
3 Coordination languages 1

Lecture 3: Coordination languages
Contents

• Linda-like languages: embedding the Tuple Space

• Coordination and declarative languages

• Coordination and object-oriented languages

• Coordination languages for mobile agents

3 Coordination languages 2

Linda and friends
What Linda taught:

programming =
(distributed) coordination + (sequential) computation

The basic idea is to give a small set of coordination primitives
useful to design a distributed system

The main advantage consists of automatic load balancing
implicit in agenda parallelism (associative matching) and
simplicity of master/worker software architectures exploited
for parallel programming

Moreover, Linda is intrinsically multiparadigm and can
support interoperability across languages

However:

• no formal semantics
• no logic to reason on coordination
• no general hints on how to embed a coordination model in a

host language
• few hints on how to optimize coordination-level language

mechanisms independently from the underlying hardware

3 Coordination languages 3

 Marrying Linda with a host language

 Linda is a coordination language, that is it needs to be
embedded in a host sequential language to offer a full
(parallel) programming language

 Linda has been coupled to several conventional languages,
like C and FORTRAN (original SCA™ Linda), Pascal,
Scheme, Ada, Eiffel, Prolog, etc., and implemented on several
hw architectures

 Remark: For the Linda family of languages a semantics gap
existed: they were designed and implemented for several
distributed architectures, but not formally defined; the Linda
concept itself has been instantiated in different forms by
different language designers

3 Coordination languages 4

 Language design issues

 The main problems to be solved by a language designer are:

⇒ Data structures and types

Which data structures are allowed in the tuples?
(for instance, in C-Linda pointers are not allowed)

⇒ Matching rules for operations in the Tuple Space

How is defined the matching operation? (for instance, in
Prolog-Linda it has to be based on unification)

⇒ Control of tuple operations

Which kind of control structures can be used with Linda
operations? (for instance, backtracking is difficult to
implement in a distributed setting)

⇒ Definition of eval

Which is the semantics of new processes/agents? Which
code and data of the parent process they can refer to?
How many active threads can be included in a tuple? How
do they synchronize?

3 Coordination languages 5

Choices in designing a semantics for a
Linda-like language

We have studied and compared a number of formal semantics
for Linda, and found a number of options in describing the
combination of its coordination model with another
programming language

• simple matching / constrained matching?

• eval is the only means of process creation?

• active tuples actually exist?

• active fields in an active tuple are executed in parallel?

• active tuples are first class objects?

• bulk retrieval operations, if possible, are atomic?

• tuple space name always specified?

• tuple spaces are first class objects?

• scoping hierarchy of tuple spaces?

• garbage collection of tuple spaces?

• a global (root) tuple space as operating environment?

3 Coordination languages 6

A universal Linda interpreter
In Yale, each Linda implementation was studied and
optimized for a specific language/hw architecture; however, a
more universal although naive approach can be used

In fact, a simple Linda implementation is easily obtained using
a client-server sw architecture

Programs which wish to use the tuple space are clients of
servers which implement the Tuple Space;
in [Pinakis 93] there are two types of servers (a pair of such
servers has to be present at each node):

• tuple servers, which manage a partition of currently active
tuple types

• type servers, which are used to locate tuples of a particular
tuple type

Each tuple type is managed by the tuple server on exactly one
host (owner-id) and has a unique tuple-id on that host

Performing a Linda operation therefore involves two steps:
1. determine (owner-id,tuple-id)
2. send request to owner host and possibly wait for reply

3 Coordination languages 7

Pinakis’ solution
The following diagram explains a sw architecture defined by
Pinakis

Note: since eval operation can easily simulated by in/out/rd
and “demon” workers, it is not implemented

host2

client

tuple space

host1

rexec

Unix
pipe

output
redirect

ps

(“ exec” , host 2, “ ps”)

(“ i o_l i ne” , i o_i nf o)

3 Coordination languages 8

Linda and logic programming
There are several ways to define a Linda-based logic language

a) Prolog + non-backtrakable Linda primitives:
simple implementation, inconsistent with the “pure logic
programming paradigm” (but similar to
assert /retract) [SICSTUS, Tarau’s BinProlog];

b) Prolog + backtrakable Linda primitives:

complex implementation (distributed backtracking) similar
to DeltaProlog [Monteiro-Porto]; intensional or extensional
tuple space [Delta-D-Prolog: Sutcliff and Pinakis 91,
Omicini 97]

c) A parallel logic language based on multiset rewriting, i.e. a

new parallel logic language with “Linda flavor” [Shared
Prolog; µLog; Gammalog]

d) Using non standard semantics, like linear logic [LO by

Andreoli; Forum by Miller]

3 Coordination languages 9

Sicstus™ Prolog-Linda
Sictus Prolog offers some simple Linda-like predicates

One Prolog process is running as a server and one or more
processes are running as clients; all processes are
communicating via sockets

The server is in principle a blackboard on which the clients
can read/write using the Linda operations:
out /1 read /1 in /1
If the data is not present on the blackboard, the predicates
suspend the process until they are available.

There are some more predicates: in_noblock /1 and
rd_noblock /1 do not suspend if the data is not available---
they fail instead.

A fetch of a conjunction of data is done with in /2 or rd /2:

in([e(1),e(2),...,e(n)],E)
E instantiated to the first tuple to become available,
among those listed

EXAMPLE: A simple producer-consumer

producer :- % client1
 produce(X), out(p(X)) ,producer.
produce(X) :-

consumer :- % client2
 in(p(A)) , consume(A), consumer.
consume(A) :-

3 Coordination languages 10

MultiProlog
The blackboard interpretation of logic programming is based
on a Linda-like coordination model

MultiProlog (DeBosschere & Tarau) includes blocking and
non-blocking built-ins to manipulate distributed blackboards

out(X):- tellt(world,X).
%puts X on the server

in(X):- gett(world,X).
%takes a matching term X from the server

all(X,Xs):- tellt(world,X).
% puts X on the server

out(X):- tellt(world,X).
% puts X on the server

MultiProlog has been used to build a prototype MUD
(LogiMOO) and some prototype applications in the field of
electronic commerce [Tarau and others, 1997]

3 Coordination languages 11

The tuple space coordination model
in Shared Prolog

Basic idea: a parallel logic language based on the Tuple Space
concept, i.e. a logic language with “Linda flavor”

• Prolog for sequential computation
• shared-dataspace of logic terms
• rewriting rules and unification

A logic tuple space implements a blackboard-like data
structure that can be shared by a number of logic processes
(Prolog programs)

Shared Prolog (SP) evolved as “kernel language” of a family
of coordination languages, all based on extensions of the basic
tuple space model.
Extended Shared Prolog (ESP): extends SP with multiple
tuple spaces, to design logically distributed systems

SP vs Linda:
• SP uses full logic unification, Linda uses (sequential) typed

pattern matching
• In Linda rd , in and out are allowed everywhere in a

program; SP is more structured and allows transactions on
tuple space

3 Coordination languages 12

Shared Prolog
A SP program is composed of a set of theories and a
dataspace (orblackboard), i.e. a (possibly empty) multiset of
Prolog atoms.

For instance, supose we have to specify a reservation system
including a database (stored in the blackboard),
a set of theories corresponding to the agencies,
and a theory corresponding to the airline company

The system is activated by an initial goal:
database || airline || agency_1 || … || agency_n

The symbol “||” stands for parallel execution, i.e. this goal is
composed of n+2 AND-parallel processes.

One of the atoms in the initial goal must correspond to a
blackboard: in this example it is the database .

Here the blackboard initially contains the number of free seats
for each flight; its initial configuration is given by the
following rule:

database:- {flight(1,p 1),…,flight(k,p k)}.

where in flight(i,p i) i is the flight number and p i the
number of free seats

3 Coordination languages 13

A theory

agent agency_i:-

eval

not ready(agency_i)
| initialization
{ready(agency_i)}

♦
{ready(agency_i)}
| query to the system
read(C),exec(C,Ci)
{query(Ci)}

♦
{result(agency_i,R)}
| answer from the system
write(R) {ready(agency_i)}

with exec(reserve(F,N),reserve(F,N,agency_i)
).exec(info(F),info(F,agency_i)).

3 Coordination languages 14

Informal semantics
Each agent is able to perform some operations on tuples

• associative (blocking) test of a tuple contained in the
dataspace;
in SP the test operation has a broader semantics than read in
Linda: a number of predefined tests on the dataspace are
allowed, depending on the chosen type system for tuple
arguments.

• associative (blocking) consumption of a tuple contained in
the dataspace; this operation also has a broader semantics
than in in Linda: several tuples can be collected and
consumed by special operators that return multisets.

• asynchronous creation of a tuple inside the dataspace.

In SP there is no need of an operation like eval for creating
active tuples because we adopt a ``chemical'' semantics, that
is tuples that match coordination rules are implicitly active.

3 Coordination languages 15

Programming in Shared Prolog
% program to find the best path in a DAG
% (it is acyclic!)

[in(s,0), in(a,1), in(b,1), in(c,1), in(d,2),
 in(e,3), in(f,1), in(g,1), in(h,3), in(i,2),
 in(j,1), in(k,2), in(l,2), in(m,1), in(t,4),
 e(s,a,5), e(s,b,6), e(s,c,4), e(a,d,2), e(a,e,5),
 e(b,d,1), e(b,e,3), e(c,e,4), e(c,f,1), e(d,g,7),
 e(d,h,2), e(e,h,1), e(e,i,3), e(f,h,2), e(f,i,2),
 e(g,j,4), e(g,k,2), e(h,k,3), e(h,l,2), e(i,l,4),
 e(i,m,3), e(j,t,5), e(k,t,1), e(l,t,4), e(m,t,2),
b(s,s,0)] @ best.

agent best :-
eval

b(X,A,C1), [e(A,B,C2)] % guard
| % commit
NewC is C1+C2, % Prolog goal
[p(X,B,NewC)] % out

#
[p(A,B,C1), in(B,N)], p(A,B,C2)
C1 >= C2
|
DecrN is N-1,
[p(A,B,C2), in(B,DecrN)]

#
[p(A,B,C), in(B,1)]
|
[b(A,B,C)]

.

3 Coordination languages 16

Implementing Shared Prolog

rules

program

rules

program

a) Distributed workers.

rules

program rules

program

rules

program

rules

program

Rule
Scheduler &
Tuple Space

Workers

b) Distributed agents.

Tuple Space

program

rules

program

rules

Tuple Space

c) Distributed rules.
Agents

3 Coordination languages 17

Implementing Shared Prolog

Blackboard agent

Theory 1 agent Theory k agent

Agent (extended Prolog process)

Interprocess communication

…

C code for
send & receive

C code for
send & receive

Theory 1 Theory n

C code for
send & receive

Blackboard
manager

Global communication server

3 Coordination languages 18

Analyzing coordination in SP

Flow Graphs of SP Programs

Let a be an atom, P1 and P2 be patterns

• OUT_FLOW
has an edge labeled with a if
a ∈ Out(P1)
AND
(a ∈ Read(P2) OR a ∈ In(P2))

• IN_FLOW
has an edge labeled with a if
a ∈ In(P1)
AND
(a ∈ Read(P2) OR a ∈ In(P2))

• CONFLICT_FLOW
P1 and P2 are connected if
they belong to the same theory
OR
In(P1) ∩ In(P2) ≠ ∅

ptt.2

dec(2)

dec(1)

code
ptt1

code

tried(X,L)

tried(X,L)

try(X)try(X)

try(X)

try(X)
dec(1)

dec(2)

code
ptt1

ptt.2
code

dec(1)

dec(2)
code
ptt.2

code
ptt1

3 Coordination languages 19

Extended Shared Prolog (ESP)
Extended Shared Prolog adds (nested) multiple ts to SP

bank_network

bank (1)

account(client1,1000)

tty (1) tty (2)

teller(1) teller(3)

.....

....

.....................................

customer (client1,bank (1))
..................

bank (n)

account(client2, 200)

.................

.................

.................

switch (1)

switch (4)

.....................

A run-time for ESP
system

empty_mcbb(mcbb(3),[mcag(4),mcag(5)]) ……
root_of_mcbb([c,b,a],mcbb(0),[mcag(1),mcag(2)])……

mcbb(0)
bb([c,b,a])

mcag (1)

k_th b_th

mcag (2)

k_th b_th

mcbb (1)

......................

......................

mcbb (3)

shell comm_server mcbb_server

..........

trigger_theory terminate

act_theory_local act_theory_remote

name_server

3 Coordination languages 20

Linda and OO programming
In [MatsuokaKawai 88] we find the first proposal for an OO
Linda, based on a reformulation of the TS coordination model
for OO programming in SmallTalk

• tuples and tuple spaces become objects; an object now can
retain a msg/tuple even if does not have the ability to
understand it, or can transparently delegate it

• sender and receiver have to be symmetrical (in Linda they are
not, because all the receivers must share the same info on
shared tuples): so both out tuples in TS,
and in this model we have both receiver and sender tuples

• logical distribution of tuple spaces, to improve efficiency and
security, and offer naming scope to tuples

Class Tuple (Tuple)
a tuple is an arbitrary sequenced collection of element objects,
including tuple spaces; matching in compicated by inheritance

Class Formal (Formal arguments)
this is only used in communication matching

Class TS(Tuple Space)
<TupleSpace> put:<Tuple> like out in Linda
<TupleSpace> set:<Tuple> synchronous out
<TupleSpace> get:<Tuple> like in in Linda
<TupleSpace> read:<Tuple> like read in Linda

The model also introduced operations to manipulate multiple
tuples (bulk operations)

[Jellinghaus 90] introduced Eiffel Linda

3 Coordination languages 21

Objective Linda
Objective Linda [Kielman 97] introduces a concept of Object
Interchange Language, a language independent notation to
describe abstract data types

An OIL_object defines the basic operations needed by all
types: for instance, there is a match predicate which takes as
parameter an object of the same type and decides if it matches
some requirements

Operations belonging to the coordination model are based on
the types interfaces: a reader has to specify the type of object
it wishes to get from the object space

class BARRIER_SYNC inherit OIL_OBJECT
redefine match end

creation create

feature barrier_id : STRING;
create (id: STRING) is

do barrier_id := id; end;
match (candidate : like current): BOOLEAN

is
do Result :=
 candidate.barrier_id = barrier_id; end;

end

3 Coordination languages 22

Objective Linda
Since Objective-Linda is intended as a tool for designing open
systems, all operations include a time-out; moreover, out and
eval return a boolean value to signal successful completion.

out(m:MULTISET; timeout:REAL):BOOLEAN
eval(m:MULTISET; timeout:REAL):BOOLEAN

in and rd take as parameter the object (OIL_OBJECT) to
search; the operation has to find at least min such objects and
return max of them by the timeout

in(o:OIL_OBJECT;min,max:INTEGER;timeout:REAL):MULTISET
rd(o:OIL_OBJECT;min,max:INTEGER;timeout:REAL):MULTISET

min max timeout behavior
out 0 immediately fail on errors

t wait t secs before failing on
errors

infinite Linda out
eval 0 immediately fail on errors

t wait t secs before failing on
errors

infinite Linda eval
in 0 0 nay empty op

0 1 0 Linda inp
1 1 infinite Linda in
1 n any consume up to n objects
1 infinite any consume all matching objects
infinite any t sleep t secs

rd 0 0 any empty op
0 1 0 Linda rdp
1 1 infinite Linda rd
1 n any consume up to n objects
1 infinite any consume all matching objects
infinite any t sleep t secs

3 Coordination languages 23

Multiple tuple spaces in Objective Linda

Configurations is Objective Linda include object spaces and
OIL objects both passive and active (agents).

Agents by default can access two special object spaces:

• their context, which is the space inside which the eval op for
such an object has been issued
• their self, which is a space directly associated to the object

Other object spaces are accessible through logicals, which are
references which can be passed around by active objects

When an object intends to let another object to access a
space, it outs its logical to another space, from where it can be
retrieved with a special attach operation:

attach(o:OS_Logical; timeout:Real): Object_Space

Formal semantics for Objective Linda has been studied in
[HolvoetKielmann97] using a special Petri Net semantic
model

ObjectSpace2ObjectSpace1

A1 A2 A3

A4

3 Coordination languages 24

Linear Objects
Linear Objects (LO) [Andreoli Pareschi 91] is an object based
language based on the IAM coordination model.

An LO program is a set of methods (rewriting rules)
An agent is represented by a multiset
Interagent coordination is possible via broadcast

<multiset> <broadcast> <built-ins> o– <goal>

Multisets are described as: a1 @ … @ an

Goals have the forms: a1 @ … @ a1 | goal1 & … & goaln | T

A query is <P, G> where P is a program and G a goal

Semantics:
Given a query <P,G>, a computation consists of the
construction of a target_proof, that is a tree whose nodes are
labelled by LO sequents of the form P |- C; branches are
obtained using the following inference rules:

• Decomposition
P |− G1 , G2 , C P|− G1,C P|− G2,C
P |− G1 @ G2, C P |− T ,C P |− G1 & G2 , C

• Propagation: if (Head @ Tell o- G) ∈ P
P |− G1 , C
P |− || Head @ Tell ||, C

A target_proof for a query <P,G> is a tree whose root is
P |− G , C Leaves are labelled by [T]

3 Coordination languages 25

A proof tree
Suppose that the method p @ q o– (r@s) & t
is triggered in the multiset {p,q,u}

The resulting computation is depicted by the proof tree

r,s,u
r@s,u

(r@s)&t,u

t,u

p,q,u

In other words, the computational interpretation of linear
sequents can mirror the IAM

mailto:r@s

3 Coordination languages 26

Programming with LO
A safe queen program

Coordination code

queens(N) <>-
 board(N,0,[]).

board(N,N,B)@{remote_format('Safe board:~q~n',[B])} <>-
 top.

board(N,I,B) @ {check_new_boards(N,B,LB),I1 is I+1} <>-
 make_boards(N, I1, LB).

make_boards(N, I, []) <>-
 top.

make_boards(N, I, [H|T]) <>-
 make_boards(N, I, T) &
 board(N, I, H).

Prolog computation code (fragment)

check_new_boards(N, B, LB) :-
 new_boards(N, B, LB1),
 safe_boards(LB1, LB).

new_boards(0, _, []).
new_boards(X, B, [NB|LB]) :-
 X1 is X-1,
 append(X, B, NB),
 new_boards(X1, B, LB).

safe_boards([], []) :- !.

safe_boards([H|T], [H|T1]) :-
 safe(H),
 safe_boards(T, T1), !.

safe_boards([_H|T], T1):-
 safe_boards(T, T1), !.

3 Coordination languages 27

Programming with LO
This EPS image does not contain a screen preview.
It will print correctly to a PostScript printer.
File Name : 10.ps
Title : /tmp/xfig-export003900
Creator : fig2dev
CreationDate : Wed Jul 29 15:44:44 1992
Pages : 1

3 Coordination languages 28

Programming with LO
A customer has to buy and sell stocks. There are 3 stock
markets: Tokyo, Paris, NewYork. To initialize them, we insert
in each one some buy and sell offers. These offers are
contained in the "stock_prices" list.
There is a manager is waiting for an order. When an order
from a client arrives, the manager takes care of it and a new
manager is created to receive other orders.

main @ client_list(Buy,Sell,I,B) <>-
 stock_market(tokyo) @
 buy(sony,110,99,john,tokyo) @
 buy(honda,500,300,mary,tokyo) @
 sell(toshiba,100,50,mary,tokyo) @
 sell(sony,115,25,jim,tokyo) &
 stock_market(paris) @
 buy(bull,90,876,mary,paris) @
 buy(lacoste,523,391,john,paris) @
 sell(renault,150,643,susan,paris) &
 stock_market(newyork) @
 buy(sony,200,300,morris,newyork) @
 sell(renault,120,400,mary,newyork) &
 manager @ client_list(Buy,Sell,I,B) &
 counter.

Brokers need counter to avoid waiting indefinitely offers from stock
markets. When the counter receives a "begin(I,N1)" message
(I is the broker name, N1 is the name of the stock type) from a broker, it
acts as a timer for him and a new counter is created to satisfy other
requests from other brokers. When the fixed time is expired, counter
sends a "end(I,N1)" message to the broker I and ends his work.

counter @ begin(I,N1) <>-
 counter(I,N1) @ timer(20000) & counter.

counter(I,N1) @ timer(X) @ {X>0, Y is X-1} <>-
 counter(I,N1) @ timer(Y).

counter(I,N1) @ timer(0) @ ^end(I,N1) <>- #t.

3 Coordination languages 29

ForumTalk
LO has been implemented as a coordination language
combined with host languages like Prolog and Modula-3

LO (like Linda) is not suitable for open systems design,
because the program should be completely known before
execution to be statically analyzed

The main coordination medium in LO was the Forum, a sort
of tuple space used for broadcast

This coordination medium was abstracted from LO and used
as basic coordination model of ForumTalk [Andreoli 96], a
coordination platform to which LO programs could plug in at
run time

The architecture of ForumTalk consists of a coordination
service implemented by several servers; the servers maintain a
big LO proof-tree to which the servers can dynamicalyy
connect by the following ops:

- forum-join : register the server in the session; the tree is
expanded at that node
- agent-start : starts an agent (a normal LO program) on
the server where it is invoked

forum

external world

pure agents
(coordinators)

event-driven
agent

3 Coordination languages 30

Coordination Language Facility (CLF)

The transactional nature of multiset rewriting as embedded in
the LO model is at the basis of CLF [Andreoli et al. 1996], a
software platform that merges OOP and transaction systems
to coordinate access to distributed resources

• objects can dynamically offer new services
• multiparty negotiation can be specified and implemented

The sw architecture of a CLF application includes a number
of application servers (participants) which are coordinated by
one or more rule-based clients (coordinators) which execute
LO programs

external world

LO rules LO rules

3 Coordination languages 31

CLF basic coordination protocol
The CLF platform is implemented as an extension of
client/server plus the following protocol:

Inquiry : (synchronous) a client inquires if a server holds or
may produce a resource; the server (starts a thread and)
answers with a stream of actions it may perform on demand
to make such a resource available

Reservation: (synchronous) the client requests the server to
reserve one of the actions returned during the Inquiry phase.
Accepting a reservation means that the server commits to
perform the action on demand, with no possibility of failure.

Confirmation/cancelation: (asynchronous) The client may
either confirm or cancel an action it has reserved. If confirmed
the action must be executed leading to the deletion of the
corresponding resource.

Insert: (asynchronous) the client requests the insertion into
the server of a resource.

3 Coordination languages 32

Structure of a CLF object
A CLF object can be implemented in any language, and can
encapsulate any kind of resources

The interface of the object defines the properties (services)
which are visible to the clients. Each service is implemented
by a bank, which may encapsulate as wrapper a legacy
application

The CLF library provides classes of objects in the target
languages (currently C++ and Python)

Communication infrastructure (eg. CORBA, HTTP)

methods
(standard oo protocol)

services
(CLF protocol)

bank bank

resources

3 Coordination languages 33

Example
This example extends the flight reservation service already
described for LO

journey_request(Name,From,To) @
flight_from(From,TransferAt,FlightNum1) @
flight_to(TransferAt,To,FlightNum2) @
book_seat(Name,FlightNum1) @ book_seat(Name,FlightNum2)
<>- print_ticket(Name,FlightNum1,FlightNum2)

This coordination rule involves three participants:
- a user terminal which holds the tokens journey_request and
print_ticket
- a flight database which holds the tokens flight_from and
flight_to
- a travel agency which holds the tokens book_seat

signatures:
journey_request(Name,From,To):->Name,From,To
flight_from(From,To,FlightID):From->To,FlightID
flight_to(From, To,FlightID):From,To->FlightID
book_seat(Client,FlightID):Client,FlightID->

interfaces:
journey_request = user_terminal
flight_from = all_flight_info
flight_to = all_flight_info
book_seat = travel_agent

3 Coordination languages 34

Actor Spaces
The ActorSpace model [Callsen Agha 94] is a model which
extends actor-style point-to-point asynchronous commu-
nication with pattern-directed invocation and broadcasting

The target systems to be designed are open, meaning that
clients cannot be trusted, so security must be enforced

Client: requests service from a server
Server: provides a service to a set of clients
Manager: surveys the system and adjusts it to suit needs as
they arise

ActorSpace (AS) adds new concepts to Actors:

- attributes, i.e. patterns that abstractly describe an external
view of an actor; pattern matching can be used to pick actors
whose attributes satisfy a given pattern. Thus in AS two
forms of addressing coexist: an actor may be accessed by
name or by pattern matching
- actorSpaces: a passive container of actors, i.e. a scoping
mechanism for pattern matching; actorSpaces can be nested.
Actors and ActorSpaces may be made visible or invisible in an
AS. A manager is associated to each AS, that validates
capabilities and enforces visibility changes
- capabilities: provide secure access control

Communication operations:
• send(pattern@actorSpace,message)
(one to one)
• broadcast(pattern@actorSpace,message)
(one to many)

mailto:pattern@actorSpace,message
mailto:pattern@actorSpace,message

3 Coordination languages 35

Coordination in Java and the WWW

The WWW was born as a (huge) distributed hypertext
document management system, but it rapidly become
something more, and it is still evolving

The availability of a Java VM on most Internet hosts offers a
world-wide programmable infrastructure (a cyberspace?)

When a browser downloads and executes a Java applet
this is mobility of code

Some applications require complex coordination management:
- “intelligent” homes with networked appliances
- software distribution and maintenance
- infotainement (e.g. MUD, Internet playing clubs)
- electronic commerce
- workflow systems for active docs (eg based on XML/Java)

3 Coordination languages 36

Jada
Jada [Ciancarini&Rossi 1996] is a simple combination of Java
with Linda-like coordination

Jada (www.cs.unibo.it/~rossi/jada/index.html)
provides:

• mobile object coordination: no syntax extension for Java,
just a set of classes. Each Jada data type used is a Java object

• dynamic tuple creation: being an object, a tuple can be
created with new and many different constructors are
provided in order to build a tuple from a string, an array of
objects or a set of arguments

• multithreading support: in Jada different threads can access
the same tuple space; blocking requests are managed at
thread-level

• open systems support: at any time threads or applications
can perform an operation on a tuple space.

• associative access to collections of tuples: we provided
special arguments for in and read requests (any) in order to
allow the use of multiple matching tuples

• no eval

3 Coordination languages 37

Jada design choices
We designed Jada as a minimalist language, aiming to
simplicity rather than performance

• The basic objects used in Jada are Tuple and TupleSpace
• To allow remote access to a tuple space the TupleServer
and TupleClient classes are also provided.

TupleServer is a multithreaded class which translates requests
received from instances of the TupleClient class in calls to the
methods of the TupleSpace class

A TupleClient interfaces with a remote TupleServer object
(which really holds the tuple space) and asks it to perform the
Linda-like operations and to return the result

Both TupleServer and TupleClient are based on TupleSpace:

- TupleServer includes a tuple space and uses it to perform
requested operations;
- TupleClient differs from TupleSpace: the access to the tuples
is tranformed in requests for the TupleServer

The Jada objects TupleServer and TupleClient communicate
using sockets.
TupleClient needs to know host and port of TupleServer, so a
set of constructors is provided to specify TupleServer host
and port

3 Coordination languages 38

Jada software architecture

3 Coordination languages 39

 JavaSpaces™ (SunSoft)

 JavaSpaces™ [JavaSoft 98, java.sun.com/products/javaspaces]
is a Jini component providing orchestration and data exchange
mechanisms for Java

 A JavaSpace is a multiset of entries; an entry is a typed group
of objects expressed in a special Java class. Clients can
perform the following operations:

 - write (out) an entry in a JavaSpace
 - read an entry from a JS matching a given template
 - take (in) an entry from a JS matching a given template
 - notify an object when entries that match a given template
are writen into this JS

 JavaSpace provides atomic transations to group multiple
operations across multiple JS

wr i t e

wr i t e

t ake

Identi ties

Cl ient

Cl ient Event
catcher

transactionnot i f y

r ead

wr i t e

wr i t eEvent

not i f y

3 Coordination languages 40

 Tspaces™ (IBM)

 TSpaces™ [Wyckoff98, www.almaden.ibm.com/cs/TSpaces] is
apparently similar to JavaSpaces: it is a platform for
enhancing Java with coordination mechanisms

 The tuplespace operators are: write (like out); blocking
and non-blocking read , and take (like in); multiset-
oriented operators, and some novel operators like rhonda
(associative rendez-vous)

 Agents can register to be notified of events happening in a
TSpace server

 The main novelty introduced by Tspaces wrt JavaSpaces is
that the tuple space is implemented as a relational database,
and operations are transactions

 Security policies can be established settiung user and group
permissions on Tuplespaces

3 Coordination languages 41

 The WWW meets Linda

 The basic reason for supporting WWW applications with
Linda-like coordination is that I/O processing and data
processing can be easily separated.

 CGI scripts become responsible for I/O, and communicate
with applications via the Tuple Space

 • applications can use services on different hosts

 • the application can written with multiparadigm languages

 • the CGI script is only responible for displaying the data

 • coordination between interface and application is centered in
the Tuple Space

 The WU Linda toolkit [Schoenfeldinger 95] combines the
tuple space coordination model with some popular scripting
languages, like Perl and TCL/TK

3 Coordination languages 42

 PageSpace

 The initial idea in PageSpace [Ciancarini et al 98] was to use
a tuple space as WWW server, to coordinate access to
“active” pages by associative invocations; we have enhanced
such an idea, using a concept of coordination language for
Java applets

 During the project, we have

 • studied and classified groupware applications of WWW

 • designed the middleware necessary to support these
applications, formulating it in terms of coordination primitives

 • built some prototypes based on some coordination
languages (Paradise, Shade/Java, Laura)

 • built a proof-of-concept application for electronic commerce

3 Coordination languages 43

 A vision of PageSpace as middleware

User agent
(eg. Mosaic)

Internet

Authorization service

Object
Broker

Object
Broker

Object
Broker

Internet via object broker

Service
PageSpace

Object wrapper layer

Applications PageSpaces

HTTPD

User Pagespace

3 Coordination languages 44

 Designing a pagespace

 We have developed a reference middleware architecture for
PageSpace, consisting of a number of components

 α pagespace client: browser+coordinated helpers
 β homeagent: (persistent) user broker in a pagespace
 γ coordination environment (e.g. tuple space, service space)
 δ application agent (eg. to play, to buy, etc)
 ε coordination runtime server in the local host
 ζ gateway agent to other platforms (eg. CORBA)

 We are currenly working especially on the preliminary design
of γ extending and integrating Java capabilities

 A kernel has been obtained combining Java with Linda (Jada)

 We have used Jada to implement and test two different
coordination environments, respectively based on Laura
(service space) and Shade (workflow and transaction space)

γ

α

α
δ

 β

3 Coordination languages 45

 Some applications of PageSpace

 We have studied a number of applications of PageSpace in
office automation, electronic commerce, process centered
environments, concurrent engineering

 • process-centered environments

 • distributed auction bidding, financial services

 • infotainement servers integrated in the WWW

 Example: process-centered environment.
 PageSpace is used for storing and retrieving (XML-based)
documents that represent the status of a software process; a
number of tools can be invoked following some (rule-based)
workflow process

 Example: distributed auction bidding.
 A number of customers use a pagespace to sell and buy goods
represented as XML documents using some stock exchange
mechanisms

3 Coordination languages 46

 Kinds of Mobile Entities

 Mobility of data
 Clients and servers usually only exchange ASCII data

 Mobility of reference
 Each agent has a reference to a “working location”, but it
can change such a reference, “moving” in a static structure

 Code mobility [plain Java]
 Programs move (on demand) from a site to another

 Agent migration [Aglets, etc]
 Agent images (code & store) can move from a location to
another, travelling some “itinerary”

 Threads migration
 Agent images and scheduling state (code & store &
execution state) travel some “itinerary”

 Closure mobility [Cardelli’s Obliq]
 An agent moves and keeps its environment

 Ambient mobility [Bauhaus, Ambient]
 Both agents and their operating environments can move

3 Coordination languages 47

Macondo: mobility by migration
Macondo (Mobile Agents and CoordinatioN for Distributed
applicatiOns) [CGR00] is a Linda-based coordination
environment where Java agents can migrate

The coordination media consist of a set of distributed object
spaces (similar to tuple spaces, but tuples are Java objects);
agents can migrate from a space to another one

An object space is used to coordinate mobile agents, namely
to manage their relationship with other agents in the same
place and with the underlying runtime system

Agents at any time reference the local object space using the
following operations:
- in ,read ,out an object in the local object space
- register , to request the runtime to issue a notification
when some specific object appears in the object space
- go , to migrate to another place

Some manager agents can create and destroy places

We have used Macondo for designing groupware applications
for mobile users

www.cs.unibo.it/~cianca/wwwpages/macondo/index.html

3 Coordination languages 48

KLAIM
KLAIM (Kernel Language for Agents Interaction and
Mobility) [DFP88, music.dsi.unifi.it/klaim.html]
has a coordination model based on (flat) multiple tuple spaces.

The language is a simple extension of Linda with new
primitives:

new-loc(l) creates a new location (tuple space) l
eval(P)@l creates a new process at location l
out(t)@l creates a new tuple at location l
in(t)@l consumes a tuple from location l
rd(t)@l reads a tuple from location l

The basic novelty of KLAIM is that any entity (agent, locality,
set of localities) is typed, thus it is possible to statically enforce
important properties of coordinable mobile systems, like
security

3 Coordination languages 49

LIME
LIME (Linda in a Mobile Environment) adopts the view that
physical and logical mobility coincide. A wireless network
includes mobile hosts; each host can be the home of one or
more mobile agents [PMR99, swarm.cs.wustl.edu/~picco/lime]

Each agent own a local tuple space; when the host containing
the agent joins a network, the local tuple space becomes
public and it is “merged” with the global tuple space formed
by spaces of agents already included in the network

The global tuple space is thus “transient”: if an agent leaves
the network, all “its” tuples not already consumed leave as
well

3 Coordination languages 50

Conclusions
Linda’s tuple space is a simple embodiment of a concept of
software bus, namely an interoperability platform (cf CORBA)

The tuple space can be implemented in several ways; an
optimized implementation needs a static analysis phase

Marrying Linda with a conventional language needs a study
of data structures used for coordination entities and media

The combination of Linda with logic languages has been
studied especially from the point of view of parallel
programming: large grain parallelism is especially suited to
logic programs

The combination of a coordination model with object oriented
languages is quite promising; still, a lot of research effort is
necessary to understand the coordination requirements of
distributed objects and define suitable coordination languages

The combination of coordination technologies with WWW is
especially promising because they support in a very natural
way concepts like open-endness and agent migration

