
Value vs. Deadline Scheduling

in Overload Conditions

Giorgio Buttazzo, Marco Spuri, Fabrizio Sensini

Scuola Superiore S. Anna
via Carducci, 40 - 56100 Pisa - Italy
giorgio&ssupl.sssup.it, spuri@sssup2.sssup.it

Abstract

In this paper we present a comparative study among
scheduling algorithms which use different priority as-
signments and different guarantee mechanisms to im-
prove the performance of a real-time system during
overload conditions. In order to enhance the quality
of service, we assume that tasks are characterized not
only by a deadline, but also by an importance value.
The performance of the scheduling algorithm is then
evaluated by computing the cumulative value gained
on a task set, i.e. the sum of the values of those tasks
that completed by their deadline.

The purpose of this simulation study was twofold.
Firstly, we wanted to discover which priority assign-
ment is able to achieve the best performance in over-
loud conditions. Secondly, we were interested in un-
derstanding how the pessimistic assumptions made
in the guarantee test affect the performance of the
scheduling algorithms, and how much a reclaiming
mechanism can compensate this degradation.

Simulation results show that, without any admis-
sion control, value-density scheduling performs best.
Simple admission control based on worst case esti-
mates of the load worsen the performance of all value
based algorithms. EDF scheduling performs best if ad-
mission control is used along with a reclaiming mech-
anism that takes advantage of early completions. Fi-
nally, scheduling by deadline before overload and by
value during overload works best in most practical con-

ditions.

1 Introduction

In a real-time system, a task is usually character-
ized by a deadline, i.e., the latest time by which the
task must) complete to produce useful results. In such

1052-8725195 $04.00 0 1995 IEEE

a system; the objective of the scheduling algorithm is

to execute a set of tasks so that all deadlines are met.
In t,his case, the schedule is said to be feasible.

In the literature, we find a number of optimal
scheduling algorithms that guarantee the feasibility of
the schedule under specific assumptions. A schedul-
ing algorithm is said to be optimal if it fails to meet
a deadline only if no other scheduling algorithms can
produce a feasible schedule. For example, the Earliest
Deadline First (EDF) algorithm [8] is optimal in the

sense that if a task set cannot be feasibly scheduled

by EDF, then it cannot be feasibly scheduled by any

other priority assignment [5].

When a real-time system is overloaded, however,

not all tasks can be completed by their deadlines.
Therefore the objective of the scheduling algorithm
should be to feasibly schedule at least the most im-
portant ones. In order to specify the importance of
each task we can add an importance value to the pa-
rameters that characterize it. The performance of the

scheduling algorithm is then evaluated by computing
the cumulative value gained on a task set, i.e. the

sum of the values of those tasks that completed by
their deadline.

Unfortunately, in overload conditions there are not
optimal on-line algorithms that can maximize the cu-
mulative value of a generic task set, hence scheduling
decisions must be made using best-effort algorithms,
whose objective is to complete the most important
tasks by their deadline, avoiding negative phenom-
ena, such as the so called domino effect. This happens
when the first task that misses its deadline may cause
all subsequent tasks to miss their deadlines.

For example, experiments carried out by Locke [9]
have shown that EDF is prone to the domino effect and
it rapidly degrades its performance during overload
intervals. This is due to the fact that EDF gives the
highest priority to those processes that are close to

90

Administrator
Proceedings of the 16th IEEE Real-Time Systems Symposium (RTSS 1995), Pisa, Italy, pp. 90-99, December 5-7, 1995.

missing their deadlines.
In such a situation, EDF does not provide any type

of guarantee on which tasks will meet their timing
constraints. This is a very undesirable behavior in
practical systems, since in real-world applications in-
termittent overloads may occur due to exceptional sit-
uations, such as modifications in the environment, ar-
rival of a burst of tasks, or cascades of system failures.

A number of heuristic algorithms has been pro-
posed to deal with overloads [Z, 3, 4, 6, 7, 10, 11, 13,
151. They all improve the performance of EDF, how-
ever, very few simulation studies have been done to
evaluate the importance of the scheduling policy with
respect to the guarantee mechanism used to deal with

the overload.
Baruah et al. [l] have shown that there exists

an upper bound on the performance of any on-line
(preemptive) algorithm working in overload condi-
tions. The “goodness” of an on-line algorithm is mea-
sured with respect to a clairvoyant scheduler (one that
knows the future), by means of the competitive factor,

which is the ratio r of the cumulative value guaran-
teed by the on-line algorithm to the cumulative value

achieved by the clairvoyant schedule. The value as-
sociated to each task is equal to the task’s execution

time if the task request is successfully scheduled to
completion; a value of zero is given to tasks that do
not terminate within their deadline. According to this
metric, they proved the following theorem:

Theorem 1 There does not exist an on-line schedul-
iny algorithm with a competitive factor greater than
0.25.

What the theorem says is that no on-line schedul-
ing algorithm can guarantee a cumulative value
greater than 1/4th the value obtainable by a clair-
voyant scheduler.

It is worth pointing out, however, that the above
bound is achieved under very restrictive assumptions,
such as all tasks in the set have zero laxity, the over-
load can have an arbitrary (but finite) duration, task’s
execution time can be arbitrarily small, and task value
is equal to computation time. Since in most real world
applications tasks characteristics are much less restric-
tive, the 1/4tlz bound has only a theoretical validity
and more work is needed to derive other bounds based
on more knowledge of the task set [12].

In this paper we present a comparative study
among scheduling algorithms which use different pri-
ority assignments to keep the cumulative value high
and adopt different guarantee mechanisms to avoid
the domino effect and achieve graceful degradation

during transient overloads. A robust version of these
algorithms is also proposed and simulated to see how
these algorithms perform in real situations in which
tasks execute less than their worst case computation

time.
The purpose of this simulation study was twofold.

First, we wanted to discover which priority assignment
is able to achieve the best performance in overload
conditions, e.g., whether it is convenient to schedule
the tasks based on pure values, pure deadlines, or on
a suited mixture of both. The second aspect we were
interested in was to understand how and how much
the guarantee algorithm influences the performance of
the system during transient overloads.

To answer these questions, in our study we have
considered four classical priority assignments, that

we have tested using three different guarantee mech-
anisms, thus comparing a total number of twelve
scheduling algorithms.

2 Terminology and Assumptions

Before we describe the scheduling algorithms we
have considered in our performance study, we define

the following notation to refer the parameters of task
Ji:

ai denotes the arrival time, i.e., the time at which the

task is activated and becomes ready to execute.

Ci denotes the maximum computation time, i.e., the
worst case execution time needed for the proces-
sor to execute the task without interruption.

ci denotes the dynamic computation time, i.e., the

remaining worst case execution time needed, at
the current time, to complete the task without
interruption.

di denotes the absolute deadline, i.e., the time by
which the task should complete its execution to
produce a valuable result.

Di denotes the relative deadline, i.e., the time interval
between the arrival time and the absolute dead-
line.

Vi denotes the task value, i.e., the relative importance
of task Ji with respect to the other tasks in the
set.

f; denotes the finishing time, i.e., the time at which
the task completes its execution and leaves the
system.

91

We assume that at its arrival, each task is character-
ized by the following parameters:

Ji(Ci,Di, vz).

Moreover, we a,ssume that tasks are preemptable and
their arrival times are not known in advance.

To evaluate the performance of a scheduling algo-
rithm in underload and in overload conditions: we as-

sociate to each task Ji a worth value vi defined as

follows:

v; =
Vi if fi 5 di
0 otherwise

This means that, if task Ji is completed within its
deadline di, t,he algorithm gains a value equal to I/,>
otherwise it gains a value equal to zero.

Finally, the performance of a scheduling algorithm

A on the task set J is evaluated by computing the Cu-

mulative Value (l?~), defined as the sum of all worth
values Eli gained during the task set execution:

ITA =-hJ, .- -
i=l

3 Algorithms Description

in

The four priority assignments we have considered

our performance study are the following:

EDF (Earliest Deadline First) Task priority is as-
signed as pi = l/c&. Hence, the highest priority
task is that one with the earliest absolute dead-
line.

HVF (Highest Value First) Task priority is assigned
as pi = Vi. Hence, the highest priority task is

that one with the highest importance value.

HDF (Highest Density First) Task priority is as-
signed as pi = L</ilci. Hence, the highest prior-
ity task is that one with the highest value density
L’JcZi.

MIX (Mixed rule) Importance value and deadline are
both considered in assigning the task priority,
which is computed as a weighted sum of the value
and the deadline: pi = CUV~ - (1 - cr)d;. Notice

that, although this priority assignment depends
on the absolute deadline, the ready queue order-
ing is time independent.

The four scheduling algorithms described above
(EDF, HVF, HDF, MIX) will be referred in the follow-
ing as plain algorithms, since they do not provide any
form of guarantee. The la.ck of load awareness makes

them prone to domino effect in overload conditions.

To handle overload situations in a more predictable

way, the four plain algorithms have been extended
in two additional classes: a class of guaranteed al-

gorithms, characterized by an acceptance test, and a

class of robust algorithms, characterized by a more so-
phisticated rejection strategy and a reclaiming mech-

anism.

Within the guaranteed class, each algorithm per-
forms an acceptance test at each task activation, so
that if an overload is detected the newly arrived task
is rejected. The acceptance test allows to avoid the
domino effect by keeping the actual workload always

less than one. However, it does not consider impor-

tance values since it always removes the newly arrived
task, even though it is the most important one. An-
other problem with this guarantee mechanism is that

the system does not take advantage of early comple-
tions: once a task is rejected (based on a pessimistic
evaluation of the load) it cannot be recovered when
some tasks terminate earlier than their worst case fin-
ishing time.

To solve these problems, the algorithms in the ro-
bust class perform a rejection based on importance

values and include a reclaiming mechanism which al-
lows to apply a recovery strategy to the rejected tasks.
In particular, each algorithm in the robust class also
performs a guarantee test at each task activation.
However, if an overload is detected the least value
task that can remove the overload is rejected. Robust
algorithms also include a resource reclaiming mecha-
nism which takes advantage of the unused processor
time deriving from early terminations. To realize this
reclaiming, rejected tasks are not removed, but tem-
porarily parked in a reject queue, from which they can

be possibly recovered later on. At each early comple-
tion, hence, the system executes the guarantee test
again to attempt a recovery of rejected tasks with the
highest values. An example of robust algorithm hav-
ing these features has been described by Buttazzo and
Stankovic in [3].

A summary of the twelve algorithms described
above, is shown in Table 1, which also provides a useful
scheme for understanding the simulation experiments
presented in the following section.

92

Table 1: Scheme of the tested algorithms: priority
assignments vs. guarantee mechanisms.

4 Performance evaluation

In this section we present the performance results

obtained by simulating the scheduling algorithms de-
scribed in Table 1. Our first aim was to compare the
behaviour of the four priority assignments at different
load conditions. In order to do so, we performed three
sets of simulation experiments, each one dedicated to
a particular scheduling class (plain, guaranteed, and
robust). In a second set of experiments, we tested
the effectiveness of the guarantee mechanism and the
robust recovery strategy over the plain priority-based

scheduling scheme.

In summary, the simulation experiments we have

conducted are well synthesized in Table 1. Each row of
the table represents a performance study which com-
pares different scheduling classes using the same prior-
ity assignment, whereas each column describes a simu-
lation experiment conducted within the same schedul-
ing class on different priority assignments.

Each plot on the graphs shown in this section rep-
resents the average of a set of 100 independent simu-
lations, the duration of each was chosen to be 300,000
time units long. All algorithms have been executed
on task sets consisting of 100 aperiodic tasks, whose
parameters were generated as follows.

l The worst-case execution time Ci was chosen as
a random variable with uniform distribution be-
tween 50 and 350 time units.

l The average interarrival time Ti of each task was
computed to produce a given workload p. In par-
ticular, it, was modeled as a Poisson distribution

with average value equal to

N . Ci
Ti = -

P

being N the total number of tasks in the set. The
load p was computed based on task parameters
(arrival time, deadline, and worst case execution
time), as described in [3].

93

0.5 1 1.5 2 2.5 3 3.5
Nominal load

Figure 1: Performance of the MIX priority assignment
as a function of a.

The laxity of a task was computed as a ran-
dom value with uniform distribution from 150 and
1850 time units (i.e., with an average of 1000 time
units).

The relative deadline of a task was computed as

the sum of its worst-case execution time and its
laxity.

Unless otherwise stated, the actual execution
time of a task was computed as a random vari-
able with uniform distribution between zero and
its worst-case execution time. In this way, the av-
erage execution time of a task was equal to a half
of the worst-case execution time.

To reduce the number of simulations, we first mea-
sured the performance of MIX as a function of ~1. As
shown in figure 1, the priority assignment which pro-
vides the best cumulative value for almost any load
condition is the one obtained with QC = 0.5. As a
consequence, all simulation experiments involving the
MIX priority assignment have been done with this
value of QC.

4.1 Column Experiments

The priority assignments belonging to each schedul-

ing class have been tested under two different task set
situations, identified as random set and linear set re-
spectively. In the random set, the importance value of
each task is independent from any other task param-
eter. In particular, the task value was generated as a
random variable ranging from 150 to 1850 (being 1000

t,he average value). This range is the same as that one

chosen for the deadlines. In the linear set, the impor-
tance value of each task is proportional to its relative
deadline. Notice that this situation is critical for all
algorithms, since the important tasks have a higher
probability to miss their deadline. The motivation of
using two different task sets is that we wanted to see

how sensitive an algorithm is with respect to the task

parameters and how rapidly it degrades.

In all graphs, the independent variable on the X-

axis is the nominal load, i.e., the workload estimated
based on the worst-case execution times. The nominal
load ranges from 0.5 to 3.5. The result reported on the
Y-axis is the Hit Value Ratio (HVR)) i.e., the ratio be-

tween the cumulative value obtained by an algorithm
A and the total value of the task set:

HVR =
&

For each simulation, the standard devia,tions of the
hit value ratios were computed and they were never

greater than 1%.

4.1.1 Plain class

Figures 2a and 2b show the results of a simulation
conducted on the plain scheduling class. The graphs

of figure 2a concern the case of a random task set,

with independent importance values. It can be noticed
that, for low load conditions, EDF shows its optimal-

ity, whereas the other three algorithms have about the
same performance, achieving a resulting Hit Value Ra-
t,io greater than 95 percent of the total value. As soon
as the nominal load approaches the value of two (which
corresponds to an actual load of one), EDF perfor-
mance falls down, while the other algorithms degrade

more gracefully. It is worth to notice that, although
MIX is defined as a linear combination of EDF and

HVF, in overload conditions, its behaviour is not an
average of their performance. On the contrary, MIX

performs better than both for any load.

The best behaviour for high overloads is achieved by
HDF, which however has the disadvantage of a heavier
overhead, due to the dynamic priorities, which depend
on the remaining execution time.

The graphs in figure 2b show the situation for a
linear task set, where importance values are propor-
Conal t,o deadlines. In particular, the least sensitive
algorithms with respect to task set variations are EDF
and HDF, whereas HVF and MIX are more influenced
by t,he task parameters. We can summarize the results
of this experiment in the following observation.

Observation 1 Without any guarantee mechanism,
the most effective priority assignment in overload con-
ditions is the one based on value density, namely HDF.
It exhibits a very graceful degradation during overloads
and it is not much sensitive to task set parameters.

4.1.2 Guaranteed class

This experiment illustrates the performance of the
same four priority assignments, which now include a
guarantee mechanism consisting in the execution of
an acceptance test at each task activation. Whenever
a new task is activated, the guarantee routine esti-
mates the schedule based on the current scheduling
algorithm and on the nominal task parameters, and
verifies whether some tasks could miss their deadline.

If a time-overflow is predicted, the newly arrived task

is rejected, otherwise it is accepted and inserted into

the ready queue.

We refer to these new versions of the algorithms as
GEDF, GHVF, GHDF, and GMIX. Figure 3a shows
the case of a random task set with independent im-
portance values, whereas figure 3b is relative to the
case of a linear task set with values proportional to
deadlines. Notice that for both task sets and for any
load conditions, GEDF is the most effective schedul-

ing strategy. On the contrary, the density-based pri-

ority assignment, which was the most effective among
the plain algorithms, degrades its performance if used
with a guarantee mechanism.

The relevant result of this experiment can be synthe-
sized in the following observation.

Observation 2 If the system workbad is controlled
at each task activation by an acceptance test which un-
der overload conditions rejects the newly arrived task,
then the most effective priority assignment is EDF.

One problem with this form of guarantee is that
it is too pessimistic. In fact, since the workload is
estimated based on pessimistic parameters (such as
the worst case execution times of the tasks), a task
could be rejected even though it would have completed
in time. Another problem is that a task is rejected
regardless of its importance value. For example, a

better policy is to reject the least value task that can
remove the overload condition.

These aspects are treated in the robust class of
scheduling algorithms, whose performance is illus-
trated next.

94

Figure 2: Performance of the plain algorithms under Figure 3: Performance of the guaranteed algorithms
a random set (a) and a linear set (b) under a random set (a) and a linear set (b)

95

4.1.3 Robust class

The results concerning the performance of the robust
algorithms are shown in figures 4a, for the case of a
random task set, and in figure 4b, for the case of a
linear task set. As a first remark, we can observe that
all robust algorithms show a graceful degradation as

the load increases and achieve a similar behaviour in

the range of overload conditions we have simulated.
Random task set

This result suggests that the performance of the robust
algorithms is close to the best one achievable by a
on-line algorithm. The improvement obtained by the
robust algorithms with respect to the other versions
has been evaluated by a specific set of experiments
illustrated in the following section.

B
t?

In both graphs, REDF shows the best performance
9
g 0’S

for almost any load. However, it is worth to notice ’

that for high overloads (nominal load greater than

3) RHDF performs slightly better than REDF. This

means that, when the processing demand is much
greater than the available processing time and a high
percentage of tasks must be rejected, value density or-
dering intrinsically tries to save the highest cumulative
value of the current requests. (a)

The following observation summarizes the main re-
sult of this experiment.

Observation 3 Among the robust strategies, no al-
gorithm is able to perform better than the others for
any load. However, REDF is the most effective al-

0 95

gorithm in most practical situations, whereas for very
high overloads RHDF seems to be the strategy which
gains the highest Cumulative Value. P

H
f 0.85
sm

4.2 Rows Experiments

A second set of experiments was conducted along

the rows of Table 1 to test the effectiveness of the

guaranteed and the robust algorithms with respect to
the plain algorithms. In particular, we wanted to see

how the pessimistic assumptions made in the guar-
antee test affect the performance of the algorithms,
and how much the reclaiming mechanism introduced
in the robust class can compensate this degradation.

In order to test these effects, we monitored the Hit
Value Ratio obtained by the algorithms as the tasks
finish earlier and earlier with respect to their worst

case finishing time. The specific parameter we varied
in our simulations was the average Unused Computa-
tion Time Ratio p, defined as follows:

0 75

07
0.5 1 1.5

Nanin% load
2.5 3 3.5

(b)

Figure 4: Performance of the robust algorithms under
a random set (a) and a linear set (b)

p=1-
Actual Computation Time

Worst Case Computation Time

96

Figure 5: Performance of the EDF priority assignment
with a random set

In all graphs, the tasks set was generated with a con-

stant nominal load of 3, while the Average Unused
Computation Time Ratio was varied from 0.125 to
0.875. Notice that, as a consequence, the actual mean
load changes from a value of 2,635 to a value of 0.375,

thus ranging over very different actual load conditions.

As in the previous experiments, each algorithm was
tested with the random task set and the linear task

set. However, only the results with the random task
set are shown, since the experiments with the linear
set did not exhibit significant difference.

Figure 5 shows the results obtained with the dead-
line priority assignment. Under high load conditions,
that is, when tasks execute for almost their maximum
computation time, GEDF and REDF are able to ob-
tain a significant improvement compared to the plain

EDF scheduling. Increasing the unused computation

time, however, the actual load falls down and the plain
EDF performs better and better, reaching the opti-
mality in underload conditions. Notice that, as the
system becomes underloaded (p z 0.7), GEDF be-
comes less effective than EDF. This is due to the fact
that GEDF performs a worst-case analysis, thus re-
jecting tasks which still have some chance to execute
within their deadline. This phenomenon does not ap-
pear on REDF, because the reclaiming mechanism im-
plemented in the robust algorithm is able to recover

the rejected tasks that can complete in time.

In figure 6 the performance of the density-based

priority assignments was compared. The most rel-
evant observation we can make from these plots is
that the guarantee mechanism worsens the perfor-
mance of the plain HDF algorithm for any load. This

0.3 1 I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Average unused computation time ratio (beta)

Figure 6: Performance of the HDF priority assignment
with a random set

Figure 7: Performance of the HVF priority assignment

with a random set

97

Figure 8: Performance of the MIX priority assignment
with a random set

happens because, when the guarantee test fails, the
newly arrived task is rejected regardless of its value.
Plain scheduling, instead, automatically rejects tasks
with very low values, as a consequence of the priority
scheme adopted. Notice that the reclaiming mecha-
nism used in the robust algorithm (RHDF) is able to
compensate the performance degradation caused by
the reject,ion policy, reaching the same performance of
the plain scheduling scheme.

The experiments relative to the MIX and HVF

based schedulers are shown in figures 7 and 8. The per-

formance shown by these algorithms is quite similar to
that obtained by HDF, as far as the guarantee scheme
is concerned. Similarly to the case of the HDF-based
scheduler (figure G), the acceptance test executed at
each arrival time worsens the performance achieved
by the plain class algorithms. The robust scheduling
schemes, instead, are able t,o enhance the performance
of their plain versions for small values of /3 (i.e., for
high load values).

The main results of these experiments can be sum-

marized in the following observation.

Observation 4 The acceptance test executed at each
arrival time by the guarantee mechanism worsens the
performance of all priority assignments that consider
importance values in their ordering discipline. On
the contrary, the robust scheduling schemes perform
very well both in overload and in underload conditions,
proving that the reclaiming strategy is effective for in-

creasing the Cumulative Value in all practical situa-
tions.

5 Conclusions

In this paper we have presented a comparative
study among four priority assignments which use val-
ues and deadlines to achieve graceful degradation and
improve the performance in overload conditions. The
four algorithms have been simulated in three versions,
which differ from the guarantee mechanism used to
detect the overload and select a rejection. Simulation
experiments proved that the robust version of these al-
gorithms is the most flexible one, due to the resource
reclaiming strategy, which is able to take advantage of
early completions, when tasks execute less than their
worst case computation time.

One important result derived from this simulation
study, is that scheduling by deadlines and rejecting by
value (as done by the REDF algorithm) proved to be
the most effective strategy for a wide range of overload
conditions. However, it is worth pointing out that the

REDF strategy is not the best one for all load situa-
tions. When the system is underload, in fact, EDF is

optimal, whereas for very high overloads RHDF per-
forms slightly better than REDF. This fact suggests
that a further improvement on the Cumulative Value
could be obtained if the system were able to change
its scheduling strategy depending on the current work-

load, using, for instance, EDF in underload condition,
REDF for normal overloads, and RHDF for high over-
loads.

References

[l] S. Baruah, G. Koren, D. Mao, B. Mishra, A.
Raghunathan, L. Rosier, D. Shasha, and F.
Wang, “On the Competitiveness of On-Line Real-
Time Task Scheduling,” Proceedings of IEEE
Real- Time Systems Symposium, December 1991.

PI

PI

WI

S. Biyabani, J. Stankovic, and K. Ramamritham,

“The Integration of Deadline and Criticalness in

Hard Real-Time Scheduling,” Proceedings of the
IEEE Real- Time Systems Symposium, December
1988.

G. Buttazzo and J. Stankovic, “RED: A Ro-
bust Earliest Deadline Scheduling Algorithm”,
Proc. of 3rd International Worlcshop on Respon-
sive Computing Systems, Austin, 1993.

S. Cheng, J. Stankovic, and K. Ramamritham,
“Dynamic Scheduling of Groups of Tasks with

Precedence Constraints in Distributed Hard

98

Real-Time Systems,” Renl- Time Systems Sympo-
sium, December 1986.

[5] M.L. Dertouzos, “Control Robotics: the Procedu-
ral Control of Physical Processes,” Information
Processing 74, North-Holland Publishing Com-

pany, 1974.

[6] J. R. Haritsa, M. Livny, and M. J. Carey, “Earli-

est Deadline Scheduling for Real-Time Database
Systems,” Proceedings of Real- Time Systems
Symposium, December 1991.

[7] G. Karen and D. Shasha, “D-over: An Optimal
On-Line Scheduling Algorithm for Overloaded
Real-Time Systems,” Proceedings of the IEEE
Real- Time Systems Symposium, December 1992.

[8] C.L. Liu and J.W. Layland, “Scheduling Algo-

rit,hms for Multiprogramming in a Hard Real-
Time Environment”, Journal of the ACM 20(l),
40-61, 1973.

[9] C. D. Locke, “Best-effort Decision Making for

Real-Time Scheduling,” PhD thesis, Computer
Science Department, Carnegie-Mellon University,

1986.

[lo] R. McNaughton, “Scheduling With Deadlines

and Loss Functions,” Management Science, 6, pp.

l-12, 1959.

[ll] J. Stankovic and I<. Ramamritham, “The Spring
Kernel: A New Paradigm for Real-Time Sys-
tems,” IEEE Software, Vol. 8, No. 3, pp. 62-72,
May 1991.

[la] J. Stankovic, M. Spuri, M. Di Natale and G. But-

tazzo, “Implications of Classical Scheduling Re-

sults for Real-Time Systems”, IEEE Computer,

t,o appear.

[13] P. Thambidurai and K. S. Trivedi, “Transient

Overloads in Fault-Tolerant Real-Time Systems,”
Proceedings of Real- Time Systems Symposium,
December 1989.

[14] T.-S. Tia, J. W.-S. Liu and M. Shanlar, “Algo-
rithms and Optimality of Scheduling Aperiodic
Requests in Fixed-Priority Preemptive Systems”,
The Journal of Real-Time Systems, 1994.

[15] G. Zlokapa, J. A. Stankovic, and K. Ramam-

ritham, “Well-Timed Scheduling: A Framework
for Dynamic Real-Time Scheduling,” submitted
to IEEE Transactions on Parallel and Distributed
Systems, 1991.

99

