
A New Approach to Real-Time Transaction Scheduling

Sang H. Son and Juhnyoung Lee

Department of Computer Science
University of Virginia

Charlottesville, Virginia 22903, USA
son@cs.virginia.edu, FAX: (804) 982-2214

Abstract

A real-time database system differs from a conventional
database system because in addition to the consistency
constraints of the database, timing constraints of indivi-
dual transaction need to be satisfied. Various real-time
transaction scheduling algorithms have been proposed
which employ either a pessimistic or an optimistic
approach to concurrency control. In this paper, we
present new real-time transaction scheduling algorithms
which employ a hybrid approach, Le., a combination of
both pessimistic and optimistic approaches. These proto-
cols make use of a new conflict resolution scheme called
dynamic adjustment of serialization order, which sup-
ports priority-driven scheduling, and avoids unnecessary
aborts. Our experimental results indicate that hybrid pro-
tocols outperform other real-time concurrency control
protocols in certain performance metrics.

Key words: real-time database, scheduling, concurrency
control, deadline

1. Introduction
A real-time database system (RTDBS) differs

from a conventional database system because in addition
to the consistency constraints of the database, timing
constraints of individual transaction need to be satisfied.
In order to provide real-time response for queries and
updates while maintaining the consistency of data, real-
time concurrency control should involve efficient
integration of the ideas from both database concurrency
control and real-time scheduling. Various real-time con-
currency control protocols have been proposed which
employ either a pessimistic or an optimistic approach to
concurrency control.

Most of the initial work in real-time concurrency
control has been conducted on utilizing two-phase lock-
ing as the base of real-time concurrency control. The
two-phase locking is termed as being pessimistic,
because it, in anticipation of data conflicts, tends to delay

the operations in order to avoid aborting them later.
However, the very idea of delaying an operation is
opposed to real-time systems. Besides, the degree of
concurrency is low in the two-phase locking based algo-
rithms because concurrent read and write locks on the
same data object by seveiral transactions are not possible.
Furthermore, two-phase locking has some inherent prob-
lems such as the possibility of deadlocks and unpredict-
able blocking times, which are serious problems for
real-time concurrency control.

An optimistic approach is a natural alternative. An
optimistic scheduler aggressively schedules all opera-
tions, hoping that nothing will go wrong, such as a non-
serializable execution. .Later when the transaction is
ready to commit, conflicts are checked for and a conflict
resolution scheme is then applied to resolve the conflicts,
if any. Ideally an optimistic approach has the properties
of non-blocking and deadlock freedom, which make it
suitable to real-time transaction processing. In addition,
it has a potential for high degree of parallelism. How-
ever, the use of aborting for conflict resolution in
optimistic schedulers results in a problem that transac-
tions can end up aborting after having paid for most of
the transaction’s execution. This problem can particu-
larly be serious for real-time transaction scheduling,
where timing constraints of transactions should be
satisfied. For conventional database systems, it has been
shown that optimal performance can be achieved by
combining blocking and aborting. We expect the same
with RTDBS.

In this paper, we present two hybrid real-time con-
currency control protocells which combine pessimistic
and optimistic approaches to concurrency control in
order to control blocking and aborting in a more effective
manner. We compare the performance of these new pro-
tocols with that of other real-time concurrency control
protocols proposed.

The first protocol is based on a priority-based lock-
ing mechanism to support real-time scheduling by adjust-
ing the serialization order dynamically in favor of high
priority transactions. This protocol uses the phase-
dependent control of optimistic approach to support

This work was supported in part by ONR. by NOSC, and by IBM.

I77
0-8186-28154192 $3.00 Q 1992IEEE

mailto:son@cs.virginia.edu

dynamic adjustment of serialization order.
The second protocol is a combination of optimistic

concurrency control and timesatmp ordering. This proto-
col also uses the phase-dependent control of optimistic
approach. Furthermore, this protocol employs the notion
of dynamic timestamp allocation and dynamic adjust-
ment of serialization order using timestamp interval
[Bok871, with which the ability of early detection and
resolution of nonserializable execution is improved, and
unnecessary aborts are avoided.

2. Related Work
A real-time database system (RTDBS) is a tran-

saction processing system designed to handle workloads
where transactions have completion deadlines. The
objective of such system is to meet these deadlines. The
real-time performance of an RTDBS depends on several
factors such as the database system organization, the
underlying processors and disk speeds. For a given sys-
tem configuration, however, the primary determinants for
the real-time performance are the policies used for
scheduling transaction accesses to system resources,
because these policies determine when service is pro-
vided to a transaction.

Recently, research on the scheduling problem in
real-time database systems has been active [Abb88,
Buc89, coo91, W O , Hua90, Hua91, Lin90, Sha91,
Son90bl. As mentioned earlier, most of the current real-
time concurrency control schemes are based on two-
phase locking [Abb88, Hua90, Sha911. Abbott and
Garcia-Molina [Abb88] described a group of lock-based
real-time concurrency control schemes for scheduling
soft real-time transactions, and evaluated the perfor-
mance of those protocols through simulation.

Some inherent problems of two-phase locking such
as the possibility of deadlocks and unpredictable block-
ing times are serious for real-time transaction scheduling.
In addition, a priority inversion can occur when a lower
priority transaction blocks the execution of a higher
priority transaction. Sha et al. [Sha91] proposed a con-
servative real-time concurrency control scheme called
priority ceiling, which prevents deadlocks and transitive
blocking.

Huang et al. [Hua90] developed and evaluated a
group of real-time protocols for handling CPU schedul-
ing, data conflict resolution, deadlock resolution, aansac-
tion wakeup, and transaction restart. Their study is based
not on simulation but by actual implementation on a
testbed system called RT-CARAT. They concluded that
CPU scheduling protocols have a significant impact on
the performance of RTDBS, that they dominate all other
protocols, and that the overhead incurred in locking is
non-negligible and cannot be ignored in real-time con-
currency control analysis.

Recently, real-time concurrency control protocols
based on optimistic method have been proposed and stu-
died [Har90, Hua91, Lin90, C00911. Haritsa et d.
[Ha1901 proposed a group of optimistic real-time con-
currency control protocols and evaluated them on a simu-
lation model. They have also conducted a study on the
relative performance of locking-based protocols and
optimistic protocols, and concluded that optimistic con-
currency control protocols outperform two-phase
locking-based protocols over a wide range of system util-
ization. Huang et al. [Hua91] also conducted a similar
performance study of real-time optimistic concurrency
control protocols, but on a testbed system, not through
simulation. They examined the overall effects and the
impact of the overheads involved in implementing real-
time optimistic concurrency control on the testbed sys-
tem. Their experimental results contrast with the results
in EHar901, showing that optimistic concurrency control
may not always outperform a two-phase locking-based
protocol which aborts the lower priority transaction when
a conflict occurs. They pointed out the fact that the phy-
sical implementation schemes have a significant impact
on the performance of real-time optimistic concurrency
control.

3. Hybrid Approach
Concurrency control protocols induce a serializa-

tion order among conflicting transactions. For a con-
currency control protocol to accommodate the timing
constraints of transactions, the serialization order it pro-
duces should reflect the priority of transactions. How-
ever, this is often hindered by the past execution history
of transactions. A higher priority transaction may have
no way to precede a lower priority transaction in the seri-
alization order due to previous conflicts. For example,
TH and TL are two transactions with TH having a higher
priority. If TL writes a data object x before TH read it,
then the serialization order between TH and T L is deter-
mined as TL + TH. TH can never precede TL in the seri-
alization order as long as both reside in the execution his-
tory. Most of the current (real-time) concurrency control
protocols resolve this conflict either by blocking TH until
TL releases the writelock or by aborting TL in favor of the
higher priority transaction TH. Blocking of a higher
priority transaction due to a lower priority transaction is
contrary to the requirement of real-time scheduling.
Aborting is also not desirable because it degrades the
system performance and may lead to violations of timing
constraints. Furthermore, some aborts can be useless
when the transaction which caused the abort is aborted
due to another conflict. The objective of our hybrid
approach is to avoid such unnecessary blocking and
aborting.

178

3.1. Integrated Real-Time Locking Protocol
The first protocol, Integrated Real-Time Locking

(IRTL), combines locking and optimistic concurrency
control. By using a priority-dependent locking protocol,
the serialization order of active transactions is adjusted
dynamically, making it possible for transactions with
higher priority to be executed first so that higher priority
transactions are never blocked by uncommitted lower
priority transactions, while lower priority transactions
may not have to be aborted even in the face of a conflict.
The adjustment of the serialization order can be con-
sidered as a mechanism to support real-time scheduling.

This protocol is an integrated protocol because it
uses different solutions for reaawrite (rw) and
write/write (ww) synchronization, and integrates the
solutions to the two subproblems to yield a solution to
the entire problem.

The protocol is similar to optimistic concurrency
control in the sense that each transaction has three
phases, but unlike the optimistic method, there is no vali-
dation phase. This protocol’s three phases are read, wait,
and write phases. The read phase is similar to that of
optimistic concurrency control wherein a transaction
reads from the database and writes to its local
workspace. In this phase, however, conflicts are also
resolved by using transaction priority. While other
optimistic real-time concurrency control protocols
resolve conflicts in the validation phase, this protocol
resolves them in the read phase. In the wait phase, a
transaction waits for its chance to commit. Finally, in the
write phase, updates are made permanent to the database.
(1) Read phase

This is the normal execution of a transaction
except that all writes are on private data copies in the
local workspace of the transaction instead of on data
objects in the database. Such write operations are called
prewritcs. The prewrites are useful when a transaction is
aborted, in which case the data in the local workspace is
simply discarded. No rollback is required.

In this phase read-prewrite and prewrite-read
conflicts are resolved using a priority based locking pro-
tocol. A transaction must obtain the corresponding lock
before it reads or prewrites. According to the priority
locking protocol, higher priority transactions must com-
plete before lower priority transactions. If a low priority
transaction does complete before a high-priority transac-
tion, it is required to wait until it is sure that its commit-
ment will not lead to the higher priority transaction being
aborted.

Suppose Tu and TL are two active transactions and
TH has higher priority than TL, there are four possible
conflicts as follows.

(1) rTH [XI, PwTL [XI
The resulting serialization order is TH -+ TL, hence
satisfies the priority order, and does not need to adjust the
serialization order.

Either of the two serialization orders can be induced with
this conflict; TL -+ TH with immediate reading, and
TH 4 TL with delayed reading. Certainly, the latter
should be chosen for priority scheduling. The delayed
reading in this protocol rneans blocking of rTL [XI by the
writelock of Tu on x.

If TL is in read phase, abort TL. If TL is in its wait phase,
avoid aborting TL until TH commits in the hope that TL
gets a chance to commit before TH does. If TH commits,
TL is aborted. But if TH is aborted by some other
conflicting transaction, then TL is committed. With this
policy, we can avoid unnecessary and useless aborts,
while satisfying priority scheduling.

Either of the two Serialization orders can be induced with
this conflict; TH -+ TL with immediate reading, and
TL -+ TH with delayed reading. If TL is in its write
phase, delaying TH is the only choice. This blocking is
not a serious problem far TH because TL is expected to
finish writing x soon. TH can read x as soon as TL
finishes writing x in the database, not necessarily after TL
completes the whole write phase. If TL is in its read or
wait phase, choose immediate reading.

As transactions are being executed and conflicting
operations occur, all the information pertaining to the
induced dependencies in the serialization order needs to
be retained. In order tci maintain this information, we
associate the following with each transaction; two sets,
before-trans-set and after-trans-set, and a count, before-
count R. The before-trans-set (respectively, after-trans-
set) of a transaction contains all the active lower priority
transactions that must precede (respectively, follows) this
transaction in the serialization order. The before-count
of a transaction is the number of the higher priority tran-
sactions that precede thiis transaction in the serialization
order. When a conflict occurs between two transactions,
their dependency is determined and then the values of
their before-trans-set, after-trans-set, and before-count
are changed accordingly.
(2) Wait Phase

The wait phase allows a transaction to wait until it
can commit. A transaction in the wait phase can commit
if all transactions with higher priority that must precede it
in the serialization orider, are either committed or
aborted. Since the before-count of a transaction is the
number of such transactions, the transaction can commit
only if its before-count becomes zero.

(2) pwTH [x 1, rTL [x 1

(3) rTL [XI , PWT, [XI

(4) pwTL [XI , rTH [XI

I79

A transaction in the wait phase may be aborted due
eo two reasons; if a higher priority transaction requests a
conflicting lock or if a higher priority transaction that
must follow this transaction in the serialization order
commits.

Once a transaction in its wait phase finds a chance
to commit, then it commits and switches to its write
phase and releases all readlocks. The transaction is
assigned a final timestamp which is the absolute seriali-
zation order.
(3) Write Phase

In the write phase, the transaction is considered to
be committed. All committed transactions are serialized
by the final timestamp order. Updates are made per-
manent to the database while applying Thomas’ Write
Rule (TWR) for write-write conflicts [Ber87]. After
each operation the corresponding writelock is released.

With the dynamic adjustment of serialization order
of this protocol, priority order of transactions are retained
as much as possible, which promises more timing con-
straints of real-time transactions to be satisfied. In addi-
tion unnecessary and useless aborts are avoided as much
as possible. This protocol also takes advantage of the
potential for high degree of parallelism of optimistic con-
currency control, because concurrent read and write
locks are possible. This protocol is proved to be
deadlock-free [Lin901.

3.2. An Optimistic Method with Timestamp Inter-
vals

The second protocol is a combination of optimistic
concurrency control and dynamic timestamp allocation
scheme [Bok87]. This protocol constructs the serializa-
tion order dynamically by using timestamp interval, asso-
ciated with every active transaction. It updates the times-
tamp intervals of active transactions to adjust their serial-
ization order.

This protocol enforces senalizability by satisfying
the following two conditions through every read,
prewrite, and validation;

(Cl) Each timestamp interval constructed when a tran-
saction accesses a data object should preserve the
order induced by the timestamps of all committed
transactions which have also accessed that data
object.

(C2) The order induced by final timestamp of a validat-
ing transaction should not destroy the serialization
order constructed by the past execution, i.e., by
committed transactions.

(Cl) is used in the read phase of a transaction, when it
reads or prewrites a data object. (C2) is for validation
phase, when a final timestamp for the validating

transaction is chosen. These provide a sufficient condi-
tion for serialization. While satisfying (Cl) and (C2), the
protocol also adjusts the serialization order in favor of
priority order without violating data consistency.

Most timestamp-based concurrency control proto-
cols use static timestamp allocation scheme, i.e., each
transaction is assigned a timestamp value at its startup
time, and a total ordering instead of a partial ordering is
built up. This total ordering does not reflect any actual
conflict. Hence, it is possible that a transaction is aborted
even when it requests its first data access. Besides, the
total ordering of all transactions is too restrictive, and
degrades the degree of concurrency considerably. With
dynamic timestamp allocation, serialization order among
transactions are dynamically constructed on demand
whenever actual conflicts are occurring. Only necessary
partial ordering among transactions is constructed instead
of a total ordering from the static timestamp allocation.

Furthermore, in this protocol, the use of timestamp
interval instead of a single value for timestamp allows
more flexibility to adjust serialization order. Subse-
quently, this protocol can provide a high degree of paral-
lelism, and avoid many unnecessary aborts. As other
optimistic protocols, this protocol divides the execution
of a transaction into three phases: read, validation, and
write. However, unlike other optimistic protocols,
conflicts and nonserializable executions are detected and
resolved during the read phase. This early resolution of
nonserializable execution is another advantage of this
protocol. The main weakness of this protocol is that
priority inversion still can occur, because this protocol
does not involve transaction priority for scheduling deci-
sion.

The algorithm of the protocol described so far is
the basic form of the protocol, which does not use tran-
saction priority in scheduling decision. Not only the pro-
tocol in its basic form has several advantages over other
optimistic protocols, but also it can be improved in
several ways by considering priority scheduling. One
possibility is to manipulate the size of timestamp inter-
vals of active transactions according to their priority.
Because the size indicates the amount of possibility of
restarting the transaction, a transaction with higher prior-
ity needs to have a larger timestamp interval than a tran-
saction with lower priority. This strategy of manipulat-
ing the size of timestamp intervals depends on the policy
of choosing final timestamp of the validating transacuon
from its timestamp interval. When choosing the final
timestamp for a validating transaction, the protocol
should check the priority of its conflicting transactions,
and decide the timestamp in such a way that higher prior-
ity transactions are left with larger timestamp intervals.
We have developed several extensions of the algorithm
regarding this final timestamp selection. In addition,
because this protocol is based on optimistic control using

forward validation mechanism, it can also be extended to
support real-time scheduling by combining priority abort
and priority sacrifice mechanisms with the validation
mechanism, as in OPT-ABORT, OPT-SACRIFICE and
OPT-WAIT protocols proposed in [Hadlo].

4. Performance Evaluation
We have conducted a comparative performance

evaluation of various real-time concurrency control
schemes, using a database prototyping tool [Son90]. We
have examined one pessimistic protocol called High
Priority (HP) protocol [Abb88], which is based on the
two-phase locking, and employs priority abort policy for
conflict resolution. We have included three optimistic
protocols; OPT-CMT, OPT-SACRIFICE, and OPT-
WAIT [Har90, Hua911. Under OPT-CMT, the validating
transaction always commit, while aborting all the
conflicting active transactions. OPT-S ACRIFICE uses
priority abort policy for conflict resolution, while OPT-
WAIT employs priority wait policy. As a hybrid proto-
col, we have also included IRTL. The primary metric
used for performance evaluation is percentage of missed
deadlines, which is the percentage of transactions that
are not completed by their deadline. Furthermore, tran-
sactions are divided into ten priority groups according to
their priorities. We have also employed deadline missing
percentage with respect to each priority group, as one of
our performance metrics. It identifies more precisely the
discriminating power of the real-time concurrency con-
trol schemes in question.

Our experimental results show that over the entire
operational range, optimistic schemes outperform the
locking-based pessimistic protocol, HP. This result
agrees with the results from [Har90]. The use of block-
ing in pessimistic control may incur more performance
degradation than the use of aborting in optimistic control
in real-time database systems. Our experimental results
provide a solid ground for this intuitive reasoning for the
use of aborting against blocking in real-time concurrency
conuol.

Optimistic concurrency control protocols based on
aborting such as OPT-CMT and OPT-SACRIFICE per-
form better than optimistic protocols based on blocking
such as OPT-WAIT. Contrary to the previous result in
[Har90], OPT-WAIT performs even worse than OPT-
CMT which does not use transaction priority informa-
tion. We may attribute the degraded performance of
OPT-WAIT to its use of blocking, resulting in several
potential problems. First, if a transaction finally commits
after waiting for sometime, it causes all its conflicting
transactions with lower priority to be restarted at a later
point in time, hence decreasing the chance of these tran-
sactions meeting their deadlines. Second, while a vali-
dating transaction waits, new conflicts can occur and the
number of conflicting transactions is increased, hence

resulting in more restarts. Finally, a validating transac-
tion with little slack time sometimes has to wait for a
conflicting high priority transaction which is still in the
early stage of its read phase, because the protocol blocks
the validating transaction ,without considering the current
stages of the conflicting transactions. This again will
decrease the chance of meeting transaction deadlines.

Another observation is that OPT-SACRIFICE per-
forms only slightly better than OPT-CMT. The benefit
obtained by using priority information in OPT-
SACRIFICE has been almost nullified by two potential
problems of OPT-SACRIFICE; wasted sacrifice and
mutual sacrifice [Har90].

Finally, the experimlental results shows the hybrid
protocol, RTL performs competitively. In particular,
under low data contention, it outperforms all of the other
real-time concurrency control. The degraded perfor-
mance of IRTL as data cointention increases is primarily
due to the overhead incurred in maintaining the informa-
tion on the induced dependencies in the serialization
order among transactions. We have to pay serialization
order information retaining overhead to take advantage
of an intelligent conflict resolution policy called dynamic
adjustment of serialization order, which makes it possible
to avoid unnecessary bloclting and aborting. In terms of
the discriminating power for different priority groups,
IRTL and OPT-ABORT are good, and OPT-CMT is the
worst.

Figure 1 shows the percentage of missed transac-
tion deadlines for five prcltocols; HP, OPT-CMT, OPT-
WAIT, OPT-SACRIFICE, and IRTL under different data
contention levels by varying transaction interarrival time.
Figure 2 shows the miss percentage for the same five
schemes under different levels of data contention and
system load by varying the transaction size, while fixing
the values of other parameters. Figure 3 shows the per-
centage of missed deadlines with respect to priority
group over four protocols: OPT-CMT, OPT-
SACRIFICE, OPT-WAIT, and IRTL. The value of the
mean interarrival time in Figure 3 is 50 msec, which
represents a normal data contention.

REFERENCES
[Abb88] R. Abbott, H. Garcia-Molina, "Scheduling

Real-time Transactions: A Performance
Evaluation," Proceedings of the 14th VLDB
Conference, 1988.
Bernstein, P. A., V. Hadzilacos, and N. Good-
man, Concurreircy Control and Recovery in
Database System, Addison-Wesley, Reading,
Mass., 1987.
Boksenbaum, C., M. Cart, J. Feme, and J.
Pons, "Concurrent Certifications by Intervals

[Ber87]

[Bok871

[Buc89]

J

mar901

[Hua90]

[Hua91]

[Lin90]

[Shag11

[Son901

[Son90bl

[Yu90]

80

of Timestamps in Distributed Database Sys-
tems," IEEE Transactions on Software
Engineering, Vol. SE-13, NO. 4, April 1987.
Buchmann, A. et al., "Time-Critical Database
Scheduling: A Framework for Integrating
Real-Time Scheduling and Concurrency Con-
trol," 5th Data Engineering Conference,
February 1989.
Cook, R. P., S . H. Son, H. Y. Oh, and J. Lee,
"New Paradigms for Real-Time Database
Systems," 8th IEEE workshop on Real-Time
Operating Systems and Software (in Conjunc-
tion with) IFACIIFIP Workshop on Real-Time
Programming, May 1991.
J. R. Haritsa, M. J. Carey, and M. Livny,
"Dynamic Real-Time Optimistic Concurrency
Control," IEEE Real-Time Systems Sympo-
sium, Orlando, Florida, December 1990.
Huang, J., J. A. Stankovic, D. Towsley, and
K. Ramamritham, "Real-Time Transaction
Processing: Design, Implementation, and Per-
formance Evaluation," Univ. of Mas-
sachusetts, COINS Technical Report 90-43,
May, 1990.
J. Huang, J. A. Stankovic, K. Ramamritham,
and D. Towsley, "Experimental Evaluation of
Real-Time Optimistic Concurrency Control
Schemes," VLDB Conference, Barcelona,
Spain, Sept. 1991.
Y. Lin and S. H. Son, "concurrency Control
in Real-Time Database Systems by Dynamic
Adjustment of Serialization Order," IEEE
Real-Time Systems Symposium, Orlando,
Florida, December 1990.
Sha, L., R. Rajkumar, S. Son and C. Chang,
"A Real-Time Locking Protocol," IEEE
Trans. on Computers, Vol. 6, No. 7, July
1991.
S. H. Son, "An Environment for Prototyping
Real-Time Distributed Databases," tnterna-
tional Conference on Systems Integration,
Momstown, New Jersey, April 1990, pp

Son, S. H., and I. Lee, "Scheduling Real-
Time Transactions in Distributed Database
Systems," 7th IEEE Workshop on Real-Time
Operating Systems and Software, Charlottes-
ville, Virginia, May 1990.
Yu, P., and D. Dias, "Concurrency Control
Using Locking with Deferred Blocking," 6th
Intl. Conf Data Engineering, Los Angels,
Feb. 1990, pp. 30-36.

358-367.

.

100

OPT-CnT C
OPT-SACRIFICE -+-

OPT-WAIT +
B O IRTL L

HP -*-

60

40

20

0
10 20 30 4 0 50 60 10 8 0 30

m9.n I"t.r.rllY.1 tin*

Figure 1. Mean interarrival time

100

1

Figure 2. Transaction size

100

t

c7 4 0

Figure 3. Miss percentage per priority group

182

