
Coordination Control with BCOOPL

Hans de Bruin
Vrije Universiteit, Mathematics and Computer Science Department

De Boelelaan 1081a
1081 HV Amsterdam, The Netherlands

hansdb@cs.vu.nl

Keywords
Component-based development, Design patterns, Language
support for coordination control, Software architecture

ABSTRACT
This paper introduces BCOOPL (Basic Concurrent Object-
Oriented Programming Language), a language specifi-
cally designed to support component-oriented programming.
BCOOPL is more than just a programming language. It can
also be seen as a design language with which high level archi-
tectural elements, like software components and connectors,
can be specified. BCOOPL is centered around two concepts:
interfaces and patterns. Operations to be implemented in
objects are specified in an interface using an augmented reg-
ular expression notation, not only detailing when a specific
operation may be invoked, but also detailing the parties that
are allowed to do so. Object behavior is defined separately
with so called patterns. BCOOPL encourages the design
of high-quality software components through high level OO
abstractions including the built-in support of the Observer
and Mediator design patterns. A key characteristic of the
Observer design pattern is that it reduces the coupling be-
tween objects. An object provides its services by issuing
notifications without being aware of the clients that actu-
ally use the services. It is up to the clients to link to these
notifications in order to receive them. The notifications of
various objects can be synchronized with patterns, which are
specified using the same regular expression notation as for
interfaces. An object in this role can be seen as a mediator
controlling the interactions between independently operat-
ing objects. As a result, component behavior is decoupled
from their interactions with other components, which is a
prerequisite for system adaptations and reusability. The ex-
pressive and descriptive power of BCOOPL is demonstrated
in an extended example in which a solution is given for a
real-time, process control problem.

1. INTRODUCTION
In the design of software systems, we search for qualities like
adaptability and understandability. These goals are not eas-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC 2001, Las Vegas, NV
Copyright 2001 ACM 1-58113-324-3/01/02 ..$5.00

ily achieved, especially if large and complex applications are
concerned. High level building blocks such as software com-
ponents and connectors give us handles to tame the com-
plexity involved in designing well-balanced systems. The
underlying design principle is to separate structural descrip-
tions of component interactions from behavioral descriptions
of individual components. If applied correctly, this princi-
ple ensures the specification and implementation of flexible
systems that are amenable for analysis and adaptation.

In this paper, we show that the Basic Concurrent Object-
Oriented Programming Language (BCOOPL) [7] is well-
suited for modeling components and connectors with which
complex software systems exhibiting intricate interaction
patterns can be specified and implemented. BCOOPL is a
small language specifically designed to support component-
oriented programming. Its roots can be traced back to path
expressions [6], and the concurrent object-oriented program-
ming languages Procol [13] and Talktalk [5].

BCOOPL integrates a number of unusual language features,
which are particularly useful for applying abstraction prin-
ciples:

Separation of interface and implementation An
interface defines the operations that must be imple-
mented by an object that conforms to that interface.
By adhering to the principle of programming to an
interface, a certain amount a flexibility is added to
a system since new implementations can be provided
without breaking existing code. A BCOOPL interface
is specified as an augmented regular expression over
operations. It not only describes how an operation
can be invoked, but also when and by whom.

Weakly-coupled objects BCOOPL offers direct support
for the Observer design pattern [8]. An object pro-
vides service offerings by means of issuing notification
messages, which are specified in its interface. Other
objects can subscribe to these notifications and be in-
formed when the publishing object issues them. The
use of notifications is the key to realize weakly-coupled
objects because the coupling between objects is one-
way only. That is, the subscribers have to adhere to
the interface of the publisher in order to receive no-
tifications, whereas the publisher does not know its
subscribers consciously, it just sends notifications to
all subscribers. By using the notification mechanism,
stand-alone components can be created that can be
subjected to composition to form a system.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
SAC 2001, Las Vegas, NV
© 2001 ACM 1-58113-287-5/01/02…$5.00

124

Component interaction control Stand-alone compo-
nents must be configured in such a way that the
resulting system exhibits the intended functionality.
This is achieved in BCOOPL by specifying objects
in the role of mediator that control the interactions
between objects (see also the Mediator design pattern
[8]). As discussed before, BCOOPL interfaces are
specified as augmented regular expressions over
operations, which have the same expressive power
as transition networks. The same regular expression
notation is used for object behavior specifications,
which are called patterns1. Such a specification can
actually be seen as a configuration specification, it
details how components interact at run-time.

Other language features include concurrency and delegation.
BCOOPL supports the homogeneous object model where
each object is considered as an active, concurrent entity that
may be distributed and moved around over a number of pro-
cessors. Delegation is used as alternative to implementation
(e.g., class) inheritance for sharing code. It is not only used
for stimulating black-box composition, but also for maxi-
mizing the amount of concurrency in a system. That is,
an object may decide to delegate an operation to another
object and be ready to accept new requests.

This paper is organized as follows. We start with a brief
introduction of BCOOPL’s language constructs and com-
putational model. This is followed by an extended example
in the realm of real-time, process control systems. The pur-
pose of this example is to show in detail how BCOOPL’s
language features supports the design of such systems. A
high level, software architecture is devised for the process
control system, which is elaborated further into an imple-
mentation using BCOOPL’s interfaces and patterns. We
end with a discussion of related work.

2. A BRIEF OVERVIEW OF BCOOPL
A brief introduction of BCOOPL is given in this section.
It only covers the basics required to understand the ex-
tended example given in a next section. A detailed account
of BCOOPL can be found in [7], which also addresses imple-
mentation issues. The main principle that guided the design
of BCOOPL was, and still is, to keep the language small by
supporting only a few but powerful language constructs. As
a result, it does not directly support features like real-time
processing and exception handling, but instead it offers an
object model with which extensions can be defined in terms
of the small set of language constructs. Several extension
mechanisms may coexist. The common ground that holds
them together is the object model, which is comprised of
weakly-coupled, concurrent objects whose external behav-
ior is specified in interfaces.

2.1 Core Language Features
BCOOPL is centered around two concepts: patterns and in-
terfaces. The concept of classes and methods specification
have been unified in patterns and sub-patterns. The term
pattern has been borrowed from the object-oriented pro-
gramming language Beta [11]. The idea is that objects are
instantiated from patterns and behave according to the pat-
tern definition. A pattern describes the allowed sequences of
1A pattern in BCOOPL should not be confused with a de-
sign pattern. The latter provides a solution for a design
problem within a given context.

primitives to be executed by an object after a message has
been received in a so called inlet, which is implicitly defined
in a pattern definition. A pattern may contain sub-patterns
which also define inlets, and so on. A top-level pattern can
be seen as a class definition, whereas sub-patterns can be
seen as (sub-)method definitions.

A notification pattern is part of a pattern definition. It
specifies the output behavior of a pattern in terms of notifi-
cations. An object interested in a particular notification of
a publishing object can subscribe to that notification. The
subscription information is comprised of, amongst others,
the name of the notification, the identity of the subscriber
and the pattern to be invoked in the subscriber. Notifica-
tions are issued through an outlet by means of a bang-bang
(!!) primitive. As a matter of fact, notifications are not only
used for implementing the Observer design pattern, but they
are also used for getting a reply value as a result of sending a
request to some object. The basic idea is to send a message
to an object and then wait for a notification to be received
in an inlet following the send primitive. The concept of no-
tification patterns has been explored in Talktalk [5].

The type or types of a pattern are provided by interfaces.
A pattern that implements an interface has the type of that
interface. As in Java, multiple interface inheritance is sup-
ported in BCOOPL. That is, an interface may extend one
or more sub-interfaces. In contrast to Java, interfaces con-
tain sequence information specifying when a pattern may be
invoked and by whom.

2.2 Computational Model
The computational model of BCOOPL is based on message
passing and concurrent objects. Objects are instantiated
from patterns by executing the new primitive. A pattern
may contain sub-patterns and their corresponding objects
are instantiated implicitly whenever a super-pattern is in-
stantiated. A conceptual model of an object and its sub-
objects is shown in Figure 1. Each object has an unique I.D.,
which is used as an address for message exchange. Objects
communicate with other objects by means of a restricted
form of asynchronous message passing in the sense that the
partial ordering of messages sent from one object to another
is preserved. An object receiving a message does not pro-
cess the message right away, instead the message is placed
in an unbounded message buffer. The dispatcher searches
the message buffer on a first-come-first-served basis of ac-
ceptable messages. The acceptability of a message is deter-
mined by the state of patterns in execution. If an acceptable
message is found, the dispatcher passes the message on to
the corresponding (sub-)object’s inlet, otherwise it waits for
the arrival of new messages. Thus, the communications be-
tween objects can be summarized as synchronous message
buffering, but asynchronous message processing.

A computation in BCOOPL is achieved by sending mes-
sages. This includes control flow structures like selection
(if-then-else) and repetition (while-do). A computation pro-
ceeds as follows. After a message has been received in an
inlet, the sequence of primitives following the inlet are ex-
ecuted until one or more inlets (sub-patterns) are encoun-
tered. Regular expression operators, such as the selection
(+) and the repetition (*), imply choices. Each branch re-
sulting from such a choice must be guarded with an inlet.
That is, the choice to follow a particular branch is made by
sending an appropriate message. There is no such concept

125

Message
Dispatch

Message
Incoming

Incoming Messsage
is placed in

Message Buffer

Outgoing
Messages

A Top-Level Object
and its Sub-ObjectsDispatcher

Message Buffer

Figure 1: Object model.

as non-deterministic choices.

Within an object and its sub-objects the one-at-a-time prin-
ciple of executing primitives applies. Multiple execution
threads may occur within a tree of (sub-)objects, which are
introduced with the interleave operator (‖). At most one
thread, however, is active at any one time. Thread switch-
ing occurs at the time the active thread runs into one or
more sub-patterns. Because almost every computation step
is expressed in terms of message passing, thread switches
occur frequently, which amounts to a semi-parallel object
model. The next active thread is selected on the basis of
the acceptability of the pending messages in the message
buffer. This is a fair scheduling mechanism since the active
thread cannot interfere with the scheduling of other threads,
unless it claims explicitly the exclusive ownership of the ob-
ject by means of the synchronize operator (�expr �). In
contrast to intra-object concurrency, top-level objects (and
their sub-objects) operate on a truly concurrent basis.

2.3 Interface and Pattern Specification
An interface is identified by a name and may extend one or
more base interfaces. It is defined by means of an interface
interaction term.

interface Interface Name
extends [interfaces]opt

defines [
interface interaction term

]opt

An interface interaction term is specified using the following
syntax:

client specifications �→
Pattern Name (input arguments) ⇒ (notification pattern) [

regular expression over interface interaction terms
]opt

An interface interaction term corresponds with a
(sub-)pattern definition that implements the interface.
It defines the pattern name, the formal input arguments, a
notification pattern that specifies sequences of notification
messages, and client specifications. An interface interaction
term is recursively defined as a regular expression over
interface interaction terms leading to a hierarchical interface

specification. The regular expression operators used for
constructing an interface and their meaning are summarized
in Table 1.

Expression Operator Meaning
� E � synchronize E is executed uninterupted
E ‖ F interleave E and F may occur interleaved
E + F selection E or F can be selected
E ; F sequence E is followed by F
E ∗ repetition Zero or more times E
E [m, n] bounded rep. i times E with m ≤ i ≤ n

Table 1: Semantics of regular expression operators.

Client specifications denote the parties that are allowed to
invoke the corresponding pattern. They are defined by any
combination of the following: by interface name, by interface
name set (specified with the @ modifier), or by object refer-
ence set (specified with the $ modifier). The sets are used to
dynamically specify the clients that are allowed to interact.
A pattern implementing such an interface is responsible for
the contents of a particular set.

Notifications issued by a pattern are guaranteed to be emit-
ted according to the defined sequences specified in its notifi-
cation pattern. A notification pattern is defined as a regular
expression over notification terms that are specified as fol-
lows:

Notification Name (output args)

The co- and contra-variance rules apply for specifying inter-
faces. An interface interaction term may be redefined in a
derived interface. The types of the input arguments must
be the same as or generalized from the argument types of
the base interface (i.e., contra-variance rule). In contrast,
a notification pattern may be extended in a derived inter-
face, both in terms of notification output arguments having
derived interfaces (i.e., co-variance rule) and additional no-
tifications.

The interface Any acts as a base type for every other inter-
face. That is, every interface extends Any implicitly. Any
is defined as:

interface Any

As an example of interface specification, consider the inter-
face for a bounded buffer.

interface BoundedBuffer defines [
Any �→ (maxSize : Integer) ⇒ () [

(
NotFull : @Any �→ put (anObject : Any) ⇒ (done()) +
NotEmpty : @Any �→ get () ⇒ (value(anObject : Any))

) *
]

]

It is assumed that in the implementation of a bounded buffer
the interface set NotFull contains the type Any when the
buffer is not full, otherwise the set is empty. Therefore,
the put pattern can only be invoked in the case that the
buffer is not full. Likewise, the interface set NotEmpty is
supposed to contain Any if the buffer is not empty. The done
notification of the put pattern is issued to indicate that an
object has been stored in the buffer. By the same token, the
get pattern issues a value notification with which an object
from the buffer can be obtained.

126

Patterns and sub-patterns are defined identically. The over-
all structure of a pattern is the following:

client/server specifications �→ patternPattern Name
(input arguments) ⇒ (notification pattern)

implements [interfaces]opt

declares [local variables]opt

does [
pattern implementation;
a regular expression over primitives and sub-patterns

]

Client/server specifications are defined in patterns similar
to client specifications in interfaces. Client specifications
identify the kind of objects that may communicate with a
pattern, whereas server specifications denote declaratively
specified linkages to notifications. The syntax for server
specifications is as follows.

Local Variable.Pattern Name1.Pattern Name2.· · · .
Pattern Namen.Notification Name(formal arguments)

Object Set.Pattern Name1.Pattern Name2.· · · .
Pattern Namen.Notification Name(formal arguments)

Notification linkages are established at run-time. An assign-
ment to a variable involved in notification linkage results in
first abolishing the current link, provided the variable is not
nil, then assigning to the variable, and finally establishing a
new link if the variable does not equal nil. In the case of an
object set, a notification link is established when an object
is added to the set, likewise it is abolished when the object
is removed from the set.

The behavior of a pattern is defined in the does section. It
is defined as a regular expression over primitives and sub-
patterns. The supported primitives are summarized in Ta-
ble 2. For example, a rudimentary implementation of the
BoundedBuffer is given below. It uses pseudo-code (shown
in slanted font) for control flow, arithmetic expressions, and
for storing and retrieving objects in and from a container.

Any �→ pattern boundedBuffer (maxSize : Integer) ⇒ ()
implements [BoundedBuffer]
declares [

size : Integer ;
NotFull, NotEmpty : @Any ;

]
does [

// initialization code
size := 0 ;
@NotFull.add(Any) ;

// put and get operations
(

@NotFull �→ pattern put (anObject : Any) ⇒ (done())
does [
store anObject in some container
@NotEmpty.add(Any) ;
size := size + 1 ;
if size == maxSize then @NotFull.remove(Any) ;
!! done()

] +
@NotEmpty �→ pattern get () ⇒ (value(anObject : Any))
does [
remove anObject from some container
@NotFull.add(Any) ;
size := size - 1 ;
if size == 0 then @NotEmpty.remove(Any) ;
!! value(anObject)

]
) *

]

Notice that by protecting the put and the get patterns with
guards (i.e., interface name sets) these two patterns can be
executed only if they are guaranteed to succeed. This should

be contrasted with monitors where conditions are tested and
set inside an operation, typically by means of a wait and a
signal primitive.

A pattern returns results by means of issuing notifications.
For instance, in the get pattern an object is returned by
issuing the value notification with anObject as argument.
In principle, the notification is sent to all objects that have
expressed their interest in this particular notification, which
might include the object that sent the get message in the first
place. This is probably not the required behavior in this sit-
uation. By prefixing the send with the keyword request, the
notification is only sent to sub-objects of the object that in-
voked the request, provided that sub-objects have expressed
their interest in the notification. Thus, to get a value from
a bounded buffer, one would write:

.

.

.
request myBuffer.get() ;
myBuffer.get.value(Any) �→ pattern getIt (myObject : Any) ;

.

.

.

Observe the decoupling from the request and the reply in
the form of a notification. An object is free to perform
other actions in between a request and a reply, which might
increase the amount of concurrency in a system.

3. EXTENDED EXAMPLE: REAL-TIME,
PROCESS CONTROL SYSTEM

The example presented in this section demonstrates
BCOOPL’s fitness for tackling real-time, process control
problems. The purpose of this example is to show how a
high level design, in the form of software architecture, can
be systematically translated into a detailed design and an
implementation. In particular, we show how software ar-
chitectural elements like components and connectors can be
modeled and realized with BCOOPL’s interfaces and pat-
terns. Moreover, we demonstrate how a system comprised of
BCOOPL components can be refined to meet fault-tolerance
requirements without actually changing the basic function-
ality that assumes an ideal, error-free environment.

In the design of the system, we make a sharp distinction be-
tween stand-alone components that provide reusable func-
tionality and control components that mediate interactions
between the former components. As will turn out in the ex-
ample, the augmented regular expression notation provides
an expressive and concise notation for expressing explicit
interaction sequences amongst components at the interface
level as well as the implementation level.

The example has been taken from one of Booch’s books on
Ada [4, chapter 18]:

There exists a collection of ten independent sensors

that continually monitor temperatures. We may ex-
plicitly enable or disable a particular sensor, and we
may also force its status to be recorded. Furthermore,

we may set the lower and upper limits of a given sen-
sor. In the event that any of the enabled sensors

register an out-of-limit value, the system must im-
mediately post an alarm condition. Additionally, it
must request and record the status of all the sen-

sors every fifteen minutes (set by a timer hardware

127

Primitive Abstract Syntax Remarks
Assignment variable := fqnexpression A fqn (Fully Qualified Name) denotes an object. It is specified as:

(Pseudo-)Variable.Pattern Name1.· · · .Pattern Namen

New newPattern Name The designated pattern is instantiated along with its sub-patterns re-
sulting in an object tree. Unreferenced objects are reclaimed by a
garbage collector.

Send fqn (message args) A message is sent to the object designated with the fqn

Request request fqn (message args) Identical to a send with the exception that a reply (i.e., a notification)
is sent only to a sub-object of the object that issued the request.

Inlet (Pattern) CS specs �→ pattern Name (in args) ⇒
(notifications) does [· · ·]

A message is received in an inlet which is implicitly defined in a pat-
tern.

Lightweight In-
let (Pattern)

CS specs �→ pattern Name (vars) In contrast with an ordinary inlet, a lightweight inlet does not intro-
duce a local scope. The received message arguments are stored in the
designated variables.

Outlet !!Notification Name (message args) A notification is issued.

Client/Server
Set Operations

add(element) and remove(element) The add and the remove are currently the only supported operations.

Delegate beyond the scope of this paper

Table 2: Primitives.

interrupt). If we do not get a response from any
sensor within five seconds after this time, we must

assume that the sensor is broken and immediately
post another alarm. Asynchronously, we may get a
user command to enable or disable a specific sensor,

set the temperature limits, or force the status of a
given sensor to be recorded. In any case, failure of

the user interface must not affect the monitoring of
any currently enabled sensors.

3.1 Software Architecture
As a first step in finding a solution for the process control
problem we devise a software architecture. The key compo-
nents are readily found from the problem statement: sensor
manager, sensor, recording device, alarm, timer and user
interface. Next we decide how these components interact
and to choose appropriate connectors that can realize the
intended interactions. A high level conceptual architecture,
which is comprised of components and connectors, is shown
in Figure 2. The notation is borrowed from Hofmeister et
al. [10], which is a sugared version of UML and extends the
real-time, object-oriented modeling technique ROOM [12].
Components communicate with each other as agreed upon
in a protocol. Ports are provided by components as hooks to
which connectors can be attached for inter-component mes-
sage exchange. The connectors are responsible for abstract-
ing away communication peculiarities between components.

Connection details are given in Table 3. The connections
to the recording device, alarm, timer, and user interface are
assumed to be reliable. This in contrast to the connections
to the sensors, which are placed remote from the computer
system on which the sensor manager is running. Not only
the sensors can fail due to hostile environmental conditions,
but also the physical connections (e.g., cables) between the
sensor manager and a sensor. For this reason, a timeout
facility will be built in the connector to detect the unre-
sponsiveness of sensors. Obviously, the timeout facility is
located at the sensor manager site to detect not only sensor
failures, but physical connection failures as well.

3.2 BCOOPL Interfaces and Patterns
We are now in the position to translate the conceptual archi-
tecture into BCOOPL interfaces and patterns. A couple of
interfaces are used whose specifications are postponed un-
til the detailed design phase. In particular, sensor status

information is encapsulated in objects that conform to the
Status interface.

interface Status defines [

.

.

. // interface for setting and getting Sensor status information
]

The interface for a Sensor is defined below. A sensor’s
status can be obtained by invoking the getStatus pattern.
Alternatively, a sensor emits a periodicUpdate notifica-
tion after a specified elapsed time interval or it emits a
changedUpdate notification indicating that the status has
been changed. When an enabled sensor senses an out-of-
limits value, an outOfLimits notification is issued. These
notifications should be seen as service offerings. It is up to
the client of a sensor to link to them.

interface Sensor defines [
Any �→ () ⇒

((periodicUpdate(status : Status) +
changedUpdate(status : Status) +
outOfLimits(status : Status)) *) [

(
Any �→ setLimits (lower : Float, upper : Float) ⇒ () +
Any �→ setTimeInterval (seconds : Float) ⇒ () +
Any �→ enable () ⇒ () +
Any �→ disable () ⇒ () +
Any �→ getStatus () ⇒ (value(status : Status) + failure())

) *
]

]

The task of a recording device is to record status informa-
tion that has been obtained from the sensors. The interface
specification is quite simple. It basically states that status
information can be recorded periodically. This is a good
example of one of BCOOPL’s key concept to separate the
interface from an implementation. For instance, one imple-
mentation can write status information to a printer, while
another one can employ a tape drive. The actual recording
device that is being used is unimportant because its use has
been abstracted away in the RecordingDevice interface.

interface RecordingDevice defines [
Any �→ () ⇒ () [

Any �→ record (status : Status) ⇒ () *
]

]

The interfaces for the alarm and timer are specified as shown
below. Again, many implementations can be given that con-
form to these interfaces.

128

Recording
Device

Event
sender receiver

Event
sender receiver

Event
sender receiver

*
Request

clientserver

Request
clientserver

Timer

Remote
Computers

Software
Component

Software
Component

Protocol

Connector Type
Role Role

Port Port

Legend:

Sensor Manager

Alarm

receiver sender
Event

Sensor

User Interface

Host Computer

Figure 2: A conceptual architecture for the process control system.

Sensor Manager
connected to

Connection Type Characteristics Description

Sensor Synchronous request initiated by the
Sensor Manager with failure detection
by means of time-outs. This connec-
tion must be programmed explicitly in
BCOOPL.

Unreliable Since the sensors are located in a poten-
tially hostile environment, there is a high
risk that a sensor or a physical connec-
tion fails.

Sensor Asynchronous multicast (BCOOPL no-
tification mechanism) issued by a Sen-
sor used for periodic update and out-of-
limits events.

Unreliable Even though the connection is unreliable,
no special error recovery measures are
taken. This is already taken care of by
the aforementioned time-out facility.

Recording De-
vice

Asynchronous multicast (BCOOPL noti-
fication mechanism) issued by the Sensor
Manager.

Reliable It is assumed that the connection oper-
ates reliable, so no special error recovery
measures are taken.

Alarm Asynchronous multicast (BCOOPL no-
tification mechanism) issued by Sensor
Manager.

Reliable No special measures required (see re-
marks above).

Timer Asynchronous multicast (BCOOPL noti-
fication mechanism) issued by Timer.

Reliable No special measures required (see re-
marks above).

User Interface Asynchronous request issued by the User
Interface. A reply, if any, issued with
BCOOPL’s notification mechanism.

Reliable No special measures required (see re-
marks above).

Table 3: Connection characteristics.

interface Alarm defines [
Any �→ () ⇒ () [

(
Any �→ soundOutOfLimitsAlarm () ⇒ () +
Any �→ soundBrokenSensorAlarm () ⇒ ()

) *
]

]

interface Timer defines [
Any �→ (seconds : Float) ⇒ (ping() *)

]

The sensor manager forms the heart of the system. It acts as
a mediator controlling the interactions with all other com-
ponents. The Mediator design pattern is described in [8,
page 273–282] as follows:

Define an object that encapsulates how a set of ob-
jects interact. Mediator promotes loose coupling by

keeping objects from referring to each other explicitly,
and it lets you vary their interaction independently.

BCOOPL supports the Mediator pattern in two crucial
ways. Firstly, the notification mechanism allows objects
to be defined that provide their services through notifica-
tions. As remarked before, the one-way coupling implied
by using notifications is the key to achieving low coupling
(see for a detailed discussion of the Observer design pattern
[8, page 293–299]). The Mediator knows about the objects
involved and links to the appropriate notifications, the ob-
jects simply provide their services without being aware of the
Mediator or the other objects. In other words, the objects
do not even know that they are collaborating. Secondly,

129

Event
sender receiver

Sensor Manager

*
Request

clientserver

Proxy Sensor

Event
sender receiver

*
Request

clientserver

Sensor Sensor Manager

Event
sender receiver

refined into

Request
clientserver

Sensor

Event
sender receiver

Watchdog

Figure 3: A proxy sensor copes with sensor failures.

BCOOPL’s patterns can be used for synchronization pur-
poses. The Mediator centralizes control, which may result
in complex synchronization schemes, especially if many ob-
jects are involved. Care must be taken that the Mediator
itself does not become too complex. BCOOPL helps in re-
ducing the complexity because the allowed interactions can
be specified conveniently by means of pattern expressions
(i.e., regular expressions over sub-patterns).

The interface and implementation of the sensor manager is
given in Figure 4. The interface defines the hooks for attach-
ing the user interface, the alarm and the recording device.
The implementation of the sensor manager boils down to
reacting to timer signals indicating that the enabled sensors
must be polled, handling out-of-limits events received from
sensors, and controlling the interactions with the user inter-
face. Notice the event driven way of interacting with the
alarm and recording device. These devices can be attached
to the sensor manager by linking to the record, outOfLim-
its, and broken notifications. In this way, a certain amount
of flexibility has been added in the sense that the actual
configuration can be postponed until run-time. Devices can
be attached or detached dynamically, even multiple devices
sharing the same interface may be connected simultaneously
to the sensor manager.

3.3 Fault-Tolerance
It is interesting to observe that in the specification of the
sensor manager we have abstracted away from unreliable
sensors. We assume that a sensor will emit a failure noti-
fication when something bad happens. This is, of course,
not a realistic assumption because if a sensor fails for some
reason, the chance that a failure notification will be actu-
ally received by the sensor manager is slim. Nevertheless,
the interfaces of Sensor and SensorManager do support the

required hooks in order to handle failures gracefully. To this
end, we introduce a proxy sensor, which is responsible for
setting up a reliable sensor as far as the sensor manager is
concerned. That is, a proxy sensor does issue a failure noti-
fication when a sensor is apparently malfunctioning. It does
so by means of a watchdog that detects the unresponsiveness
of a sensor due to a broken sensor or a broken connection.
The role of the proxy sensor is exemplified in the refined
conceptual architecture shown in Figure 3.

The interface for the WatchDog is identical to the Timer
with the exception that a watchdog barks only once.

interface WatchDog defines [
Any �→ (seconds : Float) ⇒ (bark())

]

The interface and implementation of the proxy sensor is
shown in Figure 5. The ProxySensor interface extends the
Sensor. It supports a setSensor pattern to associate the
proxy sensor with the real sensor in addition to the function-
ality provided by the real Sensor. The proxy sensor passes
requests on to the real sensor, but in addition it sets up a
watchdog to detect failures. Only the code for the setSensor
and the getStatus pattern is given, the other patterns are
implemented similarly.

3.4 Configuration
The main pattern given in Figure 6 shows how the pro-
cess control system is configured. First the components are
created before an endless loop is entered. The loop is re-
sponsible for handling the record, outOfLimits and broken
notifications issued by the sensor manager. The notifications
are forwarded to a recording device and an alarm. As in the
case of the sensor manager, this loop acts as a mediator es-
tablishing loose coupling between the components involved.

130

interface SensorManager defines [
Any �→ (sensorSet : Set) ⇒ ((record(status : Status) + outOfLimits(status : Status) + broken())*) [

(
Any �→ enable (name : String) ⇒ () +
Any �→ disable (name : String) ⇒ () +

.

.

. other user interface functionality
) *

]
]

Any �→ pattern sensorManager (sensorSet : Set) ⇒ ((record(status : Status) + outOfLimits(status : Status) + broken())*)
implements [SensorManager]
declares [

EnabledSensorsSet : @Sensor ;
timer : Timer ;

]
does [

// initialize the EnabledSensorsSet
for all sensors in sensorSet do @EnabledSensorsSet.add(sensor) od ;

// set up the timer
timer := new Timer ; timer(900.0) ; // initialize it with a 15 minutes time interval

// enter the process control section, that is, react to events continuously
(

// poll all enabled sensors after a 15 minutes interrupt (timer.ping()) has been received
timer.ping() �→ pattern pollSensors () ⇒ () declares [sensor : Sensor] does [
for all sensors in sensorsSet do

request sensor.getStatus() ; (
sensor.getStatus.value(Status) �→ pattern sensorStatus (status : Status) ⇒ () does [!! record(status)] +
sensor.getStatus.failure() �→ pattern sensorFailure () ⇒ () does [!! broken()]

)
od

] *
‖

// handle sensor out-of-limits events
@EnabledSensorsSet.outOfLimits(Status) �→ pattern sensorOutOfLimits (status : Status) ⇒ () does [

!! outOfLimits(status)
] *

‖
// handle the user interface (not shown here)

)
]

Figure 4: Sensor manager interface and implementation.

interface ProxySensor extends [Sensor] defines [
Any �→ () ⇒ ((periodicUpdate(status : Status) + changedUpdate(status : Status) + outOfLimits(status : Status)) *) [

Any �→ setSensor (sensor : Sensor) ⇒ () ;
(

Any �→ setLimits (lower : Float, upper : Float) ⇒ () +
Any �→ setTimeInterval (seconds : Float) ⇒ () +
Any �→ enable () ⇒ () +
Any �→ disable () ⇒ () +
Any �→ getStatus () ⇒ (value(status : Status) + failure())

) *
]

]

Any �→ pattern proxySensor () ⇒ ((periodicUpdate(status : Status) + changedUpdate(status : Status) + outOfLimits(status : Status)) *)
implements [ProxySensor]
declares [sensor : Sensor ;]

does [
Any �→ pattern setSensor (realSensor : Sensor) ⇒ () does [sensor := realSensor] ;
(

.

.

.
Any �→ pattern getStatus () ⇒ (value(status : Status) + failure())

declares [watchDog : WatchDog ;]
does [

watchDog := new WatchDog ; watchDog(5.0) ;
request sensor.getStatus() ; (

sensor.getStatus.value(Status) �→ pattern value (status : Status) ⇒ () does [!! value(status)] +
sensor.getStatus.failure() �→ pattern failure () ⇒ () does [!! failure()] +
watchDog.bark() �→ pattern timeout () ⇒ () does [!! failure()]

)
]

) *
]

Figure 5: Proxy sensor interface and implementation.

131

Any �→ pattern main () ⇒ ()
declares [

sensorSet : Set ;
sensor1, . . . , sensor10 : Sensor ;
proxySensor1, . . . , proxySensor10 : ProxySensor ;
recordingDevice : RecordingDevice ;
alarm : Alarm ;
sensorManager : SensorManager ;

]
does [

// create and initialize the components
sensorSet := new Set ; sensorSet() ;

sensor1 := new Sensor ; sensor1() ;
proxySensor1 := new ProxySensor ; proxySensor1() ;
proxySensor1.setSensor(sensor1) ;
sensorSet.add(proxySensor1) ;

.

.

.
sensor10 := new Sensor ; sensor10() ;
proxySensor10 := new ProxySensor ; proxySensor10() ;
proxySensor10.setSensor(sensor10) ;
sensorSet.add(proxySensor10) ;

recordingDevice := new RecordingDevice ; recordingDevice() ;
alarm := new Alarm ; alarm() ;

sensorManager := new SensorManager ; sensorManager(sensorSet) ;

// continuously react to sensor manager events
(

sensorManager.record(Status) �→ pattern record (status : Status) ⇒ () does [
recordingDevice.record(status)

] +
sensorManager.outOfLimits(Status) �→ pattern outOfLimits (status : Status) ⇒ () does [

alarm.soundOutOfLimitsAlarm()
] +
sensorManager.broken() �→ pattern broken () ⇒ () does [

alarm.soundBrokenSensorAlarm()
]

) *
]

Figure 6: System configuration.

A pattern used in this way can be seen as a configuration
specification. It describes how components are tied together
to form a system.

4. DISCUSSION
The need to separate individual component behavior from
component interactions can be justified on the grounds of
flexibility (e.g., adaptability, portability, and heterogeneity)
as has been argued by, amongst others, Gelernter et al. [9].
The question now is: what kind of language features are
required to express coordination control? To begin with,
most general-purpose programming languages and theoret-
ical models are not well-equipped for coordination control
because they are based on the Target-Send/Receive (TSR)
model. The TSR model is asymmetric in the sense that the
sender knows the target or targets of a message, whereas
the receiver accepts a message unconditionally. As a con-
sequence, the sender has to name the target(s), which in-
creases the coupling between components. In the IWIM
(Idealized Worker Idealized Manager) model, as manifested
in Manifold [1], this unbalance between sender and receiver
is repaired by adopting a model based on processes, events,
ports and channels. Processes have input and/or output
ports that can be connected by channels for message ex-
change. The connection between processes can be setup as
follows:

p.o → q.i

This denotes that process p is connected via its output port
o with the input port i of process q. Notice the similarity

with a notification linkage specification in BCOOPL.

server.notification(formals) �→ pattern
Pattern Name (input arguments) ⇒ (notification pattern)

does [
implementation

]

The construct p.o → q.i translates into:

p.o() �→ pattern myPattern () ⇒ () does [q.o()]

In other words, BCOOPL offers a similar language construct
with which connections between independently operating
components can be specified. A small amount of syntatic
sugar can make this as expressive as the corresponding Man-
ifold construct.

The IWIM model supports five kinds of channels, ranging
from synchronous communication channels to asynchronous
communication channels with several variations of auto-
matic disconnection. A channel is a treated as a first class
citizen, it has an I.D. that can be communicated. In con-
trast, communication in BCOOPL is based on asynchronous
communication (point-to-point and multicast) assuming re-
liable connections. However, we have shown in the process
control example how connectors can be specified explicitly
to abstract away from communication peculiarities between
components. Thus, if the need arises, connectors can be
treated as first class citizens in BCOOPL. Moreover, with
BCOOPL we have the full power of a programming lan-
guage to specify sophisticated connectors. A connector with

132

a time-out facility as used in the process control example is
a good example of such a connector.

Setting up connections between components is not the end
of the story. Communications between components must
be synchronized, since not all components are prepared to
handle all sorts of messages at anyone time. There must
be ways to specify the legality of a message. In BCOOPL
this is done in interface specifications by means of regular
expressions over operations. A similar approach is used in
ToolBus [3]. ToolBus can be seen as a hardware communi-
cation bus that controls the interactions between software
components (tools), which are described by T-scripts. A
T-script is a process-oriented description featuring process
composition (sequences, choices and iterations of processes),
synchronous and asynchronous (notification style) commu-
nications, dynamic process creation. BCOOPL has a lot in
common with, for instance, composition operators, notifi-
cations and dynamics. One difference can be found in the
fact that component behavior as well as component interac-
tions are both specified in BCOOPL. This allows for choos-
ing multiple levels of granularity because basic components
(i.e., tools) can be composed with patterns to form a new
component. The external behavior of this composition can
be abstracted away in an interface to facilitate composition
at higher levels of abstraction, and so on. Another differ-
ence can be found in the object-orientedness of BCOOPL,
which encourages reuse by means of interface inheritance
and black-box composition through delegation.

The underlying design principle of BCOOPL is to provide
a small but powerful set of language features with which a
wide range of application domains can be addressed. A num-
ber of language features commonly found in general purpose
languages are not part of BCOOPL, including real-time pro-
cessing and exception handling. This was a deliberate design
decision. In the design of BCOOPL, we have focussed on
run-time flexibility to dynamically extend systems in terms
of adaptable object configurations. The key language fea-
tures for obtaining this required level of flexibility are delega-
tion and the built-in support for the Observer and Mediator
design patterns. This approach can be contrasted with the
design philosophy of Ada 83 and its successor Ada 95, which
can be charaterized as feature-loaded languages. The prin-
ciple synchronization mechanism in Ada is the rendez-vous,
which is inflexible in the sense that it introduces strong cou-
pling between the parties involved in message exchange. The
concept of protected objects has been added to Ada 95 to
have a lightweight synchronization mechanism in line with
the OO paradigm [2]. The basic idea of a protected object
is to synchronize the access to shared data. This concept is
similar to a BCOOPL pattern, although a pattern is more
powerful by offering nested patterns and explicit sequencing
in the form of regular expressions.

5. CONCLUDING REMARKS
We have shown how BCOOPL can be used as a design and
implementation language for process control problems com-
plementing architectural design descriptions. Its main ap-
plication area is to specify weakly-coupled components and
the interaction sequences between those components. The
key concepts can be summarized as follows. The built-in
notification mechanism allows to specify stand-alone com-
ponents that provide server offerings for other components.
These service offerings are abstracted away in interfaces (see,
for example, the interface for a sensor). Components are

configured in patterns in the role of mediator controlling
the interactions between independently operating compo-
nents (see, for example, the sensor manager pattern). As a
result, individual component behavior is separated strictly
from component interactions, which facilitates the design of
flexible systems.

6. REFERENCES
[1] F. Arbab. The IWIM model for coordination of

concurrent activities. In P. Ciancarini and C. Hankin,
editors, Proceedings of the First Conference on
Coordination Languages and Models
(Coordination’96), Cesena, Italy, volume 1061 of
Lecture Notes in Computer Science (LNCS), pages
34–56, Berlin, Germany, Apr. 1996. Springer-Verlag.

[2] J. E. Barnes. Ada 95: The Language, The Standard
Libraries. Number 1247 in Lecture Notes in Computer
Science (LNCS). Springer-Verlag, Berlin, Germany,
1997.

[3] J. Bergstra and P. Klint. The ToolBus coordination
architecture. In P. Ciancarini and C. Hankin, editors,
Proceedings of the First Conference on Coordination
Languages and Models (Coordination’96), Cesena,
Italy, volume 1061 of Lecture Notes in Computer
Science (LNCS), pages 75–88, Berlin, Germany, Apr.
1996. Springer-Verlag.

[4] G. Booch. Software Engineering with Ada.
Bejamin/Cummings, Menlo Park, California, 1983.

[5] P. Bouwman and H. de Bruin. Talktalk. In
P. Wisskirchen, editor, Object-Oriented and Mixed
Programming Paradigms, Eurographics Focus on
Computer Graphics Series, chapter 9, pages 125–141.
Springer-Verlag, Berlin, Germany, 1996.

[6] R. Campbell and A. Habermann. The specification of
process synchronization by path expressions. In
Lecture Notes in Computer Science 16, pages 89–102.
Springer-Verlag, Berlin, Germany, 1974.

[7] H. de Bruin. BCOOPL: Basic concurrent
object-oriented programming language. Software
Practice & Experience, 30(8):849–894, July 2000.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Professional Computing
Series. Addison-Wesley, Reading, Massachusetts, 1995.

[9] D. Gelernter and N. Carriero. Coordination languages
and their significance. Communications of the ACM,
35(2):96–107, Feb. 1992.

[10] C. Hofmeister, R. Nord, and D. Soni. Applied Software
Architecture. Object Technology Series.
Addison-Wesley, Reading, Massachusetts, 1999.

[11] O. L. Madsen, B. Møller-Pedersen, and K. Nygaard.
Object-Oriented Programming in the Beta
Programming Language. Addison-Wesley, Reading,
Massachusetts, 1993.

[12] B. Selic, G. Gullekson, and P. T. Ward. Real-Time
Object-Oriented Modelling. John Wiley and Sons, New
York, 1994.

[13] J. van den Bos and C. Laffra. Procol: a concurrent
object language with protocols, delegation and
persistence. Acta Informatica, 28:511–538, Sept. 1991.

133

