
Handling Huge Data Sets in J2EE/EJB 2.1
with a Page-By-Page Iterator Pattern Variant for CMP

Ralf Gitzel, Axel Korthaus, Nima Mazloumi

University of Mannheim, Germany
{gitzel|korthaus|mazloumi}@wifo3.uni-mannheim.de

 Abstract- The J2EE platform with its server compo-
nent technology Enterprise JavaBeans (EJB) has be-
come widely adopted today. Services provided by J2EE
component containers, such as container-managed per-
sistence (CMP), facilitate the development of distributed
transactional applications and increase portability of
EJB components. Thanks to its intensive web support
through servlets and JSPs, the J2EE standard easily
allows web application designers to bring data stored in
EJB entity beans to the Internet as HTML pages.
A major problem, however, is the fact that often there
are too many instances of an entity bean to be presented
on a single HTML page. In our paper, we will compare
different solutions to this problem. As a starting point,
we will measure the performance of a naive CMP-based
approach and compare it with a bean-managed persis-
tence (BMP) approach structured in a similar way.
Since the use of CMP provides many benefits, but the
naive approach shows only poor performance, we finally
present a variant of Sun’s page-by-page iterator pat-
tern, which, as opposed to the original, does not rely on
JDBC but rather uses the new EJBQL features intro-
duced in the new EJB 2.1 final draft in order to provide
a feasible solution within the framework of CMP. In our
conclusion we also identify some possible improvements
to the J2EE standard based on our findings.

I. INTRODUCTION

Distributed enterprise application systems need a way
to persist objects and to present object data in the
World Wide Web. The J2EE platform, which consists
of several powerful APIs including the specifications
of web-oriented technologies such as servlets and
Java Server Pages (JSP) on the one hand, and a server
component technology called Enterprise JavaBeans
(EJB) for representing business objects on the other
hand, fully provides the technological foundation for
the achievement of these and even more complex
goals in the domain of developing transactional, se-
cure, reliable, manageable and scalable client-server
business applications built in Java.
However, designing and implementing a scalable,
maintainable and reasonably fast application based on
J2EE technologies in general and EJB in particular is
not trivial. One aspect the designer of an EJB-based
application has to consider is which persistence
mechanism should be used for persisting enterprise
bean data in secondary storage. There are two basic

options. The first is bean-managed persistence
(BMP), requiring the developer to write code based
on JDBC, JDO, SQLJ or similar technologies to store,
load, create and remove the bean’s state. The second,
container-managed persistence (CMP), relies on the
container to automatically takes care of maintaining
the database.
There are numerous pros and cons of each of the two
approaches, which we do not want to discuss here in
detail. For example, using BMP, the developer has to
make sure that all tables and fields are read and writ-
ten properly and that the bean accurately reflects the
data in the persistent store, which gives him control
over inner aspects of the bean, but is also a tedious
and error-prone task. Furthermore, using technologies
such as JDBC, for example, for BMP decreases port-
ability, because the enterprise beans get coupled to
the concrete schema and kind of the database in use.
With CMP, on the other hand, development, modifi-
cation, and maintenance are made easier, and maxi-
mum portability can be guaranteed, since only an
abstract schema is used and the concrete kind of data-
base can at least theoretically be exchanged without
significant problems. Another aspect of interest for
the decision between BMP and CMP in a concrete
project is the performance penalty or gain caused by
the respective approach. While some authors even
claim, that tuned CMP entity beans offer better per-
formance than BMP entity beans [oracle2002], this
assessment must not be generalized, as will become
apparent in the context of our analysis. The results of
our simple study covering the relative performance of
a CMP-based and a BMP-based solution will be pre-
sented in section II. We focus on the specific problem
of handling huge sets of data provided by enterprise
beans for presentation (e.g. in a web interface).
This problem is very common and has been addressed
before with the controversial page-by-page iterator
pattern or its successor, the value list handler pattern
[SUN] [ServerSide]. There is a caveat, however, as
the page-by-page iterator pattern description leaves
out many of the details - in fact, it is more of an
analysis of the problem than a solution - and the ex-
ample implementation is based on BMP and makes
use of a fast-lane reader [SUN], which involves the
use of JDBC and SQL. Since the schema of the data-
base is always application-specific and not part of the

 - 2 -

J2EE specification [J2EE], it is desirable to look for a
more portable way to realize the pattern.
In our paper, we show that a naive CMP-based ap-
proach to handling huge data sets on a page-by-page
basis is too slow compared with BMP. Since CMP
has several advantages, we offer a solution to the
problem. We will introduce two variants of SUN's
value list handler pattern that will help those web
application designers who want to go for maximum
standard compliance and portability by implementing
a JDBC-free solution that uses some of the new fea-
tures that will be introduced in the EJB 2.1 standard.
Finally, we discuss some ideas of how the EJB stan-
dard could be extended to provide a more efficient
solution fully integrated in the standard.

II. PERFORMANCE COMPARISON

In order to get a concrete impression of the perform-
ance of different technological solutions to the prob-
lem of extracting huge data sets on a page-by-page
basis from an application built with enterprise beans,
we implemented a simple problem domain model in
two ways, namely using a J2EE 1.3 based CMP ap-
proach and a equivalent JDBC-based BMP solution.
Figure 1 shows our example's problem domain model.
The analysis model is the basis for a university data-
base where information on professors and students is
stored. There are two finder methods planned for the
professor, one to find all entries and one to find a
specific professor by his or her name (which is the
primary key). To allow “iteration” additional methods
for retrieving subsets of the complete set of Prof-
Bean instances and of the set of StudentBean
instances linked via container-managed relationships
have to be added.
For our first test, we implemented the ProfBean as
an entity bean with CMP and had a client simply
request the primary keys of all instances existing,
returned in subsets of a specific size. In its Local
Home Interface, the ProfBean provides a method
getAllSubset which can be passed a start and an
end index used to get a subset of the complete set of
primary keys. We chose to return the primary keys
only, because this is less resource intensive than re-
turning complete value objects. However, the prob-

lem with EJB 2.0 CMP is, that EJBQL does not pro-
vide any possibilities for “caching, scrolling, and
random access to result sets” [SUN], so that we have
to read all instances from the database each time,
even if we only want to return a subset. Thus, method
getAllSubset internally calls method ejb-
HomeGetAllKeys which returns the complete set
of primary keys, based on an invocation of ejbSe-
lectAll, which delivers a collection of references
to all ProfBean instances by performing EJBQL
query SELECT OBJECT(a) FROM PROF_SCHE-
MA AS a. Needless to say, this overhead of access
stubs is a major factor in performance loss.
In order to avoid undeterministic network traffic
influencing the performance analysis, we provided a
test session bean which locally accesses the entity
bean and measures the amount of time the entity bean
needs for retrieving subsets of different size from
ProfBean extensions of also varying size.
In order to be as fair as possible, we designed a
equivalent BMP variant based on a similar structure,
i.e., reading the complete set of primary keys for each
subset to be returned. However, the BMP variant
access the database directly using JDBC. The design
is suboptimal, because it does not take advantage of
the possibilities of JDBC 3.0 for retrieving subsets of
data, but we wanted to compare programs which are
as identical as possible and as the results show our
conclusions would be the same with even faster ac-
cess.
In our test scenarios, we iterated over all instances of
the ProfBean with increasing page (i.e., subset) size
within one test run. We performed all tests in one run
to avoid too much influence of the typical initial
overhead during startup, which only occurs in the first
run. Each page size was used 100 times, before mov-
ing on to the next page size.
Our test setup was built on a Pentium 4 PC, 1 GHz,
512 MB RAM, operated with Windows 2000. We
used JBoss 3.0.4 with Tomcat 4.1.12 as our J2EE
application server and web server, and the database
storing our entity bean data was HyperSonicSQL,
which was bundled with the JBoss distribution. While
JBoss has several weaknesses [SOFTWARE], the
cost factor made it the primary choice. However, our

Figure 1: The Initial Design

 - 3 -

software examples can easily be tested on other serv-
ers as well.

DB=500

0

2000

4000

6000

8000

10000

12000

14000

16000

1 12 23 34 45 56 67 78 89 10
0

DB=500, Page=5

DB=500,
Page=10

DB=500,
Page=15

DB=500,
Page=20

DB=500,
Page=25

Fig. 2: Measurement of naive CMP, size 500

DB=500

0

200

400

600

800

1000

1200

1400
DB=500, Page=5

DB=500,
Page=10

DB=500,
Page=15

DB=500,
Page=20

DB=500,
Page=25

Fig. 3: Measurement of BMP, size 500

Some results from our performance analysis are
shown in the figures above. Figures 2 and 3 illustrate
the 100 measurements of the response time in milli-
seconds performed for different page sizes (see dif-
ferent gray scales) on a database with 500 instances
of ProfBean, for the CMP (fig. 2) and the BMP
(fig. 3) variant. Figure 4 shows a comparison of the
CMP and BMP approach based on the average data
for three different sizes of the database.

0

10000

20000

30000

40000

50000

60000

ms

100 500 1000

Ent it ies

Comparison

Avg. Naive

Avg. BM P

Fig. 4: Comparison

As can be observed from the figures, the CMP solu-
tion is much more sensitive to the total number of
entities than the BMP solution, and for 1000 entities,
which is not much in real world problems, it already
becomes unacceptably slow and even lead to an out-
of-memory error in our test setup, presumably be-
cause of the amount of active EJBObjects in the ap-
plication server. In our scenarios, a bigger page size
leads to a shorter amount of total time, which is not
surprising, because increasing the page size results in
fewer calls to the database in our implementation.
What is a bit surprising are the little peaks produced
by the BMP solution, which we suppose could be
intermediate runs of the garbage collector, since they
even occur if the database is empty. Recapitulating, it
can be said that in our specific test scenario, the na-
ive CMP solution performs very bad compared to the
BMP solution. To improve this situation, we devel-
oped the following two patterns, which use the new
EJBQL 2.1. Unfortunately, at the time of writing we
did not find any application server which already
implemented the new standard features required for
the new patterns, so that an empirical performance
comparison was impossible. However, the specific
design of the patterns substantiates the claim that they
will result in significant performance gains.

III. J2EE ITERATOR PATTERN DESIGN

When listing collections of Entity Beans in a web
page, there are two possible origins for the data; they
may be the result of a finder method or the contents
of a CMR. While the solution of how to subdivide the
results is similar in both cases, there is enough of a
difference to warrant separate patterns. Both tech-
niques are illustrated in the sample code.
Figure 1 shows our example's problem domain model.
Based on this we will detail how to write an entity
bean that is suitable for iteration. The analysis model
is the basis for a university database where informa-
tion on professors and students is stored. There are
two finder methods planned for the professor, one to
find all entries and one to find a specific professor by
his or her name (which is the primary key).

Before we go into our solution, we will briefly talk
about the options we decided against. Caching is one
solution for increased speed offered by the value list
handler. However, we have identified memory as a
bottleneck in the BMP, this strategy seems question-
able, at least for storing references to entity beans.
Storing the value objects might be a better solution

 - 4 -

but due to the other problems of caching (updates
etc.) this strategy was not persued.
A Data Access Object [SUN] can be used to mask the
entity beans and is used in the value list handler pat-
tern. In order to minimize changes to be made to
existing programs when introducing our solution, it
seemed better to stay as close to the original entity
beans as possible.

Fig. 2: The Solution for Finder Methods

The proposed page-by-page iterator pattern variant
for finder methods involves the following compo-
nents (see figure 2).
 Since the finder methods originally defined do not
suit our iteration needs, we replace or complement
each of them with three home methods (defined in the
ProfBeanByBeanIterator interface). Naturally, this
only applies to those finder methods which return
collections, all others need no iteration. In our exam-
ple the method findAll() results in the following
methods:
getAllKeys() returns the keys of all ProfBean in-
stances, as a collection of value objects [SUN] of type
ProfKey, which also contain some textual informa-
tion. The method assembles these objects by using the
results of the select methods ejbSelectAllKeys() and
ejbSelectAllInfo() (see below).
getAllSize() returns the size of the result set as an
integer, using ejbSelectAllSize().
getAllSubSet(int start, int end) allows access to
subsets of the result of getAllKeys(). It uses a
java.util.Iterator on the result of getAllKeys() to
extract the desired subset to return. Since
java.util.List is no valid return type for select meth-
ods, a direct access via indices is not possible.

The entity bean class itself must provide the imple-
mentations of the home methods as shown in the
figure. For the reader’s convenience these have been
grouped in the the ProfSelector interface, to be im-
plemented by the bean class itself. It defines several
select methods which will be used by the home meth-
ods defined in the ProfBeanByBeanIterator. This
indirect approach is necessary as it is not allowed to
expose select methods in the home or component
interface and finder methods can only return complete
entity bean instances and not their fields [EJB2.1].
The ejbSelectAllKeys() method returns all key val-
ues (the names of the Profs) sorted in a set. The
EJBQL statement depends on the intended query for
the original findAll() method. Thus, if the original
query was

SELECT OBJECT(a) FROM prof AS a WHERE
[all-condition]

where all-condition is the condition associated with
the current finder method, the new query would be

SELECT a.name FROM bean AS a WHERE [all-
condition] ORDER BY a.name

Based on this query, ejbSelectAllInfo() must use the
following query:

SELECT a.telephone FROM bean AS a WHERE
[all-condition] ORDER BY a.name

Note that sorting is still based on the key (a.name),
otherwise it would be impossible to know which info
belongs to which key. The info can be any field the
designer deems suitable to list along the key to allow
a potential user to identify which database entry is
represented by the key (in our case it is the phone
number). This is especially useful for either short
overview lists that will most likely not require any
additional details (like a phone directory in this case)
or entities with numerical keys. As an example for the
the latter case, assume a database sorted by SINs. It is
easier to identify ShortInfo = Miller (SIN = 12345)
as the entry one was looking for than SIN = 12345
by itself.
Of course it is possible to drop the value object and
the ejbSelectAllInfo() altogether and just return the
collection of keys from ejbSelectAllKeys(), which
has a better performance.
ejbSelectAllSize()counts the number of beans that
satisfy the condition:

SELECT count(a) FROM bean AS a WHERE
[all-condition]

 - 5 -

Fig. 3: The Solution for CMR Fields

So far we have only covered access to the results of
finder methods, still leaving unanswered page-by-
page access to CMRs. As in the first pattern, several
helper methods are required as described in figure 3.
Again, we have a couple of select methods to help our
iteration methods. Since there are many similarities to
the example above, only some of the methods are
described here, to highlight the differences.
For example, selectCMRThesisStudent-
sKeys(String key) is the equivalent of selec-
tAllKeys(). However, this time we need to look up a
specific object - therefore a key value has to be
passed. The select method returns all StudentBean
instances that are reachable through the ThesisStu-
dents CMR from the ProfBean with the primary key
key. The EJBQL statement is:

SELECT b.id FROM prof AS a,
IN(a.thesisStudents) AS b WHERE prof = ?1
ORDER BY b.id

It returns all students that are reachable via the The-
sisStudents CMR from the professor who matches
the key passed to the select method.
We also need a method paralleling getAllSubSet(int
start, int stop), in the our example a business method
called getThesisStudents(int start, int stop). Inter-
nally, it is very similar to its paragon. A nice feature
is that we can simply overload the required method
for the CMR, in our example getThesisStudents().
All other methods are easily derived along these lines.

Now that we know the details of these patterns, let us
look at their characteristics. First of all, they share a
lot with the original Page-By-Page Iterator. They
reduce network traffic at the expense of server re-
quests and are not robust to changes [SUN]. Unique
properties are:

• No JDBC is needed. As a result, portability
is improved significantly and performance
depends on the container implementation.

• No state is kept which avoids expensive
storage of user data and obsolete data repre-
sentations, because cached data will not re-
flect changes to the database that occurred in
the mean time.

• The select methods rely on functionality
provided in the EJB 2.1 standard, e.g. to
count or sort. Also new is the IN() operator
essential for CMR iteration.

• If the EJB classes are already provided it
might become necessary to write wrapper
entity beans which have a one-to-one CMR
to the encapsulated bean and perform the it-
eration functionality. A wrapper entity bean
implements all the required select methods
with slightly modified queries. Instead of di-
rectly accessing the bean data (e.g. a.name),
the queries navigate the CMR (i.e.
a.encapsuledBean.name). Otherwise, the
rules stated in the patterns remain valid.
However, the encapsulation will result in a
more complex database structure and less
performance, since each access to instance
data set now involves two beans, one for the
original entity and one for the wrapper.

• The pattern can be expanded to include addi-
tional ways of partitioning the data, not
based on the number of data sets. This can
be achieved by using parameters and LIKE
statements. For example, alphabetical parti-
tioning can be realized by a findKey-
StartsWith("a%") method that returns only
those keys that match the given pattern.

IV. PROPOSALS FOR THE STANDARD

The problem addressed in this paper is by no means
an uncommon one. In fact, it should be relevant for
all J2EE based applications that involve some sort of
content management. Therefore the question arises,
whether the conclusions drawn from our experiment
could somehow be formed into a proposal for a
change in the J2EE standard.
The least significant change would be to include
java.util.List in the return types allowed for finder
methods. This seemingly trivial change would at least
avoid activating every single entity bean by iterating
over the references stored in the collection returned
by the finder.
Another suggestion is to replace by EJBQL by OQL
altogether. Not only the problem described here but
many others could be solved by a more powerful
query language.

 - 6 -

A more far-reaching proposal would be the inclusion
of parameterized finder methods paralleling the func-
tionality of getAllSubset() and similar methods.
Implementation details would again be left to the
container. While this solution mirrors our suggestion
for J2EE 1.4 style programming, it has drawbacks.
First of all, the style of EJBs would change somewhat
– not a desirable aspect of a new standard version.
Comparing these suggestions, we come to the conclu-
sion that the inclusion of Lists would be a simple but
powerful change to the J2EE standard. While the
advantage given above is marginal, performance can
improve radically by lazy-loading For example, a
collection returned by a finder could be implemented
in such a way as to only retrieve elements when they
are needed. The increased number of database queries
would be offset by a massive reduction of entity bean
references in certain types of cases. Ideally, a switch
within the container-specific part of the deployment
descriptor could be introduced for each finder
method. Therefore a minimal change would vastly
improve the usability of J2EE.

IV. CONCLUSION

This paper described and proved the existence of a
performance problem when using value list handler-
type patterns together with CMP in J2EE applica-
tions. After illustrating the problem with an empirical
experiment and identifying the causes for this bottle-
neck, a J2EE 1.4-based solution was presented.
Finally, the insights gained through the prototypical
implementation were used to identify possible
changes to the J2EE standard. It became apparent that
very minute changes would vastly benefit J2EE with
regard to the common Page-By-Page Iterator prob-
lem.

V. REFERENCES

Sample Code: Profbean, Local Home Interface, Local
Interface: src.zip

[Oracle2002] EJB Best Practices. http://otn.oracle.
com/sample_code/tech/java/codesnippet/j2ee/ejbbest
practices/EJB-Best.html

[SUN] Sun suggests several J2EE Patterns on their
home page: http://java.sun.com/blueprints/patterns/
index.html

[ServerSide] The Page-By-Page Iterator Controversy:
http://www.theserverside.com/patterns/thread.jsp?
thread_id=12899

[J2EE] Specification: http://java.sun.com/j2ee/

[EJB2.1] Specification: http://java.sun.com/j2ee/

[SOFTWARE] Ian Gorton, Anna Liu, Paul Brebner:
“Rigorous Evaluation of COTS Middleware
Technology” in: I2EE Software, Vol. 36 No. 3, pg. 50-
55

Sun's Java Foundation Classes homepage:
http://java.sun.com/products/jfc/

