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Springer-Verlag (http://www.springer.de/comp/lncs/index.html)The Two Faces of Lattices in CryptologyPhong Q. Nguyen and Jacques Stern�Ecole Normale Sup�erieure, D�epartement d'Informatique,45 rue d'Ulm, 75005 Paris, Francepnguyen@ens.fr and http://www.di.ens.fr/~pnguyen/stern@di.ens.fr and http://www.di.ens.fr/~stern/Abstract. Lattices are regular arrangements of points in n-dimensionalspace, whose study appeared in the 19th century in both number the-ory and crystallography. Since the appearance of the celebrated Lenstra-Lenstra-Lov�asz lattice basis reduction algorithm twenty years ago, lat-tices have had surprising applications in cryptology. Until recently, theapplications of lattices to cryptology were only negative, as lattices wereused to break various cryptographic schemes. Paradoxically, several pos-itive cryptographic applications of lattices have emerged in the past �veyears: there now exist public-key cryptosystems based on the hardness oflattice problems, and lattices play a crucial rôle in a few security proofs.We survey the main examples of the two faces of lattices in cryptology.1 IntroductionLattices are discrete subgroups of Rn . A lattice has in�nitely many Z-bases,but some are more useful than others. The goal of lattice reduction is to �ndinteresting lattice bases, such as bases consisting of reasonably short and al-most orthogonal vectors. From the mathematical point of view, the history oflattice reduction goes back to the reduction theory of quadratic forms devel-oped by Lagrange [86], Gauss [55], Hermite [68], Korkine and Zolotarev [82, 83],among others, and to Minkowski's geometry of numbers [103]. With the adventof algorithmic number theory, the subject had a revival in 1981 with Lenstra'scelebrated work on integer programming (see [89, 90]), which was, among others,based on a novel lattice reduction technique (which can be found in the prelimi-nary version [89] of [90]). Lenstra's reduction technique was only polynomial-timefor �xed dimension, which was however enough in [89]. That inspired Lov�asz todevelop a polynomial-time variant of the algorithm, which computes a so-calledreduced basis of a lattice. The algorithm reached a �nal form in the seminalpaper [88] where Lenstra, Lenstra and Lov�asz applied it to factor rational poly-nomials in polynomial time (back then, a famous problem), from which the nameLLL comes. Further re�nements of the LLL algorithm were later proposed, no-tably by Schnorr [121, 122].Those algorithms have proved invaluable in many areas of mathematics andcomputer science (see [91, 78, 132, 64, 36, 84]). In particular, their relevance tocryptology was immediately understood, and they were used to break schemes1



based on the knapsack problem (see [119, 29]), which were early alternatives tothe RSA cryptosystem [120]. The success of reduction algorithms at breaking var-ious cryptographic schemes over the past twenty years (see [75]) have arguablyestablished lattice reduction techniques as the most popular tool in public-keycryptanalysis. As a matter of fact, applications of lattices to cryptology havebeen mainly negative. Interestingly, it was noticed in many cryptanalytic ex-periments that LLL, as well as other lattice reduction algorithms, behave muchmore nicely than what was expected from the worst-case proved bounds. Thisled to a common belief among cryptographers, that lattice reduction is an easyproblem, at least in practice.That belief has recently been challenged by some exciting progress on thecomplexity of lattice problems, which originated in large part in two seminalpapers written by Ajtai in 1996 and in 1997 respectively. Prior to 1996, littlewas known on the complexity of lattice problems. In his 1996 paper [3], Ajtaidiscovered a fascinating connection between the worst-case complexity and theaverage-case complexity of some well-known lattice problems. Such a connectionis not known to hold for any other problem in NP believed to be outside P.In his 1997 paper [4], building on previous work by Adleman [2], Ajtai furtherproved the NP-hardness (under randomized reductions) of the most famous lat-tice problem, the shortest vector problem (SVP). The NP-hardness of SVP hasbeen a long standing open problem. Ajtai's breakthroughs initiated a series ofnew results on the complexity of lattice problems, which are nicely surveyed byCai [30, 31].Those complexity results opened the door to positive applications in cryp-tology. Indeed, several cryptographic schemes based on the hardness of latticeproblems were proposed shortly after Ajtai's discoveries (see [5, 61, 69, 32, 99,50]). Some have been broken, while others seem to resist state-of-the-art at-tacks, for now. Those schemes attracted interest for at least two reasons: on theone hand, there are very few public-key cryptosystems based on problems dif-ferent from integer factorization or the discrete logarithm problem, and on theother hand, some of those schemes o�ered encryption/decryption rates asymp-totically higher than classical schemes. Besides, one of those schemes, by Ajtaiand Dwork [5], enjoyed a surprising security proof based on worst-case (insteadof average-case) hardness assumptions.Independently of those developments, there has been renewed cryptographicinterest in lattice reduction, following a beautiful work by Coppersmith [38] in1996. Coppersmith showed, by means of lattice reduction, how to solve rigor-ously certain problems, apparently non-linear, related to the question of �ndingsmall roots of low-degree polynomial equations. In particular, this has led tosurprising attacks on the RSA [120] cryptosystem in special settings such as lowpublic or private exponent, but curiously, also to new security proofs [128, 18].Coppersmith's results di�er from \traditional" applications of lattice reductionin cryptanalysis, where the underlying problem is already linear, and the attackoften heuristic by requiring (at least) that current lattice reduction algorithmsbehave ideally, as opposed to what is theoretically guaranteed. The use of lattice2



reduction techniques to solve polynomial equations goes back to the eighties [66,133]. The �rst result of that kind, the broadcast attack on low-exponent RSAdue to H�astad [66], can be viewed as a weaker version of Coppersmith's theoremon univariate modular polynomial equations.A shorter version of this survey previously appeared in [118]. The rest of thepaper is organized as follows. In Section 2, we give basic de�nitions and resultson lattices and their algorithmic problems. In Section 3, we survey an old appli-cation of lattice reduction in cryptology: �nding small solutions of multivariatelinear equations, which includes the well-known subset sum or knapsack problemas a special case. In Section 4, we review a related problem: the hidden numberproblem. In Section 5, we discuss lattice-based cryptography, somehow a revivalfor knapsack-based cryptography. In Section 6, we discuss developments on theproblem of �nding small roots of polynomial equations, inspired by Copper-smith's discoveries in 1996. In Section 7, we survey the surprising links betweenlattice reduction, the RSA cryptosystem, and integer factorization.2 Lattice problems2.1 De�nitionsRecall that a lattice is a discrete (additive) subgroup of Rn . In particular, anysubgroup of Zn is a lattice, and such lattices are called integer lattices. Anequivalent de�nition is that a lattice consists of all integral linear combinationsof a set of linearly independent vectors, that is,L = ( dXi=1 nibi j ni 2 Z) ;where the bi's are linearly independent over R. Such a set of vectors bi's iscalled a lattice basis. All the bases have the same number dim(L) of elements,called the dimension (or rank) of the lattice since it matches the dimension ofthe vector subspace span(L) spanned by L.There are in�nitely many lattice bases when dim(L) � 2. Any two basesare related to each other by some unimodular matrix (integral matrix of deter-minant �1), and therefore all the bases share the same Gramian determinantdet1�i;j�dhbi;bji. The volume vol(L) (or determinant) of the lattice is by de�-nition the square root of that Gramian determinant, thus corresponding to thed-dimensional volume of the parallelepiped spanned by the bi's. In the impor-tant case of full-dimensional lattices where dim(L) = n, the volume is equalto the absolute value of the determinant of any lattice basis (hence the namedeterminant). If the lattice is further an integer lattice, then the volume is alsoequal to the index [Zn : L] of L in Zn.Since a lattice is discrete, it has a shortest non-zero vector: the Euclideannorm of such a vector is called the lattice �rst minimum, denoted by �1(L) orkLk. Of course, one can use other norms as well: we will use kLk1 to denote3



the �rst minimum for the in�nity norm. More generally, for all 1 � i � dim(L),Minkowski's i-th minimum �i(L) is de�ned as the minimum of max1�j�i kvjkover all i linearly independent lattice vectors v1; : : : ;vi 2 L. There always ex-ist linearly independent lattice vectors v1; : : : ;vd reaching the minima, that iskvik = �i(L). However, surprisingly, as soon as dim(L) � 4, such vectors do notnecessarily form a lattice basis, and when dim(L) � 5, there may not even exista lattice basis reaching the minima. This is one of the reasons why there existseveral notions of basis reduction in high dimension, without any \optimal" one.It will be convenient to de�ne the lattice gap as the ratio �2(L)=�1(L) betweenthe �rst two minima.Minkowski's Convex Body Theorem guarantees the existence of short vec-tors in lattices: a careful application shows that any d-dimensional lattice Lsatis�es kLk1 � vol(L)1=d; which is obviously the best possible bound. It fol-lows that kLk � pdvol(L)1=d, which is not optimal, but shows that the value�1(L)=vol(L)1=d is bounded when L runs over all d-dimensional lattices. Thesupremum of �1(L)2=vol(L)2=d is denoted by 
d, and called Hermite's constant1of dimension d, because Hermite was the �rst to establish its existence in the lan-guage of quadratic forms. The exact value of Hermite's constant is only knownfor d � 8. The best asymptotic bounds known for Hermite's constant are thefollowing ones (see [102, Chapter II] for the lower bound, and [37, Chapter 9] forthe upper bound):d2�e + log(�d)2�e + o(1) � 
d � 1:744d2�e (1 + o(1)):Minkowski proved more generally:Theorem 1 (Minkowski). For all d-dimensional lattices L and all r � d:rYi=1�i(L) �p
rdvol(L)r=d:A general principle, dating back to Gauss, estimates the number of lattice points(in a full-rank lattice) in nice sets of Rn by the volume of the set divided by thevolume of the lattice, with a small error term. This approach can be proved tobe rigorous in certain settings, such as when the lattice dimension is �xed andthe set is the ball centered at the origin with radius growing to in�nity. Thus,one often heuristically approximates the successive minima of a d-dimensionallattice L by q d2�evol(L)1=d. This is of course only an intuitive estimate, whichmay be far away from the truth.For any lattice L of Rn , one de�nes the dual lattice (also called polar lattice)of L as: L� = fx 2 span(L) : 8y 2 L; hx;yi 2 Zg:1 For historical reasons, Hermite's constant refers to max�1(L)2=vol(L)2=d and not tomax�1(L)=vol(L)1=d. 4



If (b1; : : : ;bd) is a basis of L, then the dual family (b�1; : : : ;b�d) is a basis ofL� (the dual family is the unique linearly independent family of span(L) suchthat hb�i ;bji is equal to 1 if i = j, and to 0 otherwise). Thus, (L�)� = L andvol(L)vol(L�) = 1. The so-called transference theorems relate the successiveminima of a lattice and its dual lattice. The �rst transference theorem followsfrom the de�nition of Hermite's constant:�1(L)�1(L�) � 
d:A more di�cult transference theorem (see [9]) ensures that for all 1 � r � d:�r(L)�d�r+1(L�) � d:Both these transference bounds are optimal up to a constant. More informationon lattice theory can be found in numerous textbooks, such as [65, 131, 92].2.2 Algorithmic problemsIn the rest of this section, we assume implicitly that lattices are rational lattices(lattices in Qn ), and d will denote the lattice dimension.The most famous lattice problem is the shortest vector problem (SVP): givena basis of a lattice L, �nd u 2 L such that kuk = kLk (recall that kLk = �1(L)).SVP1 will denote the analogue for the in�nity norm. One de�nes approximateshort vector problems by asking a non-zero v 2 L with norm bounded by someapproximation factor: kvk � f(d)kLk.The closest vector problem (CVP), also called the nearest lattice point prob-lem, is a non-homogeneous version of the shortest vector problem: given a ba-sis of a lattice L and a vector v 2 Rn (it does not matter whether or notv 2 span(L)), �nd a lattice vector minimizing the distance to v. Again, onede�nes approximate closest vector problems by asking u 2 L such that for allw 2 L, ku� vk � f(d)kw � vk.Another problem is the smallest basis problem (SBP), which has many vari-ants depending on the exact meaning of \smallest". The variant currently invogue (see [3, 14]) is the following: �nd a lattice basis minimizing the maximumof the lengths of its elements. A more geometric variant asks instead to minimizethe product of the lengths (see [64]), since the product is always larger than thelattice volume, with equality if and only if the basis is orthogonal.2.3 Complexity resultsWe refer to Cai [30, 31] for an up-to-date survey of complexity results. Ajtai [4]recently proved that SVP is NP-hard under randomized reductions. Miccian-cio [98, 97] simpli�ed and improved the result by showing that approximatingSVP to within a factor < p2 is also NP-hard under randomized reductions. TheNP-hardness of SVP under deterministic (Karp) reductions remains an openproblem. 5



CVP seems to be a more di�cult problem. Goldreich et al. [62] recentlynoticed that CVP cannot be easier than SVP: given an oracle that approximatesCVP to within a factor f(d), one can approximate SVP in polynomial time towithin the same factor f(d). Reciprocally, Kannan proved in [78, Section 7] thatany algorithm approximating SVP to within a non-decreasing function f(d) canbe used to approximate CVP to within d3=2f(d)2. CVP was shown to be NP-hard as early as in 1981 [49] (for a much simpler \one-line" proof using theknapsack problem, see [100]). Approximating CVP to within a quasi-polynomialfactor 2log1�" d is NP-hard [7, 45].However, NP-hardness results for SVP and CVP have limits. Goldreich andGoldwasser [58] showed that approximating SVP or CVP to within pd= log d isnot NP-hard, unless the polynomial-time hierarchy collapses.Interestingly, SVP and CVP problems seem to be more di�cult with thein�nity norm. It was shown that SVP1 and CVP1 are NP-hard in 1981 [49].In fact, approximating SVP1/CVP1 to within an almost-polynomial factord1= log log d is NP-hard [44]. On the other hand, Goldreich and Goldwasser [58]showed that approximating SVP1/CVP1 to within d= log d is not NP-hard,unless the polynomial-time hierarchy collapses.We will not discuss Ajtai's worst-case/average-case equivalence [3, 33], whichrefers to special versions of SVP and SBP (see [30, 31, 14]) such as SVP whenthe lattice gap �2=�1 is at least polynomial in the dimension.2.4 Algorithmic resultsThe main algorithmic results are surveyed in [91, 78, 132, 64, 36, 84, 30, 109]. Nopolynomial-time algorithm is known for approximating either SVP, CVP or SBPto within a polynomial factor in the dimension d. In fact, the existence of suchalgorithms is an important open problem. The best polynomial time algorithmsachieve only slightly subexponential factors, and are based on the LLL algo-rithm [88], which can approximate SVP and SBP. However, it should be empha-sized that these algorithms typically perform much better than is theoreticallyguaranteed, on instances of practical interest. Given as input any basis of a lat-tice L, LLL provably outputs in polynomial time a basis (b1; : : : ;bd) satisfying:kb1k � 2(d�1)=4vol(L)1=d; kbik � 2(d�1)=2�i(L) and dYi=1 kbik � 2(d2)=2vol(L):Thus, LLL can approximate SVP to within 2(d�1)=2. Schnorr2 [121] improvedthe bound to 2O(d(log log d)2= log d), and Ajtai et al. [6] recently further improved itto 2O(d log log d= log d) in randomized polynomial time thanks to a new randomizedalgorithm to �nd the shortest vector. In fact, Schnorr de�ned an LLL-based2 Schnorr's result is usually cited in the literature as an approximation algorithm towithin (1+")n for any constant " > 0. However, Goldreich and H�astad noticed abouttwo years ago that one can choose some " = o(1) and still have polynomial runningtime, for instance using the blocksize k = log d= log log d in [121].6



family of algorithms [121] (named BKZ for blockwise Korkine-Zolotarev) whoseperformances depend on a parameter called the blocksize. These algorithms usesome kind of exhaustive search super-exponential in the blocksize. So far, the bestreduction algorithms in practice are variants [124, 125] of those BKZ-algorithms,which apply a heuristic to reduce exhaustive search. But little is known on theaverage-case (and even worst-case) complexity of reduction algorithms.Babai's nearest plane algorithm [8] uses LLL to approximate CVP to within2d=2, in polynomial time (see also [80]). Using Schnorr's algorithm [121], thiscan be improved to 2O(d(log log d)2= log d) in polynomial time, and even further to2O(d log log d= log d) in randomized polynomial time using [6], due to Kannan's linkbetween CVP and SVP (see previous section). In practice however, the beststrategy seems to be the embedding method (see [61, 108]), which uses the pre-vious algorithms for SVP and a simple heuristic reduction from CVP to SVP.Namely, given a lattice basis (b1; : : : ;bd) and a vector v 2 Rn , the embeddingmethod builds the (d+1)-dimensional lattice (in Rn+1 ) spanned by the row vec-tors (bi; 0) and (v; 1). Depending on the lattice, one should choose a coe�cientdi�erent than 1 in (v; 1). It is hoped that a shortest vector of that lattice isof the form (v � u; 1) where u is a closest vector (in the original lattice) to v,whenever the distance to the lattice is smaller than the lattice �rst minimum.This heuristic may fail (see for instance [97] for some simple counterexamples),but it can also sometimes be proved, notably in the case of lattices arising fromlow-density knapsacks.For exact SVP, the best algorithm known (in theory) is the recent random-ized 2O(d)-time algorithm by Ajtai et al. [6], which improved Kannan's super-exponential algorithm [77, 79] (see also [67]). For exact CVP, the best algo-rithm remains Kannan's super-exponential algorithm [77, 79], with running time2O(d log d) (see also [67] for an improved constant).3 Finding small roots of multivariate linear equationsOne of the early and most natural applications of lattice reduction in cryptologywas to �nd small roots of multivariate linear equations, where the equations areeither integer equations or modular equations.3.1 KnapsacksCryptology and lattices share a long history with the knapsack (also called sub-set sum) problem, a well-known NP-hard problem considered by Karp, and aparticular case of multivariate linear equation: given a set fa1; a2; : : : ; ang ofpositive integers and a sum s =Pni=1 xiai, where xi 2 f0; 1g, recover the xi's.In 1978, Merkle and Hellman[96] invented one of the �rst public-key cryp-tosystems, by converting some easy knapsacks into what they believed werehard knapsacks. It was basically the unique alternative to RSA until 1982,when Shamir [126] proposed a (heuristic) attack against the simplest version7



of the Merkle-Hellman scheme. Shamir used Lenstra's integer programming al-gorithm [89, 90] but, the same year, Adleman [1] showed how to use LLL instead,making experiments much easier. Brickell [27, 28] later extended the attacks tothe more general \iterated" Merkle-Hellman scheme, and showed that Merkle-Hellman was insecure for all realistic parameters. The cryptanalysis of Merkle-Hellman schemes was the �rst application of lattice reduction in cryptology.Despite the failure of Merkle-Hellman cryptosystems, researchers continuedto search for knapsack cryptosystems because such systems are very easy toimplement and can attain very high encryption/decryption rates. But basically,all knapsack cryptosystems have been broken (for a survey, see [119]), eitherby speci�c (often lattice-based) attacks or by the low-density attacks. The lastsigni�cant candidate to survive was the Chor-Rivest cryptosystem [35], brokenby Vaudenay [135] in 1997 with algebraic (not lattice) methods.3.2 Low-density attacks on knapsacksWe only describe the basic link between lattices and knapsacks. Note that Ajtai'soriginal proof [4] for the NP-hardness (under randomized reductions) of SVPused a connection between the subset sum problem and SVP.Solving the knapsack problem amounts to �nd a 0; 1-solution of an inho-mogeneous linear equation, which can be viewed as a closest vector problem ina natural way, by considering the corresponding homogeneous linear equation,together with an arbitrary solution of the inhomogeneous equation. Indeed, lets = Pni=1 xiai be a knapsack instance. One can compute in polynomial timeintegers y1; : : : ; yn such that s = Pni=1 yiai, using for instance an extendedgcd algorithm. Then the vector (y1 � x1; : : : ; yn � xn) belongs to the (n � 1)-dimensional lattice L formed by all the solutions of the homogeneous equation,that is the vectors (z1; : : : ; zn) 2 Zn such that:z1a1 + � � �+ znan = 0:And this lattice vector is fairly close to the vector (y1; : : : ; yn), since the distanceis roughlypn=2. But because xi 2 f0; 1g, the lattice vector is even closer to thevector y = (y1 � 1=2; : : : ; yn � 1=2) for which the distance is exactly pn=4. Infact, it is easy to see that x = (y1 � x1; : : : ; yn � xn) is a closest vector to y inthe lattice L, and that any lattice vector whose distance to y is exactlypn=4 isnecessarily of the form (y1�x01; : : : ; yn�x0n) where s =Pni=1 x0iai and x0i 2 f0; 1g.This gives a deterministic polynomial-time reduction from the knapsack problemto CVP (this reduction appeared in [100] with a slightly di�erent lattice).One can derive from this reduction a provable method to solve the knapsackproblem in polynomial time with high probability when the knapsack densityde�ned as d = n=max1�i�n log2 ai is low (see [85, 51, 54]). Indeed, if kx� yk =pn=4 is strictly less than 2�(n�1)=2�1kLk, then by applying Babai's nearestplane CVP approximation algorithm to L and y, one obtains z 2 L such thatkz�yk < 2n=2kx�yk < kLk=2, and thus kz�xk < kLk where z�x 2 L, which8



implies that z = x, disclosing the xi's. It remains to estimate the �rst minimumkLk. With high probability, the ai's are coprime, and then:vol(L) =  nXi=1 a2i!1=2 � 2n=dpn:Thus, one expects kLk � 21=dp n2�e . It follows that the method should workwhenever rn4 < 2�(n�1)=2�121=dr n2�e;that is, roughly d � 2=n. This volume argument can be made rigorous becausethe probability that a �xed non-zero vector belongs to L is less than 1=A whenthe ai's are chosen uniformly at random from [0; A]. One deduces that most knap-sacks of density roughly less than 2=n are solvable in polynomial time (see [85,51, 54]).One does not know how to provably solve the knapsack problem in polyno-mial time when the density lies between 2=n and 1, which is typically the casefor cryptographic knapsacks (where the density should be less than 1, other-wise heuristically, there would be several solutions, causing decryption troubles).However, one can hope that the embedding method that heuristically reducesCVP to SVP works, as while as the distance to the lattice (which is pn=4)is smaller than the �rst minimum kLk. By the previous reasoning, this shouldhappen when rn4 � 21=dr n2�e ;that is, d � 1log2p�e=2 � 0:955 : : :This heuristic bound turns out to be not too far away from the truth. Indeed,one can show that the target vector (x1�1=2; : : : ; xn�1=2; 1) is with high prob-ability (over the choice of the ai's) the shortest vector in the embedding lattice,when the density d � 0:9408 : : : (see [41] who used a slightly di�erent lattice,but the proof carries through). This is done by enumerating all possible shortvectors, and using bounds on the number of integral points in high-dimensionalspheres [93]. The result improved the earlier bound of 0:6463 : : : from Lagariasand Odlyzko [85], which was essentially obtained by approximating the vector(y1; : : : ; yn) in the lattice L, instead of (y1 � 1=2; : : : ; yn � 1=2). This rigorousbound of 0:6463 : : : matches the heuristic bound obtained by a volume argumenton the corresponding embedding lattice:rn2 � 21=dr n2�e :To summarize, the subset sum problem can always be e�ciently reduced toCVP, and this reduction leads to an e�cient probabilistic reduction to SVP in9



low density, and to a polynomial-time solution in extremely low density. In thelight of recent results on the complexity of SVP, those reductions from knapsackto SVP may seem useless. Indeed, the NP-hardness of SVP under randomizedreductions suggests that there is no polynomial-time algorithm that solves SVP.However, it turns out that in practice, one can hope that standard lattice re-duction algorithms behave like SVP-oracles, up to reasonably high dimensions.Experiments carried out in [85, 124, 125] show the e�ectiveness of such an ap-proach for solving low-density subset sums, up to n about the range of 100{200.It does not prove nor disprove that one can solve, in theory or in practice, low-density knapsacks with n over several hundreds. But it was su�cient to showthat knapsack cryptography was impractical: indeed, the keysize of knapsackschemes grows in general at least quadratically with n, so that high values of n(as required by lattice attacks) are not practical.Thus, lattice methods to solve the subset sum problem are mainly heuris-tic. And lattice attacks against knapsack cryptosystems are somehow even moreheuristic, because the reductions from knapsack to SVP assume a uniform dis-tribution of the weights ai's, which is in general not necessarily satis�ed byknapsacks arising from cryptosystems.3.3 The orthogonal latticeRecently, Nguyen and Stern proposed in [113] a natural generalization of thelattices arising from the knapsack problem. More precisely, they de�ned for anyinteger lattice L in Zn, the orthogonal lattice L? as the set of integral vectorsorthogonal to L, that is, the set of x 2 Zn such that the dot product hx;yi = 0for all y 2 L. Note that the lattice L? has dimension n � dim(L), and can becomputed in polynomial time from L (see [36]). Interestingly, the links betweenduality and orthogonality (see Martinet's book [92, pages 34{35]) enable to provethat the volume of L? is equal to the volume of the lattice span(L) \Zn whichwe denote by �L. Thus, if a lattice in Zn is low-dimensional, its orthogonal latticeis high-dimensional with a volume at most equal: the successive minima of theorthogonal lattice are likely to be much shorter than the ones of the originallattice. That property of orthogonal lattices has led to e�ective (though heuristic)lattice-based attacks on various cryptographic schemes [113, 115, 116, 114, 117].We refer to [109] for more information. In particular, it was used in [117] to solvethe hidden subset sum problem (used in [26]) in low density. The hidden subsetsum problem was apparently a non-linear version of the subset sum problem:given M and n in N, and b1; : : : ; bm 2 ZM, �nd �1; : : : ; �n 2 ZM such that eachbi is some subset sum modulo M of �1; : : : ; �n.We sketch the solution of [117] to give a 
avour of cryptanalyses based onorthogonal lattices. We �rst restate the hidden subset sum problem in terms ofvectors. We are given an integer M , and a vector b = (b1; : : : ; bm) 2 Zm withentries in [0::M � 1] such that there exist integers �1; : : : ; �n 2 [0::M � 1], andvectors x1; : : : ;xn 2 Zm with entries in f0; 1g satisfying:b = �1x1 + �2x2 + � � �+ �nxn (modM):10



We want to determine the �i's. There exists a vector k 2 Zm such that:b = �1x1 + �2x2 + � � �+ �nxn +Mk:Notice that if u in Zn is orthogonal to b, then pu = (hu;x1i; : : : ; hu;xni; hu;ki)is orthogonal to the vector v� = (�1; : : : ; �n;M). But v� is independent of m,and so is the n-dimensional lattice v?� . On the other hand, as m grows for a�xed M , most of the vectors of any reduced basis of the (m � 1)-dimensionallattice b? should get shorter and shorter, because they should have norm closeto vol(b?)1=(m�1) � vol(b)1=(m�1) = kbk1=(m�1) � (Mpm)1=(m�1): For suchvectors u, the corresponding vectors pu also get shorter and shorter. But if pugets smaller than �1(v?� ) (which is independent of m), then it is actually zero,that is, u is orthogonal to all the xj 's and k. Note that one expects �1(v?� ) tobe of the order of kv�k1=n � (Mpn)1=n.This suggests that if (u1; : : : ;um�1) is a su�ciently reduced basis of b?, thenthe �rst m� (n+1) vectors u1; : : : ;um�(n+1) should heuristically be orthogonalto all the xj 's and k. One cannot expect that more than m � (n + 1) vectorsare orthogonal because the lattice Lx spanned by the xj 's and k is likely tohave dimension (n + 1). From the previous discussion, one can hope that theheuristic condition is satis�ed when the density n= log(M) is very small (sothat �1(v?� ) is not too small), and m is su�ciently large. And if the heuristiccondition is satis�ed, the lattice �Lx is disclosed, because it is then equal to theorthogonal lattice (u1; : : : ;um�(n+1))?. Once �Lx is known, it is not di�cult torecover (heuristically) the vectors xj 's by lattice reduction, because they arevery short vectors. One eventually determines the coe�cients �j 's from a linearmodular system. The method is quite heuristic, but it works in practice for smallparameters in low density (see [117] for more details).3.4 Multivariate modular linear equationsThe technique described in Section 3.2 to solve the knapsack problem can easilybe extended to �nd small solutions of a system of multivariate linear equationsover the integers: one views the problem as a closest vector problem in the latticecorresponding to the homogenized equations, which is an orthogonal lattice.Naturally, a similar method can be applied to a system of multivariate linearmodular equations, except that in this case, the corresponding lattice is not anorthogonal lattice.Let A = (ai;j) be an `� k integral matrix, c 2 Z` be a column vector and qbe a prime number. The problem is to �nd a short column vector x 2 Zk suchthat: Ax � c (mod q):The interesting case is when the number of unknowns k is larger than the numberof equations `. Following Section 3, one computes an arbitrary solution y 2 Zksuch that Ay � c (mod q), for instance by �nding a solution of a solvablesystem of linear equations over the integers (if the system is not solvable, then11



the original problem has no solution). And one computes a basis of the full-dimensional lattice L of all column vectors z 2 Zk such thatAz � 0 (mod q):Then any short solution x to Ax � c (mod q) corresponds to a lattice vectory�x 2 L close to y. Thus, there is at most one x 2 Zk such that Ax � c (mod q)and kxk < kLk=2: And if ever there is an unusually short vector x 2 Zk suchthat Ax � c (mod q) and kxk < kLk2�k=2�1, then Babai's CVP approximationalgorithm will disclose it, as in Section 3. It remains to lower bound the �rstminimum of the lattice.One can see that the volume of L is an integer dividing q`, because it is theindex of L in Zk. In fact, for most matrices A, one expects the volume to beexactly q`, so that: kLk �r k2�eq`=k:This estimate is not far from the truth, since for any �xed non-zero vector z 2 Zksuch that kxk1 < q, the probability that z 2 L (when A is uniformly distributed)is exactly q�`. It follows that for most matrices, if ever there exists x 2 Zk suchthat Ax � c (mod q) and kxk roughly less than q`=k2�k=2�1, then one can �ndsuch an x in polynomial time. For a precise statement, we refer to [52] whoactually used a dual approach requiring transference theorems (which we do notneed here). An interesting application is that if we know a few bits of each entryof an arbitrary solution x of a system of linear modular equations, then we canrecover all of x, because if the number of bits is su�ciently large, the problemis reduced to �nding an unusually short solution of a system of linear modularequations. This was used to show the insecurity of truncated linear congruentialpseudo-random number generators in [52].The result can in fact be extended to a wider class of parameters, when themodulus q is not necessarily prime (see [52]), and when the equations may havedi�erent modulus (see [10]). We note that the exponent �k=2 can be suppressedwhen a CVP-oracle is available, which is the case when k is �xed. Furthermore,the previous reasoning not only shows how to �nd unusually short solutions, italso shows how to �nd reasonably short solutions when the matrix A is random.Indeed, a tighter analysis then shows that all the minima of the lattice L arein fact not too far away from pk=(2�e)q`=k, so that all points are reasonablyclose to the lattice. In this case, one can �nd in polynomial time a vector x 2 Zksuch that Ax � c (mod q) and kxk is very roughly less than pk=(2�e)q`=k2k=2.This was used to attack certain RSA padding signature schemes in which themessages have a �xed pattern (see [104, 57]), and it was also used to completethe proof of security of the RSA{OAEP encryption scheme (see [53]).However, the previous results are weak in a certain sense. First, the resultsdepend strongly on the distribution of the coe�cients of the linear equations.More precisely, the �rst minimum of the lattice can be arbitrary small, leadingto possibly much weaker bounds: hence, one must perform a new analysis of thelattice for any system of equations which is not uniformly distributed. This was12



the case in [52] where linear congruential generators gave rise to special systemsof equations. Furthermore, the exponential or slightly subexponential factors inthe polynomial-time approximation of CVP imply that the bounds obtained arerather weak as the number k of unknowns increases. The situation is somewhatsimilar to that of knapsacks for which only knapsacks of very low density canprovably be solved. This is one of the reasons why the attack of [104] was onlyheuristic. On the other hand, k was as small as 2 in [53], making provable resultsuseful. We will see in the next section a particular case of a system of linearmodular equations for which the generic method can be replaced by anotherlattice-based method.4 The hidden number problem4.1 Hardness of Di�e-Hellman bitsIn [24], Boneh and Venkatesan used the LLL algorithm to solve the hiddennumber problem, which enables to prove the hardness of the most signi�cantbits of secret keys in Di�e-Hellman and related schemes in prime �elds. Thiswas the �rst positive application of LLL in cryptology. Recall the Di�e-Hellmankey exchange protocol [43]: Alice and Bob �x a �nite cyclic G and a generator g.They respectively pick random a; b 2 [1; jGj] and exchange ga and gb. The secretkey is gab. Proving the security of the protocol under \reasonable" assumptionshas been a challenging problem in cryptography (see [15]). Computing the mostsigni�cant bits of gab is as hard as computing gab itself, in the case of prime�elds:Theorem 2 (Boneh-Venkatesan). Let q be an n-bit prime and g be a gener-ator of Z�q. Let " > 0 be �xed, and set ` = `(n) = d"pne. Suppose there existsan expected polynomial time (in n) algorithm A, that on input q, g, ga and gb,outputs the ` most signi�cant bits of gab. Then there is also an expected poly-nomial time algorithm that on input q, g, ga, gb and the factorization of q � 1,computes all of gab.The above result is slightly di�erent from [24], due to a small gap in the proofof [24] spotted by [63]. The same result holds for the least signi�cant bits. Fora more general statement when g is not necessarily a generator, and the factor-ization of q � 1 is unknown, see [63]. For analogous results in other groups, werefer to [136] for �nite �elds and to [23] for the elliptic curve case.The proof goes as follows. We are given some ga and gb, and want to computegab. We repeatedly pick a random r until ga+r is a generator of Z�q (testingis easy thanks to the factorization of q � 1). For each r, the probability ofsuccess is �(q � 1)=(q � 1) � C= log log q. Next, we apply A to the points ga+rand gb+t for many random values of t, so that we learn the most signi�cantbits of g(a+r)bg(a+r)t, where g(a+r)t is a random element of Z�q since ga+r is agenerator. Note that one can easily recover gab from � = g(a+r)b. The problembecomes the hidden number problem (HNP): given t1; : : : ; td chosen uniformly13



and independently at random in Z�q, and MSB`(�ti mod q) for all i, recover � 2Zq. Here, MSB`(x) for x 2 Zq denotes any integer z satisfying jx� zj < q=2`+1.To achieve the proof, Boneh and Venkatesan presented a simple solutionto HNP when ` is not too small, by reducing HNP to a lattice closest vectorproblem. We sketch this solution in the next section.4.2 Solving the hidden number problem by lattice reductionConsider an HNP-instance: let t1; : : : ; td be chosen uniformly and independentlyat random in Z�q, and ai = MSB`(�ti mod q) where � 2 Zq is hidden. Clearly, thevector t = (t1� mod q; : : : td� mod q; �=2`+1) belongs to the (d+1)-dimensionallattice L = L(q; `; t1; : : : ; td) spanned by the rows of the following matrix:0BBBBBB@ q 0 � � � 0 00 q . . . ... ...... . . . . . . 0 ...0 : : : 0 q 0t1 : : : : : : td 1=2`+1
1CCCCCCAThe vector a = (a1; : : : ; ad; 0) is very close to L, because it is very close to t.Indeed, kt�ak � qpd+ 1=2`+1. It is not di�cult to show that any lattice pointsu�ciently close to a discloses the hidden number �, because su�ciently shortlattice vectors must have their �rst d coordinates equal to zero (see [24, Theorem5] or [110, 112]):Lemma 3 (Uniqueness). Set d = 2dplog qe and � = 12plog q+3. Let � be inZ�q. Choose integers t1; : : : ; td uniformly and independently at random in Z�q. Leta = (a1; : : : ; ad; 0) be such that j(�ti mod q)� aij < q=2�: Then with probabilityat least 12 , all u 2 L with ku� ak < q2� are of the form:u = (t1� mod q; : : : td� mod q; �=2`+1) where � � � (mod q):Since a is close enough to L, Babai's nearest plane CVP approximation algo-rithm [8] yields a lattice point su�ciently close to a, which leads to:Theorem 4 (Boneh-Venkatesan). Let � be in Z�q. Let O be a function de�nedby O(t) = MSB`(�t mod q) with ` = dplog qe+ dlog log qe. There exists a deter-ministic polynomial time algorithm A which, on input t1; : : : ; td;O(t1); : : : ;O(td),outputs � with probability at least 1=2 over t1; : : : ; td chosen uniformly and in-dependently at random from Z�q, where d = 2dplog qe.Thus, the hidden number problem can be solved using ` = plog q+log log q bits.Using the best polynomial-time CVP approximation algorithm known, this canbe asymptotically improved to O(plog q log log log q= log log q). Theorem 2 is asimple consequence.We note that Theorem 4 could have alternatively be obtained from thegeneric method described in Section 3.4. Indeed, the hidden number problem14



can be viewed as a system of d modular linear equations in the d+1 unknowns� and (�ti mod q) � MSB`(�ti mod q) where 1 � i � d. Among these d + 1unknowns, only � may be large. One may transform the system to eliminatethe possibly large unknown �. One then obtains a new system of d� 1 modularlinear equations in the d unknowns (�ti mod q) �MSB`(�ti mod q) all smallerthan q=2`+1 in absolute value. Although this system does not correspond to auniformly distributed matrix, one can easily obtain the same lower bound on the�rst minimum of the lattice as in the random case (see Section 3.4). It followsthat one can �nd the (unique) small solution of the system in polynomial time(and thus, �) provided that roughly:q2`+1 � q(d�1)=d2�d=2�1;that is ` � d=2 + 1 + log(q)=d, where the right-hand term is minimized ford � p2 log q, leading to ` larger than roughly p2 log q. Thus, one can obtainessentially the same bounds.4.3 Variants of the hidden number problemIt was recently realized that the condition that the ti's are uniformly distributedis often too restrictive for applications. The previous solution to the hiddennumber problem can in fact be extended to cases where the distribution of theti's is not necessarily perfectly uniform (see [63, 111]). A precise de�nition of thisrelaxed uniformity property can be made with the classical notion of discrepancy(see [111] for more details). To apply the solution to this generalized hiddennumber problem, it su�ces to show that the distribution of the ti's is su�cientlyuniform, which is usually obtained by exponential sum techniques (see [63, 111,112, 48, 130, 129] for some examples).One may also extend the solution to the hidden number problem to thecase when an oracle for CVP (in the Euclidean norm or the in�nity norm) isavailable, which signi�cantly decreases the number of necessary bits (see [110,111]). This is useful to estimate what can be achieved in practice, especiallywhen the lattice dimension is small. It turns out that the required number ofbits becomes O(log log q) and 2 respectively, with a CVP-oracle and a CVP1-oracle.One may also study the hidden number problem with arbitrary bits insteadof most signi�cant bits. It is easy to see that the HNP with ` least signi�cant bitscan be reduced to the original HNP with `most signi�cant bits, but the situationworsens with arbitrary bits. By multiplying the ti's with an appropriate numberindependent of the ti's (see [111]), one obtains a deterministic polynomial-timereduction from the HNP with ` consecutive bits at a known position to theoriginal HNP with `=2 most signi�cant bits (the prime �eld Zq and the numberof random multipliers remain the same). This appropriate number can be foundeither by continued fractions or lattice reduction in dimension 2. More generally,by using high-dimensional lattice reduction, it is not di�cult to show that thereis a deterministic polynomial-time reduction from the HNP with ` arbitrary bits15



at known positions such that the number of blocks of consecutive unknown bitsis m, to the original HNP with `=m+ 1� logm most signi�cant bits. Thus, theHNP with arbitrary bits seems to be harder, especially when there are manyblocks of consecutive unknown bits.Finally, variants of the hidden number problem in settings other than prime�elds have been studied in [130, 129, 23].4.4 Lattice attacks on DSAInterestingly, the previous solution of the hidden number problem also has a darkside: it leads to a simple attack against the Digital Signature Algorithm [106,95] (DSA) in special settings (see [73, 110]). Recall that the DSA uses a publicelement g 2 Zp of order q, a 160-bit prime dividing p � 1 where p is a largeprime (at least 512 bits). The signer has a secret key � 2 Z�q and a publickey � = g� mod p. The DSA signature of a message m is (r; s) 2 Z2q wherer = (gk mod p) mod q, s = k�1(h(m) + �r) mod q, h is SHA-1 hash functionand k is a random element in Z�q chosen at each signature.It is well-known that the secret key � can easily be recovered if the randomnonce k is disclosed, or if k is produced by a cryptographically weak pseudo-random generator such as a linear congruential generator with known param-eters [10] and a few signatures are available. Recently, Howgrave-Graham andSmart [73] noticed that Babai's nearest plane CVP algorithm could heuristicallyrecover �, provided that su�ciently many signatures and su�ciently many bitsof the corresponding nonces k are known. This is not surprising, because theunderlying problem is in fact a generalized hidden number problem.Indeed, assume that for d signatures (ri; si) of messagesmi, the ` least signif-icant bits of the random nonce ki are known to the attacker: one knows ai < 2`such that ki � ai is of the form 2`bi. Then �ri � si(ai + bi2`)� h(mi) (mod q),which can be rewritten as: �ri2�`s�1i � (ai � s�1i h(mi)) � 2�` + bi (mod q):Letting ti = ri2�`s�1i mod q, one sees that MSB`(�ti mod q) is known. Recover-ing the secret key � is therefore a generalized hidden number problem in whichthe ti's are not assumed to be independent and uniformly distributed over Zq,but are of the form ri2�`s�1i where the underlying ki's are independent anduniformly distributed over Z�q. Nguyen and Shparlinski [111] proved that undera reasonable assumption on the hash function, the ti's are su�ciently uniformto make the corresponding hidden number problem provably tractable with thesame number of bits as in Theorem 4, that is, essentially plog q. Since latticereduction algorithms can behave much better than theoretically expected, onemay even hope to solve CVP exactly, yielding better bounds to Theorem 4. Forthe case of a 160-bit prime q as in DSA, one obtains that the DSA{HNP canbe solved using respectively ` = 2 bits and d = 160, or ` = 6 bits and d = 100respectively, when an oracle for CVP1 or CVP is available (see [110, 112]). Infact, the bounds are better in practice. It turns out that using standard latticereduction algorithms implemented in Shoup's NTL library [127], one can oftensolve HNP for a 160-bit prime q using ` = 3 bits and d = 100 (see [110, 112]).16



Naturally, this attack can also be applied to similar signature algorithms(see [111]), such as the elliptic curve variant of DSA (see [112]), or the Nyberg-Rueppel signature scheme and related schemes (see [48]). The only di�erence isthat one needs to establish the uniformity of di�erent types of multipliers. Thisusually requires di�erent kinds of exponential sums.5 Lattice-based cryptographyWe review state-of-the-art results on the main lattice-based cryptosystems. Tokeep the presentation simple, descriptions of the schemes are intuitive, referringto the original papers for more details. Only one of these schemes (the GGHcryptosystem [61]) explicitly works with lattices.5.1 The Ajtai-Dwork cryptosystemDescription. The Ajtai-Dwork cryptosystem [5] (AD) works in Rn , with some�nite precision depending on n. Its security is based on a variant of SVP.The private key is a uniformly chosen vector u in the n-dimensional unitball. One then de�nes a distribution Hu of points a in a large n-dimensionalcube such that the dot product ha;ui is very close to Z.The public key is obtained by pickingw1; : : : ;wn, v1; : : : ;vm (wherem = n3)independently at random from the distribution Hu, subject to the constraintthat the parallelepiped w spanned by the wi's is not 
at. Thus, the public keyconsists of a polynomial number of points close to a collection of parallel a�nehyperplanes, which is kept secret.The scheme is mainly of theoretical purpose, as encryption is bit-by-bit. Toencrypt a '0', one randomly selects b1; : : : ; bm in f0; 1g, and reduces Pmi=1 bivimodulo the parallelepiped w. The vector obtained is the ciphertext. The cipher-text of '1' is just a randomly chosen vector in the parallelepiped w. To decrypta ciphertext x with the private key u, one computes � = hx;ui. If � is su�-ciently close to Z, then x is decrypted as '0', and otherwise as '1'. Thus, anencryption of '0' will always be decrypted as '0', and an encryption of '1' has asmall probability to be decrypted as '0'. These decryption errors can be removed(see [60]).Security. The Ajtai-Dwork [5] cryptosystem received wide attention due to asurprising security proof based on worst-case assumptions. Indeed, it was shownthat any probabilistic algorithm distinguishing encryptions of a '0' from en-cryptions of a '1' with some polynomial advantage can be used to solve SVPin any n-dimensional lattice with gap �2=�1 larger than n8. There is a con-verse, due to Nguyen and Stern [115]: one can decrypt in polynomial time withhigh probability, provided an oracle that approximates SVP to within n0:5�",or one that approximates CVP to within n1:33. It follows that the problem ofdecrypting ciphertexts is unlikely to be NP-hard, due to the result of Goldreich-Goldwasser [58]. 17



Nguyen and Stern [115] further presented a heuristic attack to recover thesecret key. Experiments suggest that the attack is likely to succeed up to atleast n = 32. For such parameters, the system is already impractical, as thepublic key requires 20 megabytes and the ciphertext for each bit has bit-length6144. This shows that unless major improvements3 are found, the Ajtai-Dworkcryptosystem is only of theoretical importance.Cryptanalysis overview. At this point, the reader might wonder how latticescome into play, since the description of AD does not involve lattices. Any cipher-text of '0' is a sum of vi's minus some integer linear combination of the wi's.Since the parallelepiped spanned by the wi's is not too 
at, the coe�cients ofthe linear combination are relatively small. On the other hand, any linear com-bination of the vi's and the wi's with small coe�cients is close to the hiddenhyperplanes. This enables to build a particular lattice of dimension n+m suchthat any ciphertext of '0' is in some sense close to the lattice, and reciprocally,any point su�ciently close to the lattice gives rise to a ciphertext of '0'. Thus,one can decrypt ciphertexts provided an oracle that approximates CVP su�-ciently well. The analogous version for SVP uses related ideas, but is technicallymore complicated. For more details, see [115].The attack to recover the secret key can be described quite easily. One knowsthat each hvi;ui is close to some unknown integer Vi. It can be shown that anysu�ciently short linear combination of the vi's give information on the Vi's.More precisely, ifPi �ivi is su�ciently short and the �i's are su�ciently small,then Pi �iVi = 0 (because it is a too small integer). Note that the Vi's aredisclosed if enough such equations are found. And each Vi gives an approximatelinear equation satis�ed by the coe�cients of the secret key u. Thus, one cancompute a su�ciently good approximation of u from the Vi's. To �nd the Vi's, weproduce many short combinations Pi �ivi with small �i's, using lattice reduc-tion. Heuristic arguments can justify that there exist enough such combinations.Experiments showed that the assumption was reasonable in practice.5.2 The Goldreich-Goldwasser-Halevi cryptosystemThe Goldreich-Goldwasser-Halevi cryptosystem [61] (GGH) can be viewed asa lattice-analog to the McEliece [94] cryptosystem based on algebraic codingtheory. In both schemes, a ciphertext is the addition of a random noise vectorto a vector corresponding to the plaintext. The public key and the private keyare two representations of the same object (a lattice for GGH, a linear code forMcEliece). The private key has a particular structure allowing to cancel noisevectors up to a certain bound. However, the domains in which all these operationstake place are quite di�erent.3 A variant of AD with less message expansion was proposed in [32], however withoutany security proof. It mixes AD with a knapsack.18



Description. The GGH scheme works in Zn. The private key is a non-singularn�n integral matrix R, with very short row vectors4 (entries polynomial in n).The lattice L is the full-dimensional lattice in Zn spanned by the rows of R.The basis R is then transformed to a non-reduced basis B, which will be public.In the original scheme, B is the multiplication of R by su�ciently many smallunimodular matrices. Computing a basis as \good" as the private basis R, givenonly the non-reduced basis B, means approximating SBP.The message space is a \large enough" cube in Zn. A message m 2 Znis encrypted into c = mB + e where e is an error vector uniformly chosenfrom f��; �gn, where � is a security parameter. A ciphertext c is decrypted asbcR�1eRB�1 (note: this is Babai's round method [8] to solve CVP). But aneavesdropper is left with the CVP-instance de�ned by c and B. The privatebasis R is generated in such a way that the decryption process succeeds withhigh probability. The larger � is, the harder the CVP-instances are expected tobe. But � must be small for the decryption process to succeed.Improvements. In the original scheme, the public matrix B is the multi-plication of the secret matrix by su�ciently many unimodular matrices. Thismeans that without appropriate precaution, the public matrix may be as largeas O(n3 logn) bits. Micciancio [99, 101] therefore suggested to de�ne instead B asthe Hermite normal form (HNF) of R. Recall that the HNF of an integer squarematrix R in row notation is the unique lower triangular matrix with coe�cientsin N such that: the rows span the same lattice as R, and any entry below thediagonal is strictly less than the diagonal entry in its column. Here, one can seethat the HNF of R is O(n2 logn) bits, which is much better but still big. Whenusing the HNF, one should encode messages into the error vector e instead of alattice point, because the HNF is unbalanced. The ciphertext is de�ned as thereduction of e modulo the HNF, and hence uses less than O(n logn) bits. Onecan easily prove that the new scheme (which is now deterministic) cannot beless secure than the original GGH scheme (see [99, 101]).Security. GGH has no proven worst-case/average-case property, but it is muchmore e�cient than AD. Speci�cally, for security parameter n, key-size and en-cryption time can be O(n2 logn) for GGH (note that McEliece is slightly betterthough), vs. at least O(n4) for AD. For RSA and El-Gamal systems, key sizeis O(n) and computation time is O(n3). The authors of GGH argued that theincrease in size of the keys was more than compensated by the decrease in compu-tation time. To bring con�dence in their scheme, they published on the Interneta series of �ve numerical challenges [59], in dimensions 200, 250, 300, 350 and400. In each of these challenges, a public key and a ciphertext were given, andthe challenge was to recover the plaintext.The GGH scheme is now considered broken, at least in its original form,due to an attack recently developed by Nguyen [108]. As an application, using4 A di�erent construction for R based on tensor product was proposed in [50].19



small computing power and Shoup's NTL library [127], Nguyen was able to solveall the GGH challenges, except the last one in dimension 400. But already indimension 400, GGH is not very practical: in the 400-challenge, the public keytakes 1.8 Mbytes without HNF or 124 Kbytes using the HNF.5Nguyen's attack used two \qualitatively di�erent" weaknesses of GGH. The�rst one is inherent to the GGH construction: the error vectors used in theencryption process are always much shorter6 than lattice vectors. This makesCVP-instances arising from GGH easier than general CVP-instances. The secondweakness is the particular form of the error vectors in the encryption process.Recall that c =mB+ewhere e 2 f��gn. The form of ewas apparently chosen tomaximize the Euclidean norm under requirements on the in�nity norm. However,if we let s = (�; : : : ; �) then c + s � mB (mod 2�), which allows to guess mmod 2�. Then the original closest vector problem can be reduced to �nding alattice vector within (smaller) distance e=(2�) from (c � (m mod 2�)B)=(2�).The simpli�ed closest vector problem happens to be within reach (in practice)of current lattice reduction algorithms, thanks to the embedding strategy thatheuristically reduces CVP to SVP. We refer to [108] for more information.It is easy to �x the second weakness by selecting the entries of the error vectore at random in f��; : : : ;+�g instead of f��g. However, one can argue that theresulting GGH system would still not be much practical, even using [99, 101].Indeed, Nguyen's experiments [108] showed that SVP could be solved in practiceup to dimensions as high as 350, for (certain) lattices with gap as small as 10.To be competitive, the new GGH system would require the hardness (in lowerdimensions due to the size of the public key, even using [99]) of SVP for certainlattices of only slightly smaller gap, which means a rather smaller improvementin terms of reduction. Note also that those experiments do not support thepractical hardness of Ajtai's variant of SVP in which the gap is polynomial inthe lattice dimension. Besides, it is not clear how to make decryption e�cientwithout a huge secret key (Babai's rounding requires the storage of R�1 or agood approximation, which could be in [61] over 1 Mbytes in dimension 400).5.3 The NTRU cryptosystemDescription. The NTRU cryptosystem [69], proposed by Ho�stein, Pipher andSilverman, works in the ring R = Z[X]=(XN � 1). An element F 2 R is seen asa polynomial or a row vector: F = PN�1i=0 Fixi = [F0; F1; : : : ; FN�1]: To selectkeys, one uses the set L(d1; d2) of polynomials F 2 R such that d1 coe�cientsare equal to 1, d2 coe�ents are equal to -1, and the rest are zero. There are twosmall coprime moduli p < q : a possible choice is q = 128 and p = 3. There arealso three integer parameters df ; dg and d� quite a bit smaller than the primenumber N (which is around a few hundreds).5 The challenges do not use the HNF, as they were proposed before [99]. Note that124 Kbytes is about twice as large as McEliece for the recommended parameters.6 In all GGH-like constructions known, the error vector is always at least twice asshort. 20



The private keys are f 2 L(df ; df � 1) and g 2 L(dg ; dg). With high proba-bility, f is invertible mod q. The public key h 2 R is de�ned as h = g=f mod q:A message m 2 f�(p�1)=2 � � �+(p�1)=2gN is encrypted into: e = (p��h+m)mod q; where � is randomly chosen in L(d�; d�). The user can decrypt thanksto the congruence e�f � p��g+m�f (mod q), where the reduction is centered(one takes the smallest residue in absolute value). Since �, f , g and m all havesmall coe�cients and many zeroes (except possibly m), that congruence is likelyto be a polynomial equality over Z. By further reducing e�f modulo p, one thusrecovers m � f mod q, hence m.Security. The best attack known against NTRU is based on lattice reduction,but this does not mean that lattice reduction is necessary to break NTRU.The simplest lattice-based attack can be described as follows. Coppersmith andShamir [40] noticed that the target vector fkg 2 Z2N (the symbol k denotesvector concatenation) belongs to the following natural lattice:LCS = fFkG 2 Z2N j F � h �G mod q where F;G 2 Rg:It is not di�cult to see that LCS is a full-dimensional lattice in Z2N, with vol-ume qN . The volume suggests that the target vector is a shortest vector of LCS(but with small gap), so that a SVP-oracle should heuristically output the pri-vate keys f and g. However, based on numerous experiments with Shoup's NTLlibrary [127], the authors of NTRU claimed in [69] that all such attacks are ex-ponential in N , so that even reasonable choices of N ensure su�cient security.The parameter N must be prime, otherwise the lattice attacks can be improveddue to the factorization of XN � 1 (see [56]). Note that the keysize of NTRUis only O(N log q), which makes NTRU the leading candidate among knapsack-based and lattice-based cryptosystems, and allows high lattice dimensions. Itseems that better attacks or better lattice reduction algorithms are required inorder to break NTRU. To date, none of the numerical challenges proposed in [69]has been solved. However, it is probably too early to tell whether or not NTRUis secure. Note that NTRU, like RSA, should only be used with appropriatepreprocessing. Indeed, NTRU without padding cannot be semantically securesince e(1) � m(1) (mod q) as polynomials, and it is easily malleable using mul-tiplications by X of polynomials (circular shifts). And there exist simple chosenciphertext attacks [74] that can recover the secret key.6 Finding small roots of low-degree polynomial equationsWe survey an important application of lattice reduction found in 1996 by Cop-persmith [38, 39], and its developments. These results illustrate the power oflinearization combined with lattice reduction.6.1 Univariate modular equationsThe general problem of solving univariate polynomial equations modulo someinteger N of unknown factorization seems to be hard. Indeed, notice that for21



some polynomials, it is equivalent to the knowledge of the factorization of N .And the particular case of extracting e-th roots modulo N is the problem ofdecrypting ciphertexts in the RSA cryptosystem, for an eavesdropper. Curiously,Coppersmith [38] showed using LLL that the special problem of �nding smallroots is easy:Theorem 5 (Coppersmith). Let P be a monic polynomial of degree � in onevariable modulo an integer N of unknown factorization. Then one can �nd intime polynomial in (logN; �) all integers x0 such that P (x0) � 0 (modN) andjx0j � N1=�.Related (but weaker) results appeared in the eighties [66, 133].7 Incidentally, theresult implies that the number of roots less than N1=� is polynomial, which wasalso proved in [81] (using elementary techniques).We sketch a proof of Theorem 5, in the spirit of Howgrave-Graham [70], whosimpli�ed Coppersmith's original proof (see also [76]) by working in the duallattice of the lattice originally considered by Coppersmith. More details canbe found in [39]. Coppersmith's method reduces the problem of �nding smallmodular roots to the (easy) problem of solving polynomial equations over Z.More precisely, it applies lattice reduction to �nd an integral polynomial equationsatis�ed by all small modular roots of P . The intuition is to linearize all theequations of the form xiP (x)j � 0 (modN j) for appropriate integral values of iand j. Such equations are satis�ed by any solution of P (x) � 0 (modN). Smallsolutions x0 give rise to unusually short solutions to the resulting linear system.To transform modular equations into integer equations, the following elementarylemma8 is used, with the notation kr(x)k = pPa2i for any polynomial r(x) =P aixi 2 Q[x]:Lemma 6. Let r(x) 2 Q[x] be a polynomial of degree < n and let X be a positiveinteger. Suppose kr(xX)k < 1=pn. If r(x0) 2 Z with jx0j < X, then r(x0) = 0holds over the integers.This is just because any su�ciently small integer must be zero. Now the trickis to, given a parameter h, consider the n = (h + 1)� polynomials qu;v(x) =xu(P (x)=N)v ; where 0 � u � � � 1 and 0 � v � h. Notice that the degree ofqu;v(x) is strictly less than n, and that the evaluation of qu;v(x) at any root x0 ofP (x) modulo N is necessarily an integer. The same is true for any integral linearcombination r(x) of the qu;v(x)'s. If such a combination r(x) further satis�eskr(xX)k < 1=pn, then by Lemma 6, solving the equation r(x) = 0 over Z yieldsall roots of P (x) modulo N less than X in absolute value. This suggests to lookfor a short vector in the lattice corresponding to the qu;v(xX)'s. More precisely,de�ne the n�n matrixM whose i-th row consists of the coe�cients of qu;v(xX),starting by the low-degree terms, where v = b(i � 1)=�c and u = (i � 1) � �v.7 H�astad [66] presented his result in terms of system of low-degree modular equations,but he actually studies the same problem, and his approach achieves the weakerbound N2=(�(�+1)).8 A similar lemma is used in [66]. Note also the resemblance with [88, Prop. 2.7].22



Notice that M is lower triangular, and a simple calculation leads to det(M) =Xn(n�1)=2N�nh=2: We apply an LLL-reduction to the full-dimensional latticespanned by the rows ofM . The �rst vector of the reduced basis corresponds to apolynomial of the form r(xX), and has Euclidean norm kr(xX)k. The theoreticalbounds of the LLL algorithm ensure that:kr(xX)k � 2(n�1)=4 det(M)1=n = 2(n�1)=4X(n�1)=2N�h=2:Recall that we need kr(xX)k � 1=pn to apply the lemma. Hence, for a given h,the method is guaranteed to �nd modular roots up to X if:X � 1p2Nh=(n�1)n�1=(n�1):The limit of the upper bound, when h grows to 1, is 1p2N1=� . Theorem 5follows from an appropriate choice of h. This result is practical (see [42, 71] forexperimental results) and has many applications. It can be used to attack RSAencryption when a very low public exponent is used (see [16] for a survey). Bonehet al. [21] applied it to factor e�ciently numbers of the form N = prq for large r.Boneh [17] used a variant to �nd smooth numbers in short interval. See also [13]for an application to Chinese remaindering in the presence of noise, and [72] to�nd approximate integer common divisors. Curiously, Coppersmith's theoremwas also recently used in security proofs of factoring-based schemes (see [128,18]).Remarks. Theorem 5 is trivial if P (x) = x� + c. Note also that one cannothope to improve the (natural) bound N1=� for all polynomials and all moduli N .Indeed, for the polynomial P (x) = x� and N = p� where p is prime, the rootsof P mod N are the multiples of p. Thus, one cannot hope to �nd all the smallroots (slightly) beyond N1=� = p, because there are too many of them. Thissuggests that even an SVP-oracle (instead of LLL) should not help Theorem 5in general, as evidenced by the value of the lattice volume (the fudge factor2(n�1)=4 yielded by LLL is negligible compared to det(M)1=n). It was recentlynoticed in [13] that if one only looks for the smallest root mod N , an SVP-oraclecan improve the bound N1=� for very particular moduli (namely, squarefree N ofknown factorization, without too small factors). Note that in such cases, �ndingmodular roots can still be di�cult, because the number of modular roots can beexponential in the number of prime factors ofN . Coppersmith discusses potentialimprovements in [39].6.2 Multivariate modular equationsInterestingly, Theorem 5 can heuristically extend to multivariate polynomialmodular equations. Assume for instance that one would like to �nd all smallroots of P (x; y) � 0 (modN), where P (x; y) has total degree � and has atleast one monic monomial x�y��� of maximal total degree. If one could obtain23



two algebraically independent integral polynomial equations satis�ed by all suf-�ciently small modular roots (x; y), then one could compute (by resultant) aunivariate integral polynomial equation satis�ed by x, and hence �nd e�cientlyall small (x; y). To �nd such equations, one can use an analogue of lemma 6to bivariate polynomials, with the (natural) notation kr(x; y)k =qPi;j a2i;j forr(x; y) =Pi;j ai;jxiyj :Lemma 7. Let r(x; y) 2 Q[x; y] be a sum of at most w monomials. Assumekr(xX; yY )k < 1=pw for some X;Y � 0. If r(x0; y0) 2 Z with jx0j < X andjy0j < Y , then r(x0; y0) = 0 holds over the integers.By analogy, one chooses a parameter h and select r(x; y) as a linear combinationof the polynomials qu1;u2;v(x; y) = xu1yu2(P (x; y)=N)v ; where u1+u2+ �v � h�and u1; u2; v � 0 with u1 < � or u2 < ���. Such polynomials have total degreeless than h�, and therefore are linear combinations of the n = (h�+1)(h�+2)=2monic monomials of total degree� �h. Due to the condition u1 < � or u2 < ���,such polynomials are in bijective correspondence with the n monic monomials(associate to qu1;u2;v(x; y) the monomial xu1+v�yu2+v(���)). One can representthe polynomials as n-dimensional vectors in such a way that the n � n matrixconsisting of the qu1;u2;v(xX; yY )'s (for some ordering) is lower triangular withcoe�cients N�vXu1+v�yu2+v(���) on the diagonal.Now consider the �rst two vectors r1(xX; yY ) and r2(xX; yY ) of an LLL-reduced basis of the lattice spanned by the rows of that matrix. Since the rationalqu1;u2;v(x0; y0) is actually an integer for any root (x0; y0) of P (x; y) moduloN , weneed kr1(xX; yY )k and kr2(xX; yY )k to be less than 1=pn to apply Lemma 7. A(tedious) computation of the triangular matrix determinant enables to prove thatr1(x; y) and r2(x; y) satisfy that bound when XY < N1=��" and h is su�cientlylarge (see [76]). Thus, one obtains two integer polynomial bivariate equationssatis�ed by all small modular roots of P (x; y).The problem is that, although such polynomial equations are linearly inde-pendent as vectors, they might be algebraically dependent, making the methodheuristic. This heuristic assumption is unusual: many lattice-based attacks areheuristic in the sense that they require traditional lattice reduction algorithmsto behave like SVP-oracles. An important open problem is to �nd su�cient con-ditions to make Coppersmith's method provable for bivariate (or multivariate)equations. Note that the method cannot work all the time. For instance, thepolynomial x� y has clearly too many roots over Z2 and hence too many rootsmod any N (see [38] for more general counterexamples).Such a result may enable to prove several attacks which are for now, onlyheuristic. Indeed, there are applications to the security of the RSA encryptionscheme when a very low public exponent or a low private exponent is used(see [16] for a survey), and related schemes such as the KMOV cryptosystem(see [12]). In particular, the experimental evidence of [19, 12, 46] shows that themethod is very e�ective in practice for certain polynomials.24



Remarks. In the case of univariate polynomials, there was basically no choiceover the polynomials qu;v(x) = xu(P (x)=N)v used to generate the appropri-ate univariate integer polynomial equation satis�ed by all small modular roots.There is much more freedom with bivariate modular equations. Indeed, in thedescription above, we selected the indices of the polynomials qu1;u2;v(x; y) insuch a way that they corresponded to all the monomials of total degree � h�,which form a triangle in Z2 when a monomial xiyj is represented by the point(i; j). This corresponds to the general case where a polynomial may have severalmonomials of maximal total degree. However, depending on the shape of thepolynomial P (x; y) and the bounds X and Y , other regions of (u1; u2; v) mightlead to better bounds.Assume for instance P (x; y) is of the form x�xy�y plus a linear combinationof xiyj 's where i � �x, j � �y and i + j < �x + �y. Intuitively, it is betterto select the (u1; u2; v)'s to cover the rectangle of sides h�x and h�y instead ofthe previous triangle, by picking all qu1;u2;v(x; y) such that u1 + v�x � h�x andu2 + v�y � h�y, with u1 < �x or u2 < �y. One can show that the polynomialsr1(x; y) and r2(x; y) obtained from the �rst two vectors of an LLL-reduced basisof the appropriate lattice satisfy Lemma 7, provided that h is su�ciently large,and the bounds satisfy X�xY �y � N2=3�". Boneh and Durfee [19] applied similarand other tricks to a polynomial of the form P (x; y) = xy+ax+ b. This allowedbetter bounds than the generic bound, leading to improved attacks on RSA withlow secret exponent (see also [46] for an extension to the trivariate case, usefulwhen the RSA primes are unbalanced).6.3 Multivariate integer equationsThe general problem of solving multivariate polynomial equations over Z is alsohard, as integer factorization is a special case. Coppersmith [38] showed thata similar9 lattice-based approach can be used to �nd small roots of bivariatepolynomial equations over Z:Theorem 8 (Coppersmith). Let P (x; y) be a polynomial in two variables overZ, of maximum degree � in each variable separately, and assume the coe�cientsof f are relatively prime as a set. Let X;Y be bounds on the desired solutionsx0; y0. De�ne P̂ (x; y) = P (Xx; Y y) and let D be the absolute value of the largestcoe�cient of P̂ . If XY < D2=(3�), then in time polynomial in (logD; �), we can�nd all integer pairs (x0; y0) such that P (x0; y0) = 0, jx0j < X and jy0j < Y .Again, the method extends heuristically to more than two variables, and therecan be improved bounds depending on the shape10 of the polynomial (see [38]).Theorem 8 was introduced to factor in polynomial time an RSA{modulus119 However current proofs are somehow more technical than for Theorem 5. A simpli-�cation analogue to what has been obtained for Theorem 5 would be useful.10 The coe�cient 2/3 is natural from the remarks at the end of the previous section forthe bivariate modular case. If we had assumed P to have total degree �, the boundwould be XY < D1� .11 p and q are assumed to have similar size.25



N = pq provided that half of the (either least or most signi�cant) bits of eitherp or q are known (see [38, 17, 20]). This was su�cient to break an ID-basedRSA encryption scheme proposed by Vanstone and Zuccherato [134]. Boneh etal. [20] provide another application, for recovering the RSA secret key when alarge fraction of the bits of the secret exponent is known. Curiously, none of theapplications cited above happen to be \true" applications of Theorem 8. It waslater realized in [71, 21] that those results could alternatively be obtained froma (simple) variant of the univariate modular case (Theorem 5).7 Lattices and RSASection 3 and 6 suggest to clarify the links existing between lattice reductionand RSA [120], the most famous public-key cryptosystem. We refer to [95] foran exposition of RSA, and to [16] for a survey of attacks on RSA encryption.Recall that in RSA, one selects two prime numbers p and q of approximately thesame size. The number N = pq is public. One selects an integer d coprime with�(N) = (p � 1)(q � 1). The integer d is the private key, and is called the RSAsecret exponent. The public exponent is the inverse e of d modulo �(N).7.1 Lattice attacks on RSA encryptionSmall public exponent. When the public exponent e is very small, such as 3,one can apply Coppersmith's method (seen in the previous section) for univariatepolynomials in various settings (see [16, 38, 42] for exact statements):{ An attacker can recover the plaintext of a given ciphertext, provided a largepart of the plaintext is known.{ If a message is randomized before encryption, by simply padding randombits at a known place, an attacker can recover the message provided theamount of randomness is small.{ H�astad [66] attacks can be improved. An attacker can recover a messagebroadcasted (by RSA encryption and known a�ne transformation) to suf-�ciently many participants, each holding a di�erent modulus N . This pre-cisely happens if one sends a similar message with di�erent known headersor time-stamps which are part of the encryption block.None of the attacks recover the secret exponent d: they can only recover theplaintext. The attacks do not work if appropriate padding is used (see currentstandards and [95]), or if the public exponent is not too small. For instance, thepopular choice e = 65537 is not threatened by these attacks.Small private exponent. When d � N0:25, an old result of Wiener [137] showsthat one can easily recover the secret exponent d (and thus the factorizationof N) from the continued fractions algorithm. Boneh and Durfee [19] recentlyimproved the bound to d � N0:292, by applying Coppersmith's technique to26



bivariate modular polynomials and improving the generic bound. Note that theattack is heuristic (see Section 6), but experiments showed that it works well inpractice (no counterexample has ever been found). This bound holds when theRSA primes are balanced: Durfee and Nguyen [46] improved the bound whenthe primes are unbalanced, using an extension to trivariate modular polynomi-als. All those attacks on RSA with small private exponent also hold against theRSA signature scheme, since they only use the public key. A related result (us-ing Coppersmith's technique for either bivariate integer or univariate modularpolynomials) is an attack [20] to recover d when a large portion of the bits of dis known (see [16]).7.2 Lattice attacks on RSA signatureThe RSA cryptosystem is often used as a digital signature scheme. To preventvarious attacks, one must apply a preprocessing scheme to the message, prior tosignature. The recommended solution is to use hash functions and appropriatepadding (see current standards and [95]). However, several alternative simplesolutions not involving hashing have been proposed, and sometimes accepted asstandards. Today, all such solutions have been broken (see [57]), some of themby lattice reduction techniques (see [104, 57]). Those lattice attacks are heuristicbut work well in practice. They apply lattice reduction algorithms to �nd smallsolutions to modular linear systems, which leads to signature forgeries for certainproposed RSA signature schemes. Finding such small solutions is viewed as aclosest vector problem for some norm, as seen in Section 3.4.7.3 Security of RSA{OAEPAlthough no e�cient method is known to invert the RSA encryption functionin general, it is widely accepted that the RSA encryption scheme should not bedirectly used as such, because it does not satisfy strong security notions (seefor instance [22, 95] for a simple explanation): a preprocessing function shouldbe applied to the message prior to encryption. The most famous preprocess-ing scheme for RSA is OAEP proposed by Bellare and Rogaway [11], which isstandardized in PKCS. The RSA{OAEP scheme was only recently proved to bestrongly secure (semantic security against adaptive chosen-ciphertext attacks),under the assumption that the RSA function is hard to invert and the randomoracle model. This was �rst proved by Shoup [128] for the particular case ofpublic exponent 3 using Coppersmith's theorem on univariate polynomial equa-tions, and later extended to any exponent by Fujisaki et al. [53]. Interestingly,the last part of the proof of [53] relied on lattices (in dimension 2) to �nd a smallsolution to a linear modular equation (see Section 3.4). Note however that theresult could also have been obtained with continued fractions.Boneh [18] recently proposed a simpler version of OAEP for the RSA andRabin encryption functions. The proof for Rabin is based on Coppersmith'slattice-based theorem on univariate polynomial equations, while the proof forRSA uses lattices again to �nd small solutions of linear modular equations. It27



is somewhat surprising that lattices are used both to attack RSA in certainsettings, and to prove the security of industrial uses of RSA.7.4 Factoring and lattice reductionIn the general case, the best attack against RSA encryption or signature isinteger factorization. Note that to prove (or disprove) the equivalence betweeninteger factorization and breaking RSA encryption remains an important openproblem in cryptology (latest results [25] suggest that breaking RSA encryptionmay actually be easier). We already pointed out that in some special cases,lattice reduction leads to e�cient factorization: when the factors are partiallyknown [38], or when the number to factor has the form prq with large r [21].Schnorr [123] was the �rst to establish a link between integer factorizationand lattice reduction, which was later extended by Adleman [2]. Schnorr [123]proposed a heuristic method to factor general numbers, using lattice reductionto approximate the closest vector problem in the in�nity or the L1 norm. Adle-man [2] showed how to use the Euclidean norm instead, which is more suitedto current lattice reduction algorithms. Those methods use the same underlyingideas as sieving algorithms (see [36]): to factor a number n, they try to �ndmany congruences of smooth numbers to produce random square congruencesof the form x2 � y2 (modn), after a linear algebra step. Heuristic assumptionsare needed to ensure the existence of appropriate congruences. The problem of�nding such congruences is seen as a closest vector problem. Still, it should benoted that those methods are theoretical, since they are not adapted to currentlyknown lattice reduction algorithms. To be useful, they would require very goodlattice reduction for lattices of dimension over at least several thousands.We close this review by mentioning that current versions of the Number FieldSieve (NFS) (see [87, 36]), the best algorithm known for factoring large integers,use lattice reduction. Indeed, LLL plays a crucial role in the last stage of NFSwhere one has to compute an algebraic square root of a huge algebraic numbergiven as a product of hundreds of thousands of small ones. The best algorithmknown to solve this problem is due to Montgomery (see [105, 107]). It has beenused in all recent large factorizations, notably the record factorization [34] ofa 512-bit RSA-number of 155 decimal digits proposed in the RSA challenges.There, LLL is applied many times in low dimension (less than 10) to �nd nicealgebraic integers in integral ideals. But the overall running time of NFS isdominated by other stages, such as sieving and linear algebra.8 ConclusionsThe LLL algorithm and other lattice basis reduction algorithms have provedinvaluable in cryptology. They have become the most popular tool in public-keycryptanalysis. In particular, they play a crucial rôle in several attacks againstthe RSA cryptosystem. The past few years have seen new, sometimes provable,lattice-based methods for solving problems which were a priori not linear, and28
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