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ABSTRACT
This paper focuses on dynamic networks over finite fields
and applications to the modeling and analysis of biological
networks using tools from computer algebra, in particular
gene regulatory networks, and agent-based simulations of
processes in computational immunology.

Categories and Subject Descriptors: I.6.1 [Simulation
Theory]: Types of Simulation

General Terms: Algorithms.

Keywords: computer algebra, biological system, dynamic
network.

1. INTRODUCTION
Increasingly, research in many areas of biology focuses on

the study of whole systems, beyond the analysis of their
parts. In many cases this has been made possible by re-
cent technological advances that allow experimental mea-
surements at the systems level. Several computational frame-
works have been proposed to model and simulate biological
systems based on such large-scale measurements. In [10]
the concept of dynamic networks over finite fields was in-
troduced. These can be described via polynomial functions.
Several examples of biological networks are presented that
can be analyzed in this framework, using computational and
conceptual tools from computational algebra and algebraic
geometry. In particular, models of gene regulatory networks,
and the problem of reverse-engineering of dynamics in com-
putational immunology can be treated with methods from
computer algebra.

2. DYNAMIC NETWORKS
We first recall a special case of a definition from [9].

Definition 1. An n-dimensional dynamic network over a
finite field k is a function f = (f1, . . . , fn) : kn −→ kn, with
dynamics given by iteration.
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The concept of a dynamic network is very general and en-
compasses several important classes of time-discrete dynam-
ical systems, including cellular automata, Boolean networks,
and sequential dynamical systems [1]. Sequential dynamical
systems have been studied extensively [3], [6], and [7], and
form one possible mathematical environment for the analy-
sis of agent-based simulations.
EXAMPLE 1. Let C be a one-dimensional cellular au-

tomaton with n nodes, and Boolean functions f1, . . . , fn.
Let k be the field with two elements. Each Boolean func-
tion is built using the three logical operations ∧,∨ and ¬.
These can be represented as polynomial functions over k as
follows: x∧y = xy, x∨y = x+y+xy,¬x = x+1. Using these
representations, any Boolean function can be represented as
a polynomial function over k, and C can be represented as a
dynamic network with polynomial coordinate functions fi.
In general, the connection between dynamic networks over

a finite field k and polynomial algebra is based on the well-
known fact that every function kn −→ k can be represented
by polynomials in k[x1, . . . , xn]. From this point of view, a
dynamic network over a finite field is simply a transforma-
tion of affine n-space over k.

3. GENE NETWORKS
Reverse-engineering of dynamic networks from experimen-

tal data is an important problem in several areas, in par-
ticular in computational biology. The goal is to identify a
dynamic network that interpolates one or more given time
series of data points and which satisfies specified additional
criteria. If the time series and the additional criteria do not
identify the network uniquely, then one commonly chooses
a network that is optimal in a specified way. An important
instance of this problem is the reverse-engineering of gene
regulatory networks from time courses of DNA microarray
data and, possibly, other experimental data. We briefly dis-
cuss here an algorithm for this problem, as a first application
of the algebraic viewpoint on dynamic networks. Details can
be found in [10].
Microarray data measure concentrations of mRNA in cell

extracts, and indicate activity levels of the corresponding
genes. If we consider n genes, then a time point corresponds
to an n-tuple of real numbers. There are several methods
to discretize such data to give vectors over a suitable finite
field k. (See [5] for results on the choice of k.) We model
the regulatory network as a dynamic network

f = (f1, . . . , fn) : kn −→ kn,

where the fi are polynomial functions in n variables. Our
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problem then is to determine the fi, based on the given time
course of data,using prior biological knowledge about the
network to be modeled. Generally, the given data greatly
underdetermine the system, so a variety of approaches have
been suggested to choose a particular network. Our ap-
proach is to first compute all possible such functions and
then choose the unique function that is reduced with re-
spect to the ideal of all functions that vanish on the time
series. The problem can therefore be solved in a way simi-
lar to finding all solutions to a nonhomogeneous system of
linear equations: first find all solutions of the corresponding
homogeneous system, then find a particular solution to the
nonhomogeneous system. It is easily seen that each such fi

is of the form h + g, where h is a particular solution to the
problem (computable using, e.g., a Chinese Remainder The-
orem algorithm), and g is in the ideal of functions vanishing
on the time series. This ideal can be computed by taking
the intersection of the maximal ideals corresponding to each
of the points.
It is very interesting to note that a similar problem ap-

pears in algebraic statistics, related to the design of experi-
ments. There the goal is to find all polynomial models for a
factorial design. For a detailed description see [11]. A very
efficient algorithm for this problem is outlined in [12], using
the Buchberger-Möller algorithm. It computes the ideal of
functions vanishing on the collection of points and a partic-
ular solution at the same time. For our purposes it is more
useful to compute the two separately, since the particular
solutions vary for each node of the network.
Another approach to reverse-engineering of gene regula-

tory networks utilizes causal Bayesian network methods. In
the recent paper [4] a very promising computer algebra ap-
proach to Bayesian networks has been developed, which is
potentially useful for reverse-engineering problems.

4. DYNAMICS
Another problem that is accessible with the tools of com-

putational algebra is the reverse-engineering of dynamics by
modifying the local update functions of a dynamic network.
We illustrate this approach with an example. For details see
[8].
EXAMPLE 2. Let X = {−1, 0, 1}, and suppose we are

given the following system f = (f1, . . . , f5) with five nodes:

f1 = −x2 + x4 + 1, f2 = x2 + x4,

f3 = −x2 − x4 + x5 − 1, f4 = f3, f5 = x4 + x5 − 1.

Beginning with the state s1 = (1, 1, 1, 1, 1), f produces the
time series (1,−1, 1, 1, 1), (0, 0, 0, 0, 1), (1, 0, 0, 0, 0). Suppose
now that we want to modify f to obtain a new network
g = (g1, . . . , g5) so that from the beginning state (1, 1, 1, 1, 1)
we reach the state (1, 0, 1,−1, 0) in three steps, rather than
the state (1, 0, 0, 0, 0). Furthermore, we require that g should
contain exactly the same variables as f . Using computer
algebra algorithms similar to those in the previous section,
together with elimination of variables, we obtain all possible
such networks and can choose a particular one based on
given criteria.
We briefly describe two applications. The first one is an

in vitro virus competition model, explored by Karen Duca
[2]. Canine liver cells in the center of a petri dish were
infected with two different strains of influenza virus. Sub-
sequent spread of the infection throughout the dish showed

a surprising compartmentalization of infection with the two
different strains, rather than the expected outcome of wide-
spread dual infection. A simple “marbles-in-boxes” stochas-
tic simulation of the experiments showed similar compart-
mentalization behavior, throwing doubt on an explanation
of the pattern via biochemical mechanisms. In an ongoing
project, we have constructed deterministic versions of the
stochastic simulation, which can be analyzed as a dynam-
ical system, described by polynomial functions. The goal
is to explore the limit behavior of the system for different
initial infection patterns and infection geometries.
The second project to which we are applying computa-

tional algebra methods is an agent-based simulation of im-
mune system response to infection with the Epstein-Barr
virus. The goal of the project is to develop mathemati-
cal tools to systematically reverse-engineer desired infection
outcomes, e.g., complete viral clearance or entrainment of a
more robust adaptive immune response, by modifying select
rules of agents, locations, or populations of agents, or adding
new agents representing, e.g., drugs. At present we are de-
veloping a mathematical specification for parts of the simu-
lation that allows the application of the reverse-engineering
methods described earlier.
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