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ABSTRACT 
Collaborative Filtering (CF) systems have been researched for 
over a decade as a tool to deal with information overload.  At the 
heart of these systems are the algorithms which generate the 
predictions and recommendations. 

In this article we empirically demonstrate that two of the most 
acclaimed CF recommendation algorithms have flaws that result 
in a dramatically unacceptable user experience.  

In response, we introduce a new Belief Distribution Algorithm 
that overcomes these flaws and provides substantially richer user 
modeling. The Belief Distribution Algorithm retains the qualities 
of nearest-neighbor algorithms which have performed well in the 
past, yet produces predictions of belief distributions across rating 
values rather than a point rating value.  

In addition, we illustrate how the exclusive use of the mean 
absolute error metric has concealed these flaws for so long, and 
we propose the use of a modified Precision metric for more 
accurately evaluating the user experience. 

Categories and Subject Descriptors 
H.3.3 [Information filtering], H.3.4 [Performance evaluation], 
H.3.5 [Web-based services] 

General Terms 
Algorithms, Measurement, Experimentation, Human Factors.  

Keywords 
Collaborative filtering, recommender systems, evaluation, 
algorithms, machine learning, Precision, mean absolute error, 
nearest neighbor 

1. INTRODUCTION 
Expansion of the internet and other sources of digital media have 
provided people with access to a wealth of information.  This 
great resource has brought with it the problem of sorting through 
enormous amounts of information to find the pieces relevant to 
the user; often referred to as “information overload”.  There have 
been a variety of solutions proposed to aid users with this burden.  
Prior to the digital era, people often relied on the opinions of a 
network of friends with similar taste to filter information and 
decide what was relevant to them.   Collaborative filtering 
expanded and improved upon this idea.  A collaborative filtering 
system stores the preferences and opinions of the thousands of 

users of the system.  These opinions are recorded as ratings by 
users for items. When an active user would like a 
recommendation, the system finds users with similar taste and 
uses their opinions to generate a recommendation.  This 
methodology has proved to be very successful in a variety of 
domains, especially domains where multi-value ratings data are 
available. 

While there has been almost a decade of research in collaborative 
filtering (referred to as CF), we believe, that the user experience 
provided by current CF solutions could be improved upon 
substantially. In particular, we believe that some of the most 
popular current predictive algorithms create a poor and ineffective 
user experience.  

The CF algorithm is the central computation of a CF system. The 
algorithm computes which items a user will like and possibly how 
much they will like them. CF algorithms are most often used to 
produce the “best bets” for a user, recommending a single best 
item or a ranked list of top items for a user.  We refer to this as a 
top-N recommendation; web-based recommender systems are 
commonly asked to predict the top-N items where N is usually 
between 1 and 20.  

In our practical experience deploying CF systems, we have 
observed that nearest-neighbor algorithms, which have repeatedly 
demonstrated the best overall prediction accuracy for multi-value 
rating data, are plagued with obscure or highly inaccurate 
recommendations at the top positions  [1,3]. In other words, when 
using a nearest-neighbor algorithm to generate the top 50 movies 
that you are most likely to see, we expect most of the first 10-20 
recommendations to be far from the user’s interests.  

The poor performance of nearest neighbor algorithms operating in 
top-N mode when N is small can be attributed to several factors, 
but is primarily due to a lack of sufficient rating information on 
the items recommended.   

There are two interacting reasons why such blatant flaws have 
escaped scientific notice for such a long time. The first reason is 
that Mean Absolute Error (MAE), the most commonly used 
metric, evaluates algorithms on a per prediction basis, biasing 
performance results towards algorithms which predict all items 
well, not necessarily recommend top items well. The second is 
that most of the published results on CF algorithms come from 
analysis of offline datasets and not experiences with real users 
who would quickly detect these problems.  

In this article, we will demonstrate flaws of two of the most 
popular algorithms and detail the problems of evaluating CF 
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algorithms with MAE; problems that have caused the flaws to go 
unnoticed in the scientific literature until now.  We will propose 
the use of Precision/Recall evaluation techniques in addition to 
MAE to measure performance in order to help avoid missing 
these flaws in the future.  Finally we will propose a new algorithm 
that demonstrates most of the good qualities of nearest-neighbor 
algorithms while offering far superior performance in top-N 
Precision/Recall metrics.  

2. Flaws with popular CF algorithms 
Nearest neighbor (NN) algorithms are the most frequently cited 
and possibly the most widely implemented CF algorithms.  They 
consistently are rated the top performing algorithms in a variety 
of publications; however, we propose they contain serious flaws.  
While using NN algorithms to generate movie recommendations 
with the EachMovie [4] or MovieLens [2] datasets, we found that 
many of the top movies recommended were wrong, highly 
questionable, or unverifiable.  This leads us to believe that these 
algorithms perform poorly where it matters most in 
recommendations. We also believed that limitations of the MAE 
metric were responsible for concealing these flaws. We designed 
an experiment to test these hypotheses. 

2.1 Assumptions 
In designing our experiment we made several assumptions about 
the usage of CF solutions and the user experience. 

• The CF algorithm is being used to generate the top-N 
recommendations of what each user should view, buy, etc. 

• The user is unlikely to view any recommendations beyond 
the top-20 best bets. 

• Very obscure items are “bad” recommendations for the 
majority of users. Example: obscure movies released in 
foreign countries that cannot be found on video or DVD in 
the US are bad recommendations for a person living in the 
US.  

• A user’s confidence in the CF recommendations is dependent 
on the user seeing recommendations for items the user 
already knows are good. 

Given the author’s experience with running a web-based movie 
recommender for three years, we believe these assumptions to be 
valid for many of the domains were CF recommendations are 
used.  

2.2 Experiment Design 
To test our hypothesis we chose two of the most commonly used 
and best performing nearest neighbor algorithms: User Nearest 
Neighbor and Item Nearest Neighbor.    

2.2.1 User Nearest Neighbor 
The User Nearest Neighbor algorithm based on the Pearson r 
Correlation coefficient was used in some of the earliest 
collaborative filtering systems [5,8], yet it remains a popular 
baseline algorithm today, since it is easy to implement and 
demonstrates high accuracy when measured with mean absolute 
error.  We refer to this algorithm as the User-User algorithm, 
because at its core is the computation of similarity between each 
pair of users. In this algorithm, Pearson’s correlation coefficient is 

used to define the similarity of two users based on their ratings for 
common items: 
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uσ  and vσ  represent the standard deviations of the ratings users 
u and v, respectively.  Iu is the set of items rated by user u while 

ru,i is the rating of user u on item i. Both the rating averages ( ur , 

vr ) and standard deviations are taken over the common items 
rated by both users.  In order to achieve the best possible 
implementation, we have used the modification described in 
Herlocker et al.  [3], which weights similarities by the number of 
item ratings in common between u and v when less than some 
threshold parameter γ: 
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This adjustment avoids overestimating the similarity of users who 
happen to have rated a few items identically, but may not have 
similar overall preferences. 

The adjusted similarity weights are used to select a neighborhood 

iUV ⊂ , consisting of the k users most similar to u who have 
rated item i.  Ui is the set of all users who have rated item i. If 
fewer than k users have positive similarity to u, then only those 
users with positive similarity are used.  The ratings of these 
“neighbors” are combined into a prediction as follows:  
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2.1.2 Item Nearest Neighbor (ITEM) 
The nearest-neighbor algorithms introduced above finds users 
who have rated the active item and have interests similar to the 
active user.  An alternate approach is to find items rated by the 
active user that are similar to the item being predicted (the active 
item).  Sarwar et al.  [7] proposed several different algorithms that 
used similarities between items, rather than users, to compute 
predictions.  These algorithms all assume that the active user’s 
ratings for items related to the active item are a good indication of 
the active user’s preference for the active item.  Of the algorithms 
proposed by Sarwar et al. [7], we only implemented adjusted 
cosine similarity, the algorithm Sarwar et al. [7] found to be most 
accurate; here were refer to it as Item-Item, since it is the only 
algorithm we tested that computes similarities between items.  In 
this algorithm, the cosine of the angle between the item rating 



vectors is computed, after adjusting each rating by subtracting the 
rating user’s mean rating.  Specifically, 
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Note that unlike User-User, means are taken over all ratings for a 
user or item, not a subset of ratings shared with any other user or 
item.  We found it helpful to adjust similarity weights based on 
the number of users in common, if the number of common users 
was below a certain threshold: 
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The predicted rating for a given user u and item i is computed 
using a neighborhood of items uIJ ⊂  consisting of the k items 
rated by u that are most similar to i. If there are fewer than k items 
with positive similarity to i, then just those are used. 
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2.2.2 Data sets 
Each algorithm was tested using the MovieLens data set.   
MovieLens consists of 948 users who rated movies they had seen 
on a scale of 1 to 5, 5 being excellent and 1 being terrible.  The 
dataset includes 100,000 ratings over 1,682 movies with each user 
having rated at least 20 movies. Based on the rating guidelines 
presented to the users of MovieLens, we identified ratings of 4 
and 5 to signify “good” movies. These are the movies that would 
make good recommendations.  

The 100,000 ratings were divided into 4 equal slices by giving 
each rating a random number from 1 to 4. Each result reported is 
the average of four runs, each on a mutually exclusive training 
set; each algorithm was trained on 25% of the data and tested on 
the remaining 75%.   

2.2.3 Metrics 
Traditionally, mean absolute error (MAE) has been used to 
evaluate the performance of CF algorithms.  MAE works well for 
measuring how accurately the algorithm predicts the rating of a 
randomly selected item.  However, we claim that MAE fails to 
evaluate whether an algorithm will provide a good user 
experience given the assumptions we stated in Section 2.1. In 
particular, MAE has the following negative characteristics:  

• During offline analysis, if no rating is available for a 
recommended item, then that recommendation has no 
affect on MAE.   

• An error of size e has the same impact on MAE 
regardless of where that error places the item in a top-N 
ranking.  

• Highly accurate predictions on many mediocre or bad 
items (perhaps rated 3 out of 5) can drown out poor 
performance on highly ranked items. 

• MAE cannot evaluate algorithms that produce ranked 
recommendations but do not produce predicted rating 
values.  

It was our hypothesis that the problems listed in the first three 
bullets above were causing the MAE metric to conceal major 
flaws in the algorithms.  

In search of a better metric, we turned to Precision, the percentage 
of “good” recommendations at a given cutoff in the ranked 
recommendation list. However, Precision had been used in 
previous evaluations of CF algorithms, (e.g. [6]) and the authors 
had not reported poor top-N performance for algorithms that we 
had observed to have poor top-N performance. 

To understand this mismatch, we qualitatively evaluated the 
quality of the top-N recommended lists produced by the User-
User and Item-Item algorithms.  We found that these nearest 
neighbor algorithms were frequently recommending very obscure 
items in the top ranks.  Because these items were obscure, rarely 
did we have ratings for them and therefore they were ignored by 
the Precision metric. In essence, in computing top-20 Precision as 
it had been done before, we were essentially computing the 
Precision of a ranked list consisting of the top twenty rated items, 
which may or may not have any relation to the recommended 
items that user would actually see. The problem was critical; 
frequently we would find that less than two of the recommended 
20 movies had been rated. Furthermore, when discarding non-
rated items we might have to reach into the 200th ranked item in 
order to find 20 items that the user had rated.   

We hypothesize that these flaws have not been noticed because 
their evaluation procedure ignored items for which no ratings are 
available. To more accurately evaluate the quality of the user 
experience, we choose to measure Precision and treat non-rated 
items as non-relevant.   

Counting non-rated items as non-relevant will produce an 
underestimate of the true Precision, yet we believe the Precision 
that we measure in this way will produce a better indication of the 
actual user experience given our assumptions in Section 2.1. We 
believe this is valid for multiple reasons: 

• The more items we know to be positively rated in the top 20, 
the more confidence we have the remaining items will be 
positive. 

• From the user perspective.  If user is recommended 20 items, 
but only recognizes 1, they may have less confidence in the 
recommender as a whole.   

• People pre-filter the movies they see, choosing not to view 
movies that they know they are not interested.  Thus unrated 
items have a higher likelihood of having a true rating that is 
negative than a true rating that is positive.   

• The dataset utilizes a discrete ratings scale of 1 to 5, and on 
average, users supplied a good number of the top rating (5). 
If there are predictable items for which we know the ratings 
are 5, then a good algorithm should recommend those items 
close to the top of the ranking.  Given this, we would expect 



to see known liked items near the top of recommendation 
lists. 

• The original MovieLens data that we are using was collected 
on a system that utilized a top-N algorithm similar to the 
User-User algorithm we are evaluating. Thus if our User-
User algorithm recommends a movie highly for a user, then 
it is reasonably likely that the user was displayed the same 
recommendation when the data was collected. However, 
since they did not enter a rating, it is likely that they chose 
not to see the movie. MovieLens had no mechanism to say 
that a movie “looks awful”.   

Precision with non-rated items counted as non-relevant was 
computed at 1, 5, 10, 15, and 20 recommendations, the most 
important range for users according to our assumptions.  

An alternative that we could have used was proposed by Breese et 
al [1]. They proposed a metric based on the idea that a 
recommendation’s importance decreases the further it is from the 
top a recommendation list.  Their metric computes the “utility” of 
each recommended item, where the utility decreases 
exponentially as you move down the ranked recommendation list. 
Unrated items were treated as misses for this metric. 

2.3 Results 
The results of the experiment are summarized in Table 1 and 
Figure 1. 

Table 1. The “modified Precision” (Precision with non-rated 
items counted as not relevant) with top-N recommendation 

lists of different sizes. Notice how exceptionally low the 
Precision values are.  

 User-to-User Item-Item 
Top 1 2.4% 1.2% 
Top 5 1.8% 1.5% 
Top 10 2.0% 2.2% 
Top 15 2.1% 3.2% 
Top 20 2.3% 3.5% 

 
Table 1 shows that neither User-User nor Item-Item ever achieve 
greater than 3.5% Precision when we are considering unrated 
items to be bad (i.e. not of value to the user).  This means that we 
are only confident that 3.5% of the recommendations presented to 
users in a top-20 list will be good using what is widely regarded 
as one of the most accurate prediction algorithms!  

Now, to be fair, 3.5% is an underestimate, as we would expect 
some of the items for which we do not have to data to be “good”. 
However, consider that the average user in the MovieLens dataset 
rated more than 50 movies as good. We would hope that a good 
number of those movies known to be good would appear in the 
top-20 recommendations. Rather, the data in Table 1 shows us 
that, on average, given a list of 10 top recommended movies, we 
can only be confident in the user recognizing a single movie as 
“good” in 1 in every 5 recommendation lists generated using 
Item-Item.  

Even if we assume that modified Precision underestimated the 
number of “good” movies by factor of 5x, we still would only 
expect the user recognize one movie in each list of 
recommendations as being good. 

To explore this idea further, we examined just how far down in 
the ranked recommendation list would we have to go to reach the 
movies that we know to be good. This data is shown in Figure 1.  

Figure 1. The “modified Precision” (Precision with non-rated 
items counted as not relevant) at increasing levels of Recall. 

Notice the exceptionally low values of Precision – never 
greater than 9% Precision at their highest point.  

Modified Precision/Recall Curve
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The relatively flat Precision/Recall curve shown in Figure 1 
illustrates that the movies that we know to be good are distributed 
across the ranked recommendation lists created by the Item-Item 
and User-User prediction algorithms. This is counter to what we 
would expect in a good algorithm, where the good items would be 
clustered at the top of the ranked list.  

The evidence of poor quality of the User-User and Item-Item 
algorithm demonstrated in this article contrasts with previously 
published results that have shown these two predictive algorithms 
to be the best performers. The reason for the differences in 
algorithm evaluations is the evaluation metric. In the past, MAE 
has been used, while we have used a modified form of Precision 
that we believe more accurately models the user experience.  

 Is it possible we can design a nearest-neighbor algorithm that 
overcomes this flaw?  The remainder of the paper describes an 
algorithm we have designed to overcome these flaws. 

3. The Belief Distribution Nearest-Neighbor 
algorithm 
Nearest-neighbor (NN) algorithms have a variety of desirable 
properties that have made them popular.  Our design goal was to 
create a new predictive algorithm that retained these properties 
while achieving better performance on top-N recommendations 
and thus an acceptable user experience. The primary advantages 
of NN algorithms are:  

• Ability to predict a rating value for a single item. 

• The best average accuracy in multi-value data (in terms of 
predicting the rating value). 

• Good performance with large datasets (accomplished with 
sampling). 

• Simple to understand, explain, implement, and maintain. 



We designed a new algorithm using the User-User algorithm as a 
template, hoping to retain the benefits of the old, yet account for 
top-N quality and the resulting user experience. 

After analyzing where the User-User algorithms had failed, we 
hypothesized that the majority of questionable or obscure 
recommendations were caused by two main sources of error.  The 
first source of error was the active user having too few neighbors 
who had rated an item. An example of this with the User-User 
algorithm is if you have an obscure movie that is seen by small 
number of users, each who rate it a perfect score, that obscure 
movie will attain the highest possible predicted rating value for 
all other users. This will cause the obscure movie to be located 
high in the active user’s recommendation list, despite having little 
confirming evidence that it is good.  In fact, once a reasonable 
number of confirming ratings accumulate for an item, it is almost 
impossible for an item to be predicted as a perfect maximum 
rating, since a single rating below the max results in a prediction 
less than the max. 

The second source of error was neighbors with very low 
correlation to the active user rated the movie.  These neighbors by 
definition have very little predictive power for the active user; the 
User-User algorithm accounts for this by multiplying their weight 
times there predictive value, effectively giving more influence to 
neighbors with high correlation.  This method does not account 
for cases where all the neighbors who have rated an item have 
low correlation with the active user.  For example, imagine if 10 
minimally correlated neighbors  item A perfect while a different 
highly correlated 10 neighbors rate a item B with 9 perfects and 1 
above average.  User-user, will recommend the first item higher, 
despite having those raters of A having substantially less 
similarity with the active user.  While heuristics can be used to 
address some of these problems, we believe that they can be 
addressed more flexibly and consistently through adaptation of 
the predictive algorithm. 

The User-User algorithm fails because the predictions it generates 
fail to take into account the quality and quantity of the 
information used to generate each prediction. We chose to create 
a new algorithm that enabled a system to predict no only rating 
values, but also to explicitly represent the uncertainty in each 
predicted rating.  

3.1 Description of Algorithm 
Past experiments have shown that users, when asked to rate the 
same item in two different sessions, will often rate an item 
differently.  This change can be attributed to mood, change in 
taste, or a variety of other reasons.  There is also the possibility 
that the user entered the wrong rating accidentally. Thus we 
consider the user’s rating as noisy evidence of the user’s true 
rating. To capture this fact, we represent our current belief of each 
user’s rating as a belief distribution across all possible discrete 
(integer) rating values. If we observe a user rating of 4 on a 1 to 5 
scale, we might choose to represent our belief of the true ratings 
as [.02, .06, .11, .70, .11] with .02 being the our belief that the 
user’s actual rating is 1 and .7 being our belief that the user’s 
actual rating is 4. 
More formally, let R be an n by m user-item matrix containing 
historical item rating information of n users on m items.  In this 
matrix, ru, i is a positive integer rating in the range [1-rmax] of the 
uth user for the ith item.  We assume that maxvalue is small (less 

than 20, usually less than 10). Let the active user correspond to 
the user for whom we are trying to compute the top-N 
recommendations.  The Belief Distribution Algorithm computes 
the top-N recommended items for that user as follows. 
First we identify the N most similar users in the database. This is 
done by computing the Pearson correlation (Equation 1) between 
the active user and all other users in R and ranking them highest 
to lowest according to that correlation.  For each user u, let w(a,u) 
be the Pearson-Correlation between user a and user u.   
After computing the correlations, the next step is to map each 
rating to a discrete belief distribution, representing our belief of 
user u’s rating on item i. However, rather than using a vector 
indicating our belief in the possible rating values, we create a 
belief difference distribution. In nearest neighbor algorithms, it 
has been shown that normalizing a neighbor’s ratings with respect 
to their average rating provides a substantial increase in algorithm 
accuracy [3].  This was done by subtracting the user’s mean rating 
from each user’s rating and then using those transformed values to 
predict how the active user would rate the item compared to their 
average rating. To incorporate this normalization into the Belief 
Distribution Algorithm, we represent each rating with a belief 
difference distribution d(u, i). If we were to take an integer rating 
in the range of 1 to rmax and subtract an average rating in the same 
range, our result would be an integer in the range from –(rmax–1) to 
(rmax–1) Thus our difference distribution is a vector of size 2rmax–1, 
representing our belief that the user rated an item certain distances 
from their average rating.   
Example: with a rating range from 1 to 5, if a user’s average is 3 
and they rated item i 5, we might choose the difference 
distribution to be [0.01; 0.01; 0.01; 0.02; 0.06; 0.80; 0.06; 0.02] 
with the cells corresponding to the possible differences from -4 to 
4; the .80 indicates that we have an 80% belief that the user’s true 
rating for this item is two points higher than their average rating.  
We subtract the user’s average rating from the rating, round to the 
nearest integer, and then map that rounded integer to a predefined 
difference distribution. The difference distribution that each rating 
is mapped to can be configured depending on our confidence in 
that particular rating (an inferred rating might have less 
confidence than an explicit rating), and our expected spread in the 
variability of that rating. In our data, all ratings were collected in 
the same manner, thus if two users’ ratings have the same value of 
Round(ru,i – average(ru)), they are mapped onto the same 
difference distribution.  
For each item i that is unrated by the active user and has been 
rated by at least one of the user’s neighbors, we estimate the 
difference distribution d’(a,i) in a manner that is motivated by the 
User-User NN algorithm introduced in Section 2.2. Our approach 
is shown in Equation 7. We sum over the difference distributions 
of all the neighbors, in essence weighting by the similarity with 
each neighbor.  The weighting is achieved by combining each 
neighbor’s belief distribution with the uniform belief distribution. 
The intuition is that the less similar a neighbor is to the active 
user, the less belief we have that the neighbor’s observed rating is 
the correct rating for the active user. By adding a fraction of the 
uniform rating in proportion to the w(a,u), we effectively increase 
the uncertainty of that belief distribution, converging the 
distribution closer to uniform.  
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The uniform belief distribution s at the beginning of the Equation 
7 can be thought of a null vote with a weight of 1.  It provides a 
threshold that the subsequent weights must overcome in order to 
predict a high confidence rating. 
Finally, the predicted difference distribution d’(a,i) is transformed 
back into a vector of size rmax through the following algorithm: 

• The active user’s average rating is rounded to the 
closest integer 

• We then remap the indices of the predicted belief vector 
by added the rounded average rating to each index. For 
example, on a 1-5 scale, the difference distribution 
represents the relative ratings -4 through 4. If the active 
user’s average rating rounds to 2, then we transform the 
rating indices into -2, -1, 0, 1, 2, 3, 4, 5, and 6. 

• Since we cannot have ratings less than 1, we sum the 
belief values for all indexes less than or equal to 1, and 
this becomes our end belief that the rating is 1.  

• Since we cannot have ratings greater than rmax, then we 
sum all belief values for ratings greater than or equal to 
rmax and this becomes our end belief that the predicted 
rating is rmax.  

Finally we are left with a predicted belief distribution d’(a, i) 
representing our discrete belief that the active user provided each 
of the ratings between 1 and rmax. An example of d’(a,i) for a 
rating range of 1 to 5 is [.07, .11, .15, .4, .27] with .07 being the 
probability of a user rating the item 1 and .4 the probability of the 
user rating the item 4. 
We may then use the belief distribution to make decisions, or if 
we need to produce the “most probable” rating (similar to NN 
algorithms), we can compute the expected value of the 
distribution.  

3.2 Improved Properties of New Algorithm 
We claim that our new Belief Distribution Algorithm maintains 
the positive characteristics of class NN algorithms introduced at 
the beginning of Section 3, while at the same time providing these 
improvements:  

1. Produces belief distributions that communicate the 
algorithm’s confidence in a prediction, instead of just 
producing a predicted rating value.  

2. Detects and communicates low confidence situations 
caused by small numbers of neighbors who have rated 
an item.  

3. Detects and communicates low confidence situations 
caused by only having neighbors that are minimally 
similar to the active user.   

4. Produces top-N recommendations lists that are 
substantially more valuable to the user 

5. Enables users to tune their recommendation lists to their 
desired risk/benefit tradeoff.  

6. Supports ratings observations at different levels of 
confidence. For example: an explicitly entered rating vs. 
a rating inferred from observation of user behavior 
(sometimes called an implicit rating)  

Properties 1-3 are introduced in Section 3.1. We will demonstrate 
Property 4 in Section 3.3.  

In support of Property 5, consider the possible different ways that 
ranked recommendation lists could be computed in a five-point 
rating scale, given the output of the Belief Distribution Algorithm. 
We could rank recommendations by the sum of belief that ratings 
are 4 or 5, or we could rank by the sum of belief that the ratings 
are 5, or even the sum of belief that the ratings are 3, 4, 5. In the 
active’s user’s perspective, those three rankings translate 
respectively to “show me items that you are confident are good”, 
“show me items that are most likely to be excellent”, and “just 
show me items that won’t be bad!” Furthermore, users could just 
set thresholds for such belief levels, under which no 
recommendation is made.  

These ranking approaches work because the sum of belief across 
all ratings values in a distribution is 1. A low confidence 
predicted item may have a most-probable rating equal to the rmax, 
but the belief in rmax will only be slightly higher than the belief in 
other rating values. If we rank only by the belief in rmax, we 
capture this lack of confidence. 

Property 6 exists because we can tune the initial difference 
distributions.  For observed ratings of high confidence, we create 
a more peaked distribution. For those observed ratings of low 
confidence, we can use a much more flat initial distribution.  

3.3 Empirical Results of New Algorithm 
We tested our new Belief Distribution Algorithm in the same 
fashion that we tested the classic nearest neighbor algorithms in 
Section 2. The results are summarized in Figure 2 and Figure 3. 

Figure 2. Modified Precision (Precision considering non-rated 
items as not relevant) for recommendation lists of varying 
sizes for two popular NN algorithms and our new Belief 

Distribution Algorithm.  
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Figure 3. Modified Precision (Precision considering non-rated 
items as not relevant) at varying levels of Recall. 
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Figures 2 and 3 demonstrate the substantial improvement in 
Precision of top-N recommendations that our Belief Distribution 
Algorithm provides over the User-User and Item-Item NN 
algorithms, two algorithms that have consistently demonstrated 
the best accuracy in the scientific literature. The size of the 
difference is astounding; our algorithm has a decisive advantage 
through the entire Precision curve, with a 350% increase over the 
User-User algorithm at 30% Recall.    These data provide 
substantial evidence that our Belief Distribution Algorithm will 
provide a better user experience.  

Table 2. Comparison of new Belief Distribution Algorithm to 
classic CF NN algorithms using mean absolute error. To 

convert a belief distribution into a point value, we computed 
the expected value of the predicted belief distribution. 

 User-to-User Item-Item Distribution 
MAE 0.7954 0.7805 0.8556 

 

Table 2 illustrates that our new Belief Distribution Algorithm on 
average cannot predict “most probable” point ratings as well as 
the popular NN algorithms. However, this only has bearing on 
recommendation systems that display one-dimensional predicted 
ratings to the user. Furthermore, we believe that the difference in 
MAE performance can be recovered with some additional tuning 
of the Belief Distribution Algorithm.  

The far superior performance of our Belief Distribution Algorithm 
without a catastrophic loss in MAE gives us further confidence in 
our analysis from section 2.3: that Item-Item and User-User NN 
algorithm results are excessively low, indicating a poor user 
experience. 

4. Conclusion and Future Work 
Collaborative filtering algorithms’ performances have been 
evaluated using a variety of metrics.  These metrics, such as Mean 
Absolute Error and Precision, have often ignored 
recommendations for which they do not have data.  Ignoring these 

recommendations has provided numbers which do not accurately 
represent the user experience.  Qualitatively we have seen that 
User-User and Item-Item algorithms are often plagued with 
obscure recommendations.  This flaw was illustrated 
quantitatively by the extremely low modified Precision scores.  
To address this problem and provide a better user experience we 
proposed a new Belief Distribution Algorithm. Our Belief 
Distribution Algorithm retained comparable predictive 
capabilities to previous nearest-neighbor algorithms while 
achieving far superior results for recommendations. 
In the future, we plan to run a user study in which a complete set 
of ratings is collected, enabling us to evaluate just how accurately 
modified precision measures the user experience and look for 
significant gaps where it does not.  
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