
A Collaborative Filtering Algorithm and Evaluation Metric
that Accurately Model the User Experience

Matthew R. McLaughlin and Jonathan L. Herlocker
School of Electrical Engineering and Computer Science

Oregon State University
(541) 737-8894

{mclaughm, herlock}@cs.oregonstate.edu

ABSTRACT
Collaborative Filtering (CF) systems have been researched for
over a decade as a tool to deal with information overload. At the
heart of these systems are the algorithms which generate the
predictions and recommendations.

In this article we empirically demonstrate that two of the most
acclaimed CF recommendation algorithms have flaws that result
in a dramatically unacceptable user experience.

In response, we introduce a new Belief Distribution Algorithm
that overcomes these flaws and provides substantially richer user
modeling. The Belief Distribution Algorithm retains the qualities
of nearest-neighbor algorithms which have performed well in the
past, yet produces predictions of belief distributions across rating
values rather than a point rating value.

In addition, we illustrate how the exclusive use of the mean
absolute error metric has concealed these flaws for so long, and
we propose the use of a modified Precision metric for more
accurately evaluating the user experience.

Categories and Subject Descriptors
H.3.3 [Information filtering], H.3.4 [Performance evaluation],
H.3.5 [Web-based services]

General Terms
Algorithms, Measurement, Experimentation, Human Factors.

Keywords
Collaborative filtering, recommender systems, evaluation,
algorithms, machine learning, Precision, mean absolute error,
nearest neighbor

1. INTRODUCTION
Expansion of the internet and other sources of digital media have
provided people with access to a wealth of information. This
great resource has brought with it the problem of sorting through
enormous amounts of information to find the pieces relevant to
the user; often referred to as “information overload”. There have
been a variety of solutions proposed to aid users with this burden.
Prior to the digital era, people often relied on the opinions of a
network of friends with similar taste to filter information and
decide what was relevant to them. Collaborative filtering
expanded and improved upon this idea. A collaborative filtering
system stores the preferences and opinions of the thousands of

users of the system. These opinions are recorded as ratings by
users for items. When an active user would like a
recommendation, the system finds users with similar taste and
uses their opinions to generate a recommendation. This
methodology has proved to be very successful in a variety of
domains, especially domains where multi-value ratings data are
available.

While there has been almost a decade of research in collaborative
filtering (referred to as CF), we believe, that the user experience
provided by current CF solutions could be improved upon
substantially. In particular, we believe that some of the most
popular current predictive algorithms create a poor and ineffective
user experience.

The CF algorithm is the central computation of a CF system. The
algorithm computes which items a user will like and possibly how
much they will like them. CF algorithms are most often used to
produce the “best bets” for a user, recommending a single best
item or a ranked list of top items for a user. We refer to this as a
top-N recommendation; web-based recommender systems are
commonly asked to predict the top-N items where N is usually
between 1 and 20.

In our practical experience deploying CF systems, we have
observed that nearest-neighbor algorithms, which have repeatedly
demonstrated the best overall prediction accuracy for multi-value
rating data, are plagued with obscure or highly inaccurate
recommendations at the top positions [1,3]. In other words, when
using a nearest-neighbor algorithm to generate the top 50 movies
that you are most likely to see, we expect most of the first 10-20
recommendations to be far from the user’s interests.

The poor performance of nearest neighbor algorithms operating in
top-N mode when N is small can be attributed to several factors,
but is primarily due to a lack of sufficient rating information on
the items recommended.

There are two interacting reasons why such blatant flaws have
escaped scientific notice for such a long time. The first reason is
that Mean Absolute Error (MAE), the most commonly used
metric, evaluates algorithms on a per prediction basis, biasing
performance results towards algorithms which predict all items
well, not necessarily recommend top items well. The second is
that most of the published results on CF algorithms come from
analysis of offline datasets and not experiences with real users
who would quickly detect these problems.

In this article, we will demonstrate flaws of two of the most
popular algorithms and detail the problems of evaluating CF

herlock
Text Box
"© ACM, 2004. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 27th Annual International Conference on Research and Development in Information Retrieval {2004} http://doi.acm.org/10.1145/1008992.1009050"

algorithms with MAE; problems that have caused the flaws to go
unnoticed in the scientific literature until now. We will propose
the use of Precision/Recall evaluation techniques in addition to
MAE to measure performance in order to help avoid missing
these flaws in the future. Finally we will propose a new algorithm
that demonstrates most of the good qualities of nearest-neighbor
algorithms while offering far superior performance in top-N
Precision/Recall metrics.

2. Flaws with popular CF algorithms
Nearest neighbor (NN) algorithms are the most frequently cited
and possibly the most widely implemented CF algorithms. They
consistently are rated the top performing algorithms in a variety
of publications; however, we propose they contain serious flaws.
While using NN algorithms to generate movie recommendations
with the EachMovie [4] or MovieLens [2] datasets, we found that
many of the top movies recommended were wrong, highly
questionable, or unverifiable. This leads us to believe that these
algorithms perform poorly where it matters most in
recommendations. We also believed that limitations of the MAE
metric were responsible for concealing these flaws. We designed
an experiment to test these hypotheses.

2.1 Assumptions
In designing our experiment we made several assumptions about
the usage of CF solutions and the user experience.

• The CF algorithm is being used to generate the top-N
recommendations of what each user should view, buy, etc.

• The user is unlikely to view any recommendations beyond
the top-20 best bets.

• Very obscure items are “bad” recommendations for the
majority of users. Example: obscure movies released in
foreign countries that cannot be found on video or DVD in
the US are bad recommendations for a person living in the
US.

• A user’s confidence in the CF recommendations is dependent
on the user seeing recommendations for items the user
already knows are good.

Given the author’s experience with running a web-based movie
recommender for three years, we believe these assumptions to be
valid for many of the domains were CF recommendations are
used.

2.2 Experiment Design
To test our hypothesis we chose two of the most commonly used
and best performing nearest neighbor algorithms: User Nearest
Neighbor and Item Nearest Neighbor.

2.2.1 User Nearest Neighbor
The User Nearest Neighbor algorithm based on the Pearson r
Correlation coefficient was used in some of the earliest
collaborative filtering systems [5,8], yet it remains a popular
baseline algorithm today, since it is easy to implement and
demonstrates high accuracy when measured with mean absolute
error. We refer to this algorithm as the User-User algorithm,
because at its core is the computation of similarity between each
pair of users. In this algorithm, Pearson’s correlation coefficient is

used to define the similarity of two users based on their ratings for
common items:

vu

IIi vivuiu
vu

rrrr
vusim

σσ
∑ ∩∈

−−
=

))((
),(

,,
 Eq. 1

uσ and vσ represent the standard deviations of the ratings users
u and v, respectively. Iu is the set of items rated by user u while

ru,i is the rating of user u on item i. Both the rating averages (ur ,

vr) and standard deviations are taken over the common items
rated by both users. In order to achieve the best possible
implementation, we have used the modification described in
Herlocker et al. [3], which weights similarities by the number of
item ratings in common between u and v when less than some
threshold parameter γ:

),(
),max(

),(vusim
II

vumsi vu

γ
γ∩

=′ Eq. 2

This adjustment avoids overestimating the similarity of users who
happen to have rated a few items identically, but may not have
similar overall preferences.

The adjusted similarity weights are used to select a neighborhood

iUV ⊂ , consisting of the k users most similar to u who have
rated item i. Ui is the set of all users who have rated item i. If
fewer than k users have positive similarity to u, then only those
users with positive similarity are used. The ratings of these
“neighbors” are combined into a prediction as follows:

∑
∑

∈

∈

′

−′
+=

Vv

Vv
viv

uiu vumsi

rrvumsi
rp

),(

))(,(,

, Eq. 3

2.1.2 Item Nearest Neighbor (ITEM)
The nearest-neighbor algorithms introduced above finds users
who have rated the active item and have interests similar to the
active user. An alternate approach is to find items rated by the
active user that are similar to the item being predicted (the active
item). Sarwar et al. [7] proposed several different algorithms that
used similarities between items, rather than users, to compute
predictions. These algorithms all assume that the active user’s
ratings for items related to the active item are a good indication of
the active user’s preference for the active item. Of the algorithms
proposed by Sarwar et al. [7], we only implemented adjusted
cosine similarity, the algorithm Sarwar et al. [7] found to be most
accurate; here were refer to it as Item-Item, since it is the only
algorithm we tested that computes similarities between items. In
this algorithm, the cosine of the angle between the item rating

vectors is computed, after adjusting each rating by subtracting the
rating user’s mean rating. Specifically,

∑∑
∑

∈∈

∩∈

−−

−−
=

ji

ji

Uw wjwUv viv

UUu ujuuiu

rrrr

rrrr
jisim

2
,

2
,

,,

)()(

))((
),(Eq. 4

Note that unlike User-User, means are taken over all ratings for a
user or item, not a subset of ratings shared with any other user or
item. We found it helpful to adjust similarity weights based on
the number of users in common, if the number of common users
was below a certain threshold:

),(
|)|,max(

),(jisim
UU

jimsi ji

γ
γ ∩

=′ Eq. 5

The predicted rating for a given user u and item i is computed
using a neighborhood of items uIJ ⊂ consisting of the k items
rated by u that are most similar to i. If there are fewer than k items
with positive similarity to i, then just those are used.

∑
∑

∈

∈

′

−′
+=

Jj

Jj jju
iiu jimsi

rrjimsi
rp

),(

))(,(,
, Eq. 6

2.2.2 Data sets
Each algorithm was tested using the MovieLens data set.
MovieLens consists of 948 users who rated movies they had seen
on a scale of 1 to 5, 5 being excellent and 1 being terrible. The
dataset includes 100,000 ratings over 1,682 movies with each user
having rated at least 20 movies. Based on the rating guidelines
presented to the users of MovieLens, we identified ratings of 4
and 5 to signify “good” movies. These are the movies that would
make good recommendations.

The 100,000 ratings were divided into 4 equal slices by giving
each rating a random number from 1 to 4. Each result reported is
the average of four runs, each on a mutually exclusive training
set; each algorithm was trained on 25% of the data and tested on
the remaining 75%.

2.2.3 Metrics
Traditionally, mean absolute error (MAE) has been used to
evaluate the performance of CF algorithms. MAE works well for
measuring how accurately the algorithm predicts the rating of a
randomly selected item. However, we claim that MAE fails to
evaluate whether an algorithm will provide a good user
experience given the assumptions we stated in Section 2.1. In
particular, MAE has the following negative characteristics:

• During offline analysis, if no rating is available for a
recommended item, then that recommendation has no
affect on MAE.

• An error of size e has the same impact on MAE
regardless of where that error places the item in a top-N
ranking.

• Highly accurate predictions on many mediocre or bad
items (perhaps rated 3 out of 5) can drown out poor
performance on highly ranked items.

• MAE cannot evaluate algorithms that produce ranked
recommendations but do not produce predicted rating
values.

It was our hypothesis that the problems listed in the first three
bullets above were causing the MAE metric to conceal major
flaws in the algorithms.

In search of a better metric, we turned to Precision, the percentage
of “good” recommendations at a given cutoff in the ranked
recommendation list. However, Precision had been used in
previous evaluations of CF algorithms, (e.g. [6]) and the authors
had not reported poor top-N performance for algorithms that we
had observed to have poor top-N performance.

To understand this mismatch, we qualitatively evaluated the
quality of the top-N recommended lists produced by the User-
User and Item-Item algorithms. We found that these nearest
neighbor algorithms were frequently recommending very obscure
items in the top ranks. Because these items were obscure, rarely
did we have ratings for them and therefore they were ignored by
the Precision metric. In essence, in computing top-20 Precision as
it had been done before, we were essentially computing the
Precision of a ranked list consisting of the top twenty rated items,
which may or may not have any relation to the recommended
items that user would actually see. The problem was critical;
frequently we would find that less than two of the recommended
20 movies had been rated. Furthermore, when discarding non-
rated items we might have to reach into the 200th ranked item in
order to find 20 items that the user had rated.

We hypothesize that these flaws have not been noticed because
their evaluation procedure ignored items for which no ratings are
available. To more accurately evaluate the quality of the user
experience, we choose to measure Precision and treat non-rated
items as non-relevant.

Counting non-rated items as non-relevant will produce an
underestimate of the true Precision, yet we believe the Precision
that we measure in this way will produce a better indication of the
actual user experience given our assumptions in Section 2.1. We
believe this is valid for multiple reasons:

• The more items we know to be positively rated in the top 20,
the more confidence we have the remaining items will be
positive.

• From the user perspective. If user is recommended 20 items,
but only recognizes 1, they may have less confidence in the
recommender as a whole.

• People pre-filter the movies they see, choosing not to view
movies that they know they are not interested. Thus unrated
items have a higher likelihood of having a true rating that is
negative than a true rating that is positive.

• The dataset utilizes a discrete ratings scale of 1 to 5, and on
average, users supplied a good number of the top rating (5).
If there are predictable items for which we know the ratings
are 5, then a good algorithm should recommend those items
close to the top of the ranking. Given this, we would expect

to see known liked items near the top of recommendation
lists.

• The original MovieLens data that we are using was collected
on a system that utilized a top-N algorithm similar to the
User-User algorithm we are evaluating. Thus if our User-
User algorithm recommends a movie highly for a user, then
it is reasonably likely that the user was displayed the same
recommendation when the data was collected. However,
since they did not enter a rating, it is likely that they chose
not to see the movie. MovieLens had no mechanism to say
that a movie “looks awful”.

Precision with non-rated items counted as non-relevant was
computed at 1, 5, 10, 15, and 20 recommendations, the most
important range for users according to our assumptions.

An alternative that we could have used was proposed by Breese et
al [1]. They proposed a metric based on the idea that a
recommendation’s importance decreases the further it is from the
top a recommendation list. Their metric computes the “utility” of
each recommended item, where the utility decreases
exponentially as you move down the ranked recommendation list.
Unrated items were treated as misses for this metric.

2.3 Results
The results of the experiment are summarized in Table 1 and
Figure 1.

Table 1. The “modified Precision” (Precision with non-rated
items counted as not relevant) with top-N recommendation

lists of different sizes. Notice how exceptionally low the
Precision values are.

 User-to-User Item-Item
Top 1 2.4% 1.2%
Top 5 1.8% 1.5%
Top 10 2.0% 2.2%
Top 15 2.1% 3.2%
Top 20 2.3% 3.5%

Table 1 shows that neither User-User nor Item-Item ever achieve
greater than 3.5% Precision when we are considering unrated
items to be bad (i.e. not of value to the user). This means that we
are only confident that 3.5% of the recommendations presented to
users in a top-20 list will be good using what is widely regarded
as one of the most accurate prediction algorithms!

Now, to be fair, 3.5% is an underestimate, as we would expect
some of the items for which we do not have to data to be “good”.
However, consider that the average user in the MovieLens dataset
rated more than 50 movies as good. We would hope that a good
number of those movies known to be good would appear in the
top-20 recommendations. Rather, the data in Table 1 shows us
that, on average, given a list of 10 top recommended movies, we
can only be confident in the user recognizing a single movie as
“good” in 1 in every 5 recommendation lists generated using
Item-Item.

Even if we assume that modified Precision underestimated the
number of “good” movies by factor of 5x, we still would only
expect the user recognize one movie in each list of
recommendations as being good.

To explore this idea further, we examined just how far down in
the ranked recommendation list would we have to go to reach the
movies that we know to be good. This data is shown in Figure 1.

Figure 1. The “modified Precision” (Precision with non-rated
items counted as not relevant) at increasing levels of Recall.

Notice the exceptionally low values of Precision – never
greater than 9% Precision at their highest point.

Modified Precision/Recall Curve

0

0.02

0.04

0.06

0.08

0.1

0
10

%
30

%
50

%
70

%
90

%

Recall

M
od

ifi
ed

 P
re

ci
si

on
User-to-User Item-Item

The relatively flat Precision/Recall curve shown in Figure 1
illustrates that the movies that we know to be good are distributed
across the ranked recommendation lists created by the Item-Item
and User-User prediction algorithms. This is counter to what we
would expect in a good algorithm, where the good items would be
clustered at the top of the ranked list.

The evidence of poor quality of the User-User and Item-Item
algorithm demonstrated in this article contrasts with previously
published results that have shown these two predictive algorithms
to be the best performers. The reason for the differences in
algorithm evaluations is the evaluation metric. In the past, MAE
has been used, while we have used a modified form of Precision
that we believe more accurately models the user experience.

 Is it possible we can design a nearest-neighbor algorithm that
overcomes this flaw? The remainder of the paper describes an
algorithm we have designed to overcome these flaws.

3. The Belief Distribution Nearest-Neighbor
algorithm
Nearest-neighbor (NN) algorithms have a variety of desirable
properties that have made them popular. Our design goal was to
create a new predictive algorithm that retained these properties
while achieving better performance on top-N recommendations
and thus an acceptable user experience. The primary advantages
of NN algorithms are:

• Ability to predict a rating value for a single item.

• The best average accuracy in multi-value data (in terms of
predicting the rating value).

• Good performance with large datasets (accomplished with
sampling).

• Simple to understand, explain, implement, and maintain.

We designed a new algorithm using the User-User algorithm as a
template, hoping to retain the benefits of the old, yet account for
top-N quality and the resulting user experience.

After analyzing where the User-User algorithms had failed, we
hypothesized that the majority of questionable or obscure
recommendations were caused by two main sources of error. The
first source of error was the active user having too few neighbors
who had rated an item. An example of this with the User-User
algorithm is if you have an obscure movie that is seen by small
number of users, each who rate it a perfect score, that obscure
movie will attain the highest possible predicted rating value for
all other users. This will cause the obscure movie to be located
high in the active user’s recommendation list, despite having little
confirming evidence that it is good. In fact, once a reasonable
number of confirming ratings accumulate for an item, it is almost
impossible for an item to be predicted as a perfect maximum
rating, since a single rating below the max results in a prediction
less than the max.

The second source of error was neighbors with very low
correlation to the active user rated the movie. These neighbors by
definition have very little predictive power for the active user; the
User-User algorithm accounts for this by multiplying their weight
times there predictive value, effectively giving more influence to
neighbors with high correlation. This method does not account
for cases where all the neighbors who have rated an item have
low correlation with the active user. For example, imagine if 10
minimally correlated neighbors item A perfect while a different
highly correlated 10 neighbors rate a item B with 9 perfects and 1
above average. User-user, will recommend the first item higher,
despite having those raters of A having substantially less
similarity with the active user. While heuristics can be used to
address some of these problems, we believe that they can be
addressed more flexibly and consistently through adaptation of
the predictive algorithm.

The User-User algorithm fails because the predictions it generates
fail to take into account the quality and quantity of the
information used to generate each prediction. We chose to create
a new algorithm that enabled a system to predict no only rating
values, but also to explicitly represent the uncertainty in each
predicted rating.

3.1 Description of Algorithm
Past experiments have shown that users, when asked to rate the
same item in two different sessions, will often rate an item
differently. This change can be attributed to mood, change in
taste, or a variety of other reasons. There is also the possibility
that the user entered the wrong rating accidentally. Thus we
consider the user’s rating as noisy evidence of the user’s true
rating. To capture this fact, we represent our current belief of each
user’s rating as a belief distribution across all possible discrete
(integer) rating values. If we observe a user rating of 4 on a 1 to 5
scale, we might choose to represent our belief of the true ratings
as [.02, .06, .11, .70, .11] with .02 being the our belief that the
user’s actual rating is 1 and .7 being our belief that the user’s
actual rating is 4.
More formally, let R be an n by m user-item matrix containing
historical item rating information of n users on m items. In this
matrix, ru, i is a positive integer rating in the range [1-rmax] of the
uth user for the ith item. We assume that maxvalue is small (less

than 20, usually less than 10). Let the active user correspond to
the user for whom we are trying to compute the top-N
recommendations. The Belief Distribution Algorithm computes
the top-N recommended items for that user as follows.
First we identify the N most similar users in the database. This is
done by computing the Pearson correlation (Equation 1) between
the active user and all other users in R and ranking them highest
to lowest according to that correlation. For each user u, let w(a,u)
be the Pearson-Correlation between user a and user u.
After computing the correlations, the next step is to map each
rating to a discrete belief distribution, representing our belief of
user u’s rating on item i. However, rather than using a vector
indicating our belief in the possible rating values, we create a
belief difference distribution. In nearest neighbor algorithms, it
has been shown that normalizing a neighbor’s ratings with respect
to their average rating provides a substantial increase in algorithm
accuracy [3]. This was done by subtracting the user’s mean rating
from each user’s rating and then using those transformed values to
predict how the active user would rate the item compared to their
average rating. To incorporate this normalization into the Belief
Distribution Algorithm, we represent each rating with a belief
difference distribution d(u, i). If we were to take an integer rating
in the range of 1 to rmax and subtract an average rating in the same
range, our result would be an integer in the range from –(rmax–1) to
(rmax–1) Thus our difference distribution is a vector of size 2rmax–1,
representing our belief that the user rated an item certain distances
from their average rating.
Example: with a rating range from 1 to 5, if a user’s average is 3
and they rated item i 5, we might choose the difference
distribution to be [0.01; 0.01; 0.01; 0.02; 0.06; 0.80; 0.06; 0.02]
with the cells corresponding to the possible differences from -4 to
4; the .80 indicates that we have an 80% belief that the user’s true
rating for this item is two points higher than their average rating.
We subtract the user’s average rating from the rating, round to the
nearest integer, and then map that rounded integer to a predefined
difference distribution. The difference distribution that each rating
is mapped to can be configured depending on our confidence in
that particular rating (an inferred rating might have less
confidence than an explicit rating), and our expected spread in the
variability of that rating. In our data, all ratings were collected in
the same manner, thus if two users’ ratings have the same value of
Round(ru,i – average(ru)), they are mapped onto the same
difference distribution.
For each item i that is unrated by the active user and has been
rated by at least one of the user’s neighbors, we estimate the
difference distribution d’(a,i) in a manner that is motivated by the
User-User NN algorithm introduced in Section 2.2. Our approach
is shown in Equation 7. We sum over the difference distributions
of all the neighbors, in essence weighting by the similarity with
each neighbor. The weighting is achieved by combining each
neighbor’s belief distribution with the uniform belief distribution.
The intuition is that the less similar a neighbor is to the active
user, the less belief we have that the neighbor’s observed rating is
the correct rating for the active user. By adding a fraction of the
uniform rating in proportion to the w(a,u), we effectively increase
the uncertainty of that belief distribution, converging the
distribution closer to uniform.

1

)*)),(1(()),(*),(((
),(..1

+

−++
=

∑
=

N

suawiuduaws
iad Nu

 Eq. 7

The uniform belief distribution s at the beginning of the Equation
7 can be thought of a null vote with a weight of 1. It provides a
threshold that the subsequent weights must overcome in order to
predict a high confidence rating.
Finally, the predicted difference distribution d’(a,i) is transformed
back into a vector of size rmax through the following algorithm:

• The active user’s average rating is rounded to the
closest integer

• We then remap the indices of the predicted belief vector
by added the rounded average rating to each index. For
example, on a 1-5 scale, the difference distribution
represents the relative ratings -4 through 4. If the active
user’s average rating rounds to 2, then we transform the
rating indices into -2, -1, 0, 1, 2, 3, 4, 5, and 6.

• Since we cannot have ratings less than 1, we sum the
belief values for all indexes less than or equal to 1, and
this becomes our end belief that the rating is 1.

• Since we cannot have ratings greater than rmax, then we
sum all belief values for ratings greater than or equal to
rmax and this becomes our end belief that the predicted
rating is rmax.

Finally we are left with a predicted belief distribution d’(a, i)
representing our discrete belief that the active user provided each
of the ratings between 1 and rmax. An example of d’(a,i) for a
rating range of 1 to 5 is [.07, .11, .15, .4, .27] with .07 being the
probability of a user rating the item 1 and .4 the probability of the
user rating the item 4.
We may then use the belief distribution to make decisions, or if
we need to produce the “most probable” rating (similar to NN
algorithms), we can compute the expected value of the
distribution.

3.2 Improved Properties of New Algorithm
We claim that our new Belief Distribution Algorithm maintains
the positive characteristics of class NN algorithms introduced at
the beginning of Section 3, while at the same time providing these
improvements:

1. Produces belief distributions that communicate the
algorithm’s confidence in a prediction, instead of just
producing a predicted rating value.

2. Detects and communicates low confidence situations
caused by small numbers of neighbors who have rated
an item.

3. Detects and communicates low confidence situations
caused by only having neighbors that are minimally
similar to the active user.

4. Produces top-N recommendations lists that are
substantially more valuable to the user

5. Enables users to tune their recommendation lists to their
desired risk/benefit tradeoff.

6. Supports ratings observations at different levels of
confidence. For example: an explicitly entered rating vs.
a rating inferred from observation of user behavior
(sometimes called an implicit rating)

Properties 1-3 are introduced in Section 3.1. We will demonstrate
Property 4 in Section 3.3.

In support of Property 5, consider the possible different ways that
ranked recommendation lists could be computed in a five-point
rating scale, given the output of the Belief Distribution Algorithm.
We could rank recommendations by the sum of belief that ratings
are 4 or 5, or we could rank by the sum of belief that the ratings
are 5, or even the sum of belief that the ratings are 3, 4, 5. In the
active’s user’s perspective, those three rankings translate
respectively to “show me items that you are confident are good”,
“show me items that are most likely to be excellent”, and “just
show me items that won’t be bad!” Furthermore, users could just
set thresholds for such belief levels, under which no
recommendation is made.

These ranking approaches work because the sum of belief across
all ratings values in a distribution is 1. A low confidence
predicted item may have a most-probable rating equal to the rmax,
but the belief in rmax will only be slightly higher than the belief in
other rating values. If we rank only by the belief in rmax, we
capture this lack of confidence.

Property 6 exists because we can tune the initial difference
distributions. For observed ratings of high confidence, we create
a more peaked distribution. For those observed ratings of low
confidence, we can use a much more flat initial distribution.

3.3 Empirical Results of New Algorithm
We tested our new Belief Distribution Algorithm in the same
fashion that we tested the classic nearest neighbor algorithms in
Section 2. The results are summarized in Figure 2 and Figure 3.

Figure 2. Modified Precision (Precision considering non-rated
items as not relevant) for recommendation lists of varying
sizes for two popular NN algorithms and our new Belief

Distribution Algorithm.

Modified Precision at Top-N

0

0.05

0.1

0.15

0.2

0.25

0.3

Top 1 Top 5 Top 10 Top 15 Top 20

M
od

ifi
ed

 P
re

ci
si

on

User-to-User Item-Item Distribution

Figure 3. Modified Precision (Precision considering non-rated
items as not relevant) at varying levels of Recall.

Modified Precision/Recall Curve

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0
10

%
30

%
50

%
70

%
90

%

Recall

M
od

ifi
ed

 P
re

ci
si

on

User-to-User Item-Item Distribution

Figures 2 and 3 demonstrate the substantial improvement in
Precision of top-N recommendations that our Belief Distribution
Algorithm provides over the User-User and Item-Item NN
algorithms, two algorithms that have consistently demonstrated
the best accuracy in the scientific literature. The size of the
difference is astounding; our algorithm has a decisive advantage
through the entire Precision curve, with a 350% increase over the
User-User algorithm at 30% Recall. These data provide
substantial evidence that our Belief Distribution Algorithm will
provide a better user experience.

Table 2. Comparison of new Belief Distribution Algorithm to
classic CF NN algorithms using mean absolute error. To

convert a belief distribution into a point value, we computed
the expected value of the predicted belief distribution.

 User-to-User Item-Item Distribution
MAE 0.7954 0.7805 0.8556

Table 2 illustrates that our new Belief Distribution Algorithm on
average cannot predict “most probable” point ratings as well as
the popular NN algorithms. However, this only has bearing on
recommendation systems that display one-dimensional predicted
ratings to the user. Furthermore, we believe that the difference in
MAE performance can be recovered with some additional tuning
of the Belief Distribution Algorithm.

The far superior performance of our Belief Distribution Algorithm
without a catastrophic loss in MAE gives us further confidence in
our analysis from section 2.3: that Item-Item and User-User NN
algorithm results are excessively low, indicating a poor user
experience.

4. Conclusion and Future Work
Collaborative filtering algorithms’ performances have been
evaluated using a variety of metrics. These metrics, such as Mean
Absolute Error and Precision, have often ignored
recommendations for which they do not have data. Ignoring these

recommendations has provided numbers which do not accurately
represent the user experience. Qualitatively we have seen that
User-User and Item-Item algorithms are often plagued with
obscure recommendations. This flaw was illustrated
quantitatively by the extremely low modified Precision scores.
To address this problem and provide a better user experience we
proposed a new Belief Distribution Algorithm. Our Belief
Distribution Algorithm retained comparable predictive
capabilities to previous nearest-neighbor algorithms while
achieving far superior results for recommendations.
In the future, we plan to run a user study in which a complete set
of ratings is collected, enabling us to evaluate just how accurately
modified precision measures the user experience and look for
significant gaps where it does not.

5. ACKNOWLEDGMENTS
Much of the early work on the development and analysis of the
Belief Distribution Algorithm was done by Min Yang. The
algorithm was implemented and tested using the CFEngine
collaborative filtering framework in Java (available at
http://eecs.oregonstate.edu/~herlock), which was written in part
by Olivier Godde, Shuzhen Nong, and Yun Wang with help from
a host of others at Oregon State. Funding for this work was
provided by the National Science Foundation under IIS- 0133994.

6. REFERENCES
 1. Breese, J. S., Heckerman, D., Kadie, C., 1998. Empirical

analysis of predictive algorithms for collaborative
filtering. Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence (UAI-98). Morgan
Kaufmann, San Francisco. (pp. 43-52).

 2. Dahlen, B. J., Konstan, J. A., Herlocker, J. L., Good, N.,
Borchers, A., Riedl, J., 1998. Jump-starting movielens:
User benefits of starting a collaborative filtering system
with "dead data". University of Minnesota TR 98-017.

 3. Herlocker, J. L., Konstan, J. A., Riedl, J., 2002. An
Empirical Analysis of Design Choices in Neighborhood-
based Collaborative Filtering Algorithms. Information
Retrieval, 5 287-310.

 4. McJones, P., DeTreville, J., 1997. Each to Each
Programmers Reference Manual. Digital SRC Technical
Note 1997-023.

 5. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P.,
Riedl, J., 1994. GroupLens: An open architecture for
collaborative filtering of netnews. Proceedings of the 1994
Conference on Computer Supported Collaborative Work.
ACM Press, New York. (pp. 175-186).

 6. Sarwar, B. M., Karypis, G., Konstan, J. A., Riedl, J., 2000.
Analysis of Recommendation Algorithms for E-
Commerce. Proceedings of the 2nd ACM Conference on
Electronic Commerce (EC'00). ACM Press, New York.
(pp. 285-295).

 7. Sarwar, B. M., Karypis, G., Konstan, J. A., Riedl, J., 2001.
Item-based collaborative filtering recommendation
algorithms. Proceedings of the 10th International World
Wide Web Conference (WWW10).

 8. Shardanand, U., Maes, P., 1995. Social Information
Filtering: Algorithms for Automating "Word of Mouth".
Proceedings of ACM CHI'95 Conference on Human

Factors in Computing Systems. ACM, New York. (pp.
210-217).

