
Development of Flexible Peer-To-Peer Information Systems
using Adaptable Mobile Agents

Jean-Paul Arcangeli, Sebastien Leriche
IRIT-UPS

118, route de Narbonne, 31062 Toulouse France
�arcangel, leriche�@irit.fr

Marc Pantel
IRIT-ENSEEIHT,

2, rue Camichel, 31071 Toulouse France
pantel@enseeiht.fr

Abstract

Wide-area networks provide an easy access to many dif-
ferent distributed and heterogeneous data sources. The de-
velopment of automated operating tools is still complex,
particularly because of evolution and adaptation require-
ments (to the data sources structures and to the network
Quality of Service). The purpose of this paper is to evalu-
ate the advantages of adaptable mobile agents in order to
simplify the development and the deployment. As an exper-
iment, we develop a prototype of peer-to-peer information
system, and we show how agent mobility and adaptation
abilities help in implementing various forms of adaptation:
adaptation to the execution context, access to new servers
with initially unknown communication protocols, dynamic
modification of search algorithms based on results provided
by the servers. Then, we show how these techniques can be
easily extended to other problems such as search and up-
grade of software components.

1. Introduction

Nowadays, large amounts of data, services, hard-
ware and software resources are connected by wide-area
networks. Data and computing grids and peer-to-peer com-
puting have emerged in such a distributed and hetero-
geneous context. Peer-to-peer information systems are
based on symmetric relations between nodes (clients and
servers) which both require and provide (possibly tem-
porarily) data or services.

Distributed information systems must take care of soft-
ware and hardware heterogeneity (interaction mechanisms
with servers, data representation. . . ). Besides, their execu-
tion contexts are highly unstable (availability and state of
servers, network, services and data) and lack central organi-
zation (deployement over multiple administrative domains;

no possible assumption on the availability and on the qual-
ity of services). Consequently, they must deal with dynamic
variations of the execution context, unanticipated and un-
controlled upgrade of information servers, and client spe-
cific requirements. Hence, both static and dynamic adapta-
tion abilities are useful.

Taking into account adaptation requirements increases
complexity and costs of software engineering. Thus, appro-
priate software techniques and tools are necessary in order
to facilitate development, maintenance, and deployment. In
this work, we are interested in the mobile agent paradigm
enhanced with individual adaptation properties.

A software agent is an autonomous computing entity
with private knowledge and behavior. A mobile agent is a
software agent able to move at runtime with its code, data,
and computational state [7]. Basically, agents move in or-
der to replace remote interactions by local ones (in order to
limit network traffic) and to customize remote services. An
adaptable agent can change some of its operating and func-
tional mechanisms at runtime. Mobility and adaptation are
controlled by the agent itself. In order to fit wide-area net-
works, agents communicate in asynchronous mode.

This paper relates the experimental development of a
flexible peer-to-peer prototype system which allows to share
and retrieve distributed documents. It relies on adaptable
mobile agents provided by a Java library. Our goal is to
evaluate their advantages and drawbacks for constructing
and deploying efficient distributed and heterogeneous infor-
mation systems (efficiency concerns software engineering
costs, response times to queries, and quality and relevance
of retrieved data).

Section 2 briefly presents related work on the use of mo-
bile agents for information retrieval. Section 3 presents a
primary version of the prototype based on agent mobility.
Section 4 details how adaptation mechanisms allows to re-
fine and specialize the prototype. Finally, we conclude on
our experience and draft some future works.

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04) 
1529-4188/04 $ 20.00 IEEE 



2. Related work

The early works on mobile agents suggested information
retrieval as a potential killer application, especially in case
of multiple distributed data sources, large volumes of data,
numerous interactions between clients and sources, and
client specific search procedures [6]. In [4], authors propose
a simple application of textual document retrieval in a local
network with centralized organization: mobile agents move
queries to servers depending on their complexity and on the
state of the network; mobile agents interact with network-
sensing agents and with stationary agents (one per site)
which serve as interfaces with the local servers. The DBMS-
Aglet system [11] implements a Java mobile agent-based
solution for querying distributed heterogeneous databases
via the Web: a mobile agent moves on the remote server site,
gets the JDBC pilot on-the-fly, performs the search locally,
and goes back to the client site with the results. Compared
to an applet-based solution, it turns out that the agent-based
solution is more efficient regarding response times, robust-
ness, scalability and flexibility.

M3 -MultiMedia database Mobile agents- [10] is a sys-
tem for content-based retrieval and indexing of multime-
dia data on top of Java and CORBA. A mobile agent roams
from site to site, searches information locally using client-
specific code, memorizes results, uses and updates them
along the trip. As far as we know, M3 is one of the only
systems which truly exploits the main advantages related to
agent mobility : customization and evolution. Besides, sev-
eral works propose mobile agents for the Web crawling pro-
cess by search engines as an alternative to the centralized
strategy download first, process later [8, 12].

However, even if significant general works on mobile
agents have been conducted, they have seldom been used in
practice. Limitations come often from security constraints
(protection of hosts, agents, and communications) [13]. Ad
hoc solutions have been proposed but they generally rely on
strong assumptions and restrictions. The problem of secu-
rity is still widely open but quite simple and realistic solu-
tions seems attainable in the context of distributed informa-
tion retrieval (see [10] and [12]) based on encryption, au-
thentication, confidence assumptions, sand-boxing. . .

3. Development of a prototype system for in-
formation sharing and retrieval

3.1. Specification of the prototype

The prototype, called JAVANE, allows to share, search
and exchange documents (music, picture, text, program. . . )
distributed across a large scale heterogeneous network, in
accordance with a peer-to-peer model and algorithms in-

spired by eDonkey1. On each node, JAVANE allows users
to publish, manage and share some of their files (server
role) and to search and download files from the network
(client role). Each site has informations about other existing
servers on which searches can be performed. These links of
knowledge between sites evolve with time.

During this study, several protocols have been defined
and implemented with mobile agents, all inspired by ex-
isting P2P applications like eDonkey or Kazaa. Search
agents crawl the network using mobility or by creating other
agents, dynamically discovering on each new site some in-
formation about other existing sites on which they will be
able to jump. Download is done exploiting the parallelism
resulting from the distributed replication of data, with adap-
tation to the network bandwith.

While crawling and exploring the network, clients also
discover meta-informations in particular knowledge about
peers. In our protocol, the client gets knowledge via a sim-
ple message sent by the mobile agent. This knowledge is
used to update client’s database about known servers. With
this mechanism, the client can access to new servers, im-
prove server selection and increase his ability to find perti-
nent information.

3.2. Implementation

3.2.1. JAVACT : a middleware for adaptable mobile
agent-based programming. The implementation is based
on JAVACT [3], a free software under LGPL license devel-
oped in our group. JAVACT2 is a standard Java middleware
which provides a mobile agent-based programming model
with fine individual adaptation mechanisms. It is not a plat-
form dedicated to the development of multi-agent systems
but a tool for large scale distributed programming.

JAVACT applications run on networked places (Java vir-
tual machines) connected by a lower-level middleware (e.g.
Java RMI, CORBA, SOAP, or even TCP/IP sockets) whose
use is hidden to the programmer. JAVACT agents are ac-
tors [1] i.e. software autonomous entities that communi-
cate asynchronously, process serially the messages they re-
ceive, and change their behavior at runtime. JAVACT ac-
tors can move from site to site and resume their activity af-
ter they move. JAVACT library provides about ten methods
for programming behaviors of agents. The ones we use to
implement the search protocol are: ���������, ��	������,

������

��� ������������ and 
��������.

JAVANE core is a JAVACT place extended (by inheri-
tance) with a local information server. As any Java-based
software, JAVANE is portable. Consequently, it can easily
run in an heterogeneous network.

1 http://www.edonkey2000.com
2 http://www.irit.fr/recherches/ISPR/IAM/JavAct.html

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04) 
1529-4188/04 $ 20.00 IEEE 



public class SearchBehavior extends JavAneBehavior
implements Searcher, javact.util.StandAlone {

public SearchBehavior(client, clientInfo, energy, queryStamp, Params) {
...

}

public void run() {
if (energy <= 0) {

suicide();
return;

}
// Has the current place been already visited ?
if (! markedPlace(myPlace(), queryStamp, client)) energy -= E_VISITED;
else {

// Database interrogation and sending of results to the client
localResults = LocalDB.fileSelect(Params);
if (localResults != null && localResults.length > 0) {

send(new JAMprocessResults(place, localResults), client);
energy -= E_FOUND;

} else energy -= E_NOT_FOUND;
}
// Random moving (if it remains energy)
if (energy > 0) {

String[] places = getPlaces(myPlace());
String nextPlace = places[random.nextInt(places.length)];
go(nextPlace);

} else suicide();
// Collection of meta-information
String[] placesInfos = getPlacesInfos(myPlace());
send(new JAMaddPlacesInfos(placesInfos), clientInfo);

}
}

Figure 1. Behavior of searcher agents

3.2.2. The search protocol. Let us see how the search
protocol is implemented. Two Java classes implement the
behaviors of the client agent (the first one to deploy searcher
agents, the second one to recover file descriptors). One class
implements the functional behavior of searcher agents (see
Figure 1 in which declarations and exception processing
have been abstracted). The ����� method is automatically
executed when an agent in installed on a place (declared in
the �������	�
 interface).

3.3. Evaluation

The experiment confirms advantages of mobile agents in
a wide-area distributed and heterogeneous context in which
no centralization is possible and in presence of instability
and volatility of resources and data. Agent’s autonomy and
dynamic adaptation ability support efficient and robust pro-
tocols, which are implemented very simply.

In our system, deployment and dynamic adaptation of
the process (search and information discovery) are auto-
matic without demanding interactions with the client. They
depend on the execution context (availability of network
bandwidth and of servers, links between places, and server
contents) and on the results found. Protocols are defined and
chosen by the client and shipped on server sites. Running
remotely client-specific search processes moves computing
load from the client site to the server site and limits network
traffic to the useful data (and not all data as it should be
with the standard client-server approach). Besides, searcher
agents require limited rights only; therefore, they can a pri-
ori be considered as non dangerous for servers.

JAVANE has been implemented with several search pro-
tocols, tested and validated in various network and system

configurations. Four master students have been charged of
the development after they have trained a few hours on mo-
bile agents and actors. The programming model proved to
be simple and easy-to-handle, and JAVACT abstractions on
distribution, communication, and synchronization simpli-
fied the development. Concise code has been written nat-
urally, thus contributing to increase software reliability: for
example, there are approximately 120 lines of code for the
entire search protocol presented above.

4. Specialization of the retrieval process

Adaptation consists in modifying and specializing (stat-
ically or dynamically) some operational or functional fea-
tures. This section shows how the primary prototype can be
easily extended and enriched. Agents’ adaptation abilities
allow to address some issues raised by peer-to-peer com-
puting (communication problems, server heterogeneity and
uncontrolled upgrade) and support sophisticated protocols
for information discovery in the network.

4.1. Operational adaptation

Operational adaptation concerns internal mechanisms
of agents: message sending, message reception, behavior
changing, life cycle. . . In order to allow operational adapta-
tion, JAVACT proposes an architecture of agent based on
replaceable and customizable micro-components, each of
them implementing an operational mechanism.

Several specialized components have been developed:
encrypted communications, message sending tolerant to
disconnections (for wireless communications with tempo-
rary loss of signal), etc. These components have been trans-
parently plugged in the prototype without affecting the
functional code.

4.2. Functional adaptation

Functional adaptation concerns agents’ knowledge and
know-how. JAVACT functional adaptation mainly relies on
actor’s abilities to change its behavior (i.e. private knowl-
edge, methods for message processing, and state) and to cre-
ate other actors dynamically.

Let us consider local and global aspects of the search
process (Figure 2). An agent who moves on a server site
must adapt to the local interaction protocol and to the form
of data (dialog client-provider, A�). It must be able to run lo-
cally a personal indexing and retrieval code, or even a fine
querying plan (local search, A�). At least, it must be able
to process locally the resulting data and decide what to do
with them (operating on results, A�). Lastly, network crawl-
ing must be adaptable depending on the state of the execu-
tion system and on the results found (global search, A�).

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04) 
1529-4188/04 $ 20.00 IEEE 



The collect of informations on the network could be per-
sonalized in the same way.

Dialog agent

Local searcher

GUI / Search client

Operating agent

agent

(for results)

Mobile searcher agent

Mobile searcher agent

Server

Adaptation Adaptation

Adaptation

Adaptation

Network

4A A1

A2

A3

(at the beginning)

Dialog component

Local search

Operating component
(for results)

component

(after a move)

Figure 2. Points of functional adaptation

4.2.1. Agent adaptation to the heterogeneity of servers.
We assume that if a client knows a peer (an information
server), it also knows how to interact with it. In order to
do that, the client has a dialog component for each known
server. This component is embedded within the mobile
agent behavior to serve as an interface with the server on
the remote place. Consequently, when a new server is dis-
covered (from a third peer), the client must acquire both
its reference and the convenient dialog component (servers
have to provide an additional functionality to supply it). The
searcher agent must dynamically acquire it too (by means of
behavior change) before visiting the new server.

However, this protocol must be extended in order to sup-
port unanticipated and uncontrolled upgrades of servers.
Because of network’s decentralization and size, it cannot
be assumed that clients are informed of servers upgrades.
Thus, agents may reach a server while carrying an obsolete
dialog component. They must then require dialog compo-
nents from the server site (for security reasons, authentica-
tion of the provider could be necessary).

In practice, the dialog component is an actor behavior
possibly instantiated by client specific data. On server site,
the searcher agent creates a dialog agent from the dialog
component, and activates it with a message containing the
query and its parameters.

Finally, using mobile searcher agents allows dynamic
adaptation and customization of the search process and in-
formation discovery without demanding remote interaction
with the client.

4.2.2. Local search adaptation. Client-specific proce-
dures advantages have been presented in section 3.3. A
local searcher agent is created from the corresponding em-
bedded dialog component. It can run a sophisticated query-
ing plan from the complete data collection without network

bandwith constraints. It can also evolve by changing its be-
havior.

4.2.3. Operating on results. From the corresponding em-
bedded component, the mobile agent creates an agent ded-
icated to the post-processing of results on the server site.
Post-processing means sending files or descriptors to the
remote client, possibly after encryption or compression, or
sending them locally to the searcher mobile agent. The com-
ponent implements client’s policy which can depend on the
obtained results and on the state of the network.

4.2.4. Global search adaptation. Agent mobility is
proactive : the searcher agent decides by its own to move
according to a client-specific policy which can be based
on an evaluation of the quality of the results found,
on the state of the network, on knowledge on poten-
tial servers, etc. It can stop or continue the search, go back
to the client site, or possibly submit another query via the
local searcher agent. Thus, the agent’s itinerary is dynam-
ically and autonomously built and decision are made from
and close to relevant data.

4.3. Examples of functional adaptation

Originally, JAVANE allows to retrieve and down-
load documents from a collection distributed over a
peer-to-peer network. This section illustrates the enhanc-
ing of JAVANE with new functionalities by doing adapta-
tions at the levels A� and A�.

4.3.1. Remote procedure calls. The problem is to find a
remote software service, to transmit parameters to the ser-
vice, to execute it and send back the results. Adaptation is
required at the level A� : post-processing consists in run-
ning the service found on the server site. The component is
built on the client site and initialized with the desired pa-
rameters, then moved and executed on the server site by the
corresponding agent.

4.3.2. Search of software components. The prob-
lem is to search a software component for an update pur-
pose. Installing the new component (on the client site) may
demand search and installation of other components. Adap-
tations are required at the levels A� and A�. At the level
A�, the found software component must be sent back to the
client with the corresponding documentation. At the level
A�, the global search must handle the search of other com-
ponents if required.

4.3.3. Update of software components. The problem is
to find a remote software component which provides a ser-
vice replicated on different servers, and to replace every

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04) 
1529-4188/04 $ 20.00 IEEE 



copy of the component by another (in this case, the update
is performed on the server site by the component provider
client). Adaptations are required at the levels A� and A�.
At the level A�, operating on result consists in replacing the
component found by the one supplied by the client at the
beginning of the update process. At the level A�, the search
agent must go all over the network in order to update servers
where it is necessary.

5. Conclusion and future works

In order to evaluate the advantages of adaptable mo-
bile agents to support information systems distributed over
wide-area networks and grids, we have experimented the
development of a flexible prototype which allows to share
and retrieve documents in peer-to-peer mode. In such a dis-
tributed, heterogeneous and decentralized context:
- absence of hardware failures, and permanence and con-
stant quality of services cannot be assumed,
- users are not aware of the true state of the execution con-
text when querying the system.
Therefore, the search process must take in account instabil-
ity and adapt to unavailability and non-anticipated evolu-
tions of servers, services and data.

On one hand, due to their autonomy, adaptable mobile
agents allow dynamic operational and functional adaptation
of the search process to the execution context: communica-
tion encryption, compression of data, client-specific algo-
rithms, dynamic routing of agents and exploration of the
network, discovery of information and servers, etc. Cus-
tomizing the search process and moving it on server sites
should decrease the volumes of data moved over the net-
work and consequently the response times (and should pos-
sibly improve the relevance of results).

On the other hand, adaptable mobile agents help in de-
veloping flexible and extensible peer-to-peer information
system (our one is quite simple but also realistic and pow-
erful). Advantages mainly set in behavior changing ability
and in the separation between operational and functional as-
pects. By separating client-specific procedures from server
basic services, maintenance of servers is simplified and lim-
ited to a local operation, while agent’s adaptation features
increases robustness and tolerance to servers unavailabil-
ity and upgrades. Additionally, deployment and redeploy-
ment on the network are automatic without demanding re-
mote control from clients or servers. Actually, adaptable
mobile agents help in deploying an adaptive component-
based search process.

This work should be continued in the following direc-
tions:
- Development of techniques and tools to secure composi-
tion of micro-components and preserve consistency at the
agent level.

- Improvement of expressiveness of distribution and secu-
rity by enhancing JAVACT with the concept of domain [9]
derived from works on formalization of security and orga-
nization problems [5].
- Technology closely related to the one presented in this
paper should be used in the context of the GRID-TLSE3

project in which the third author is involved [2]. The objec-
tive is to build an expertise web site for sparse matrices in
the context of open grids. Distributed services for sparse lin-
ear algebra must be located, then executed and results sent
back to the client. Services can result from composition of
other ones which must be located and executed recursively.

References

[1] G. Agha. Actors: a model of concurrent computation in dis-
tributed systems. M.I.T. Press, Cambridge, Ma., 1986.

[2] P. Amestoy and M. Pantel. Grid-tlse: A web expertise site
for sparse linear algebra. In Sparse days and Grid computing
at St Girons workshop, 2003.

[3] J.-P. Arcangeli, C. Maurel, and F. Migeon. An API for high-
level software engineering of distributed and mobile appli-
cations. In 8th IEEE Workshop on FTDCS, pages 155–161.
IEEE-CS Press, 2001.

[4] B. Brewington, R. Gray, K. Moizumi, D. Kotz, G. Cybenko,
and D. Rus. Mobile agents in distributed information re-
trieval. In Intelligent Information Agents. Springer, 1999.

[5] L. Cardelli. Abstractions for mobile computation. In Secure
Internet Programming, pages 51–94, 1999.

[6] D. Chess, C. Harrison, and A. Kershenbaum. Mobile agents:
Are they a good idea ? Technical report, IBM, 1994.

[7] A. Fuggetta, G. Picco, and G. Vigna. Understanding code
mobility. IEEE Transactions on Software Engineering,
24(5):342–361, 1998.

[8] J. Hammer and J. Fiedler. Using mobile crawlers to search
the web efficiently. Int. Journal of Computer and Informa-
tion Science, 1(1):36–58, 2000.

[9] A. Hurault, V. Hennebert, and M. Pantel. Repartition et mo-
bilite en JAVACT : une approche derivee d’un modele formel.
LMO’2004, RSTI-L’Objet, 10(2-3):47–60, 2004.

[10] H. Kosch, M. Doller, and L. Boszormenyi. Content-based in-
dexing and retrieval supported by mobile agent technology.
In Second International Workshop on Multimedia Databases
and Image Communication, pages 152–166, 2001.

[11] S. Papastavrou, G. Samaras, and E. Pitoura. Mobile
Agents for World Wide Web Distributed Database Access.
IEEE Transactions on Knowledge and Data Engineering,
12(5):802–820, 2000.

[12] P. Thati, P.-H. Chang, and G. Agha. Crawlets: Agents for
high performance web search engines. In Mobile Agents
2001, LNCS 2240, pages 119–134. Springer-Verlag, 2001.

[13] C. Tschudin. Mobile agent security. In Intelligent Informa-
tion Agents. Springer-Verlag, 1999.

3 http://www.enseeiht.fr/lima/tlse/

Proceedings of the 15th International Workshop on Database and Expert Systems Applications (DEXA’04) 
1529-4188/04 $ 20.00 IEEE 


	footer1: 


