of the I20 spec- 
ifications by an example product ACARD AEC 6850, 
which is to be released to the market by the ACARD 
Corp. ACARD AEC 6850 is an I20  RAID adaptor, 
which can manage up to  75 hard disks. Its hardware 
architecture is as shown in Figure 1. There are two 
major components separated by a dash line: Host and 
Target. A host can be any P C  running a popular OS 
such as Windows 2000. The host can have other 1/0 
adaptors for other 1/0 devices. The target is an I20  
adaptor, such as ACARD AEC 6850 in this example. 
The interface between the I 2 0  adaptor and the host 
is currently defined as a PCI bus. ACARD AEC 6850 
has an embedded processor, such as Intel i960, memory, 
and up to  5 SCSI adaptors. Each SCSI adaptor may 
be connected to 15 disks. (Note that IDE disks might 
be adopted in similar products.) The memory space of 
an I 2 0  adaptor can be mapped to  the memory address 
domain of the host so that the host and the target can 
communicate by DMA. 

The I 2 0  architecture splits drivers into two parts: 
OS-Specific Module (OSM) and Device Driver Module 
(DDM), as shown in Figure 2. OSM is implemented 
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1 HOST 1 DDi 1 OSM HDM 

Figure 2: I20  driver modules 

a t  the host side, and DDM is at the target side. OSM 
provides an interface to  the host operating system and 
is usually supplied by OS vendors. OSM communicates 
with DDM via messages (on the top of a PCI bus). An 
I20  real-time operating system (IRTOS) (and its re- 
lated programs) runs on the I 2 0  adaptor's processor to 
receive 1/0 requests from the host via OSM and sched- 
ule disk services. All disk operations are initiated by 
invoking appropriate DDM handler functions. DDM 
may consist of two parts: Intermediate Service Mod- 
ule (ISM) and Hardware Device Module (HDM). HDM 
contains hardware-specific code to  manage device con- 
trollers, and ISM lets hardware vendors add more func- 
tionality to  plain devices (stacked over HDM), e.g., 
having real-time disk scheduling or resource manage- 
ment [SI. 

2.2 Intelligent Input/Output RAID 

RAID Device Queue 

A 
B 

i 

Disk1 Queue Disk2 Queue Disk3 Queue Disk3 Queue 

Figure 3: The event flow in an I 2 0  RAID-0 device 

I20  devices are designed to fulfill the demand of 
high-performance I/O, and one of the most important 
applications is I20  RAID'S. An 120 RAID device, such 
as ACARD AEC 6850, may need to manage a number 
of disks with data stripping technology. In particular, 
we are interested in RAID-0, in which data are stripped 
in units of blocks such that an 1/0 request may be ser- 
viced by several disks simultaneously. For the purpose 
of this section, an 1/0 request is tentatively defined as 

a collection of i jobs (for i 2 l), which may be serviced 
by dif€erent disks. 

Event Dispatching 
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Figure 4: Message dispatching in an  I 2 0  RAID-0 de- 
vice 

We shall illustrate the system operation in terms 
of an I 2 0  RAID-0 device with four disks. According 
to the I 2 0  specifications, there is an event queue for 
the entire RAID device and each of its disks, as shown 
in Figure 3. Each of the queues is a priority queue, 
where event priorities are determined by applications 
(via OSM). An IRTOS (and its related programs) is 
an event-triggered system. When the host issues an 
1/0 request via OSM, the request is transformed into 
a message and inserted into the corresponding message 
queue, as shown in Figure 4. The message insertion 
will trigger the execution of the corresponding system 
thread to process the message and insert an event into 
the event queue for the entire RAID device, as shown 
in Figure 3. The event carries all of the necessary in- 
formation for the 1/0 request received via OSM. In 
general, there is a thread associated with each event 
queue. The event insertion will trigger the execution 
of the thread assigned to the RAID device event queue. 
As a result, the 1 / 0  request will be decomposed into a 
collection of jobs, and an event for each of the jobs will 
be inserted into the event queue of the corresponding 
disk. Threads which are assigned to the event queues 
of the disks will then become ready to process their 
events and invoke DDM handler functions to initiate 
1/0 operations. 

3 Real-Time RAID-0 Scheduling 

Traditional disk scheduling focuses on single disk 
systems. The main performance metrics are response 
time and throughput for non-real-time disk services 
and miss ratio and response time for real-time data 
access. Little work has been done for multiple-disk 
scheduling, especially for real-time applications. In this 
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paper, we are interested in I20  RAID devices, in which 
multiple disks are adopted to maximize the 1/0 band- 
width. Disks with/without internal scheduling, such as 
SCSI and IDE disks, are potential drives for our target 
I20  RAID devices. A simple but effective scheduling 
algorithm for multiple disks must be adopted and run 
on the embedded processor of the I 2 0  RAID device 
to meet the hard deadline of each request and, a t  the 
same time, to minimize requests’ response time. 

An important objective of I20  RAID devices is to 
push down the 1/0 functionality to a lower level, i.e., 
the I 2 0  controller level, such that  high-performance 
storage devices can be obtained. Data stripping is 
a popular technology to distribute data  over multiple 
disks to utilize parallelism to maximize 1/0 bandwidth. 
The objective of this work is on real-time RAID-0 disk 
scheduling, i.e., real-time scheduling of 1/0 requests 
with block stripping. Under the I 2 0  specifications, 
each 1/0 request has a reasonable deadline, and an 
1/0 request may be up to 4 G B  (the byte count is 
of 4 bytes in BsaBlockRead request message) [8]. In 
other words, a request can be scattered over several 
disks. The deadline setting of an I /0  request depends 
on many factors, such as the types of requests, request 
slack (called TimeMultiplier in the I 2 0  specifications), 
etc. For example, the deadline of a read (and write) 
request is defined as 

TimeMultiplier x ( R W V T i m e o u t  Base+ 
(RWVTimeout x s i z e / 6 4 K ) ) ,  

where RWVTimeou tBase  and RWVTimeou t  are two 
constants set by OSM during system initialization, and 
s i ze  and TimeMultiplier are the byte count and the 
slack of the 1/0 request, respectively. The deadline of 
a cache flush request for a specified DDM is defined as 
TimeMultiplier x t imeoutBase ,  where t i m e o u t a a s e  
is another constant set by OSM during system initial- 
ization. The deadlines of 1 / 0  requests are, in general, 
soft deadlines and reasonably large. However, in some 
implementation, the deadline violation of certain 1/0 
requests may result in a system reset. 

3.1 System Model and Overview 

Each I20  1/0 request can be modeled by four pa- 
rameters ri = (arri ,  L B A i , s i , d i ) ,  where arri, L B A i ,  
s i ,  and di are the arrival time, the starting logical block 
address (LBA), the size in bytes, and the deadline of 
the 1/0 request r i ,  respectively. With block stripping, 
an I20  adaptor must re-number the logical block ad- 
dresses of blocks over its disks, where the logical block 
address starts with 0. Suppose that there are N disks 
managed by an I 2 0  adaptor, and the block stripe size 
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Disk 2 

Disk 3 
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Figure 5: Block stripping when the no. of disks is four. 

(or physical block size) be B. A common approach is to 
assign the j t h  LBA of the i th  disk as the kth LBA of the 
I 2 0  device (for 0 5 j 5 Max-LBA-Diski and 1 5 i 5 
N ) ,  where k = ( N  * B * L ( j / B ) J  + (i - 1) * B + ( j%B)) .  
An I 2 0  device is defined as an I 2 0  adaptor and its 
managed disks, and % is a mod operator. For exam- 
ple, a re-numbering scheme of LBA over four disks is 
shown in Figure 5, where the block stripe size is 32 
sectors, and each sector on an ordinary P C  disk is of 
512B. The LBA number of a block for an 120 device 
is called an I 2 0  LBA number or LBA number, when 
there is no ambiguity. The LBA number of a block for 
a disk (managed by the I 2 0  adaptor) is called a real 
LBA number. 

The four parameters of an I 2 0  1/0 request ri = 
(arri ,  L B A i ,  si, di) can be further abstracted as a col- 
lection of jobs executing on different disks (or a sin- 
gle disk if the 1/0 request is of a small size). That 
is, an I20  1/0 request ri can be re-defined as a tu- 
ple (arri ,  { J i , l ,  . . . , Ji,n,},  &), where each job Ji,j has 
a disk number dski,j to execute the job, a size in bytes 
si , j ,  and a real LBA number RLBAi>j as its starting 
LBA on its assigned disk. The completion time of an 
I20  1/0 request ri is the maximum completion time of 
all of its jobs. Therefore, in order to  meet the deadline 
of an I 2 0  1/0 request ~ i ,  every job Ji,j must complete 
its 1/0 transfer of si,j bytes (starting from the real 
LBA address RLBAi , j  on disk dsk i , j )  no later than 
the deadline di. 

In this paper, we are interested in an I20  RAID- 
0 device (with a model number ACARD AEC 6850), 
which is built under a joint project with the ACARD 
Corp. We consider I 2 0  RAID-0 products which might 
be built with IDE disks (because of cost consideration) 
or SCSI disks. A disk queue is associated with each 
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disk, and the corresponding disk services the job at the 
head of the disk queue. A real-time RAID-0 scheduler, 
which runs on the processor of the I20 RAID-0 device, 
must schedule jobs over multiple disks in a real-time 
fashion. The purpose of real-time RAID-0 scheduling 
is to minimize the miss ratio and the response times of 
1/0 requests. With a less powerful processor, such as 
Intel i960 or ARM, usually adopted in an I 2 0  device, 
we shall explore efficient multiple-disk scheduling algo- 
rithms, especially used in an incremental way. We will 
also adopt performance metrics which reflect not only 
miss ratio and response time of requests but also their 
byte-counts. 

The basic idea of the real-time RAID-0 scheduling 
algorithm proposed in this paper is to optimize a value 
function for inserting jobs of each incoming 1/0 request 
into proper positions of disk queues such that the miss 
ratio and response times of all pending requests and the 
incoming request can be minimized. The incremental 
algorithm should try to "sink" each job of an incom- 
ing request from the end of its assigned disk queue to 
a proper location in the queue. We will demonstrate 
the strength of our job-group scheduling approach with 
other traditional and real-time disk scheduling algo- 
rithms under randomly generated workloads. 

3.2 Basic Mechanism - A Value-Driven 
Approach 

The value function for the job ordering in disk 
queues at time t is defined as a value function of the 
weighted miss ratio and the average weighted response 
time of the current pending requests: 

U (  JO ,  t )  = a * rueighted-miss-ratio+ 
(1 - c y )  *.aug-weighted-resp, for 0 <_ cy 5 1 

Let ~ ( r i )  and resp(r,) be the weight and the response 
time of a request r, (e.g., w ( r L )  can be defined as the 
number of sectors accessed by r , ) ,  respectively, and 
aug-resp be the average response time of all completed 
requests up to the current time t .  J O  denotes the 
current job ordering in disk queues, and the response 
time of a request is the difference of its arrival time 
and the maximum completion time of the request's 
jobs. weighted-miss-ratio and avg-weighted-resp are 
defined as follows: 

weighted-miss-ratio = 

Cdeadline-missing pending requests 
C a l l  pending requests w ( r k )  

C a l l  pending requests(resp(rl) * w ( r ~ ) ) /  
(aug-resp * Call pending requests w ( r k ) )  

aug-weighted-resp = 

The rationale behind the definitions of weighted- 
miss-ratio and avg-weighted-resp is to reflect the sizes 
of requests in performance evaluation, where a large- 
byte-count request contributes more on disk bandwidth 
(as far as disk scheduling is concerned). In this pa- 
per, deadline-to-be-missing requests are called tardy 
requests. 

A basic real-time RAID-0 scheduling algorithm 
called Value-Based Real- Tame Job- Group Scheduling 
algorithm (VRT-JG) is defined as follows: Let JO de- 
note the current job ordering when a new request r,,, 
arrives at time t ,  and JSiTitical be the maximum collec- 
tion of jobs in request ri which have the worst comple- 
tion time. Note that the size of JStritical is no less than 
1. For the rest of this paper, when there are several jobs 
of r,,, being assigned on the same disk,we merge those 
jobs into one job with a large size although the LBA's 
accessed by the merged job are not consecutive. 

VRT-JG(JO, T,,,) 

JO' = JO with jobs of r,,,, appended at the end 
of every corresponding disk queue; 

Value = Value" = v (JO ' ,  t ) ;  
JO" = JO'; 
Do 

Value = Value";  
JO' = JO"; 
JSk',":""lbe the maximum collection of jobs 

in rneW which has the worst 
completion time under the job 
ordering JO'; 

Let JO" be the job ordering JO' by 
switching each job JS;:$t;"' in JSZ:$cal 
with the job of another pending request 
which is immediately before J S ~ ~ ~ ~ " '  
in the same queue; 

Value" = U (  JO", t ) ;  
While (Value" 5 Va lue ) ;  
Return JO' ;  

The VRT- JG algorithm is a simple greedy algorithm 
which keep moving 'jobs of the incoming request r,,, 
forward in the queues if there is some improvement on 
the value function. However, there is one major short- 
coming of the VRT-JG algorithm. The calculation of 
the value function is not trivial. Note that the calcu- 
lation of the average (real) response time of all com- 
pleted requests up to the current time t (i.e., avg-resp) 
can done incrementally in a constant time. The cal- 
culation of the average weighted response time of all 
pending jobs is of a complexity O(Q * N), where Q 
and N are the number of disk queues and the number 
of pending tasks, respectively. The calculation of the 
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weighted miss ratio, given response times of all pending 
requests, is of a complexity O ( N ) .  Thus, the calcula- 
tion of the value function is O(Q * N ) .  Because the 
finding of JSczca l  is of a complexity O ( Q ) ,  given the 
response times of jobs of rneW (otherwise] it is of a com- 
plexity O ( N  * Q)), the time complexity of the VRT-JG 
algorithm is O ( N  * Q * R) ,  where R is the number 
of rounds in switching jobs ( R  5 N ) .  To reduce the 
complexity of the disk scheduling algorithm, we have 
explored the approximation of the value function. Due 
to space limit, the detail is not included in this paper. 
We surmise that the VRT-JG algorithm with an ap- 
proximate value function has a linear time complexity 
O ( N ) .  

4 Performance Evaluation 

4.1 Performance Metrics and Data Sets 

The experiments described in this section are meant 
to assess the capability of the VRT-JG algorithm in 
scheduling I 2 0  RAID-0 requests. We have imple- 
mented a simulation model for a I20  RAID-0 device 
under realistic benchmarks and randomly generated 
workloads. Due to space limit, the results under bench- 
marks are not included. We compare the performance 
of the VRT-JG algorithm, the earliest deadline first 
algorithm (EDF), the least slack time first (LSF) [9], 
and the well-known disk scheduling algorithm] such as 
FIFO, C-LOOK, and SSTF. 

The primary performance metric is the weighted ra- 
tio of requests that miss deadlines, referred to as the 
Weighted Mass Ratio. 

Weighted-Miss-Ratio = 

Cdeadline-missing requests w ( r a ) /  Call requests w ( r k ) .  

Another performance metric is the average weighted 
response time of requests, referred to as the 
A VG- Weighted-Resp. 

AVG-WeightedResp  = Call r e q u e s t s ( ~ e ~ p ( ~ i ) *  
w(ri)) / (avg-resp * Call requestsW(rk)), 

where avg-resp is the average response time of all re- 
quests in the system so far. We also adopt the per- 
formance metric throughput, which is similar to perfor- 
mance metrics used in traditional disk scheduling] re- 
ferred to as the Throughput. Throughput is calculated 
as the average number of bytes which are accessed in 
a second. Another primary performance metric is the 
ratio of requests that miss deadlines, referred to as the 
Miss Ratio. Let numi  and missi  be the total number of 

1 Parameters I Value U 

Table 1: Simulation Parameters. 

task requests and deadline violations during an exper- 
iment] respectively. Miss Ratio is calculated as z. 
The other performance metric is the average response 
time of requests, referred to as the AVG-Resp. 

The randomly generated data sets were generated 
based on the parameters of real disks and a commercial 
I20  product ACARD AEC 6850. The deadlines of re- 
quests were calculated based on the I20 specifications, 
where TimeMultiplier ranged from 1 to  30. The ar- 
rivals of requests followed the Possion distribution with 
a mean ranging from 3ms to 7ms. Each request may 
request data of a size ranging from 1 sector to 512 sec- 
tors. The block strip size (or physical block size) is 
32 sectors. Four HP97560 SCSI disks were adopted, 
and their sustained transfer rate was 2MBISec .  The 
simulation time was 100,000ms. The simulation pa- 
rameters are summarized in Table l. 

4.2 Experimental Results 

Figure 6 shows the weighted miss ratio of requests 
under VRT-JG, EDF, LSF, FIFO, C-LOOK, and 
SSTF, where VRT-JG(x) meaned VRT-JG with a = 5. 
VRT-JG( 1) out-performed other algorithms, regardless 
of the disk workload. It was because VRT-JG(1) tried 
to  optimize the weighted miss ratio. FIFO, LSF, and 
EDF had the worst weighted miss ratio among all algo- 
rithms. It was mainly because they moved disk heads 
a lot and did not consider each request as a unit in 
multiple disk scheduling. The rest were between VRT- 
JG(1) and C-LOOK. When the system was not over- 
loaded, i.e., the inter-arrival interval was more than 
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Figure 6: The weighted miss ratio of simulated algo- 
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Figure 8: The weighted average response time of sim- 
ulated algorithms 

request size), as shown in Figure 9, SSTF was the best 
because of the optimization of disk seek time. 
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Figure 7: The miss ratio of simulated algorithms 
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21ms, VRT-JG(1) improved the weighted miss ratio 
by over 15% over SSTF. When the system was over- 
loaded, VRT-JG(1) improved the weighted miss ratio 
by over 17% over SSTF. When theperformance metric 
was the miss ratio, as shown in Figune 7, FIFO, LSF, 
EDF, and C-LOOK were the worst, and VRT-JG(1) 
was the best. In general, the consideration of each re- 
quest as a scheduling unit did improve the weighted 
miss ratio. We must emphasize that we did not try 
to optimize the disk head movement in this paper, as 
done by C-LOOK and SSTF. With the consideration 
of head movement, the performance of VRT-JG would 
be surely improved further. 

Figure 8 shows the weighted average response time 
of requests under VRT-JG, EDF, LSF, FIFO, C- 
LOOK, and SSTF. It was interesting to see that all al- 
gorithms had similar performance in terms of weighted 
response time. However, when consider the response 
time of all requests (without having a weight on the 

Figure 9: The average response time of simulated al- 
gorit hms 

When the system became overloaded, i.e., the inter- 
arrival interval was no less than 22ms, the weighted re- 
sponse time of VRT-JG, except VRT-JG( l), dropped 
suddenly, as shown in Figure 8. It was because the av- 
erage response time of all requests in the system sud- 
denly increased, compared to  that before the system 
overload. VRT-JG(1) was not affected because cy = 1 
such that the average response time of all requests 
was not considered in the value function. Later on, 
since the average response time of all requests tended 
to settle down, the weighted response time stablized 
again. Figure 10 shows the throughput of VRT-JG, 
EDF, LSF, FIFO, C-LOOK, and SSTF. The perfor- 
mance of SSTF was significantly better than the other,' 
and VRT-JG(1) was the second. However, all algo- 
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rithms performed similarly when the system was not 
overloaded. 

2200” 
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Figure 10: The throughput of simulated algorithms 

5 Conclusion 

This paper targets an essential performance issue 
in the design of I 2 0  RAID devices, where RAID is 
one of the most important implementations for I 2 0  
devices. Our goal is to  improve the performance of 
I 2 0  RAID-0 devices and to verify our results under a 
realistic product ACARD AEC 6850, which is a high- 
performance I 2 0  RAID-0 adaptor to be released to  
the market by the ACARD Corp. We explore real- 
time multi-disk scheduling under I 2 0  RAID-0 to  im- 
prove the 1/0 performance and, at  the same time, to  
minimize the number of deadline violations. We illus- 
trate the system architecture of I 2 0  devices and define 
the performance goal. We then propose our incremen- 
tal multi-disk scheduling algorithm called Value-Based 
Real- Tame Job-Group Scheduling algorithm (VRT-JG) 
for I20 RAID-0 requests. The capability of the pro- 
posed algorithm is evaluated by a series of experiments 
under randomly generated workloads, for which we 
have some encouraging results. In particular, VRT- 
JG(1) outperforms other disk scheduling algorithms in 
terms of the weighted miss ratio and the miss ratio, 
regardless of the disk workload. 

For the future research, we shall further explore real- 
time multi-disk scheduling to fit different I20 RAID 
devices which might adopt embedded processors with 
different computing power. We shall also explore multi- 
disk scheduling for other types of 120 RAID devices, 
such as those for mirroring and parity-based stripping 
schemes. 
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