
Declarative Intraprocedural Flow Analysis of
Java Source Code

Emma Nilsson-Nyman 1 Görel Hedin 3 Eva Magnusson 4

Department of Computer Science
Lund University
Lund, Sweden

Torbjörn Ekman 2

Programming Tools Group
University of Oxford

Oxford, United Kingdom

Abstract
We have implemented intraprocedural control-flow and data-flow analysis of Java source
code in a declarative manner, using reference attribute grammars augmented with circu-
lar attributes and collection attributes. Our implementation is built on top of the JastAdd
Extensible Java Compiler and we have run the analyses on medium-sized Java programs.
We show how the analyses can be built using small concise composable modules, and how
they provide extensible frameworks for further source code analyses. Preliminary mea-
surements indicate that there is little difference in execution time between our declarative
data-flow analysis and an imperative implementation.

Key words: declarative, data-flow, analysis, control-flow, Java,
compiler, attribute grammars

1 Introduction

Control-flow and data-flow analysis form the foundation for many static analyses
of source code, e.g., code optimization, refactoring, enforcing coding conventions,
and metrics. Both analyses are usually carried out on a normalized intermediate
code representation rather than on a more high-level abstract syntax tree (AST)

1 Email: emma.nilsson_nyman@cs.lth.se
2 Email: torbjorn.ekman@comlab.ox.ac.uk
3 Email: gorel.hedin@cs.lth.se
4 Email: eva.magnusson@cs.lth.se

c©2008 Published by Elsevier Science B. V.



Nilsson-Nyman Ekman Hedin Magnusson

representation, to simplify the analyses by not having to deal with the full source
language. However, doing these analyses directly on the source representation can
be beneficial, since the high-level abstractions are not compiled away during the
translation to intermediate code. This is particularly important for analysis tasks
requiring some kind of interaction with the user, such as refactoring and reporting
violations of coding conventions.

In this paper we show how control-flow and data-flow analysis can be per-
formed directly on the AST used in a compiler frontend while retaining good per-
formance and compact specification size. Moreover, our approach is completely
declarative, enabling both modular and extensible specifications. We have imple-
mented the analyses on top of the JastAdd Extensible Java Compiler [7], using an
approach based on extended attribute grammars. The analyses reported in this pa-
per are intra-procedural, i.e., local to a method. Extending the technique to support
inter-procedural analysis is part of our ongoing work.

We use a number of extensions to the traditional Knuth style attribute grammars
[10] that turn out to be extremely useful for flow analyses. Attribute values may
be references to distant tree nodes [9], which is particularly useful to superimpose
graph structures on top of the dominant AST structure, e.g., to refer to predeces-
sor and successor nodes in the control flow graph. Circular attributes [8,11] allow
attribute equations to be mutually dependent as long as there is a well-defined fix-
point. They enable us to declaratively specify traditional data-flow properties such
as the in and out sets used in liveness analysis. The concept of collection attributes
[6,12] allows an attribute to contribute a partial value to a collection in a distant tree
node through a reference attribute. For example, a name may contribute itself to its
declaration’s set of uses. Collection attributes are also very convenient for defining
reverse relations. For example, the set of predecessors can be computed from the
set of successors using a single equation.

For each analysis, we present an object-oriented framework that specifies how
a set of AST nodes collaborate in computing the desired property. Implementing
these frameworks using attribute grammars makes them declarative, i.e., the val-
ues of the properties are defined, but not the order in which they are computed.
Data-flow and control-flow analysis can therefore be specified in isolation for each
kind of statement and expression in a syntax-directed fashion. The framework for
control-flow analysis specifies how to provide equations for each statement that
affects control flow, e.g., a looping construct. Similarly, for expressions altering
the flow of a particular kind of data, e.g., uses and definitions of local variables,
the framework for data-flow analysis specifies how such expressions alter the data
flow. These equations are then used by the provided framework code to compose a
global solution. Statements that do not affect the control flow and expressions that
do not affect the data being analyzed, can reuse the default behavior provided by
the framework. This allows us to specify control-flow and data-flow analysis at the
source level, even for complex languages such as Java, with moderate effort. The
frameworks also enable simple extension to the analyses if the language evolves,
e.g., when new statements or expressions are added. If the new language feature

2



Nilsson-Nyman Ekman Hedin Magnusson

affects control flow or data flow then those effects can be specified modularly in a
syntax-directed style, and if they have no effect on the analyses then the existing
framework code can be reused as is.

To evaluate the efficiency and scalability of our presented approach we imple-
mented an analysis for Java to detect dead assignments to local variables. The
control-flow framework is less than 300 lines of code (LOC), and the data-flow
framework is less than 30 LOC. The dead-assignment analysis adds an additional
8 LOC which gives us all in all less than 340 LOC. We ran the dead-assignment
analysis on real Java applications of sizes around 40000 LOC, with execution times
less than 9 seconds, including static-semantic checking, e.g., name binding, type
checking, etc. Initial experiments indicate that there is little difference in execution
time when comparing our declarative implementation of data-flow analysis to an
imperative implementation using explicit fixpoint iteration.

The rest of this paper is structured as follows. We first describe the imple-
mentation of the control-flow analysis in Section 2. Then we present the data-flow
analysis in Section 3 and show how both analyses can be used to analyze real-life
applications in Section 4. We compare our work to related approaches in Section 5
and conclude and outline future work in Section 6.

2 Control Flow Analysis

In JastAdd, a program is represented as an AST. The AST nodes are represented by
objects with attributes. Given this representation, we want to provide a reusable and
extensible implementation of the intra-procedural control-flow graph. Control flow
is typically defined over basic blocks, i.e., linear sequences of program instructions
having one entry point [5]. The typical definition is as follows:

Definition 2.1 Control flow can be described as a directed graph G = (B, E)
where B is the set of nodes {b1, b2, . . . , bn} and E is the set of directed edges
{(bi, bj), (bk, bl), . . .}. Nodes represent basic blocks and edges represent control-
flow paths. Each node has a set of immediate successors and immediate predeces-
sors which both can be empty. The immediate successor set is given by the function
Γ1

G(bi) = {bj|(bi, bj) ∈ E}. The inverse of the successor function gives the set of
immediate predecessors, Γ−1

G (bj) = {bi|(bi, bj) ∈ E}.

At the AST level, we can view each statement as representing a basic block.
The start and end of a control-flow graph are traditionally referred to as the entry
and exit block. In our case, we will have an entry statement and an exit statement
for each method. To represent the control-flow graph for a method, we represent the
nodes by AST statement nodes, and the directed edges by references between these
nodes. In JastAdd, these references can be defined declaratively, using attributes
and equations.

The definition of the control flow for a method amounts to defining the follow-
ing attributes:

3



Nilsson-Nyman Ekman Hedin Magnusson

Set Stmt.succ(); // Each statement has a set of successors
Set Stmt.pred(); // Each statement has a set of predecessors
Stmt MethodDecl.entry(); // Each method has an entry statement
Stmt MethodDecl.exit(); // Each method has an exit statement

In the following subsections, we will look at how these attributes are defined
using JastAdd.

2.1 Language structure

We will use the code in Figure 1 as a running example to explain how a control-flow
graph is superimposed on top of the existing AST. The goal is to add the successor
edges shown in Figure 2 to the tree in Figure 1 using attributes. There are a few
things worth noticing about these edges. Some statements are active in deciding
where to transfer the control. For example, the IfStmt transfers control to its
Then branch, which in this case starts with an ExprStmt. Some statements com-
plete without explicitly transferring control to another statement but rather implic-
itly they transfer control depending on their context. For example, the ExprStmt
contained in the IfStmt continues with the statement following the IfStmt,
while the ExprStmt contained in the WhileStmt goes back and re-evaluates
the WhileStmt. We first present the AST structure and then go on to define at-
tribute equations for successors, predecessors, and finally the entry and exit nodes.

void m() {
if(c)
x = y;

while(d)
d = m();

}

AssignExpr

ExprStmtVarAccess d

AssignExpr

ExprStmtVarAccess c

WhileStmtIfStmt

Block

VarAccess yVarAccess x MethodAccess mVarAccess d

Fig. 1. Sample method body and its abstract syntax tree.

Entry Block Exit

ExprStmt

WhileStmt

ExprStmt

IfStmt

Fig. 2. The control flow graph for the example in Figure 1.

The language structure is defined by the abstract grammar in Figure 3. We will
briefly go through the structure since all our attributes and equations will be de-
fined in terms of this grammar. There are Stmts and Exprs which are abstract
entities. A Block is a subclass of Stmt and holds a list of Stmts as its chil-
dren. An IfStmt has a condition Expr, a Then branch, and an optional Else

4



Nilsson-Nyman Ekman Hedin Magnusson

branch. A WhileStmt has a condition Expr and a Stmt which is executed
each iteration in the loop. Certain Exprs can act as Stmts and we therefore in-
troduce an ExprStmt turning an expression into a statement. The value of an
AssignExpr is its RValue and the LValue is assigned that value as a side-
effect. A VarAccess refers to a variable and can act as both an LValue and an
RValue. A MethodAccess is a method invocation with a list of arguments. A
more thorough introduction to the abstract syntax definition is available at [2].

abstract Stmt;
Block : Stmt ::= Stmt*;
IfStmt : Stmt ::= Expr Then:Stmt [Else:Stmt];
WhileStmt : Stmt ::= Expr Stmt;
ExprStmt : Stmt ::= Expr;

abstract Expr;
AssignExpr : Expr ::= LValue:Expr RValue:Expr;
VarAccess : Expr ::= <Name:String>;
MethodAccess : Expr ::= <Name:String> Arg:Expr*;

Fig. 3. The abstract grammar for the language in Figure 1.

2.2 Successors

We use a synthesized 5 attribute called Stmt.succ() to define the immediate
successor function Γ1

G, as described in Definition 2.1. The default behavior is that
a statement completes normally and continues with the following statement. We
therefore introduce a default equation for the succ attribute using an inherited 6

helper attribute following, representing the next statement in the current con-
text. This behavior is desirable for statements that do not affect the flow, such as the
ExprStmt which continues with the next statement. However, statements such as
IfStmt, WhileStmt, and Block, need to be treated separately.

syn Set Stmt.succ() = following();
inh Set Stmt.following();

An IfStmt with both a Then branch and and an Else branch will transfer
control to either statement, but an IfStmt with only a Then branch will jump to
either the Then statement or to the following statement in the flow. We can capture
that behavior with the equation below. Sets are formed by starting with the empty
set and using the union operator to add additional members. The sets are immutable
and each operation returns a new set.

5 A synthesized attribute of an AST node is defined by an equation in the same node.
6 An inherited attribute of an AST node is defined by an equation in an ancestor node.

5



Nilsson-Nyman Ekman Hedin Magnusson

eq IfStmt.succ() = hasElse() ?
empty().union(getThen()).union(getElse())
: following().union(getThen());

The successor to a WhileStmt is its contained block when the condition is
true and the following statement when the condition is false. The equation below
therefore defines the successors to be the union of the following set and the con-
tained statement. The contained statement is treated slightly differently compared
to the IfStmt. If the contained statement completes normally then the following
statement is to go back to evaluate the condition again. The WhileStmt needs
therefore define that the following set for its child should include the WhileStmt
itself rather than the current following set. We therefore need two equations, one for
the successor of WhileStmt and one to redefine the context, i.e., the following
attribute, for the contained statement:

eq WhileStmt().succ() = following().union(getStmt());
eq WhileStmt.getStmt().following() = empty().union(this);

The successor to a BlockStmt is the first contained statement or the following
set if the block is empty. The BlockStmt acts like a mediator giving each con-
tained statement permission to execute in order. If statement i in a Block com-
pletes then the successor is statement i + 1, unless i is the last statement in which
case the block completes and gives control to the following set.

eq Block().succ() = getNumStmt() != 0 ?
empty().union(getStmt(0)) : following();

eq Block().getStmt(int i).following() = i != getNumStmt() - 1 ?
empty().union(getStmt(i+1)) : following();

Some nodes need thus define the successor attribute, others both the successor
and following attributes, while others can reuse the default behavior. To general-
ize the given examples we define three roles which can be used to characterize a
statement in determining which equations need to be provided.

explicit jump Statements which are executed and then locally define their suc-
cessors. A statement in this category needs to give an equation for the succ
attribute. Typical examples of statements include IfStmt but also statements
such as BreakStmt and ThrowStmt.

call subroutine Statements which temporarily give up control to another state-
ment to execute but then reclaim control by defining the successors for that state-
ment. A statement in this category needs to give equations for both the succ
and the following attribute. Typical examples of statements are Block and
WhileStmt.

complete normally Statements for which the next statement to execute is given
by the current context e.g., the statement’s location in a block with respect to the

6



Nilsson-Nyman Ekman Hedin Magnusson

ordering of the statement sequence of that block. An ExprStmt is a typical
example in this category.

Only statements in the first two categories need to provide equations for control-
flow analysis, whereas statements in the third category, e.g, the ExprStmt, can
reuse the framework as is. The first two roles also form an extension framework for
the analysis. If we add a new kind of statement we need only determine if it plays
either of the roles above. If it does then we need to provide one or two equations to
extend the control-flow analysis, which can otherwise be reused as is.

2.3 Predecessors

The attributes presented so far only deal with the set of successors but in many
analyses it is necessary to have the set of predecessors as well. To define the imme-
diate predecessor function, Γ−1

G , we use a collection attribute pred defined as the
inverse of the immediate successor function, using the following two rules.

coll Set Stmt.pred() [empty()] with add;
Stmt contributes this to Stmt.pred() for each succ();

The first rule declares a collection attribute (coll) called pred for Stmt
nodes. Its value is of type Set, and is defined as the call to empty (a method
on Set) combined with a number of contributions, each added by a call to add
(also a method on Set). (The contributing method of a collection attribute, add in
this case, must be such that the order of adding the contributions does not matter.)

The second rule defines the contributions (contributes ... to ... for
each). This rule says that a Stmt contributes itself (this) to the predecessor
set (Stmt.pred) of each of its successors (succ). A more detailed presentation
of collection attributes and their evaluation in JastAdd is available in [12].

2.4 Entry and exit nodes

From a flow analysis point of view it is often convenient to have explicit entry and
exit nodes in the control-flow graph. Since the AST may not have unique entry
and exit nodes we attach them to the AST using non-terminal attributes (also called
higher-order attributes) [15]. Like other attributes they are defined using equations,
but are considered as higher-order in that they also act as nodes in the AST and can
themselves have attributes. For each MethodDecl we define two non-terminal
attributes: entry and exit. Then we add the method block to the following of
the entry node and add the exit node to the following of the method block. This
effectively attaches the entry node before the block and if the block completes then
it binds to the exit node. We also provide an equation that propagates a reference to
the exit node to the method block. That way statements that want to transfer control
to the end of the method, e.g., a ReturnStmt, simply adds the exit reference to
its successor set.

7



Nilsson-Nyman Ekman Hedin Magnusson

syn nta Stmt MethodDecl.entry() = new EmptyStmt();
syn nta Stmt MethodDecl.exit() = new EmptyStmt();

eq MethodDecl.entry().following() = getBlock();
eq MethodDecl.getBlock().following() = exit();

eq MethodDecl.getBlock().exit() = exit();

2.5 Advanced Language Constructs

When constructing a control-flow graph for a language such as Java, it is necessary
to deal with exceptions and language constructs such as try-catch-finally
and throw. Especially the finally block of the try-catch statement affects
the control flow related to break, continue and return. Of the approximately
300 LOC required to define the attributes for the control-flow graph, around 240
LOC are directly related to these language constructs.

We use synthesized attributes to propagate information upwards in the AST.
For example, sets of unmatched throw statements can be acquired via an at-
tribute called uncaughtThrows defined for all nodes of type Stmt. Information
about, e.g., enclosing TryStmts, are broadcasted downwards in the AST using
inherited attributes such as enclosingTryStmt. These synthesized and in-
herited attributes are matched against each other. For example, the set given by
the uncaughtThrows attribute is matched against catch clauses in the clos-
est enclosing try statement given by the enclosingTryStmt attribute. If no
match is found, the control flow is directed to the finally block of the enclosing
TryStmt, if there is such a block, otherwise it is passed on to the next enclosing
TryStmt, and so on.

Similar techniques are used to deal with break, continue and return
statements. For example, after a break statement is executed, all enclosing finally
blocks between the break statement and its enclosing target statement, e.g., a
while statement, need to be executed before the target statement. The control
flow for a return statement is just a special case of this scenario, with the exit
node as the constant target statement.

3 Data-Flow Analysis

We want to analyze data flow on our control-flow graphs defined in the previous
section. A typical data-flow analysis is liveness analysis. We use the following
definition of liveness, based on the definition in [4]:

Definition 3.1 Let in(bi) be the set of variables live immediately before block bi

and let out(bi) be the set of variables live immediately after block bi. Let def (bi)
be the set of assigned variables in bi and use(bi) be the set of used variable in bi.
The def (bi) and use(bi) relates to the in(bi) and out(bi) sets in the following way:

8



Nilsson-Nyman Ekman Hedin Magnusson

in(bi) = use(bi) ∪ (out(bi) \ def (bi))

out(bi) =
⋃

x∈succ(bi)

in(x)

A variable is live if its assigned value will be used by successors in the control-
flow graph. If the variable is assigned a new value before the old value has been
used the old assignment can be considered unnecessary.

Since our control flow analysis operates on statements rather than blocks we
need to define the set of used variables for each statement, and the set of assigned
variables for each statement. These sets combined with the set of successors enable
us to express the in set and out set purely in terms of statements. Defining these
attributes for each statement will thus make the liveness analysis valid for all kinds
of statements. We also notice that the in set and the out set are defined using recur-
sive equations which are mutually dependent. Such equations are usually solved by
iteration until a fixpoint is reached, which is guaranteed if all intermediate values
can be organized in a finite height lattice and all operations are monotonic on that
lattice.

3.1 Use sets and definition sets

The main challenge in computing the sets of accessed variables is to support all
kinds of statements and their enclosed expressions in the source language. A com-
plex language such as Java has more than 20 statements and 50 expressions. Fortu-
nately, it turns out that it is quite easy to support all these constructs in the JastAdd
Extensible Java Compiler, as we will now explain.

All expressions that access a local variable encapsulate a VarAccess node
performing the actual binding. Moreover, each VarAccess node has two boolean
attributes, isDest and isSource, determining whether the access acts as an
LValue or an RValue. Some nodes actually act as both. For example, a VarAccess
that is the child of the post increment operator ’++’, will both read from and write
to the variable.

The use sets can be computed by collecting all VarAccess nodes acting as an
RValue that are enclosed by a particular statement. This can be done very conve-
niently using collection attributes, as shown below. Each VarAccess contributes
its corresponding declaration to the enclosing statement’s use set if it acts as an
RValue. The def sets are computed using the same strategy. The binding from an
expression to its enclosing statement is computed using an inherited attribute. Each
statement provides an equation for all its children that states that it is the enclos-
ing statement. This single equation propagates the binding down to expressions at
arbitrary depths, since equations for inherited attributes in JastAdd are valid for all
nodes in a subtree and not only for the immediate children.

coll Set Stmt.use() [empty()] with add;
VarAccess contributes decl() when isSource() && decl().isLocalVariable()
to Stmt.use() for enclosingStmt();

9



Nilsson-Nyman Ekman Hedin Magnusson

coll Set Stmt.def() [empty()] with add;
VarAccess contributes decl() when isDest() && decl().isLocalVariable()
to Stmt.def() for enclosingStmt();

inh Stmt Expr.enclosingStmt();
eq Stmt.getChild().enclosingStmt() = this;

These three attributes effectively computes the use sets and def sets for all
statements in Java. Consider for instance a MethodAccess with the structure
described in Figure 3. Its arguments may very well contain uses and definitions,
since both are expressions in Java. However, we need not provide any additional
equations for that language construct since contributions from each VarAccess
are collected automatically, and inherited attributes are valid for all descendants
and not only the immediate children. These ways to abstract over the tree structure
are the reason that three equations are sufficient to handle all kinds of expressions
in a complex language such as Java. This is also important from an extension point
of view. If we add a new language construct that modifies a local variable we need
only make sure it encapsulates a VarAccess and provide equations for the in-
herited attributes isDest() and isSource(), which are needed elsewhere in
the frontend anyways, and the use set and def set attributes are still valid. In Sec-
tion 2 we showed how the control-flow analysis could be extended to support new
statements by only adding a few equations as well. This means that a few equa-
tions are all that is needed to extend both the control-flow and data-flow analysis to
make them support a language extension, regardless of if we add new statements or
expressions.

3.2 In sets and out sets

The equations for the in set and out set in Definition 3.1 are mutually dependent.
As mentioned earlier, such equations can be solved by iteration as long as the values
form a finite height lattice and all functions are monotonic. This is clearly the
case for our equations since the power set of the set of local variables ordered
by inclusion forms a lattice with the empty set as bottom and on which union is
monotonic. A fixpoint will thus be reached if we start with the bottom value and
iteratively apply the equations as assignments until no values change. JastAdd has
explicit support for such iteration through circular attributes as described in [11].
If we declare an attribute as circular and provide a bottom value, then the attribute
evaluator will perform the fixpoint computation automatically. This allows us to
specify the in and out sets in a style very close to their formal definition using the
following two circular attributes: 7

7 The equation for out uses an assignment and a for loop which might be surprising since our
approach is declarative. However, because we use Java method body syntax to define attribute
values, it is natural to use imperative code here. This is perfectly in agreement with the declarative
approach as long as that code has no net side effects, i.e., only local variables are modified.

10



Nilsson-Nyman Ekman Hedin Magnusson

syn Set Stmt.in() circular [empty()] =
Stmt.in() = use().union(out().compl(def()));

syn Set Stmt.out() circular [empty()] {
Set set = empty();
for(Iterator iter = succ().iterator(); iter.hasNext();) {
Stmt stmt = (Stmt)iter.next();
set = set.union(stmt.in());

}
return set;

}

In our actual implementation, we use an even more concise specification of
the out set by defining it as a collection attribute, reversing the direction of the
computation:

coll Set Stmt.out() circular [empty()] with add;
Stmt contributes in() to Stmt.out() for each pred();

An alternative to using circular attributes would be to manually implement the
fixpoint computation imperatively. For comparison, we have implemented the im-
perative liveness analysis algorithm given in [4]. Such a solution requires manual
book keeping to keep track of change, which significantly increases the size of the
implementation and the essence of the algorithm gets tangled with book keeping
code. Also, it is necessary to either statically approximate the functions involved
in the cycle to iterate over or to manually keep track of such dependences dynami-
cally. This is all taken care of automatically by the attribute evaluation engine when
using circular attributes. In Section 4 we give a more quantitative comparison of
both implementations in terms of size and speed.

4 An Application

To evaluate the efficiency and scalability of our approach, we have implemented
a simple analysis for Java which detects dead assignment of local variables, i.e.,
the assignment of variables whose values are not used later in the program. This
analysis can easily be added as an extension to the liveness analysis described in
the previous section. We use the following definition to detect dead assignments:

Definition 4.1 If a variable is defined in a statement, but not live immediately after
the statement, the statement is considered dead in the sense that the assignment is
unnecessary. That is, a statement si is dead when:

def (si) \ out(si) 6= ∅

This definition detects unnecessary assignments. Dead assignments might still
have right-hand side expressions which need to be evaluated to preserve program
behavior. In JastAdd, the definition is expressed as follows.

11



Nilsson-Nyman Ekman Hedin Magnusson

Implementation CFA (LOC) DFA (LOC) DAA (LOC)

Declarative 300 30 8

Imperative — 190 8

Fig. 4. The size of the control-flow analysis (CFA) is not given for the imperative analysis
since it uses the attributes from the declarative implementation. The two other columns
show the size of the data-flow analysis (DFA) and the size of the dead assignment analysis
(DAA)

syn boolean Stmt.isDead() = !def().compl(out()).isEmpty();

To collect all dead assignments in a compilation unit, we add a collection at-
tribute deadCode() to the CompilationUnit AST node. The dead assign-
ments contribute themselves to the collection of their compilation unit using a con-
tributes clause. The reference to the compilation unit is propagated to the statement
nodes using an inherited attribute called enclosingCompilationUnit.

coll HashSet CompilationUnit.deadCode() [new HashSet()]
with add root CompilationUnit;

Stmt contributes this when isDead() to
CompilationUnit.deadCode() for enclosingCompilationUnit();

inh CompilationUnit Stmt.enclosingCompilationUnit();
eq CompilationUnit.getTypeDecl(int i).enclosingCompilationUnit()
= this;

All together, the complete declarative extension from liveness analysis to dead as-
signment analysis adds up to a mere 8 LOC. As a comparison, we extended the im-
perative implementation of liveness, from the previous section, to include a search
for dead assignments. The size of this extension is the same: 8 LOC. These num-
bers are summarized in Table 4. Both implementations depend on the declarative
control-flow implementation. The declarative control-flow analysis which covers
all of Java1.4 adds up to only 300 LOC, which is a small number considering the
complexity of the language.

The size of the different liveness implementations differs by a factor of approx-
imately six while the sizes of the dead assignment implementations are the same.

To test our implementations and to measure execution time we have chosen to
look for dead assignments in the following Java projects:
• antlr (v. 2.7.7) - A parser and translator generator [1].
• bloat (v. 1.0) - A byte-code level optimization and analysis tool [3].

Execution time with and without analysis for both implementations along with
the number of dead assignments found are summarized in Table 4. Both imple-
mentations run in approximately the same time. We found 96 dead assignments in
antlr and 11 in bloat. In bloat half of the dead assignments are null assignments

12



Nilsson-Nyman Ekman Hedin Magnusson

Project LOC CT (s) CT + IA (s) CT + DA (s) DS (#)

antlr 42000 8.73 10.70 10.90 96

bloat 39000 8.37 10.90 11.17 11

Fig. 5. Lines of code (LOC), compilation time (CT) without any additional analysis, compi-
lation time with imperative dead code analysis (CT + IA), compilation time with declarative
dead code analysis (CT + DA) and the number of dead statements (DS) found.

while in antlr there were only a few dead null assignments. Two thirds of the dead
assignments found in antlr are due to one frequent, but unused, variable.

5 Related Work

Silver is a recent attribute grammar (AG) system with many similarities to Jas-
tAdd, but which does not support circular attributes. Silver has also been applied
for declarative flow analysis [16], but using a different approach than ours. In the
Silver approach, the specification language itself is extended to support the spec-
ification of control-flow and data-flow analysis. The actual data-flow analysis is
not carried out by the attribute grammar system, but by an external model checking
tool. This approach is motivated by the difficulty of declaratively specifying data-
flow analysis on the same program representation as, for example, type analysis.
No performance figures for this approach are reported. In contrast, we have shown
how both control flow and data flow can be specified in a concise way directly us-
ing the general AG features of JastAdd, in particular relying on the combination of
reference attributes, circular attributes and collection attributes.

Morgenthaler [13] has developed static analysis techniques for source-to-source
tools. To reduce the cost, techniques for efficient demand-driven analyses are pro-
posed as opposed to traditional exhaustive methods. These techniques operate di-
rectly on the AST, the most appropriate data structure for a source-to-source tool
architecture. No explicit control flow representation is built. Instead, a so called
virtual control flow is constructed by demand-driven computations of all possible
control successors and predecessors. Functions realizing this scheme for the C lan-
guage, implemented in C++, required about 1000 lines of code. A major difference
between this approach and ours is that in using JastAdd, the demand-driven evalu-
ator is automatically constructed from concise declarative grammar specifications.

Soot, [14], is a framework for optimizing, analyzing, and annotating Java byte-
code. The framework provides a set of intra-procedural and whole program op-
timizations with a wider scope than the analyses presented in this paper. Soot
is based on several kinds of intermediate code representations, e.g., typed three-
address code, and provides seamless translations between the different representa-
tions. Java source code is first translated into one of these representations in which
some high-level structure is lost. The control-flow and data-flow frameworks in
Soot are indeed quite powerful with reasonably small APIs. A major difference, as

13



Nilsson-Nyman Ekman Hedin Magnusson

compared to our approach, is that the Soot approach is not declarative and therefore
relies on manual scheduling when combining analyses, or adding new analyses as
new specializations of the framework.

6 Conclusions

Control-flow and data-flow analysis are usually cumbersome to implement for source
level analyses of complex languages such as Java. The main reason is the tedious
work to implement analyses that support all language constructs in today’s main-
stream languages. Moreover, since languages constantly evolve there is a need to
update the analyses accordingly.

We have shown how reference attributed grammars augmented with circular
attributes and collection attributes provide an excellent foundation for declaratively
specifying control-flow and data-flow analysis. The specifications are concise and
close to text book definitions, yet the generated analyzers are sufficiently efficient
for real applications. The specifications are also extensible in that the analyses can
be extended modularly when new features are added to a language.

These are the main contributions of this paper:
• We present how to concisely specify control-flow and data-flow analysis declar-

atively using attribute grammars extended with reference attributes, circular at-
tributes, and collection attributes.

• We provide declarative frameworks for control-flow and data-flow analysis. The
frameworks provide default behavior and therefore only require equations for
statements that affect control flow and expressions that manipulate the desired
data kind. The equations are specified in a syntax directed fashion and can be
extended modularly for new language constructs.

• We have implemented the described frameworks and analyses on top of the Jas-
tAdd Extensible Java Compiler and evaluated the implementation on real world
applications of around 40000 lines of code.

There are several interesting ways to continue this work. The design ideas
and frameworks presented in this paper are general and it would be interesting to
see how they extend to more advanced analyses, e.g., object-oriented call graph
construction and inter-procedural points-to analysis. We already have promising
work in this direction, for example simple whole program devirtualization analysis
[12]. We would also like to design and implement declarative frameworks for other
traditional backend analyses such as translation to SSA-form. Another interesting
area would be to apply the same techniques to do domain-specific source level
analyses, for example, enforcing framework conventions.

References

[1] Antlr, 2007. http://www.antlr.org/.

14



Nilsson-Nyman Ekman Hedin Magnusson

[2] JastAdd, 2007. http://jastadd.org.

[3] Purdue Bloat, 2007. http://sourceforge.net/projects/javabloat/.

[4] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers Principles, Techniques
and Tools. Addison-Wesley, 1986.

[5] Frances E. Allen. Control flow analysis. SIGPLAN Not., 5(7):1–19, 1970.

[6] John Tang Boyland. Remote attribute grammars. J. ACM, 52(4):627–687, 2005.

[7] Torbjörn Ekman and Görel Hedin. The JastAdd Extensible Java Compiler. In
OOPSLA ’07: Proceedings of the 22nd annual ACM SIGPLAN conference on Object
oriented programming systems and applications, pages 1–18, 2007.

[8] Rodney Farrow. Automatic generation of fixed-point-finding evaluators for circular,
but well-defined, attribute grammars. In Proceedings of CC’86, pages 85–98. ACM
Press, 1986.

[9] Görel Hedin. Reference Attributed Grammars. In Informatica (Slovenia), 24(3),
pages 301–317, 2000.

[10] Donald E. Knuth. Semantics of context-free languages. Mathematical Systems
Theory, 2(2):127–145, June 1968. Correction: Mathematical Systems Theory 5, 1,
pp. 95-96 (March 1971).

[11] E. Magnusson and G. Hedin. Circular Reference Attributed Grammars - Their
Evaluation and Applications. Electr. Notes Theor. Comput. Sci., 82(3), 2003.

[12] Eva Magnusson, Torbjörn Ekman, and Görel Hedin. Extending attribute grammars
with collection attributes - evaluation and applications. In Proceedings of Seventh
IEEE Working Conference on Source Code ANalysis and Manipulation, September
2007.

[13] J D Morgenthaler. Static Analysis for a Software transformation Tool. Ph.D. thesis,
University of San Diego, California, 1997.

[14] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon,
and Phong Co. Soot - a Java Optimization Framework. In Proceedings of CASCON
1999, pages 125–135, 1999.

[15] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute grammars. In
Proceedings PLDI’89, pages 131–145. ACM Press, 1989.

[16] Eric Van Wyk, Lijesh Krishnan, August Schwerdfeger, and Derek Bodin. Attribute
Grammar-based Language Extensions for Java. In Proceedings of ECOOP’07, LNCS.
Springer, 2007.

15


	Introduction
	Control Flow Analysis
	Language structure
	Successors
	Predecessors
	Entry and exit nodes
	Advanced Language Constructs

	Data-Flow Analysis
	Use sets and definition sets
	In sets and out sets

	An Application
	Related Work
	Conclusions
	References

