
Evaluation of the SEPA in Teaching Undergraduate Software
Engineering in the Traditional Computer Science Curriculum

Hubert A. Johnson
College of Mathematics and Computer Science

Montclair State University
Upper Montclair, New Jersey 07043

johnsonh@alpha, montclair.edu

Abstract
Experiences provide computer science majors need to mirror the typical situation a student will encounter
after graduation. The frustration as well as the benefit of working in a group can only be appreciated if
experienced first hand. This has made the introduction of software engineering concepts into the traditional
computer science curriculum an invaluable component in all computer science courses.

The use of Software Engineering - A Practitioner's Approach (SEPA) in an undergraduate software
engineering course taught at Montclair in the Spring of 1997 was an attempt to expose the students to
situations as typical of real-world conditions as possible. In assessing the impact of this approach on
undergraduate software education, I concluded that the SEPA can provide a rich and significantly worthwhile
experience for students as the students in this course had very positive feedback regarding the course.

Introduction
An essential part of the sof tware engineer ing course was the
team projects . The projects were intended to give students a
first hand exper ience in industr ial or business problems.
Unl ike many other software engineer ing courses which use a
s ingle project and have all teams work on the same project ,
this course a l lowed different teams to work on different
projects. This, of course, presented certain difficult ies for
the instructor in terms o f grading each pro jec t based on its
level o f sophist icat ion. The students, on the other hand, faced
two different and major problems: Deal ing with the sof tware
engineer ing concepts and learning a new language Ada.
The reason for using different projects was to cater to the
different levels of interests and the sophis t icat ion of the
students.

Background
Most of the students in this course had never before worked
on a group project . For those who had, the projects were not
as s t ructured and t ime consuming as the ones in this course.

The course , which used Sof tware Eng ineer ing : A
Pract i t ioner ' s Approach (SEPA), was des igned to provide as
pract ical an exper ience in software deve lopment as possible.
In this course, a l though an at tempt was made to present a
ba lanced t reatment o f the topics discussed, more emphas is
was p laced on deve lopment issues (analysis , design, coding,
testing, management .)

The c l a s s room c o m p o n e n t of this p ro j ec t -o r i en ted
course was organized as a lecture/meet ing. The class met for
three f i f ty-minute per iods each week. The first two per iods

each week were devoted to lecture and the last to team
meetings.

Adap t ing the guidel ines sugges ted by Pressman, at the
first class meet ing the handout given to (and discussed with)
students addressed the issues o f course organizat ion, course
requirements , team organizat ion, and course evaluation.

Course Organization
Course organizat ion descr ibed the course, expla ined the
organizat ion o f the course, out l ined the lecture topics and
project ass ignment due dates, gave hints on working in
groups and wri t ing up the project document . Final ly , some
sugges ted projects were given and a deta i led descr ipt ion o f
the ass ignments re la ted to the project . The focus o f this
course was on (1) taking an in-depth look at the concepts and
process which a sof tware engineer need to master and
emp loy in software development , and (2) apply ing these
concepts in bui ld ing a non-t r ivia l team term project.

In this course, s tudents were exposed to a systematic
software deve lopment process that inc luded mi les tones and
qual i ty assurance checks, by making ass ignment submiss ion
modu la r and incremental in nature. Students had the
oppor tuni ty to design, manage , and implemen t a med ium-
size project . Both the lecture and the projects covered topics
in sof tware engineer ing management , p rob lem specif icat ion
and analysis , system design techniques, documenta t ion ,
sys t em tes t ing and p e r f o r m a n c e eva lua t ion , so f tware
maintenance, rel iabil i ty, and current p rog ramming and run-
t ime environments . Every effort was made to avoid just
of fer ing an advanced p r o g r a m m i n g course as sof tware

Vol 31. No. 2 June 1999 81 ~ g a ~ SIGCSE Bulletin

SEPA (continued from page 81)

engineering. The course was explicitly designed to present,
and emphasize, topics relevant to each phase in the software
engineering process

A list of possible projects from which students could
choose was provided at the first class meeting. Examples of
suggested projects used in the course were:

A string-processing program: This would include facilities
for operating on a string (read a line of test and convert all
upper case letters to lower case, copying, comparing,
concatenating, and replacing).
A scheduling program: This would provide a scheduling
committee in a department at a university the facility to
assign courses to faculty, classroom, and other things.

There were a total of twelve suggested project
possibilities. Students, however, had the option of choosing
a project outside those proposed by the instructor. If a
project was chosen outside those suggested (and some te~uns
did) the instructor's approval had to be obtained before
proceeding.

The document distributed to students at the first class
meeting also stipulated the due date for each deliverable for
the semester. This took the form:
Week 2: Teams are required to submit a description of the
project the team has chosen
Week 3: Submit a draft of the paper (described in week 2)
Week 4: The final version of the paper due.

The instructor made a point to emphasize (in writing)
that the main purpose of the functional specification
(required in week 4) was to explain what the students were
going to do for their project rather than how the goals would
be accomplished. The functional specification would later
be coupled with a management plan and design to comprise
the proposal to the sponsor/client (a role played by the
instructor). As a guide, the handout to students specified
what the contents of the functional specification should
entail. Each phase of the software development had a
"guide" as to the nature of what was expected by the
instructor as deliverables.

Course Requirement
There were reading assignments and other homework related
to the project. An important requirement of the course was
a weekly log kept by each student of the time spent on
different course-related activities.

Team Organization
This was a class of 19 students. These students divided into
teams with three or four in each team. The teams were
"democratically" formed in that students were instructed to
choose the person(s) they wish to work with. The reason for
this approach was to reduce the likelihood of someone using
his/her being placed in a particular group as an excuse for
unsatisfactory work, which could then significantly affect

the quality of the project. Each member of a team had the
opportunity of taking on interchanging roles for each phase
of the project development. Each served as team leader,
recorder, and editor at some point.

The role of the leader was mainly to delegate
responsibilities to each team member. The leader also served
as the project coordinator/editor and was responsible for
overseeing the interfacing of the components developed by
individual team members into a working system.

Course Evaluation
To help students give a fair assessment of the course, they
were instructed at the outset (and continually reminded
throughout the semester) to keep a written record (a log) of
the things they found difficult, laborious, interesting, useful,
or disliked.

About a week before the end of the semester students
were reminded to start working on their written evaluation of
the course. They were assured that a candid evaluation was
expected and that this would have no bearing on their final
grade. The process of gaining students' trust so they could
write as freely as possible in their evaluation, was an easy
one as many of the students had previously done some
course with me.

A Summary of Students Comments
The experience in working in teams was a valuable one

as it gave them some experience in what it is to make
compromises.

The team meetings were extremely useful as they served
to clarify certain project-related concepts/activity about
which someone might have had doubt or misunderstanding.
Using the third class period for team meetings was a great
idea as it resolved conflicts in students' schedule that
prohibited some from meeting outside of class.

Deadlines set by the instructor for submission of project
modules were useful as it served to keep the teams focused
and prevented procrastination. Some team members,
however, found the deadlines somewhat taxing.

Students learned a lot from serving in different roles on
a team during the software development process.

Students were amazed at, and initially disliked, the
amount of documentation that had to be produced. This
dislike
was, however, dismissed or tempered considerably when
they realized that referring to the documentation made
writing the program and producing a user's manual a lot
easier than expected.

The specifications and well-written designs made
communication problems among team members almost
nonexistent.

One team member wrote: "It's clear that the greatest
amount of time was spent on Design, which definitely
facilitated the coding phase. Design followed fairly
smoothly from the functional specification, and since we

S I G C S E Bullet in :~ ~ ! ~ : ~:~ 82 June 1999 Vol 31. No. 2

spent so much time on Design, both top-level and detailed,
the coding was easy to organize."

Dealing with the software engineering concepts and
learning a new language at the same time was challenging.

Self-doubt. Some students expressed some initial
feeling of self doubt during the early stages of the system
development. This doubt they claim, however, was short-
lived because of the lectures and the clear guide provided by
the documentation, as well as the discussions with fellow
team members.

The logs proved very valuable as, according to the
students, these logs raised their level of consciousness as it
relates to the projects. It caused them to start monitoring
their time and to develop a greater sense of being able to
estimate the time required for a task.

Another student wrote: "The original project schedule
plans were somewhat contrived to fit into the school
semester, thus we ran out of time near the end of the semester
and so were not able to implement the testing phase."

Problems
There were two major problems encountered in this course.
The first was the difficulty with unstable environment on
which the Ada compiler was installed. This led to students
using the GNU compiler which they down-loaded from
public domain on the web.

The second pertains to one team. Starting with the
design phase one member of one of the teams refused to
compromise on the proposed design suggested by other team
members. This student developed his own design. Because
the course was designed to provide "real-world experience"
in working on team projects, the student was eventually
convinced to go along with the majority. This then gave rise
to social and ethical issues, and discussions in which the
entire class participated. The student was so adamantly
opposed to his team's design that although he eventually
performed his share of tasks as a team member, he proceeded
to implement his own design as well.

Students Recommendat ions
As indicated earlier, at the first class meeting students were
not only informed of the requirements to keep track of their
likes and dislikes but they were also required to give written
recommendations for improving the features of the course
they disliked. This request was made with the hope that such
recommendations would serve to make the course a more
effective one, and thus enable students to benefit from it the
next time it was taught.

It is interesting to note that although a major dislike was for
the amount of work involved in producing the documentation,
heading the list of recommendations was the need for the next
group of students doing this course (and anyone developing
software) to experience the task of producing the required
documentation in developing a system.

Many students felt that this experience should not just
be limited to this particular course but should be utilized in
other computer science courses as well.

Students strongly recommended that the course be
taught using the programming language normally used
(currently C++), instead of having them grapple with a new
language and the software engineering concepts
simultaneously. This they stated would perhaps be more
manageable if the system was more stable.

Another recommendation was that this course should be
made a required course for computer science majors instead
of being optional, as it currently is.

Conclusion
I feel that the SEPA is a valuable technique which can be
easily and effectively integrated into the computer science
curriculum. As it was implemented in this specific software
engineering course, students were provided a rich experience
working on a team project and in learning what it takes to be
a successful software developer. Students developed a sense
of responsibility and accountability (to their teammates).
The quality of their projects was outstanding, as was
demonstrated by the presentation given by each team at the
last class meeting for the semester.

Based on the results, more of this approach, although on
a limited scale, will be incorporated into several of my other
computer science courses. Modules have already been
adopted into my CS1, CS2, and CS3 courses. The SEPA
model is one which I would, without hesitation, encourage
computer science educators to incorporate into their courses.
It takes a tremendous amount of planning prior to the start of
the semester but the results are well worth it when one
observes what the students are able to accomplish.

In considering the students' recommendations, in the
future I will use the programming language that is in general
use in the department (currently C++). Another
consideration would be to allow students to use any language
with which they are comfortable.

References
1. ACM/IEEE-CS Joint Curricula Task Force (1990)
Computing Curricula 1991. Tucker, Allen B.,et. al., ACM
Press/IEEE Computer Press.
2. Booch, Grady. "Software Engineering With Ada 3rd Ed.";
Addison-Wesley 1996.
3. Gersting, Judith L. "A software Engineering 'Frosting' on a
Traditional CS-1 Course" p 233-235, Twenty-first SIGCSE
Technical Symposium on Computer Science Education. Vol 26, No
1, March 1994.
4. McFarland, G. "The Benefit of Bottom-up Design" p 43-51;
ACM Software Engineering Notes, Vol. 11, No. 5 Oct 1986.
5. Mynatt, B. T., "Software Engineering with Student Project
Guidance." Prentice Hall 1991.
6. Pressman, R., "Software Engineering: A Practitioner's
Approach 4th Ed." McGraw-Hill 1997.

Vol 31. No. 2 June 1999 83 ~ 5 ~ SIGCSE Bulletin

