
Nifty Assignments
Nick Parlante

(moderator)
Stanford University

nick.parlante@cs.stanford.edu
Owen Astrachan

Duke University
ola@cs.duke.edu
Brent Heeringa
Williams College

heeringa@cs.williams.edu

Thomas P. Murtagh
Williams College

tom@cs.williams.edu
David Reed

Creighton University
davereed@creighton.edu

Mehran Sahami
Stanford University

sahami@cs.stanford.edu
Christopher A. Stone

Harvey Mudd College
stone@cs.hmc.edu

Karen Reid
University of Toronto

reid@cs.toronto.edu

Categories and Subject Descriptors
K.3.0 [Computers and Education]: General.

General Terms
Algorithms, Design, Languages.

Keywords
Education, assignment, homework, project, repository, library,
nifty, object oriented programming.

Introduction
Assignments determine much of what students actually take away
from a course. Sadly, creating successful assignments is difficult
and error prone. With that in mind, the Nifty Assignments session
is about promoting and sharing successful assignment ideas, and
more importantly, making the assignment materials available for
others to adopt.
Each presenter will introduce their assignment, give a quick
demo, and describe its niche in the curriculum and its strengths
and weaknesses. The presentations (and the descriptions below)
just introduce each assignment. The Nifty Assignments home
page, http://nifty.stanford.edu, organizes and provides the
handouts, data files, starter code, etc., for each assignment freely
on the web. Nick’s running ACM editorial: I look forward to the
day when, in line with its mission to promote CS, the ACM
organizes and distributes all of its materials freely in this way.
If you have an assignment that works well and would be of
interest to the CSE community, please consider applying to
present at Nifty Assignments at http://nifty.stanford.edu.

Star Charts and Constellations (CS1)
Karen Reid
Who can walk outside on a clear night in the countryside and not
look up at the stars? Identifying constellations is one of the first
lessons in astronomy and ties together science and mythology.
Numerous applications present star maps to help stargazers
identify the stars and constellations they look at. In this

assignment, students use data from published star catalogs to draw
a star map complete with constellations. The shapes of the
constellations come from the well-known book by H. A. Rey, The
Stars: A New Way to See Them.
The assignment works in an attractive domain and benefits from
the use of real-world data. The graphical nature of this assignment
is appealing, yet the underlying data structures and algorithms
involved are simple enough for CS1 students to grasp.
This assignment gives students practice reading files and building
data structures. It could be expanded to teach students about
combining data from multiple sources and the noise or errors
present in real data sets.
Perhaps most importantly, the result of this assignment is a
picture that students can show to their friends and family to
explain what they are doing in their CS class.

Hiding in Plain Sight: Steganographic Images
(CS1) - Brent Heeringa and Thomas Murtagh
Steganography is the art of hiding one message “in plain sight”
within another. Like cryptography, steganography helps ensure
privacy in communication. Unlike cryptography, steganography
does not prevent eavesdroppers from examining the contents of a
sensitive message. Rather, it conceals the fact that a sensitive
message is even being exchanged by hiding its contents within
another, non-sensitive message.
In this assignment, students implement algorithms to
steganographically hide messages within images and then to
extract hidden messages from images. The messages to be hidden
can either be other images or text. In both cases, the hidden
message is encoded by changing the least significant bits of the
numbers encoding the brightness of the pixels in the image used
to camouflage the secret information. The modified images are
indistinguishable from the originals, but can hide millions of bits
of information.
This assignment provides appropriate ways to exercise student
skills with array manipulation in a CS1 course. The pixels of the
images being processed are presented as two dimensional arrays.
Text messages to be encoded are first converted into one
dimensional arrays holding the bit values corresponding to their
ASCII encoding and then distributed systematically over the two
dimensional arrays of pixel values. A simple GUI interface is
implemented to select the images and/or text to be processed.

Copyright is held by the author/owner(s).
SIGCSE’09, March 3–7, 2009, Chattanooga, Tennessee, USA.
ACM 978-1-60558-183-5/09/03.

483

Random Art (CS1-PLs)
Christopher A. Stone
Random expressions produce Random Art! Build an expression in
x and y by nesting simple primitives (e.g., sin(π×_), cos(π×_),
project, and average), and consider the 2-by-2 square around
(0,0). We can interpret the value at each point as a grayscale
level, or use three expressions to get RGB values.
As Andrej Bauer (http://www.random-art.org) has observed, when
an expression is sufficiently complicated (say, 8-12 levels deep)
there is a surprisingly good chance of getting an interesting
picture. Thus, one can generate completely random expressions,
see how they look, and keep the best pictures.
This simple idea inspired a popular assignment in our
Programming Languages course. Implementing Random Art is an
excellent “second” exercise in functional programming, being
both more challenging and more interesting than reverse, append,
and similar recursive code. Our assignment further exercises
higher-order and first-class functions.
But there’s no intrinsic need for functional programming. The
core idea, representing and evaluating expressions, is simple and
could be implemented in any language or paradigm. By providing
skeleton code with carefully chosen holes, one could choose
whether students concentrate on expression evaluation,
representations for symbolic data, recursion, loops, or graphics.
The assignment is nifty because it uses classic algorithmic and
recursive material to build appealing graphical output.

FacePamphlet (CS1-CS2) - Mehran Sahami
Social networking is incredibly popular among students. Giving
them the opportunity to implement a social network both
motivates them and helps demystify the internals of a type of
application that they may already be quite engaged with as users.
Not to mention, it makes for a fun demo to impress their friends
(“Look, I made Facebook”).
The FacePamphlet assignment (i.e., a lightweight version of
Facebook) manages the information in a basic social network
comprised of “user profiles”, where each profile has a name, as
well as an image, current status, and list of friends associated with
it. Profile contents are defined specifically to match features
found in real social networks, with the ability to display images
being an important feature to have students engage more
personally with the application. The program stresses classic data
management (arrays/lists and maps) as well as a solid
understanding of control flow and program state. The assignment
lends itself easily to extensions (e.g., file processing to save/load
networks, support for communities in the network, network graph
analysis, etc.).
FacePamphlet has been given successfully as a final assignment
in a CS1 course, with many students noting it as their favorite
assignment in the class. Interestingly, the social theme was more
popular on a relative basis with female students (more so than
some game assignments given in the class).

Encryption and the Enigma Machine
(CS1-CS2) David Reed
Cryptography has played an important role in the history of
computing, from motivating the development of the first
electronic computer to enabling secure Web-based

communication and commerce. Substitution ciphers, such as the
Caesar cipher, are simple to understand yet form the basis of
many modern encryption tools, such as the Enigma machine used
in World War II.
This session will present three related assignments involving
substitution ciphers. The first assignment could be given early in a
CS1 course, after String methods have been introduced. Students
are given a class for encoding/decoding text using the Caesar
cipher, which they must then modify to make it more robust and
powerful by allowing different substitution keys and subsequently
rotating the key after each encoding. The second and third
assignments extend the idea of a rotating substitution cipher,
requiring students to design and implement classes for modeling
an Enigma machine. The first of these involves a simplified
model of an Enigma machine, using multiple interconnected,
rotating substitution keys. The second is a more complex but
historically accurate model of an Enigma. To help students
visualize the workings of the machine, they first build a working
model out of paper using the Do-It-Yourself Enigma Machine.
These assignments are nifty in that they combine class design,
String manipulation, and GUI implementation with a broader
historical context. In addition, building a working Enigma model
with scissors and tape is a fun hands-on activity for the classroom.

DNA Splicing (CS2) Owen Astrachan
This assignment is based on modeling a process from
computational biology/genomics related to restriction enzymes
and polymerase chain reaction (aka PCR). The discovery and
explanation of these processes in Biology generated two Nobel
prizes, and the modeling in this computational simulation is
definitely nifty. We use the assignment in our data structures
course to emphasize performance trade-offs that are facilitated by
structuring data intelligently. In building assignments we strive to
anchor them to the real world and to show that simple, but well-
designed data structures and algorithms can make a huge
difference in the size of the problem that can be modeled and in
what experiments can be run computationally. In the case of this
simulation we think we have achieved both goals.
We provide students a simple implementation of constructing a
recombinant DNA strand that takes a string representing DNA,
breaks it at every occurrence of a restriction enzyme, e.g.,
CGAATC, and splices in a new string at every break/splice point.
This implementation is a single loop using standard string search
methods and concatenation. We analyze its complexity and
performance in terms of N, the length of the original string; B the
number of places the string is broken; S the size of the string
being spliced into the strand to create the recombinant strand. We
then ask students to model the DNA using a linked list rather than
a string. The new implementation creates a string of size N + SB
characters in N+B in both time and space, in contrast to the
original implementation which requires time and space of N + SB
(or worse if a Java String is used rather than StringBuilder). When
S is large this is a huge difference, and we ask students to find the
value of S that breaks the original implementation and to compare
that to the new version which is extremely efficient.
This assignment is nifty because of the huge performance gains
with a simple implementation, because it is a linked list example
that makes a difference, because students get to experiment, and
because it connects the slightly mundane CS ideas of strings and
lists with a vivid real world example.

484

