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Abstract— Defence R&D Canada (DRDC) has a long history
of developing robotic applications, including tele-operated and
autonomous ground vehicles. The autonomous ground vehicles
come in various configurations, with differing sensor payloads
and varying performance capabilities. Many of these applica-
tions occupy a grey zone where both soft and hard real-time
capabilities co-exist. As a general rule, higher vehicle speeds
drive an application from soft real-time towards harder real-
time requirements. Under soft real-time conditions, DRDC uses
the linux operating system and CORBA middleware, with the
RTEMS real-time operating system used for certain time critical
implementations. CORBA middleware yields portable, modular
and extensible components that simplify the integration of
multiple capabilities onto a single platform. This paper discusses
DRDC’s experiences with CORBA, its advantages and disadvan-
tages, and it applicability to real-time autonomous systems.

I. I NTRODUCTION

Under idealized conditions, robotics software would build
upon flexible, portable, modular and extensible components,
while maintaining responsive real-time capabilities. Unfortu-
nately these two goals are often at odds, where the extra
overhead associated with components impairs real-time ca-
pabilities. Component based systems, through a middleware
intermediary, pass information among various processes orap-
plications. The middleware is key to this seamless information
flow as it hides the data marshalling/unmarshaling, along with
the specific means of transport. This approach leads to network
transparent implementations that enables distributed comput-
ing. Frameworks such as Miro [1], [2], built upon CORBA
[3], and ORCA [4], which uses ICE middleware [5], provide
elegant tools for implementing distributed computing. While
this high level of abstraction is desirable from the software
reuse and design perspective, it is not without limitations.
For robotic’s researchers, the chief among these limitations is
the real-time performance. CORBA and ICE, with their roots
in office/internet applications, do not specifically address the
real-time issues found in robotics applications. As a result,
their adoption by the robotics community has been tentative.
Robotics specific middleware, that attempts to address real-
time issues, has been created; examples include IPC [6], IPT
[7] and RTC [8]. These toolkits are light weight, efficient and
have a small footprint, thus are applicable to a wide range
of platforms, including embedded systems. Although these
robotics specific middleware toolkits are more applicable to
real-time implementations, they do not provide the software
engineering tools that assist in the development and mainte-

nance of components.
DRDC researchers have confronted this software develop-

ment/reuse versus performance dilemma and as a solution
propose a hybrid implementation that marries a Component
Based Software Engineering (CBSE) [9] approach with real-
time capabilities. This approach recognizes that only certain
subsets of software demand hard real-time capabilities, while
most robotics applications function under less stringent soft
real-time requirements. Using this distinction, a large majority
of robotics applications can be developed under soft real-time
constraints, where high level middleware toolkits assist in the
implementation of flexible and extensible components.

This paper describes DRDC’s software implementation,
where the Miro framework and CORBA middleware are used
under soft real-time conditions, while RTEMS provides hard
real-time capabilities. The paper is divided into 4 sections.
Section II describes DRDC’s operational environment and its
requirements. In Section III DRDC’s architecture for auton-
omy is covered, while CORBA’s performance in field trials is
given in Section IV. Finally, conclusions are given in Section
V.

II. OPERATIONAL ENVIRONMENT AND REQUIREMENTS

DRDC’s unmanned ground vehicles (UGVs), similar to the
vehicles that competed in the DARPA Grand Challenge [10],
[11], operate in outdoor, unstructured terrain that features
roads of various types, flat plains and semi-rural settings.
Figure 1 is typical of DRDC’s expected operating environment.
The Raptor, shown in Figure 2, is a typical of 4 wheeled UGV.
Given the operating environment and the vehicle style, a key
research objective is high speed (20 - 60 Km/hr) traversal.
This requires real-time sensing, world representation, obstacle
detection and navigation, and this all must occur as the vehicle
is moving.

Traversal speed is the key factor that drives computing
performance and real-time requirements. Faster speeds trans-
late into shortened decision times, which in turn moves the
computing requirements from softer real-time towards hard
real-time performance.

A. Soft versus Hard Real-time Performance

A system is said to be real-time if the total correctness of
an operation depends not only upon its logical correctness,
but also upon the time at which it is performed [12]. Addi-
tionally, real-time systems are classified as either hard real-



Fig. 1. Typical Operating Environment

Fig. 2. 4-Wheeled Raptor Unmanned Ground Vehicle

time or soft real-time. Hard real-time systems feature strict
deadlines, which must not be violated. On the other hand, a
soft real-time system can tolerate a certain degree of response
sloppinesswithout causing a major failure. DRDC’s software
architecture uses a combination of both hard and soft real-time
applications, in a hybrid implementation.

B. Sensing Limitations

The Raptor UGV uses the laser rangefinder as its primary
sensor. Given the rangefinder’s intrinsic range limitations and
its mounting geometry, the maximum sensing distance is
limited to approximately 20 to 25m [13]. This range is
important as it defines the maximum range at which obstacles
can be detected. Using the maximum sensing range and the
vehicle’s speed, it is simple to calculate the time requiredto
traverse this distance. The traversal time,t, is given byt = d

v
,

whered is the distance and vehicle’s speed is given byv. Table
I shows the traversal time versus vehicle speed, for selected
speeds. This table clearly shows that as the speed increases,
myopic sensing severely limits the amount of time available
for computing purposes.

C. The Effects of Traversal Speeds

The upper bound on the time available to avoid an obstacle
presented in the previous section, based solely on the vehicle

Max. Sensing Distance Speed Time
(m) (m/s) (s)
20 2.78 7.2
20 5.56 3.6
20 8.33 2.4
20 11.1 1.8

TABLE I

TRAVERSAL TIME VS SPEED

speed and the maximum range of the laser rangefinder, is
clearly an oversimplification. It is valid only if an obstacle
can reliably be detected at the maximum range of the sensor
and if the obstacle is stationary and can be avoided by steering
around it in a dynamically stable manoeuvre. In a worst case
scenario, the vehicle will encounter an obstacle of sufficient
extent such that it’s not possible to manoeuvre around it anda
panic stop must be initiated to avoid a collision. For what range
of vehicle speeds is this possible? To address this question,
consider the force balance on the idealized vehicle, in Figure 3,
travelling down the plane with speedv0 when braking is
initiated. Equating the sum of the forces in thex direction
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Fig. 3. Force balance on an idealized vehicle braking on sloped terrain.

to the mass of the vehicle,m, times the acceleration,ax, in
that direction, one can obtain an expression for the acceleration
down the plane,

∑
Fx = mg sin θ − Fb = max

ax = {sin θ −
Fb

mg
}g

whereFb is the net braking force. Treating the vehicle as a
rigid body, ignoring any suspension motion, and assuming one
dimensional motion, one can obtain an estimate of the stopping
time, ts,

v(t) = v0 +

∫
t

0

ẍ(τ)dτ = v0 + axt

⇒ ts =
v(ts) − v0

ax

=
−v0

ax

⇐ v(ts) = 0.



In a similar fashion, the stopping distance,xs, can be obtained,

x(t) =

∫
t

0

ẋ(τ)dτ =

∫
t

0

v0 + axτdτ = v0t + 1/2axt2

xs = v0ts + 1/2axt2
s

= −1/2
v2

0

ax

.

Pivtoraiko et al. [14] have compiled normalized braking
force, Fb/mg, data obtained for an off-road vehicle during
the CMU PerceptOR program. These tests encompass vehicle
speeds ranging from 1 to 4m/sand a variety of terrain slopes
and surfaces. The vehicle controller behaved akin to an anti-
lock braking system, not allowing the wheels to lock and thus
maintaining steering. The normalized braking force, obtained
off-road in these trials, ranged in value from 0.15 to 0.45, much
less than typical values reported for passenger vehicle tires
on dry asphalt, 0.71 [15] and 0.85 [16]. Stopping times and
distances, computed using the PerceptOR normalized braking
force data, for a range of vehicle speeds and terrain slopes are
presented in Table II.

θ Fb/mg v0 ax ts xs

(deg) (m/s) (m/s2) (s) (m)

13 0.4 1 -1.72 0.58 0.29
13 0.4 4 -1.72 2.33 4.66
13 0.4 10 -1.72 5.82 29.12
4 0.28 1 -2.06 0.48 0.24
4 0.28 4 -2.06 1.94 3.88
4 0.28 10 -2.06 4.85 24.24
1 0.25 1 -2.28 0.44 0.22
1 0.25 4 -2.28 1.75 3.51
1 0.25 10 -2.28 4.38 21.92
-6 0.18 1 -2.79 0.36 0.18
-6 0.18 4 -2.79 1.43 2.87
-6 0.18 10 -2.79 3.58 19.91

TABLE II

BRAKING TIME AND DISTANCE VS SPEED AND TERRAIN SLOPE

For the range of vehicle speeds used in the PerceptOR
trials, 1 to 4m/s, the stopping distances are well within the
maximum range of the SICK laser rangefinder. This isn’t at all
surprising as the PerceptOR vehicle used the same SICK laser
rangefinder as the DRDC Raptor. The margin of safety isn’t
really that large asreaction timeand other system delays have
not been included in the analysis. The data for the extrapolated
10 m/s vehicle speed are justifiably suspect as this is outside
the range of speeds encountered in the PerceptOR trials. They
are included to make the point that even for moderate vehicle
speeds the stopping distance alone can easily exceed the
maximum sensing range of the SICK laser rangefinder leading
to certain collision.

III. DRDC’ S ARCHITECTURE FORAUTONOMY

DRDC has developed a hybrid architecture, interally called
theArchitecture for Autonomy, that marries both soft and hard
real-time applications into a single system. Figure 4 illustrates
this hybrid architecture and denotes each component’s hard,
soft or other real-time requirements.
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Fig. 4. Representative Flow Chart of DRDC’s Hybrid Architecture

Two DRDC components, the laser and the vehicle, have
hard real-time requirements1, as they implement time critical
functionality. The remaining components, implementing the
majority of the autonomous capabilities, operate under soft
real-time requirements.

A. Notification Services for Soft Real-time Applications

DRDC adapted the Miro framework [17] to support UGV
applications, where Miro builds upon the CORBA notifica-
tion services to implement a publish/subscribe architecture.
Under this paradigm producers anonymously publish data,
while anonymous consumers subscribe to specific event types.
CORBA, via the IDL compiler, Naming Service and notifica-
tion services, provides all the required facilities to implement
this process, as shown in Figure 5.
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Fig. 5. The Publish/Subscribe Paradigm under CORBA Notification Services

The publish/subscribe approach has an elegance and practi-
cality that makes it well suited for robotics implementations.
Robotic applications, such as UGVs, tend to be event driven,
where the reception and analysis of new data triggers a new or
different mode of operation. Additionally, DRDC’s UGV fleet
varies significantly in size and capabilities. CORBA’s network

1The Stereo and INS devices may/will have internal real-time requirements,
that as proprietary devices, are beyond DRDC’s control.



transparency seamlessly enables distributed computing onthe
larger platforms where multiple computers are available.

Unfortunately, the high level capabilities provided by no-
tification services come with a cost; namely they impose
a computational and resource burden. DRDC has evaluated
notification service’s performance under a variety of condi-
tions and the results of these investigations are given in the
following section.

IV. PERFORMANCE OFNOTIFICATION SERVICES

A. Experimental Setup

As was detailed in Section II, a UGV’s operational en-
vironment defines the time window for sensing, modeling,
planning and acting (SMPA). This time window is inversely
proportional to the vehicle’s speed; as the speed increases
less time is available. When an obstacle appears within the
sensing range, the total time from the data acquisition, through
its transportation, processing, decision making and command
execution, must be less than the available time window. This
process is shown in Figure 6.
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Fig. 6. Process Execution Time Line

DRDC implements each process as a component that uses
notification services to publish events. The reception of sen-
sor data triggers a cascade of subsequent processes leading
ultimately to a steering or braking command. Given the
dependence on notification services, it is crucial that each
individual publication cycle consumes a minimal time slice.
Research conducted at DRDC profiled publication times for
typical UGV data structures including:

• Laser rangefinder data and stereo vision range data,
• Raw visual images,
• Terrain and traversibility maps, and,
• Various command and control structures.
The corresponding data structures sizes are given in Table

III. Only the components that handle large data structures
are given, as the demands placed on the notification services
are relative to the data sizes. Note, stereo range data maybe
published as a static array of doubles2, or as a sequence of
long integers.

The following sections provide the experimental details.

B. Event Publication under Notification Services

Experiments were conducted using data structures that rep-
resented typical UGV data transfers where each data structure
is roughly an order of magnitude different in size. The data
transfers, using event publications, are labelled small, medium,

2When published as doubles ATLAS matrix multiplication can be directly
used.

Component Structure Type Size Bytes
Laser Range Sequence Long 361x4 5,776
Stereo Range Static Long 320x240x4 1,228,800
Stereo Range Sequence Double 320x240x4 2,457,600
Rect. Image Sequence Short 320x240x3 460,800
Raw Image Sequence Short 1024x768x3 4,718,952
Terrain Map Sequence Double 150x150x3 540,000
Traverse Map Sequence Double 40x40x2 25,600

TABLE III

TYPICAL UGV DATA STRUCTURESIZES

large and very large, where the laser range, terrain map, stereo
range and stereo range/image were used as representative
examples. For all experiments, the primary computer is a 3.2
GHz Intel Pentium 4, with 1 GB RAM, a 100 Mbit ethernet
interface, that runs linux and utilizes the ACE/TAO 5.4.10
version of CORBA.

1) Publication of Small Data Structures:Laser range data
of 5,776 bytes, provided by the SICK LMS laser, is represen-
tative of a relatively small data structure. Laser range events
are published by the laser driver at a 26.6 ms update rate
and the notification services implement one of three CORBA
protocols for data delivery:

• Internet Inter-Orb Protocol (IIOP),
• Unix Inter-Orb Protocol (UIOP), and
• Shared Memory Inter-Orb Protocol (SHMIOP).
SHMIOP and UIOP are restricted to a single host, while

IIOP is applicable to both local and remote configurations.
Table IV shows the event publication times for these experi-
ments.

Transport Protocol Time us Std. us
Local IIOP 487 37

Ethernet IIOP 1317 34
Local UIOP 477 15
Local SHMIOP 540 18

TABLE IV

PUBLICATION TIMES FORLASER RANGE DATA , SEQUENCESTRUCTURE,

3600DATA SAMPLES, PUBLISH BY REFERENCE

As can be seen in this table, the CORBA protocol has
a negligible affect on the publication time. However, when
the data was piped over the ethernet the publication time
approximately doubled. In all instances the publication time
was small and never exceeds 1.5 ms, which is significantly
smaller than the 26.6 ms laser scan period.

2) Publication of Medium Data Structures:These experi-
ments mirrored the previous experiment, with the exception
that the data payload now represents a terrain map. The times
required to publish 540,000 bytes are given in Table V.

The time required to publish the map event is relatively
small with its magnitude is near 7 ms for all protocols,
including publishing across an ethernet interface.

3) Publication of Large Data Structures:The Bumblebee
stereo camera can publish range events using either a CORBA



Transport Protocol Time ms Std. ms
Local IIOP 7.25 0.54

Ethernet IIOP 7.03 0.35
Local UIOP 7.02 0.32
Local SHMIOP 7.03 0.46

TABLE V

PUBLICATION TIMES FORTERRAIN MAP DATA , SEQUENCESTRUCTURE,

1700DATA SAMPLES, PUBLISH BY REFERENCE

sequence or a static array. Regardless of the structure used, this
event represents a large data payload. For these experiments
investigators profiled three different publication approaches:

• A CORBA sequence of 1,228,800 bytes,
• A statically defined array of 2,457,600 bytes, and,
• Publications using the notification service to signal the

presence of data in linux shared memory (conforming to
POSIX.1-2001).

In the first experiment, the range data is stored as a sequence
and table VI shows the publication times.

Transport Protocol Time ms Std. ms Publish By
Local IIOP 26.3 0.45 Reference

Ethernet IIOP 28.0 1.6 Reference
Local UIOP 24.7 0.55 Reference
Local SHMIOP 24.7 0.48 Reference
Local IIOP 13.6 0.09 Pointer

Ethernet IIOP 13.1 0.22 Pointer

TABLE VI

PUBLICATION TIMES FORSTEREODATA , SEQUENCES OF1,228,800

BYTES, 1000DATA SAMPLES

Although publishing via a pointer3 reduces the apparent
publication time, the cost associated with creating and ini-
tializing a new sequence is approximately 13.5ms, so there is
no overall savings accrued. Hence, publication time remains
essentially constant, regardless of the protocol or invocation
type.

In the second experiment, the storage array was changed
to a static structure. Table VII reveals that this switch hada
significant and variable impact on the publication times.

Transport Protocol Time ms Std. ms Publish By
Local IIOP 10.2 0.27 Reference

Ethernet IIOP 206 37 Reference
Local UIOP 10.2 0.94 Reference
Local SHMIOP 10.4 0.98 Reference
Local IIOP 2.7 0.04 Pointer

Ethernet IIOP 188 31 Pointer

TABLE VII

PUBLICATION TIMES FORSTEREODATA , STATIC ARRAY OF 2,457,600

BYTES, 1000DATA SAMPLES

3When CORBA receives a pointer to data it automatically deletesobject
after publication is completed.

Although this experiment doubles the memory require-
ments, for local delivery the publication time is roughly half
that required by a sequence based structure. Publication across
an ethernet interface is an exception to this trend as it is
significantly slower. The invocation type also impacted the
publication time, as publishing via a pointer was noticeably
quicker. The cost associated with creating the new static
structure is approximately 15us, hence using this invocation
type had a significant performance benefit.

For the next experiment notification services only signalled
the arrive of new data, the actual transfer of range data
between processes used linux shared memory. The results
of this experiment are given in Table VIII and show that
notifications services for signalling is extremely fast.

Storage Protocol Time us Std. us
Static Shared Memory 35 4

TABLE VIII

L INUX SHARED MEMORY FORSTEREODATA , 1000DATA SAMPLES

Although the shared memory approach is efficient it is not
suitable for dynamic structures such as CORBA sequences,
as they internally manage memory allocations that are not
easily mapped into shared memory allocations. Additionally,
this approach is not network transparent, thus limited to a
single computer configuration.

4) Publication of Very Large Data Structures:For the final
experiment a sequence based structure including: stereo range
data, the rectified image and a raw image, was published at a
1 fps rate. The times required to publish this 6,408,552 bytes
of data are given in Table IX.

Transport Protocol Time ms Std. ms
Local IIOP 299 5.9

Ethernet IIOP 295 12.5
Local UIOP 295 4.7
Local SHMIOP 292 4.4

TABLE IX

PUBLICATION TIMES FORSTEREODATA , SEQUENCES, 1000DATA

SAMPLES, PUBLISH BY REFERENCE

This table reveals that notification services limits the publi-
cation rate to a maximum of 3 fps, assuming that other factors,
such as the available processing power, do not erect other
barriers.

V. CONCLUSIONS

The field of robotics covers a wide spectrum of applications,
which operate in an equally large range of environments with
diverse requirements. Under the unmanned vehicle subset, an
unmanned ground vehicle’s operating environment and oper-
ational requirements could be suitable for a hybrid hard/soft
real-time computing implementation. Thus, component based
software engineering, using middleware toolkits, could be



utilized where soft real-time capabilities are required, while a
hard real-time operating system is only used where required.
For this approach to be successful the requisite middleware
must not impose significant time delays or performance penal-
ties.

DRDC researchers have implemented such a hybrid ap-
proach using linux and CORBA for soft real-time require-
ments, and RTEMS where hard real-time is required. Given
that a majority of DRDC’s autonomy applications have soft
real-time requirements this approach should, in principle,
provide acceptable results. In-depth investigations haveshown
that CORBA middleware, using notification services, can meet
the DRDC’s Raptor UGV requirements, under specified speed
limitations. These investigations revealed that, for common
UGV data structures, the event publication process does not
impose a significant burden. For all data structure sizes, except
those that are very large, the publication process commonly
consumes only 10’s of milliseconds or less. Under standard
operating conditions the Raptor UGV doesn’t exceed 2.8m/s
(10 km/hr), hence it has a time window in excess of 7 sec.
for the SMPA cycle, while the stopping time is estimated
at less than 2 seconds. Given that this cycle has a pipeline
length limited to 5 or 6 stages, the summed publication time
has an upper limit in the order of 100ms, which represents
roughly 1

50

th
of the available time. Thus, it is evident that

CORBA notification services are applicable under the Raptor’s
operating conditions. Even for a speed of 5.6m/s, where the
stopping time is greater than 2 sec. and the time window is
3.6 sec., the overhead associated with event publications are
relatively insignificant.

The overhead associated with notification services becomes
an issue for distributed computing applications, where very
large data structures are shared between separate computers.
Under such configurations, the marshalling time, TCP/IP over-
head and limited bandwidth all conspire to limit performance.
Improved middleware performance, without impacting the
CBSE approach, is possible using a different publish-subscribe
communication paradigm. Currently DRDC uses CORBA
notification services to propagate events from publishers to
subscribers. Data Distribution Service (DDS) is an alternative
approach that provides similar capabilities, but featureslower
overhead and, thus, is better suited for higher performance
systems. Future DRDC research will investigate adapting Miro
to support DDS, and then investigate its performance on the
Raptor UGV, along with other DRDC unmanned vehicles.

Finally, it is possible to dramatically improve a single
computer’s performance using a mixed approach, where noti-
fication services are used for signalling and shared memory
transports the bulk of the data. Under this paradigm, the
10’s of ms required to publish large data structures can be
reduced by 3 orders of magnitude to 10’s ofus. The tradeoffs
to achieve this efficiency are less scalability, modularityand
portability, as shared memory breaks network transparency
and it precludes using dynamic data structures such as se-
quences. Although it is possible to reduce publication times by
orders of magnitude, the benefits are only marginal given that

overall maximum time is already relatively small. Extending
the sensor ranges, which increases the maximum obstacle
detection distance, is a significantly more productive approach
for enlarging the available time window
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