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Abstract 

A real-time database system differs from a conventional 
database system because in addition to the consistency 
constraints of the database, timing constraints of indivi- 
dual transaction need to be satisfied. Various real-time 
transaction scheduling algorithms have been proposed 
which employ either a pessimistic or an optimistic 
approach to concurrency control. In this paper, we 
present new real-time transaction scheduling algorithms 
which employ a hybrid approach, Le., a combination of 
both pessimistic and optimistic approaches. These proto- 
cols make use of a new conflict resolution scheme called 
dynamic adjustment of serialization order, which sup- 
ports priority-driven scheduling, and avoids unnecessary 
aborts. Our experimental results indicate that hybrid pro- 
tocols outperform other real-time concurrency control 
protocols in certain performance metrics. 
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1. Introduction 
A real-time database system (RTDBS) differs 

from a conventional database system because in addition 
to the consistency constraints of the database, timing 
constraints of individual transaction need to be satisfied. 
In order to provide real-time response for queries and 
updates while maintaining the consistency of data, real- 
time concurrency control should involve efficient 
integration of the ideas from both database concurrency 
control and real-time scheduling. Various real-time con- 
currency control protocols have been proposed which 
employ either a pessimistic or an optimistic approach to 
concurrency control. 

Most of the initial work in real-time concurrency 
control has been conducted on utilizing two-phase lock- 
ing as the base of real-time concurrency control. The 
two-phase locking is termed as being pessimistic, 
because it, in anticipation of data conflicts, tends to delay 

the operations in order to avoid aborting them later. 
However, the very idea of delaying an operation is 
opposed to real-time systems. Besides, the degree of 
concurrency is low in the two-phase locking based algo- 
rithms because concurrent read and write locks on the 
same data object by seveiral transactions are not possible. 
Furthermore, two-phase locking has some inherent prob- 
lems such as the possibility of deadlocks and unpredict- 
able blocking times, which are serious problems for 
real-time concurrency control. 

An optimistic approach is a natural alternative. An 
optimistic scheduler aggressively schedules all opera- 
tions, hoping that nothing will go wrong, such as a non- 
serializable execution. .Later when the transaction is 
ready to commit, conflicts are checked for and a conflict 
resolution scheme is then applied to resolve the conflicts, 
if any. Ideally an optimistic approach has the properties 
of non-blocking and deadlock freedom, which make it 
suitable to real-time transaction processing. In addition, 
it has a potential for high degree of parallelism. How- 
ever, the use of aborting for conflict resolution in 
optimistic schedulers results in a problem that transac- 
tions can end up aborting after having paid for most of 
the transaction’s execution. This problem can particu- 
larly be serious for real-time transaction scheduling, 
where timing constraints of transactions should be 
satisfied. For conventional database systems, it has been 
shown that optimal performance can be achieved by 
combining blocking and aborting. We expect the same 
with RTDBS. 

In this paper, we present two hybrid real-time con- 
currency control protocells which combine pessimistic 
and optimistic approaches to concurrency control in 
order to control blocking and aborting in a more effective 
manner. We compare the performance of these new pro- 
tocols with that of other real-time concurrency control 
protocols proposed. 

The first protocol is based on a priority-based lock- 
ing mechanism to support real-time scheduling by adjust- 
ing the serialization order dynamically in favor of high 
priority transactions. This protocol uses the phase- 
dependent control of optimistic approach to support 

This work was supported in part by ONR. by NOSC, and by IBM. 

I77 
0-8186-28154192 $3.00 Q 1992IEEE 

mailto:son@cs.virginia.edu


dynamic adjustment of serialization order. 
The second protocol is a combination of optimistic 

concurrency control and timesatmp ordering. This proto- 
col also uses the phase-dependent control of optimistic 
approach. Furthermore, this protocol employs the notion 
of dynamic timestamp allocation and dynamic adjust- 
ment of serialization order using timestamp interval 
[Bok871, with which the ability of early detection and 
resolution of nonserializable execution is improved, and 
unnecessary aborts are avoided. 

2. Related Work 
A real-time database system (RTDBS) is a tran- 

saction processing system designed to handle workloads 
where transactions have completion deadlines. The 
objective of such system is to meet these deadlines. The 
real-time performance of an RTDBS depends on several 
factors such as the database system organization, the 
underlying processors and disk speeds. For a given sys- 
tem configuration, however, the primary determinants for 
the real-time performance are the policies used for 
scheduling transaction accesses to system resources, 
because these policies determine when service is pro- 
vided to a transaction. 

Recently, research on the scheduling problem in 
real-time database systems has been active [Abb88, 
Buc89, coo91, W O ,  Hua90, Hua91, Lin90, Sha91, 
Son90bl. As mentioned earlier, most of the current real- 
time concurrency control schemes are based on two- 
phase locking [Abb88, Hua90, Sha911. Abbott and 
Garcia-Molina [Abb88] described a group of lock-based 
real-time concurrency control schemes for scheduling 
soft real-time transactions, and evaluated the perfor- 
mance of those protocols through simulation. 

Some inherent problems of two-phase locking such 
as the possibility of deadlocks and unpredictable block- 
ing times are serious for real-time transaction scheduling. 
In addition, a priority inversion can occur when a lower 
priority transaction blocks the execution of a higher 
priority transaction. Sha et al. [Sha91] proposed a con- 
servative real-time concurrency control scheme called 
priority ceiling, which prevents deadlocks and transitive 
blocking. 

Huang et al. [Hua90] developed and evaluated a 
group of real-time protocols for handling CPU schedul- 
ing, data conflict resolution, deadlock resolution, aansac- 
tion wakeup, and transaction restart. Their study is based 
not on simulation but by actual implementation on a 
testbed system called RT-CARAT. They concluded that 
CPU scheduling protocols have a significant impact on 
the performance of RTDBS, that they dominate all other 
protocols, and that the overhead incurred in locking is 
non-negligible and cannot be ignored in real-time con- 
currency control analysis. 

Recently, real-time concurrency control protocols 
based on optimistic method have been proposed and stu- 
died [Har90, Hua91, Lin90, C00911. Haritsa et d. 
[Ha1901 proposed a group of optimistic real-time con- 
currency control protocols and evaluated them on a simu- 
lation model. They have also conducted a study on the 
relative performance of locking-based protocols and 
optimistic protocols, and concluded that optimistic con- 
currency control protocols outperform two-phase 
locking-based protocols over a wide range of system util- 
ization. Huang et al. [Hua91] also conducted a similar 
performance study of real-time optimistic concurrency 
control protocols, but on a testbed system, not through 
simulation. They examined the overall effects and the 
impact of the overheads involved in implementing real- 
time optimistic concurrency control on the testbed sys- 
tem. Their experimental results contrast with the results 
in EHar901, showing that optimistic concurrency control 
may not always outperform a two-phase locking-based 
protocol which aborts the lower priority transaction when 
a conflict occurs. They pointed out the fact that the phy- 
sical implementation schemes have a significant impact 
on the performance of real-time optimistic concurrency 
control. 

3. Hybrid Approach 
Concurrency control protocols induce a serializa- 

tion order among conflicting transactions. For a con- 
currency control protocol to accommodate the timing 
constraints of transactions, the serialization order it pro- 
duces should reflect the priority of transactions. How- 
ever, this is often hindered by the past execution history 
of transactions. A higher priority transaction may have 
no way to precede a lower priority transaction in the seri- 
alization order due to previous conflicts. For example, 
TH and TL are two transactions with TH having a higher 
priority. If TL writes a data object x before TH read it, 
then the serialization order between TH and T L  is deter- 
mined as TL + TH. TH can never precede TL in the seri- 
alization order as long as both reside in the execution his- 
tory. Most of the current (real-time) concurrency control 
protocols resolve this conflict either by blocking TH until 
TL releases the writelock or by aborting TL in favor of the 
higher priority transaction TH. Blocking of a higher 
priority transaction due to a lower priority transaction is 
contrary to the requirement of real-time scheduling. 
Aborting is also not desirable because it degrades the 
system performance and may lead to violations of timing 
constraints. Furthermore, some aborts can be useless 
when the transaction which caused the abort is aborted 
due to another conflict. The objective of our hybrid 
approach is to avoid such unnecessary blocking and 
aborting. 
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3.1. Integrated Real-Time Locking Protocol 
The first protocol, Integrated Real-Time Locking 

(IRTL), combines locking and optimistic concurrency 
control. By using a priority-dependent locking protocol, 
the serialization order of active transactions is adjusted 
dynamically, making it possible for transactions with 
higher priority to be executed first so that higher priority 
transactions are never blocked by uncommitted lower 
priority transactions, while lower priority transactions 
may not have to be aborted even in the face of a conflict. 
The adjustment of the serialization order can be con- 
sidered as a mechanism to support real-time scheduling. 

This protocol is an integrated protocol because it 
uses different solutions for reaawrite (rw) and 
write/write (ww) synchronization, and integrates the 
solutions to the two subproblems to yield a solution to 
the entire problem. 

The protocol is similar to optimistic concurrency 
control in the sense that each transaction has three 
phases, but unlike the optimistic method, there is no vali- 
dation phase. This protocol’s three phases are read, wait, 
and write phases. The read phase is similar to that of 
optimistic concurrency control wherein a transaction 
reads from the database and writes to its local 
workspace. In this phase, however, conflicts are also 
resolved by using transaction priority. While other 
optimistic real-time concurrency control protocols 
resolve conflicts in the validation phase, this protocol 
resolves them in the read phase. In the wait phase, a 
transaction waits for its chance to commit. Finally, in the 
write phase, updates are made permanent to the database. 
(1) Read phase 

This is the normal execution of a transaction 
except that all writes are on private data copies in the 
local workspace of the transaction instead of on data 
objects in the database. Such write operations are called 
prewritcs. The prewrites are useful when a transaction is 
aborted, in which case the data in the local workspace is 
simply discarded. No rollback is required. 

In this phase read-prewrite and prewrite-read 
conflicts are resolved using a priority based locking pro- 
tocol. A transaction must obtain the corresponding lock 
before it reads or prewrites. According to the priority 
locking protocol, higher priority transactions must com- 
plete before lower priority transactions. If a low priority 
transaction does complete before a high-priority transac- 
tion, it is required to wait until it is sure that its commit- 
ment will not lead to the higher priority transaction being 
aborted. 

Suppose Tu and TL are two active transactions and 
TH has higher priority than TL, there are four possible 
conflicts as follows. 

(1) rTH [XI, PwTL [XI 
The resulting serialization order is TH -+ TL, hence 
satisfies the priority order, and does not need to adjust the 
serialization order. 

Either of the two serialization orders can be induced with 
this conflict; TL -+ TH with immediate reading, and 
TH 4 TL with delayed reading. Certainly, the latter 
should be chosen for priority scheduling. The delayed 
reading in this protocol rneans blocking of rTL [XI by the 
writelock of Tu on x.  

If TL is in read phase, abort TL. If TL is in its wait phase, 
avoid aborting TL until TH commits in the hope that TL 
gets a chance to commit before TH does. If TH commits, 
TL is aborted. But if TH is aborted by some other 
conflicting transaction, then TL is committed. With this 
policy, we can avoid unnecessary and useless aborts, 
while satisfying priority scheduling. 

Either of the two Serialization orders can be induced with 
this conflict; TH -+ TL with immediate reading, and 
TL -+ TH with delayed reading. If TL is in its write 
phase, delaying TH is the only choice. This blocking is 
not a serious problem far TH because TL is expected to 
finish writing x soon. TH can read x as soon as TL 
finishes writing x in the database, not necessarily after TL 
completes the whole write phase. If TL is in its read or 
wait phase, choose immediate reading. 

As transactions are being executed and conflicting 
operations occur, all the information pertaining to the 
induced dependencies in the serialization order needs to 
be retained. In order tci maintain this information, we 
associate the following with each transaction; two sets, 
before-trans-set and after-trans-set, and a count, before- 
count R. The before-trans-set (respectively, after-trans- 
set) of a transaction contains all the active lower priority 
transactions that must precede (respectively, follows) this 
transaction in the serialization order. The before-count 
of a transaction is the number of the higher priority tran- 
sactions that precede thiis transaction in the serialization 
order. When a conflict occurs between two transactions, 
their dependency is determined and then the values of 
their before-trans-set, after-trans-set, and before-count 
are changed accordingly. 
(2) Wait Phase 

The wait phase allows a transaction to wait until it 
can commit. A transaction in the wait phase can commit 
if all transactions with higher priority that must precede it 
in the serialization orider, are either committed or 
aborted. Since the before-count of a transaction is the 
number of such transactions, the transaction can commit 
only if its before-count becomes zero. 

(2) pwTH [x 1, rTL [x 1 

(3) rTL [XI ,  PWT, [XI 

(4) pwTL [XI ,  rTH [XI 
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A transaction in the wait phase may be aborted due 
eo two reasons; if a higher priority transaction requests a 
conflicting lock or if a higher priority transaction that 
must follow this transaction in the serialization order 
commits. 

Once a transaction in its wait phase finds a chance 
to commit, then it commits and switches to its write 
phase and releases all readlocks. The transaction is 
assigned a final timestamp which is the absolute seriali- 
zation order. 
(3) Write Phase 

In the write phase, the transaction is considered to 
be committed. All committed transactions are serialized 
by the final timestamp order. Updates are made per- 
manent to the database while applying Thomas’ Write 
Rule (TWR) for write-write conflicts [Ber87]. After 
each operation the corresponding writelock is released. 

With the dynamic adjustment of serialization order 
of this protocol, priority order of transactions are retained 
as much as possible, which promises more timing con- 
straints of real-time transactions to be satisfied. In addi- 
tion unnecessary and useless aborts are avoided as much 
as possible. This protocol also takes advantage of the 
potential for high degree of parallelism of optimistic con- 
currency control, because concurrent read and write 
locks are possible. This protocol is proved to be 
deadlock-free [Lin901. 

3.2. An Optimistic Method with Timestamp Inter- 
vals 

The second protocol is a combination of optimistic 
concurrency control and dynamic timestamp allocation 
scheme [Bok87]. This protocol constructs the serializa- 
tion order dynamically by using timestamp interval, asso- 
ciated with every active transaction. It updates the times- 
tamp intervals of active transactions to adjust their serial- 
ization order. 

This protocol enforces senalizability by satisfying 
the following two conditions through every read, 
prewrite, and validation; 

(Cl) Each timestamp interval constructed when a tran- 
saction accesses a data object should preserve the 
order induced by the timestamps of all committed 
transactions which have also accessed that data 
object. 

(C2) The order induced by final timestamp of a validat- 
ing transaction should not destroy the serialization 
order constructed by the past execution, i.e., by 
committed transactions. 

(Cl) is used in the read phase of a transaction, when it 
reads or prewrites a data object. (C2) is for validation 
phase, when a final timestamp for the validating 

transaction is chosen. These provide a sufficient condi- 
tion for serialization. While satisfying (Cl) and (C2), the 
protocol also adjusts the serialization order in favor of 
priority order without violating data consistency. 

Most timestamp-based concurrency control proto- 
cols use static timestamp allocation scheme, i.e., each 
transaction is assigned a timestamp value at its startup 
time, and a total ordering instead of a partial ordering is 
built up. This total ordering does not reflect any actual 
conflict. Hence, it is possible that a transaction is aborted 
even when it requests its first data access. Besides, the 
total ordering of all transactions is too restrictive, and 
degrades the degree of concurrency considerably. With 
dynamic timestamp allocation, serialization order among 
transactions are dynamically constructed on demand 
whenever actual conflicts are occurring. Only necessary 
partial ordering among transactions is constructed instead 
of a total ordering from the static timestamp allocation. 

Furthermore, in this protocol, the use of timestamp 
interval instead of a single value for timestamp allows 
more flexibility to adjust serialization order. Subse- 
quently, this protocol can provide a high degree of paral- 
lelism, and avoid many unnecessary aborts. As other 
optimistic protocols, this protocol divides the execution 
of a transaction into three phases: read, validation, and 
write. However, unlike other optimistic protocols, 
conflicts and nonserializable executions are detected and 
resolved during the read phase. This early resolution of 
nonserializable execution is another advantage of this 
protocol. The main weakness of this protocol is that 
priority inversion still can occur, because this protocol 
does not involve transaction priority for scheduling deci- 
sion. 

The algorithm of the protocol described so far is 
the basic form of the protocol, which does not use tran- 
saction priority in scheduling decision. Not only the pro- 
tocol in its basic form has several advantages over other 
optimistic protocols, but also it can be improved in 
several ways by considering priority scheduling. One 
possibility is to manipulate the size of timestamp inter- 
vals of active transactions according to their priority. 
Because the size indicates the amount of possibility of 
restarting the transaction, a transaction with higher prior- 
ity needs to have a larger timestamp interval than a tran- 
saction with lower priority. This strategy of manipulat- 
ing the size of timestamp intervals depends on the policy 
of choosing final timestamp of the validating transacuon 
from its timestamp interval. When choosing the final 
timestamp for a validating transaction, the protocol 
should check the priority of its conflicting transactions, 
and decide the timestamp in such a way that higher prior- 
ity transactions are left with larger timestamp intervals. 
We have developed several extensions of the algorithm 
regarding this final timestamp selection. In addition, 
because this protocol is based on optimistic control using 



forward validation mechanism, it can also be extended to 
support real-time scheduling by combining priority abort 
and priority sacrifice mechanisms with the validation 
mechanism, as in OPT-ABORT, OPT-SACRIFICE and 
OPT-WAIT protocols proposed in [Hadlo]. 

4. Performance Evaluation 
We have conducted a comparative performance 

evaluation of various real-time concurrency control 
schemes, using a database prototyping tool [Son90]. We 
have examined one pessimistic protocol called High 
Priority (HP)  protocol [Abb88], which is based on the 
two-phase locking, and employs priority abort policy for 
conflict resolution. We have included three optimistic 
protocols; OPT-CMT, OPT-SACRIFICE, and OPT- 
WAIT [Har90, Hua911. Under OPT-CMT, the validating 
transaction always commit, while aborting all the 
conflicting active transactions. OPT-S ACRIFICE uses 
priority abort policy for conflict resolution, while OPT- 
WAIT employs priority wait policy. As a hybrid proto- 
col, we have also included IRTL. The primary metric 
used for performance evaluation is percentage of missed 
deadlines, which is the percentage of transactions that 
are not completed by their deadline. Furthermore, tran- 
sactions are divided into ten priority groups according to 
their priorities. We have also employed deadline missing 
percentage with respect to each priority group, as one of 
our performance metrics. It identifies more precisely the 
discriminating power of the real-time concurrency con- 
trol schemes in question. 

Our experimental results show that over the entire 
operational range, optimistic schemes outperform the 
locking-based pessimistic protocol, HP. This result 
agrees with the results from [Har90]. The use of block- 
ing in pessimistic control may incur more performance 
degradation than the use of aborting in optimistic control 
in real-time database systems. Our experimental results 
provide a solid ground for this intuitive reasoning for the 
use of aborting against blocking in real-time concurrency 
conuol. 

Optimistic concurrency control protocols based on 
aborting such as OPT-CMT and OPT-SACRIFICE per- 
form better than optimistic protocols based on blocking 
such as OPT-WAIT. Contrary to the previous result in 
[Har90], OPT-WAIT performs even worse than OPT- 
CMT which does not use transaction priority informa- 
tion. We may attribute the degraded performance of 
OPT-WAIT to its use of blocking, resulting in several 
potential problems. First, if a transaction finally commits 
after waiting for sometime, it causes all its conflicting 
transactions with lower priority to be restarted at a later 
point in time, hence decreasing the chance of these tran- 
sactions meeting their deadlines. Second, while a vali- 
dating transaction waits, new conflicts can occur and the 
number of conflicting transactions is increased, hence 

resulting in more restarts. Finally, a validating transac- 
tion with little slack time sometimes has to wait for a 
conflicting high priority transaction which is still in the 
early stage of its read phase, because the protocol blocks 
the validating transaction ,without considering the current 
stages of the conflicting transactions. This again will 
decrease the chance of meeting transaction deadlines. 

Another observation is that OPT-SACRIFICE per- 
forms only slightly better than OPT-CMT. The benefit 
obtained by using priority information in OPT- 
SACRIFICE has been almost nullified by two potential 
problems of OPT-SACRIFICE; wasted sacrifice and 
mutual sacrifice [Har90]. 

Finally, the experimlental results shows the hybrid 
protocol, RTL performs competitively. In particular, 
under low data contention, it outperforms all of the other 
real-time concurrency control. The degraded perfor- 
mance of IRTL as data cointention increases is primarily 
due to the overhead incurred in maintaining the informa- 
tion on the induced dependencies in the serialization 
order among transactions. We have to pay serialization 
order information retaining overhead to take advantage 
of an intelligent conflict resolution policy called dynamic 
adjustment of serialization order, which makes it possible 
to avoid unnecessary bloclting and aborting. In terms of 
the discriminating power for different priority groups, 
IRTL and OPT-ABORT are good, and OPT-CMT is the 
worst. 

Figure 1 shows the percentage of missed transac- 
tion deadlines for five prcltocols; HP, OPT-CMT, OPT- 
WAIT, OPT-SACRIFICE, and IRTL under different data 
contention levels by varying transaction interarrival time. 
Figure 2 shows the miss percentage for the same five 
schemes under different levels of data contention and 
system load by varying the transaction size, while fixing 
the values of other parameters. Figure 3 shows the per- 
centage of missed deadlines with respect to priority 
group over four protocols: OPT-CMT, OPT- 
SACRIFICE, OPT-WAIT, and IRTL. The value of the 
mean interarrival time in Figure 3 is 50 msec, which 
represents a normal data contention. 
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