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Abstract
The continuing growth in high-throughput data acquisition has led to a proliferation of network

models to represent and analyse biological systems. These networks involve distinct

interaction types detected by a combination of methods, ranging from directly observed

physical interactions based in biochemistry to interactions inferred from phenotype

measurements, genomic expression and comparative genomics. The discovery of interactions

increasingly requires a blend of experimental and computational methods. Considering yeast as

a model system, recent analytical methods are reviewed here and specific aims are proposed

to improve network interaction inference and facilitate predictive biological modelling.

INTRODUCTION
Biological networks are becoming

increasingly essential for the analysis and

interpretation of large data sets generated

by high-throughput technology.1–3 In

general, a network is defined by a set of

distinct elements, the nodes, and

interactions between the elements, the

edges. When applied to biology, the

nodes can represent genes, proteins or

modular structures which are a

combination of many co-dependent units.

The edges correspond to biological

interactions, connecting the nodes and

forming a functional network that

governs cellular processing.

Interaction networks are generally

dependent on the environment inhabited

by the organism under study. This implies

many possible network configurations,

each facilitating the biological processes

most appropriate to external conditions.

The data from which networks are

generated should therefore be identified

with the corresponding experimental

environment(s). In practice, this has

proved a difficult task owing to

limitations in experimental methods and

data management.

Methods of inferring biological

interactions vary with the interaction type

being probed. The interactions fall into

three general classes of increasing

abstraction: molecular interactions,

regulatory interactions and genetic

interactions. Although commonly

assembled into separate networks, in

reality all types are chemical interactions

which combine to generate cellular

behaviour. Regulatory interactions are,

most generally, statements of influences

on gene expression, which can

correspond to one or more protein–DNA

binding interactions or mRNA

degradation. Genetic interactions are

manifestations of many regulatory and

functional interactions at work within a

biochemical pathway or network,

observed indirectly by comparing

phenotype variation between genotypes.

This paper is nevertheless organised

into distinct sections reviewing recent

advances in the study of each of the three

interaction classes, as this separation is not

yet anachronistic. The eventual

emergence of an integrated systems view

of the cell probably first requires a better

understanding of individual interaction

types, network architectures and

environmental specificity, to be followed

by the development of predictive models

that are limited in scope but highly

accurate. Integration could then proceed

at the level of these models. Recent

works outlined in this review are

examples of progress in this regard, with a
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concentration on yeast as a model

organism for the purposes of brevity and

contextual coherence. The final section

discusses goals for improving interaction

inference and considers implications for

modelling.

PROTEIN–PROTEIN AND
PROTEIN–METABOLITE
INTERACTIONS
The cell is a chemical machine that

functions primarily through

compartmentalised interactions between

proteins, metabolites and nucleic acids.

The understanding of these interactions is

therefore of utmost importance.

Obtaining global, high-confidence

interaction data has proved challenging,

even in model organisms.

Detection of protein–
protein interactions

A prolific genome-wide approach in

yeast has been the two-hybrid assay.4 This

method constructs an artificial

transcription factor, fusing the DNA-

binding domain with the first query

protein and a transcriptional-activation

domain to the second. When the two

query proteins bind, a reporter gene is

actively transcribed. Thousands of

putative interactions have been

discovered and assembled into networks.5

Further analysis has demonstrated that the

network is scale-free6 and organised in a

modular fashion,7 with individual

proteins forming semi-independent

interaction clusters.

The primary drawback of the yeast

two-hybrid method is an apparently poor

reliability.8 Interactions go undetected

when query proteins involved cannot be

localised to the nucleus or when fusions

interfere with interaction or folding

domains. Perhaps more troubling, false-

positive interactions occur when query

proteins bind in the nuclear environment

but either rarely interact in natural

locations or interact only under limited,

unspecified environmental conditions.

The assay is also unable to distinguish

stable, functional interactions from

weaker, transient interactions sustained

only in the two-hybrid system.

An alternative technique under

development for global discovery of

protein–protein interactions is fluorescence

resonance energy transfer (FRET)

microscopy.9 Fluorophores within about

60 Å of one another transfer energy, and

tagging different fluorophores to a pair of

proteins will generate observable resonant

phenomena when the pair binds. The

broad applicability of this method is not

yet clear, but FRET has been successful in

specific trials. High-throughput screens are

currently in design. This system potentially

has the great advantage of reporting both

the localisation and timing of protein

interactions, in vivo and in response to

experimental conditions or perturbations.

Array technology is another candidate

for direct detection of protein–protein

interactions. Taking DNA microarrays as

a model, the aim is to construct a chip

onto which an entire proteome is spotted.

This protein array would facilitate global

screens for protein–protein, protein–

nucleic acid and protein–metabolite

interactions.10,11 Technical challenges

remain, including the synthesis of an

entire proteome and difficulties in

pinning proteins on a slide, but trials have

been successfully performed with 5,000

yeast proteins.12 While these methods are

potentially promising, the in vitro nature

of the assay will limit its reliability as a

measure of the interactions which occur

in a cell functioning in a particular

environment.

Thus, although protein interactions are

the primary means by which many

cellular processes occur, they remain

difficult to detect.

REGULATORY
INTERACTIONS
Substantial progress is being made in

inferring interactions that regulate

genomic expression. Methods currently in

use include direct detection of protein–

DNA interactions, computational

intragenomic and comparative genomic

sequence analysis, and/or probabilistic

algorithms that analyse microarray data.

Recent combinations of these methods

have led to rudimentary maps of genomic
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regulation in yeast and signs of global

network organisation.

Detection of protein–
DNA interactions

The physical detection of protein–

DNA interactions is led by chromatin

immunoprecipitation combined with

array technology, an approach commonly

known as the ChIP-chip or genome-wide

location analysis.13 This process isolates

and amplifies protein-bound DNA

fragments, which are comparatively

hybridised with a set of control DNA to a

DNA microarray. After initial success in

locating binding targets for the yeast

transcription factors Gal4 and Ste12,13 this

method has recently been combined with

multiple computational methods

(discussed below).

Protein binding microarray (PBM)

technology is an alternative chip-based

method for detection of protein–DNA

binding.14 Simpler in conception than

ChIP-chip, this method involves

hybridising a putative DNA-binding

protein expressed with an epitope tag to

an array of double-stranded DNA

fragments. The array is washed to remove

non-specific protein binding and treated

with an antibody specific to the tag. Early

trials have identified dozens of previously

unknown targets of yeast transcription

factors Abf1, Rap1 and Mig1.4 PBMs

allow experiments to be carried out with

great rapidity, but as an in vitro procedure

it is susceptible to reporting interactions

that do not occur in vivo and it cannot

discern condition-specific binding.

Computational
search for protein–
DNA binding motifs

For organisms with sequenced

genomes, computational methods have

been developed to precisely identify

regulatory binding sites within cis-acting

promoter regions. The number of

software applications that search for

transcription factor binding sequences in

intergenic regions has proliferated greatly

in recent years. While some employ

algorithms that search for co-occurrences

of given sequence fragments, the majority

use probabilistic models to discover

functional binding sites amid the noise of

the genome. The MEME software suite15

uses expectation maximisation, and

others, such as AlignACE,16 MDscan17

and MotifSampler,18 are based on Gibbs

sampling methods to find sequence

fragments with a low likelihood of being

present in a random genomic sequence.

The generic input for probabilistic

algorithms is a set of putatively co-

regulated genes (identified through

expression analysis, observation of

protein–DNA interactions, or some other

means) and some portion of their

upstream nucleotide sequence in a

standard format (usually FastA coding). A

set of short sequence fragments (or motifs)

are returned, usually 6 to 15 bases in

length, and scored for high representation

and specificity as compared with the

entire genome. Some algorithms generate

position-specific scoring matrices, which

list probabilities for the occurrence of

each of the four bases at each of the

positions in the motif.

While these algorithms do not directly

detect protein–DNA interactions,

comparing found motifs with known

targets of DNA-binding proteins in the

Transfac or similar databases provides

strong evidence for an interaction. Like

array-based methods, genomic searches

suggest what can occur in a cell rather

than what does occur under a given

condition.

Evidence for condition-specificity of

discovered protein–DNA interactions is

generated when computational methods

are combined with genome-wide location

(ChIP-chip) data. The power of this

union was demonstrated in a recent

analysis of the yeast regulatory system.19

Over two hundred suspected transcription

factors, believed to be most of those

present in yeast, were tested for DNA-

binding through ChIP-chip analysis under

varied growth conditions. Sequences

encoded by bound probes were fed to a

combination of six motif search

algorithms and, after a set of significance

and cross-species comparison tests, a final

set of 65 regulator-and-motif pairs was

determined. These and previously known

bindings not found in the analysis have

been combined into an online regulatory

map for Saccharomyces cerevisiae of
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impressive scale.20 While this is certainly

not the full regulatory network for yeast,

it provides a database containing

thousands of regulatory interactions with

specificity to growth conditions. The

authors state some generalities about

promoter architectures and global binding

behaviours, which is perhaps only the tip

of a very rich iceberg of regulatory

network organisation.

An alternative approach in the same

spirit is based on the MDscan platform.21

The expanded software, called Motif

Regressor, draws co-expressed genes from

an input data set and searches their

upstream regions for motifs reported with

MDscan. Linear regression is applied to

the motif-match score and gene

expression to remove non-specific

candidates and the surviving motifs are

grouped into functional sets. The result is

a set of inferred regulator–target

interactions specific to the growth

conditions tested in the expression data

set. A set of 15 distinct motifs was

determined to be involved in the

transcriptional response to amino acid

starvation. This, like the above

combination of software with chip

technology, is an example of successfully

integrating computational approaches

with experimental data to expand the map

of known protein–DNA regulatory

interactions in yeast.

Bayesian analysis of
microarray data

Beyond physical protein–DNA

interactions lies a more abstract set of

regulatory interactions generated by

probabilistic analysis of gene expression

data. These methods, which typically

apply Bayesian analysis or machine

learning techniques to large data sets,22

generate networks of interacting gene

clusters that form functional modules.17

These modules are generally composed of

one or more DNA-binding proteins and

the binding targets. The intermodular

interactions suggest a higher organisation

of regulatory interactions, although they

formally represent probabilistic

dependence in expression patterns. Like

the motif search algorithms, the use of

these techniques is evolving into an

integrated approach with physical

interaction data23 or motif search

algorithms24 that link transcription factors

to co-regulated genes.

Specifically, the Genetic Regulatory

Modules (GRAM) algorithm developed

by Bar-Joseph and collaborators23

incorporates DNA binding data and over

500 expression data sets to produce a

regulatory network with 106 gene

modules regulated by 68 transcription

factors. Similarly, the work of Segal and

collaborators combines two

computational techniques, expression

clustering and motif searching, with an

expectation maximisation algorithm to

detect modules regulated by specific

transcription factors.17,24

The interactions inferred using these

techniques exhibit a higher-order

organisation of protein–DNA

interactions under which all genes that

interact with a set of regulatory protein

are gathered into a single biological unit.

These gene sets usually show over-

representation of functional annotations,

strong evidence that the regulatory

network is modular in architecture. As

this concept becomes increasingly

supported by the data, exceptional genes

and regulators that do not conform to

this pattern become of particular

interest.

Recent studies of modular

organisation in protein–protein networks

demarcate a higher-order architecture of

interactivity, both within and between

functional modules,25 which might also

characterise regulatory hierarchies. Levels

of regulation inherent in such a

hierarchy would require methods to

disentangle the layers of influence on the

expression of every individual gene.

Mathematical deconstruction procedures

such as singular value decomposition (SVD)

can isolate independent numeric

contributions of genome-wide expression

change.26 Such an analysis of expression

response to specific perturbations might

identify different levels of the regulatory

hierarchy in a pathway or biological

subsystem of interest.

Logic of genetic
interactions
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GENETIC INTERACTIONS
Genetic interactions are inferred through

phenotype observations of allele

combinations. More abstract than isolated

chemical interactions, they offer a more

comprehensive picture of how gene

products interact, encompassing every

information processing step from

genotype to phenotype. Although limited

by fewer high-throughput techniques and

a lack of measurement standardisation, the

field is nevertheless progressing rapidly.

Genetic networks have identified

functional organisation at the genetic

level, revealed pathways of information

flow within and between chemical

response networks, and have proved to be

a powerful tool in the computational

modelling of yeast metabolism.

Phenotype observation has been the

method by which genetic interactions are

inferred since the beginnings of genetics.

The classical concept follows from

comparing phenotypes of strains which

carry distinct alleles. Controlled

experiments with inbred mutant strains of

model organisms have become a basic

method to better understand the

biochemical organisation which underlies

the phenotypic effects. A prime example

is the effectively complete library of

deletion mutant strains for S. cerevisiae,

which has made the yeast a fruitful

laboratory for the study of genetic

interactions in eukaryotes. Interaction

properties of experimental mutations are

of particular interest in the broader

context of outbred populations that carry

multiple alleles. The genetic basis of

human disease susceptibility, in which

multigenic interaction effects are often

pre-eminent, is naturally the most urgent

application.27,28

The logic behind genetic interactions is

as follows. Consider two genes, A and B,

mutations of which yield observable

phenotypes. Taking cell growth as an

example phenotype, imagine a null

mutation of A inhibits growth while a

null mutation of B enhances growth. The

growth rate of a double-mutant, with null

mutations on both A and B, is also

inhibited. In this case the A mutant is said

to be epistatic to the B mutant, as its

phenotype does not change in the B-null

background. This is one possible genetic

interaction which can be inferred from

any phenotype that can be measured on a

comparative scale.

Systematic interpretation of epistatic

interaction was explicitly formulated by

Avery and Wasserman29 and later

encoded into software.30 Taking sex

determination and apoptosis in

Caenorhabditis elegans as models, these

authors explicated common assumptions

for biological information flow and

delineated a set of rules to predict the

relative positions of the two test genes in a

sequence of events that determines the

observed phenotype. In the above

example, in which A is epistatic to B, the

interpreted model places A downstream

of B. Thus, gene A’s absence overrides

effects from the B-null allele.

Epistasis is one of many possible modes

of genetic interaction. Another familiar

interaction which implies interpretation is

synthesis. In this case, single mutants of A

and B have no effect on the phenotype,

but the double-mutation does. This is

consistent with gene products of A and B

inhabiting parallel positions in pathways

responsible for the phenotype or being

members of a complex able to withstand

the loss of one component but not two.

A readily observed phenotype for

screens of synthetic interactions is cell

fitness in yeast. Specifically, in many cases

the double-null mutation of two genes

with viable single deletions is lethal (or

severely limits cell growth). These

synthetic sick or lethal (SSL) genetic

interactions are being mapped on a large

scale by Boone and collaborators28 using

synthetic genetic array (SGA) high-

throughput technology. Hundreds of

yeast genes have been tested pairwise for

SSL, and the resulting network is one of

thousands of nodes and tens of thousands

of interactions. Similar studies have been

carried out on a smaller scale in fruitfly

and worm genetics. It has been found that

functionally related genes often exhibit
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SSL interactions, and the immense scale of

the network allows for statistical analysis

of higher-order structure in the network.

Interestingly, trials that searched for

SSL in triple-mutants found relatively few

cases where the growth defect could not

be accounted for by double-mutant

effects. Although too few triple-mutants

were tested for statistical certainty,

interactions involving two proteins seem

to dominate the biomolecular dynamics

that control cellular growth.

Further analysis has demonstrated that

integration of other genetic interactions

(eg epistasis) or other types of biological

interactions (eg protein–DNA binding)

can further reveal functional architecture

within this dense network.31 Ultimately,

discovery of repeated substructures,

perhaps analogous to amplifiers and filters

in electrical circuitry, can signify specific

biological mechanisms or functions.

It has been noted32 that the large

number of interactions in the SSL

network might ensure robustness, but this

presents a substantial hurdle for an easy

understanding multigenic effects in

human disease. The large number of

interactions per gene – Tong et al.28

found an average of 34 – would produce

insufficiently specific information in

genome-wide association studies. Instead,

a subset of candidate genes must be

targeted.

Modes of genetic
interaction

Other commonly observed interactions

are suppression, in which one mutant

suppresses the phenotype of another in

the double-mutant, and additivity, in

which phenotypes of both single mutants

combine to yield a third phenotype in the

double-mutant. Other, more exotic

interactions are also possible, depending

on the results of phenotype

measurements. The systematics of these

relations between single-mutants, double-

mutants and wild-type measurements

form a finite set of possibilities that can be

formally classified.

To this end, consider a genotype X,

and its associated phenotype observation

PX . The phenotype could be a numerical

measurement or any other observation

that can be clearly compared across

mutant genotypes (eg slow v. standard v.

fast growth). If genotypes are labelled by

mutant alleles, a set of four phenotype

observations can be assembled which

defines a genetic interaction: PA and PB

for the A and B mutant alleles, PAB for the

AB double mutant, and PWT for the wild

type. The relationship between these four

measurements defines a genetic

interaction; for example, PAB ¼ PA ,

PWT , PB described an epistatic

interaction while PAB , PWT ¼ PA ¼ PB

represents synthesis. It is immediately

clear that some of these interactions are

symmetric under an exchange of genes A

and B (eg synthetic) while others are not

(eg epistatic). There are in fact 75 distinct

inequalities that can be constructed from

four phenotypes.

These inequalities were recently

catalogued and classified into nine distinct

interaction modes by Drees et al.33 Many

of these modes are familiar: epistatic,

suppressive, conditional, additive and

non-interaction. Three are not:

asynthetic, single-nonmonotonic, and

double-nonmonotonic. Asynthesis occurs

when mutants A, B and AB exhibit the

same deviant phenotype. In single-

nonmonotonic interaction, a mutant gene

shows opposite effects in the WT

background and the other mutant

background (eg PWT , PA and

PAB , PB). In double-nonmonotonic

interaction, both mutant genes show

opposite effects.

All of the nine interaction modes were

detected in a yeast network constructed

from photoassays of invasive growth on

agar plates by a set of single and double

mutant strains. Perturbations were chosen

for relevance to the yeast filamentous

response, a cell differentiation process

which occurs under nitrogen starvation

on solid media. Specific alleles were

found to interact in a particular mode

with neighbour genes of coherent

biological function, leading to hypotheses

on regulatory and pathway organisation.

Large-scale patterns of mutual

information were extracted from the data
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set, which potentially allow for

predictions of the interactions of one

mutation from the effects of another it

systematically follows. A picture arises of

the biological network as an information

conduit, with information flow

determined by dense network

architecture. When combined with more

specific physical interaction and gene

expression data to specify the direction of

information flow, the systems-level

network will enable precise predictions of

system behaviour under perturbation.

Prediction of genetic
interactions

To study genetic interactions

computationally, recent work by Segrè

et al. proposed an entirely model-based

method for enabling the discovery of

genetic interactions.34 Using the

theoretical assumption of flux balance

analysis (FBA) devised by Famili, Förster

and collaborators,35 the metabolic

network of yeast was simulated with

multiple genetic backgrounds. Taking

predicted fitness as a phenotype, double

and single mutations were compared to

obtain a spectrum of genetic interactions.

The distribution is clearly tri-modal, with

peaks corresponding to three interaction

types: alleviating, aggravating and non-

interacting. The first type roughly

corresponds to synthetic lethality and the

second to epistasis in the discussion

above.

When functional annotations of each

gene are considered, it is immediately

noticeable that genes of similar function

overwhelmingly interact in the same

manner, a property the authors call

‘monochromaticity’ from the colour-

mapping on their diagrams. Furthermore,

interactions between two sets of genes

with different functions tend to exhibit

interactions of the same type, which

suggests a modularity in the organisation

of the genetic interactions. When laid out

in terms of monochromatic clusters, the

network transforms into one of coherent

interactions between modules of

functional genes.

While these results are specific to the

computational model’s general design,

they intriguingly suggest a series of

experimental screens to detect this

monochromaticity. The procedure also

alludes to a possible future of biological

modelling, in which theoretical

predictions from quantitative models

drive experimental discovery.

Finally, we note that while the

availability of mutant strains makes yeast

a common choice for constructing

genetic interaction networks, recent

advances in RNAi technology36 might

soon provide a technique for the

systematic study of genetic interactions

in C. elegans37 and Drosophila

melanogaster.38 The literature also

contains a large amount of phenotypic

data for flies which is currently being

curated.39 Continued progress in

chemical genetics, the use of small

organic molecules to inhibit molecular

activity, may someday provide a high-

throughput method for global analysis in

mammalian cells.40 Genetic interactions

inferred from diverse organisms could be

curated into a set of networks for cross-

species comparison of commonly

observed phenotypes.

IMPLICATIONS FOR
BIOLOGICAL MODELLING
This review has concentrated on the

inference of interactions that compose

biological networks, broadly categorised

as protein–protein, regulatory or genetic.

Substantial advances have been made,

many in the past year, and the potential of

existing technology alone is enough to

expect continued progress in the near

future. Although this review concentrated

on yeast as a model organism, similar

advances have been made in the study of

bacteria, archaea and other eukaryotes (for

a few of the many examples see Davidson

et al.,41 Weston et al.,42 Heyl and

Schmulling,43 Giot et al.,44 Bock and

Gough45 and Li et al.46).

With proliferate discovery of biological

interactions and networks, it is important

to note that data assembly is merely an

early step towards creating a systems

approach to biology which can accurately

predict responses to perturbations, both
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on a cellular and organism-wide level.

This goal will ultimately require some

combination of two elements: (1)

cohesive integration of disparate data

types, which in the extreme case would

constitute a comprehensive map of every

microscopic cellular process and the

conditions under which it occurs; and (2)

inference of universal organisational

principles that can be applied across

systems and organisms. A manageable and

flexible modelling strategy will almost

certainly result from a hybrid of these two

elements (if the second in fact exists in

nature).

Advances in high-throughput data

acquisition and graphical representation

is facilitating the first requirement.

General organisational principles, the

second necessity, are being gradually

uncovered through novel network

analyses. These include the discovery of

basic promoter architectures and

condition-dependences of regulators,19

repeated topological motifs,47

modularity48,49 and information flow50

in interaction networks, and higher-

order organisation of modular network

structure.25

Requirements for
advanced network
inference

Progress in key areas will be of great

importance for inferring the interactions

that make this program feasible. These

include the following:

• A method to probe protein–protein

and similar molecular interactions with

high coverage and reliability,

preferably informing on spatial and

temporal localisation as well as

specifying dependence on

environmental conditions. These

constitute the vast majority of

biological activity and modelling the

dynamics of cellular response will rely

on a clear view of interactome map

and its organisation.

• Community-wide consensus on a set

of standard phenotype assays and

ontologies with associated

measurement scales. This would

greatly facilitate comparative study of

genetic interaction networks in order

to verify basic network features and

help elucidate specialised functional

mechanisms. On the whole,

phenotypic assays remain narrowly

targeted and, as a result, comparisons

of genetic interaction networks for

different phenotypes in a given

species or similar phenotypes across

diverse species remain extremely

limited.

• High-throughput phenotype assays,

preferably quantitative in nature, used

in conjunction with libraries of

systematic genetic perturbations in

multiple organisms. The ensuing

large sets of genetic interaction data

would be central in understanding

the structure of regulatory

mechanisms.

• Progress in computational studies of

existing data in order to determine

fundamental properties upon which

biological models can be built.

Consider the construction of the

flux-balance analysis model used in

predicting genetic interactions, as

discussed above. This required an

exhaustive amalgamation of literature

on yeast metabolism;35 could a

similar model someday be developed

from a small set of rules for

metabolic networks? Perhaps, as

outlined in Harbison et al.,19 a

complete yeast regulatory map will

suggest basic organisation of the

transcriptional network; could this

architecture be generalised and

applied to predict transcriptional

response and genomic expression?

Additional knowledge of both the

prevalence and character of network

modularity would also benefit the

development of basic modelling

strategies.

Models developed under such

constraints would furnish reliable and

testable predictions for the behaviour of

cells and organisms.
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