

 Documenting Software Systems with Views V:
Towards Visual Documentation of Design Patterns

as an Aid to Program Understanding
Tim Trese Scott Tilley

Department of Computer Sciences Department of Computer Sciences
Florida Institute of Technology Florida Institute of Technology

ttrese@fit.edu stilley@cs.fit.edu

ABSTRACT
Cognitive science research indicates that a system is more readily
understood when it is presented at progressive levels of
decomposition, exposing increasing amounts of detail. One logical
level of detail would present a system in terms of its implemented
design patterns. However, to date, no entirely satisfactory method of
documentation has been devised for explicating a software system
as a set of design patterns. This paper discusses the challenges
inherent in visualizing a software system as a set of design patterns,
reviews the progress of another current effort, and describes a
UML-compliant enhanced class-participation diagram as one
possible solution.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – documentation.

General Terms
Documentation, Human Factors, Standardization

Keywords
design patterns, documentation, program understanding

1. INTRODUCTION
It is commonly accepted that maintenance activities can account
for as much as 80% of the total lifecycle cost of a software
system. Frequently, the programmers conducting maintenance
were not involved with the original development of the system
and therefore possess a limited understanding of the system’s
design. To maintain the software in a disciplined, controlled
manner, the first challenge such programmers face is one of
program understanding: a learning process that involves, among
other tasks, constructing a cognitive mapping from the functional
requirements of a system in the application domain to the design
and implementation of the system software at various levels of
detail. A frequently cited goal of reverse engineering [3] activities
such as program redocumentation [8] is to develop information
products that facilitate this task.

In such redocumentation information products, a software
system’s design is generally explicated at several levels of detail,
including the overall system, its component functional
subsystems, and the source code itself. At an intermediate level
between the functional subsystem and source code, object-
oriented software can be described in terms of design patterns:
cooperative assemblies of classes that collectively implement the
solution to a low-level design problem in a well-known way [6].
Recognizing an implementation of a familiar design pattern might
help programmers to more quickly and accurately acquire an
understanding of the application. The recognized design pattern
might also become a useful operand in further cognitive
operations that the programmer performs to make correct
decisions during system maintenance. If either of these statements
is true, treatment of implemented design patterns adds value to
redocumentation.

One of the most common strategies for documenting a system’s
static structure is with Unified Modeling Language (UML) class
diagrams. Similar diagrams are also conventionally used to
catalog design patterns. This paper argues that system
redocumentation in which UML class diagrams are organized
primarily for the optimal display of design patterns has several
distinct advantages:

 Such documentation fosters program understanding by
explicitly exposing implemented design patterns.

• Organization of UML class diagrams around design patterns
using the visual design strategies proposed makes UML class
diagrams semantically richer and more readable than
traditional, comprehensive UML class diagrams.

• A CASE tool can semi-automatically generate the described
UML class diagrams with minimal resort on the part of the
documenting software engineer to a graphical UML design
utility.

The next section of the paper discusses the importance of design
pattern documentation as an aid to program understanding.
Section 3 explains why it may be advantageous in documentation
to represent design patterns using a repeated graphical template.
Section 4 describes visual design strategies intended to augment
explication of system architecture as a set of design patterns.
Finally, Section 5 summarizes the paper and outlines possible
avenues of further work, such as the research remaining to
produce empirical validation of the ideas presented herein.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGDOC’07, October 22–24, 2007, El Paso, Texas, USA.
Copyright 2007 ACM 978-1-59593-588-5/07/0010...$5.00.

103

2. DESIGN PATTERNS IN
DOCUMENTATION

Design patterns are recognized as valuable aids in software
engineering. They provide language-independent solutions to
common design problems. This section discusses how the same
approach can be used in terms of documentation patterns to aid
program understanding.

2.1 Advantages of Design Pattern
Documentation

Design patterns aid in the program understanding process, both
from the top-down, system decomposition, and the bottom-up,
detail aggregation, perspectives.

2.1.1 Top-Down: Decomposition of a System into
Familiar Functional Assemblies

Empirical evidence supports the fairly intuitive proposition that
design pattern documentation is an aid to program understanding.
Prechelt et al. have run controlled experiments demonstrating that
“[pattern comment lines] in [source code headers] may
considerably reduce the time required for a program change or
may help improve the quality of the change” [11]. It seems
reasonable to conclude from these findings that inserting pattern
comment lines as part of a redocumentation effort would facilitate
program understanding, but there are some problems with doing
so. For example, documenting classes’ participation in an external
design pattern within a class violates the tenet of class
encapsulation. Moreover, redocumenting patterns in source code
is intrusive into the standing code base, which may not be
practicable or desirable under all circumstances. Both of these
problems are overcome by capturing design pattern information in
some external document.

2.1.2 Bottom-Up: Chunking of Classes into
Meaningful Groups

Studies in program comprehension indicate that when trying to
understand a program, programmers frequently use a chunking
strategy, a learning mechanism leading to the acquisition of long-
term memory structures that can be used as units of perception
and meaning [17]. This strategy implies a need for the
programmer to reduce the number of cognitive elements to a
manageable size. Industrial-size software systems can comprise
thousands of classes. While a system design can often be
functionally decomposed into a cognitively-manageable number
of more-or-less independent subsystems, each of these subsystems
might itself consist of dozens up to perhaps hundreds of classes.
So, even after this first level of decomposition, these subsystems
pose a formidable challenge to program understanding by dint of
sheer numbers.

The next level of functional decomposition is into design
patterns: so-called “architecture in-the-small.” Each design
pattern provides a grouping of several classes into a discrete,
functionally significant element of the implementation domain.
The number of design patterns implemented in a subsystem can
vary widely, but decomposition into such groupings provides
relief to program comprehension for two reasons. First, the
design pattern itself serves as a discrete cognitive operand for
tasks involving low-level architecture. Second, the number of

design pattern elements in a subsystem at least helps to
approach something cognitively manageable.

A design pattern can be further decomposed into several
participants, each of which comprises either a class or a cluster of
classes that inherit from another participant. The number of
participants in a design pattern is usually a very manageable
number: a census of the patterns catalogued in the classic Design
Patterns text [6] shows a range of from one to five participants,
with the average being a little more than three participants in any
given pattern.

2.2 Challenges to Documenting a System as a
Set of Design Patterns

Redocumentation of low-level architecture and design patterns
admits of several difficulties: those related to identifying of design
patterns in software, those of aberrant design in the system under
study, and those relating to the nature of how design patterns
function within the system.

2.2.1 Lack of Automated Pattern Identification
Automated identification of design patterns in an architecture
remains an elusive goal. While this is fertile ground for research
(e.g. [4], [10]) the state of the art is, at best, semi-automated. This
necessitates that a human re-documenter with a strong design
pattern vocabulary also cull the system for patterns and manually
document them as they are found.

2.2.2 Inapplicability of Patterns
Exacerbating the preceding difficulty is that not all software
designs make optimal use design patterns or implement them in a
standard way. The absence of design patterns, non-standard
implementations, and the existence of so-called anti-patterns [2]
present a challenge to the decomposition of a low-level
architecture into its component design patterns.

2.2.3 Limited Pattern Vocabulary of Documenter and
Maintainer

Given the state of the art in automated pattern identification, it
remains incumbent upon the documenter to have working
knowledge of design patterns to recognize classes and members
within a subsystem so that he can tag them appropriately. Given
the scope of the subject, it is unlikely that any documenter is
aware of all known patterns or even all of the variations on those
patterns with which he is familiar. Further, knowledge of design
patterns among programmers using this documentation to acquire
program understanding can vary widely, and merely recognizing
that a class participates in a particular pattern is not sufficient
without some understanding of the significance of the pattern.

To accommodate both documentation producers and consumers, a
CASE tool that enables the sort of documentation contemplated
here must provide a design pattern catalog. To facilitate the
production of UML class diagrams with pattern information, the
CASE tool could provide a mechanism that enables the
documenter to the rapidly map program classes and members onto
elements of a selected structure from the catalog.

104

2.2.4 Class Participation Is Not an Equivalence
Relation

Most relevant to this paper is the fact that design patterns do not
generally permit a “neat” decomposition of a subsystem into
lower-level elements in the same way that a system can be broken
down into its constituent subsystems or that a design pattern
decomposes into participants. Some classes will participate in
more than one design pattern, and some classes, hereafter referred
to as “auxiliary” classes, do not participate in any known design
patterns at all. In other words, class participation in a design
pattern is not an equivalence relation; design patterns do not
strictly partition the set of classes in a subsystem. This presents a
special challenge to redocumentation of low-level architecture
that will be discussed in subsequent sections of this paper.

3. VISUAL REPRESENTATION OF
DESIGN PATTERN STRUCTURES IN
EXPLICATING DESIGN

This section explains why it may be advantageous in
documentation to represent design patterns using a repeated
graphical template.

3.1 Problems Addressed
Using standard, widely accepted visual representations of a design
pattern might address issues in both program understanding and
efficient development of documentation.

3.1.1 Canonical Representations Leverage Visual
Convention and Parallelism

The most recognizable visual representation of a design pattern is
the simple UML or quasi-UML diagram that represents its
structure. The design pattern structural diagram as it is commonly
catalogued will here be referred to as its “canonical”
representation. As a programmer’s vocabulary of design patterns
grows, so too does their familiarity with these canonical
representations; in effect, the convention of the canonically-
represented design pattern becomes a familiar and recognizable
“phrase” in the visual language.

Tufte describes the value of parallelism in graphical display of
information as follows:

“Parallelism connects visual elements. Connections are
built among images by position, orientation, overlap,
synchronization, and similarities in content. Parallelism
grows from a common viewpoint that relates like to like.
Congruity of structure across multiple images gives the
eye a context for assessing data variation. Parallelism is
not simply a matter of design arrangements for the
perceiving mind itself actively works to detect and indeed
to generate links clusters and matches among assorted
visual elements” [16].

This paper suggests that displaying an implementation of a design
pattern with participating classes in the same position and
orientation as appears in the canonical representation of the design
pattern, and showing only selected information specified by the
canonical representation, leverages parallelism and established

visual convention, thereby facilitating more rapid program
understanding.

3.1.2 Participants Always in Respective Locations
While further empirical evidence is demanded, there are
compelling reasons why one would expect this claim to be true. In
the canonical representation of a design pattern, the visual
structure assigns each participant a relative location in 2D space.
If one is attempting to identify the participants in an implemented
design pattern, having each participant in the same position
relative to other participants provides an immediate visual queue
as to its function in the pattern. It may well prove that a
programmer sufficiently fluent with a particular pattern and its
canonical representation could immediately identify the
participants in an implemented pattern by position alone.

3.1.3 Templates Enable Semi-Automated
Documentation

Another advantage to displaying implemented design patterns in
their canonical representation is that it semi-automates the process
of creating readable UML class diagrams. A relatively simple tool
could be devised that would enable a re-documenter to map
elements, classes, and relevant class members of an
implementation onto the set of participants in a selected design
pattern, and have the implementation automatically displayed in a
UML class diagram in the pattern’s canonical representation.

3.1.4 Addressing the Challenge of Readable UML
Class Diagrams

Redocumentation makes ample use of UML class diagrams as a
software visualization aid to program understanding. As Tilley
and Huang point out, it is, in a sense, a standard. However, in
presenting their findings about the efficacy of UML as an aid to
program understanding, they identify among UML’s
shortcomings that “for complex UML [class] diagrams, which can
have many dozens of artifacts and an equally large number of
relationship arcs, the problem [of graph layout and detail
visibility] is particularly acute” [14].

Approaches to solving the problems of UML class diagram layout
that conform to the syntax of the language can be broken into
three general categories: applying additional constraints to UML,
applying graphical innovations that augment UML, and applying
selectivity to the information depicted in a given diagram.

Constraining UML is the purpose of the style guidelines asserted
by Ambler in The Elements of UML Style [1]. The establishment
of a hierarchy of aesthetic preferences to enhance readability of
UML, and the subsequent assessment of automated UML layout
features in CASE tools according to these standards, has received
considerable attention (e.g. [5], [13]). An example of the graphical
innovations suggested for UML class diagrams is the use of color
to highlight class hierarchies and generalizations [7].

Selectivity of information is endorsed by Ambler in his general
diagramming guidelines: “show only what you have to show” and
“reorganize large diagrams into several smaller ones.”

3.2 Other Approaches and Challenges
The standard UML method for representing design patterns in a
class diagram presents readability issues. Some new kind of

105

Figure 1: Design Patterns UML Standard Notation [12]

pattern diagram may prove a good solution, but any such
innovation must address the equivalence relation problem inherent
in design patterns.

3.2.1 No Standard “Pattern Diagram”
Using the Lexi program documented in [6] as an example,
Schauer and Keller graphically articulate the problems of using a
standard UML class diagram with the language-prescribed design
pattern markup as shown in Figure 1 [12]. Although the depiction
of classes in relative proximity and location approximates the
canonical structure representation of design patterns, any benefit
is obscured by the visual noise generated when the standard
design pattern notation is added.

The authors present as an alternative the “pattern collaboration
diagram” shown in Figure 2, a featured product of the tool that
they are developing. This diagram achieves readability by
depicting design patterns in place of classes in a UML class
diagram-like format. Although the diagram shows limited
information about participating classes, when displayed in the
tool, the reader can select a pattern and expand it to see its
constituent classes. After further research and scrutiny by a broad-
based consortium like OMG, innovations like Figure 2 may well
provide a standard visual language for showing design pattern
implementations in an architecture.

Note, however, that some semantic problems need to be
rigorously addressed if the pattern collaboration diagram is to
become a standard. In the Lexi application example used in [6],

the abstract class Glyph is the Component participant in a
Composite pattern and also the Component participant in a
Decorator pattern. The relation between the Composite pattern
and the Decorator pattern is not, as depicted in Figure 2,
simultaneous aggregation and generalization; patterns are not
generally said to aggregate or generalize other patterns. Rather, if
the pattern collaboration diagram is to precisely depict relations
between atomic design patterns, perhaps the arc between them
should simply indicate that the Composite and Decorator patterns
share a class in common.

Further, if all of the patterns in Figure 2 are collapsed to indicate
atomic design patterns, the only apparent mapping from the
design patterns down to the class-implementation level of
decomposition is the incomplete lists of participating classes
identified in the pattern boxes. Exactly how and why these classes
are identified to the exclusion of other participants is unclear, but
this approach obscures the reader’s cognitive link from design
patterns down to the lowest level of the implementation domain.

3.2.2 Multiple Design Patterns in Same Visualization
One of the principal challenges to be met in visually representing
a subsystem as a set of design patterns in a UML class diagram is
overlap. Because the same class can participate in multiple design
patterns, rendering design patterns in their canonical structures
means that the design patterns overlap, with consequent
readability problems. The alternative proposed here to overcome
this difficulty is to represent the same class multiple times in the

106

Figure 2: Pattern Collaboration Diagram [12]

same diagram, and provide graphical cues to the reader that the
same class is present several times in the diagram.

3.2.3 Auxiliary Classes and Members
As noted previously, there are auxiliary classes in a subsystem
that do not participate in any known design patterns. In an
explication of a subsystem as a set of design patterns, there is no
assigned place for such classes. Moreover, even in classes that
participate in multiple design patterns, there will likely be
auxiliary members of these classes: behaviors and attributes that
serve internal purposes and are not relevant to any of the patterns
in which the class participates.

In order to achieve a complete representation of a subsystem as a
set of design patterns, this paper proposes that auxiliary classes be
grafted on to a canonical structure where they make most sense.
In order to exhaustively explicate a class, there will have to be at
least one additional place-holder representation of that class to
capture its auxiliary members.

4. UML-COMPLIANT ENHANCEMENTS
FOR DEPICTING CLASS-
PARTICIPATION USING CANONICAL
DESIGN PATTERN
REPRESENTATIONS

The goal of this paper is to propose requirements for the display
of highly readable UML-class diagrams that facilitate cognitive

chunking and fully leverage the advantages of displaying design
patterns in their canonical representations, while surmounting
some of the difficulties noted in the preceding paragraphs. What
remains is to identify and provide examples for appropriate visual
design strategies in such class diagrams.

4.1 Interrelating Pattern Structures as a Set of
Class-Participation Diagrams

To facilitate chunking as a cognitive strategy for subsystem
comprehension, we propose that the programmer visualize the
subsystem in a series of UML class diagrams. Each of these class
diagrams depicts the canonical representations of all the patterns
in which a selected class participates, here called “class-
participation diagrams.” The class-participation diagram also
contains a non-pattern depiction of the selected class, displaying
its members that do not participate in patterns, and it may also
depict auxiliary classes identified by the documenter that are in
some way coupled to the selected class. These auxiliary classes
may be connected by standard UML arcs to the non-pattern
depiction of the selected class or to a depiction of the selected
class as a pattern-participant, whichever the documenter deems
most relevant.

4.2 Figure-Ground Visual Design Strategy
Visual emphasis of selected elements provides the reader with
focal points that are the cognitive entry points into a visual field
and identify what is most important [9]. Our diagramming

107

Figure 3: Spacing between Patterns

approach implies three gradations of emphasis for depicting
classes: the primary selected class that participates in all design
patterns on the class-participation diagram, secondary classes that
are co-participants in the design patterns depicted, and tertiary
auxiliary classes that the documenter has chosen to depict with the
primary class. In the class-participation diagram, each of these
gradations is assigned a respective degree of figure-ground
contrast, achieved by monochromatic shading of the class boxes
in the diagram. According to Tufte, only minimal contrasts
between elements and ground are necessary to produce a visual
hierarchy [16]. Consequently, we have chosen 30%, 10%, and 0%
tints to provide visual gradation in Figure 4. Note that these are
easily distinguishable gradations that do not interfere with reading
the foreground black type.

4.3 Visual Grouping Design Strategies
Visual grouping strategies organize a visual field into units and
subunits, “[enabling] readers to sort through the parts of a
document more efficiently [and creating] visual cohesion” [9]. In
essence, grouping strategies facilitate navigability and further
cognitive chunking. Several grouping strategies are employed in
our approach.

4.3.1 Spatial Nearness
The primary application of spatial nearness grouping in the class-
participation diagram is accomplished by the canonical
representations of the design patterns themselves, which keep the
participating classes in close spatial proximity. Adequate white
space margins around each pattern (about 20% of the width of the
canonical representations in Figure 3) maintain a distinct
boundary between the patterns so that even at a cursory glance it
is obvious in which pattern any depicted class is a participant.

4.3.2 Division
A second grouping strategy is applied by dividing the patterns
depicted into several distinct groups: three group patterns of the
purposes assigned by [6] (creational, structural, and behavioral),
one group for the non-pattern depiction of the primary class, and

one group for anti-patterns. In Figure 5, this division is achieved
using relatively heavyweight (4 pt.) boundary lines that are easily
distinguishable from the (1 pt.) relation arcs and class rectangle
borders that are typical of most UML class diagrams.

Note that over the set of class-participation diagrams, these five
divisions are maintained in the same location relative to one
another, as shown in Figure 5. Consistent application of this
visual convention enables the reader to readily navigate to the
three purpose divisions, the non-pattern division, and the anti-
pattern division.

4.3.3 Rows
Within each division described above, patterns are arrayed in
rows in Figure 5. This enables further ease of navigation, as the
user can scan horizontally for a design pattern of interest within
its division. This has a secondary beneficial effect of arranging the
complete class-participation diagram in a rectangular, rather than
horizontally or vertically linear, layout, suitable for printing or on-
screen display at some arbitrary degree of magnification that fits
the presentation medium.

5. SUMMARY
Good documentation of software is clear, concise, and provides
readable coverage of the system’s implemented design patterns.
This paper described the underlying rationale and outlined
requirements for a documentation suite that includes class-
participation diagrams. UML-compliant enhancements for
depicting such diagrams using canonical design pattern
representations were presented.

5.1 Future Work
There are several avenues for possible future work in this area.
Two that will receive close attention are enhancements to an
existing documentation maturity model based on the ideas
proposed in this paper, and empirical validation of the diagram
enhancement techniques.

108

Figure 4: Strategy Pattern from Lexi with Shading

5.1.1 Enhancing the Documentation Maturity Model
In [15], Tilley and Huang propose a Documentation Maturity
Model (DMM) that outlines a set of heuristic key product
attributes (KPAs) against which the quality of redocumentation
can be evaluated. One of these KPAs is granularity: the ascending
level of abstraction to which a system has been documented.
Another KPA is graphical format. Documentation conforming to
the requirements presented in the present paper is demonstrably at
the Design Patterns (DMM product level 2) of granularity and
Static and Standardized (DMM product level 2) of graphical
format. We believe that as further enhancements are suggested by
findings of the research outlined above, this could drive further
product innovations that enable higher maturity levels of re-
documentation and provide products of greater value to the
programmer engaged in acquiring program understanding.

5.1.2 Empirical Validation
Considerable work remains to empirically validate the ideas
presented by answering the following questions:

(a) Does depicting an implemented design pattern in its
canonical representation really make any difference?

An experiment must be devised for testing the hypothesis
that readers will more quickly and easily understand a design
pattern implementation if it is documented visually, using a
familiar congruent canonical representation. An experimental
task asked of the subjects should simulate an industrial
program understanding task.

(b) Does the documentation envisioned facilitate software
maintenance better than alternatives?

A second experiment should seek to quantify how much
more efficiently programmers can maintain a system when
that system is fully documented with class-participation
diagrams, as opposed to some other control documentation
representative of current industry standards. This will
provide baseline data on the value of such documentation to
the users.

(c) Can documenters generate class-participation diagram
documentation as easily as supposed?

109

Figure 5: Layout of Class Design Pattern Information

To determine if the proposed documentation presents a
winning value proposition, it is also necessary to estimate the
costs of producing class-participation diagrams relative to
current industry-standard redocumentation. This should be
experimentally determined by developing a prototype CASE
tool that provides the capabilities to document a system and
comparing this with time required to produce alternative
documentation. One challenge to the design of this
experiment is creating a standard comparable to the one
developed here, but for the alternative documentation.

REFERENCES
[1] Ambler, S. The Elements of UML 2.0 Style. New York, NY:

Cambridge University Press, 2005.
[2] Brown, W., Malveau, R., McCormick, H., and Mowbray, T.

AntiPatterns: Refactoring Software, Architectures, and
Projects in Crisis. New York: Wiley & Sons, 1998. pp. 7-8

[3] Chikofsy, E.; and Cross, J. “Reverse Engineering and Design
Recovery: A Taxonomy.” IEEE Software 7(1):13-17,
January 1990.

[4] Costagliola, G., De Lucia, A. Deufemia, V., Gravino, C. and
Risi, M. “Case Studies of Visual Language Based Design
Patterns Recovery” Proceedings of the Conference on
Software Maintenance and Reengineering (CSMR’06) IEEE,
2006.

[5] Eichelberger, H. “Nice Diagrams Admit Good Design?” In
SoftVis ’03: Proceedings of the 2003 Symposium on
Software Visualization, pp. 159-168. New York: ACM Press,
2003.

[6] Gamma, E and R. Helm, R. Johnson, J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, Mass: Addison-Wesley, 1995.

[7] Gutwenger, C., Jünger, M., Klein, K., Kupke, J., Leipert, S.
and Mutzel, P. “A New Approach for Visualizing UML class
Diagrams.” ACM Symposium on Software Visualization.
San Diego, CA, 2003 pp. 179-188.

110

[8] Huang, S. An Integrated Approach to Program
Redocumentation. Ph.D. Dissertation, University of
California, Riverside, 2004.

[9] Kostelnick, C. and Roberts, D. Designing Visual Language:
Strategies for Professional Communicators. Needham
Heights, MA: Allyn & Bacon, 1998.

[10] Mak, J., Choy, C., and Lun, D. “Precise Modeling of Design
Patterns in UML.” Proceedings of the 26th International
Conference on Software Engineering (ICSE’04)

[11] Prechelt, L.; B. Unger-Lamprecht; M. Philippsen; and W.
Tichy. “Two Controlled Experiments Assessing the
Usefulness of Design Pattern Documentation in Program
Maintenance.” IEEE Transactions on Software Engineering,
Vol. 28, No. 6, June 2002. pp. 595-606

[12] Schauer, R. and Keller, R. “Pattern visualization for software
comprehension.” Proceedings of the 6th International
Workshop on Program Comprehension (IWPC ’98: June 24-
26, 1998; Ischia, Italy), pp. 4 – 12. Los Alamitos, CA: IEEE
Computer Society Press, 1998.

[13] Sun, D. and Wong, K. “On Evaluating the Layout of UML
Class Diagrams for Program Comprehension.” Proceedings
of the 13th International Workshop on Program
Comprehension (IWPC 2005: May 15-16, 2006; St. Louis,

MO), pp. 317 – 326. Los Alamitos, CA: IEEE Computer
Society Press, 2005.

[14] Tilley, S. and S. Huang. “A Qualitative Assessment of the
Efficacy of UML Diagrams as a Form of Graphical
Documentation in Aiding Program Understanding.”
Proceedings of the 21st Annual International Conference on
Design of Communication (SIGDOC 2003: October 12-15,
2003; San Francisco, CA), pp. 184-191. ACM Press: New
York, NY, 2003.

[15] Tilley, S. and S. Huang. “Towards a Documentation
Maturity Model.” Proceedings of the 21st Annual
International Conference on Design of Communication
(SIGDOC 2003: October 12-15, 2003; San Francisco, CA),
pp. 93-99. ACM Press: New York, NY, 2003.

[16] Tufte, Edward R. Visual Explanations: Images and
Quantities, Evidence and Narrative. Cheshire, CT: Graphics
Press, 1997.

[17] von Mayerhauser, A. and Vans, A. “Program Understanding
during Large Scale Debugging of Software.” Papers
Presented at the Seventh Workshop on Empirical Studies of
Programmers. New York: ACM Press, 1997. pp. 157-179.

111

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

