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Abstract

We present an efficient and robust algorithm for finding points of
collision between time-dependent parametric and implicit surfaces.
The algorithm detects simultaneous collisions at multiple points of
contact. When the regions of contact form curves or surfaces, it
returns afinite set of points uniformly distributed over each contact
region.

Collisions can be computed for a very general class of surfaces:
those for which inclusion functions can be constructed. Included
in this set are the familiar kinds of surfaces and time behaviors
encountered in computer graphics.

We use a new interval approach for constrained minimization to
detect collisions, and atangency condition to reducethe dimension-
ality of the search space. These approaches make interval methods
practical for multi-point collisions between complex surfaces. An
interval Newton method based on the solution of the interval lin-
ear equation is used to speed convergenceto the collision time and
location. This method is more efficient than the Krawczyk—Moore
iteration used previously in computer graphics.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling; G.4 [Mathematical Software]: Relia-
bility and Robustness

General Terms. collision detection, parametric surface, con-
strained minimization, interval analysis

Additional Key Words: inclusion function, interval Newton
method, interval linear equation

1 Introduction

Detecting geometric collisions between curved, time-dependent
(moving and deforming) objectsis an important and difficult prob-
lem in computer graphics. This paper discussesa practical and ro-
bust algorithm for detecting collisions between objects represented
as parametric or implicit surfaces. We ignore the problem of com-
puting the physical response to collisions; much of this topic is
treated in other work [BARA9O,META92]. Instead, we concen-
trate on the purely geometric problem of computing a solution set
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publication and its date appear, and noticeis giventhat copying is by
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Figure 1. Problem Statement: Given a collection of time-dependent curved
surfaces, find a set of collision points representing the contact regions. In
this example, the dots show the points detected by the collision algorithm
when a torus moves down over a cone, contacting it in acircle.

of pointswhere a set of time-dependent surfacesfirst contact (Fig-
urel).

Previouswork on geometric collision detectionisfairly extensive,
both in computer graphics and in other fields such as CAD/CAM
and robotics. Detection of collisions between polyhedral objects
was studied in [MOOR88]. Baraff [BARA9Q] presented a method
of computing collisions between parametric or implicit surfaces
by computing extremal points using non-linear equation solvers.
Sclaroff and Pentland [SCLA91] present a method for detecting
collisions between implicit surfaces by “plugging” vertices of a
polyhedral approximation of one surface into the inside-outside
function of the other. Von Herzen, et. al., [VONH90] presented an
algorithm for detecting collisions of parametric surfacesusing Lip-
schitz bounds. Duff [DUFF92] used interval methods to compute
collisions between boolean combinations of implicit surfaces.

To make collision detection practical, much of the previouswork
traded off accuracy and robustness for efficiency, or limited the
kinds of shapesthat could be handled. Polyhedra methods such
as in [MOORS3], athough fairly efficient, are not well suited to
surfaces that deform in time. Exploiting coherence for rolling or
dliding contact of polyhedral objectsis difficult, and use of afixed
sampling mesh can cause severe approximation errors. Polyhedral
methodsal so require many numerically difficult special caseswhich
led [MOORS88] and [SCLA91] to neglect cases where “tunneling”
may occur either between polygon edgesor between small implicit
surfaces passing entirely through alarge polygon.

Baraff [BARA90] chose to limit objects to the union of con-



take one or more steps in the ODE solver
compute collisions in the resulting time interval
if a collision occurs (at time t*) in the interval
compute a collision response
reset ODE solver to t = t*
endif

Figure 2: Computational Model for Collision Detection and Response

vex polyhedra and strictly convex closed surfaces. This restriction
simplified his collision detection algorithm and allowed tracking
of single contact points between curved objects. He did not treat
non-convex surfaces (such as saddle shapes) and manifolds with
boundary (such as half a sphere). We solve the problem for amore
genera class of surfaces with many points of contact, as shownin
Figure 1.

As noted in [VONH90], methods which depend solely on point-
wise evaluations, including the above methods, cannot guarantee
accurate collision detection. To solve this problem, Von Herzen
bounded the output of functions over a region using a Lipschitz
bound. Duff [DUFF92] used interval analysis to produce tighter
boundsthan Von Herzen's Lipschitz bound. Both of these methods
used binary subdivision to search for collisions; we speed up the
approach significantly by combining binary subdivision with an
interval Newton method.

The technique we describe offers several fundamental improve-
ments over previous techniques:

1. Themost novel aspect of our techniqueis the ability to detect
simultaneous collisions (multiple contacts at the same time),
even when the collisions occur at a higher dimensional mani-
fold of contact, rather than at a set of isolated points. In this
case, the algorithm samplesthe region of contact with afinite,
uniformly-distributed set of points. The spatial sampling den-
Sity is a parameter to the algorithm. To our knowledge, no
previous algorithm handlesthis situation.

. Our techniqueworksfor both rigid and deforming objects, and
for implicit or parametric objects.

. Our techniqueis practical for computer graphics applications,
and hasbeen used in animationsinvolving hundredsof objects.

. Our technique includes a method (tangency constraints) to
reduce the dimensionality of the space of possible solution
points, as shown in Figure 3, dramatically speeding up the
method. Thetangency constraintsalso provideasquaresystem
of equationsfor theinterval Newton method, helping us detect
isolated point collisions.

. Our techniqueusesatest for uniquenessof roots of asystem of
equationsin aregion. Thistest can be verified in many cases,
allowing thealgorithm to terminatewithout further subdivision
around collision points.

. Our technique can be used both to compute collisions between
formerly digoint bodies which come into contact, or to com-
pute additional points of contact between bodiesasthey roll or
dlide over each other (see Section 1.1).

1.1 Fitting Collision Detection intoa L arger System

Figure 2 shows how collision detection fits into a larger pro-
gram for computing physical simulations of dynamic systems. The
system is composed of three parts: the ODE (ordinary differential
equation) solver module, the collision detection module, and the
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collision response computation module. The ODE solver computes
the motions of objectsover time, using equations governing the dy-
namic behavior of bodies, and producesafunctional representation
of themotion.! Mation is computed without considering collisions,
so that the results are only valid until the next collision occurs. The
collision detection module takes the functional representation pro-
duced by the ODE solver and computes when and where the first
collision occursin the given time interval. If acollision occurs, a
collision responseis computed, which may discontinuously change
thestateof the systemof bodies. The ODE solver continuesforward
in timefrom this computed collision time, discarding any state after
it.

Two modes of operation are required in collision detection:

1. compute any collisionsfor bodiesthat are initially not in con-
tact
compute additional collisions for bodies that are already in
continuous (rolling or siding) contact

2.

The algorithm described in this paper handles both situations. For
greatest efficiency and modularity, we advocate handling coherence
in the ODE solver. By coherence, we mean the tracking of contact
points between bodies rolling or sliding over each other. In these
situations, collision detectionisreguired only to compute new points
of contact not already tracked by the ODE solver (mode 2 above).
The solver must therefore inform the collision detection module of
the motion of the contact pointsit is tracking, so that these points
may be excluded from consideration (see Eq. 7). The collision
detection module must also compute the initial points of contact
when the simulation is begun or when continuous contact begins
between bodies (mode 1 above).

1.2 Overview

The mathematics of the collision detection problem is treated in
Section 2. Sections 3, 4, and 5 discuss the constrained minimiza-
tion algorithm, an interval Newton enhancement, and termination
criteria, respectively. Section 6 presentsasimple culling test which
discards non-colliding surface pairs and tightens a bound on the
collisiontime. Thefull collision algorithm, combining constrained
minimization, the culling test, and other tools from computational
geometry, is presentedin Section 7. Our technique, like all interval
methods, requires inclusion functions, whose construction is sum-
marizedin Section 8. Finally, results and conclusionsare described
in Sections 9 and 10. Appendix A extends our approach to sur-
facesthat are piecewise smooth by adding conditionsfor face, edge,
and vertex interactions (see Figure 11). Appendix B describesthe
construction of inclusion functions for Chebyshev polynomials.

2 The Coallision Problem

The equations that specify that two surfaces collide may be di-
vided into two parts. a contact constraint, that specifies that the
two surfacesintersect, and a tangency constraint, that specifiesthat
the two surfaces are tangent at their point of intersection. Thetan-
gency constraint reducesthe dimensionality of the spaceof possible
collision points, as shown in Figure 3. It also allows faster conver-
gence (using interval Newton, which we will describe in Section 4)

Yinour rigid body simulations, the solver produces a time-varying quaternion and
tranglation vector. Each component of the quaternion and vector is represented using
univariate Chebyshev polynomials.
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contact with tangency contact without tangency

Figure 3: Reducing the Dimensionality of the Space of Collision Points
Using the Tangency Condition: Theintersection of two bodies(likeasphere
moving to the right with a stationary plane) typically forms a whole 2D
manifold of contact through time. With thetangency constraint, the solution
spaceis often reduced to one or a few points by eliminating cases like that
shown on the right. Reducing the solution space to an isolated space-time
point is one of the ideas that makes this method practical.

%

incoming collision outgoing collision

Figure 4: Incoming and Outgoing Collisions: The unbroken circles repre-
sent bodies later in time. A dot represents the collision point; the arrows
represent the direction of movement.

and robust testing of isolated collisions (using an interval solution
uniquenesstest describedin Section 5).

We also distinguish between incoming collisions, in which the
surfaces collide by moving closer to each other, and outgoing colli-
sions, inwhichthe surfacesareinterpenetrating and becometangent
asthey move apart. Thesesituationsare comparedin Figure4. The
distinction is necessary in the simulation of dynamic systemswhere
each surface encloses a solid. Eliminating outgoing collisions al-
lows the simulator to ignore collisions which were previously de-
tected; i.e., collisions between surfacesalready in contact which are
moving away as a response to the collision.

2.1 Parametric Surfaces

Let two deforming parametric surfaces be represented by the
twice-differentiable mappings Si(u1, vi,t) and S(uy, Vo, t), where
S:R® — R3. At aparticular instant of time, each of the surfaces
is formed by the image of S over a rectangle in (u;, v;) space.?
In this section, we consider the case of collisions between solids
each bounded by a single, smooth, closed parametric surface. Ap-
pendix A generalizes the discussion to parametric surfaces which
are only piecewise smooth.

Contact Constraint The contact constraint merely states that the
two surfacesintersect (i.e., the vector difference of the two surfaces

2Us'ng a rectangular domain for parametric surfaces does not limit the kinds of
surfacesthat can be collided. Parametric surfaces defined on non-rectangular domains
can be handled by mapping arectangleinto the required non-rectangul ar domain before
mapping onto the surface[SNY D92b].
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isthe zero vector):

S]_(U]_, Vi, t) - SZ(UZa V2, t) =0 (l)

Tangency Constraint The tangency constraint implies that the
instantaneous normal vectors on the two surfaces at their point of
contact are anti-parallel. Stated another way, the (u, v) tangent
vectors on one surface must be perpendicular to the instantaneous
normal vector on the other surface. We thus have the following
system of two equations®

oS
—(ug, v1, t) - No(ug, Vo, t
aul(l’ L1 No(lz, vz, 1) |

9\/ 1, V1, 2\U2, V2,

where N; and N are the outward normal vectors to the surfaces §
and S, respectively, given by

d d .
Ni(ui, vi, t) = a—j(ui,vi,t) X a—a(ui,vi,t) fori=1,2.

Thealgorithmsthat follow here assumethat N; and N, are nowhere
0; that is, surfaces have a nonvanishing normal vector everywhere
and for all relevant time.* The whole collision equality constraint
is given by a nonlinear system of 5 equationsin 5 variables, three
from Eqg. 1 and two from Eq. 2.

Incoming Constraint The incoming collision condition states
that therelative vel ocity of thecollision point must facethe sameway
as the surface normal (the two vectors must form an acute angle),®
and the two normals must face in opposite directions (forming an
obtuseangle). Thiscondition yieldstwo inequality constraints:

(%(Ul,vb t) - %(uz,vz, £)) - Na(u, va, ) > 0
©)

and — N1(U1, V1, t) . Nz(Uz, Vo, t) Z 0.

211 Example: Rigid Parametric Surfaces

The above constraints may be applied to the special case of rigid
parametric surfaces. In this case, we have two time-independent
surfaces sq(u1, v1) and sp(us, vi). Thetime-varying version of these
surfacesis given by

S(ui,vi,t) = R(t) s(uy, v1) + Ti(t) fori=1,2

where Ri(t) is a time-varying rotation matrix and Ti(t) is atime-
varying trandation vector, specifying the trgjectory of surfacei’'s
coordinate origin.

Contact Constraint  The contact constraint may be expressed as

Rl(t) Sl(Ul, V1) + Tl(t) — Rz(t) Sz(Uz, Vz) — Tz(t) =0.

3A similar, though functionally dependent, constraint may be derived by switching
S and Sp.

41f the cal cul ated normal vector becomes zero, such as at the poles of a parametric
sphere, the tangency constraint becomes trivially true. The algorithm will therefore
rely on the contact constraint to detect a collisionin this case.

5\We assume herethat the surfaces are parameterized so that the normals N; and Np
face outward.



Tangency Constraint Let ni(uz, vi) and nx(uz, v2) be the time-
independent normals of the surfaces s; and s,, given by

Js Js
ni(ui, Vi) = a—:(ui, Vi) X a_\s/i(Ui s Vi).
Thetime-varying surface normals can therefore be expressed as
Ni(ui, vi, 1) = Ri(t) miui, vi)
sinceR(t) isarotation matrix. Thetangency constraintisthengiven
by
0%,
(Rut) 5 (Ur, va)) - Na(uz, vz, 1)
Uz

0.

(&mgiwLmmemwn

Incoming Constraint  The incoming constraint is given by

[Ru(t) Ss1(us, va) + Ta(t) — Re(t) S2(Uz, Vo) —
Tz(t)] . N1(U1, V1, t) Z 0

and — N1(U1, V1, t) . Nz(Uz, Vo, t) Z 0
where R and T; are the time derivatives of the rotation matrix and
trandation vector of the two surfaces.

2.2 Implicit Surfaces

Let two time-varying implicit surfaces be represented using the
scalar functionsFi(x, y, z t) and F2(X, y, z t). Pointsoneachsurface
are defined as the zero-sets of these functions.

Contact Constraint The contact constraint is the system of two

equations
F]_(X, Y, z, t) —
(HMMLO =0 @
Tangency Condraint Letthefunction VFi(x, y, z t) bethespatial

gradient of the implicit functions (i.e., with respect tox, y, and 2).
Thetangency constraint is then given by

VFi(x, Y,z t) x VF2(X,y,z1t) = 0. (5)
This constraint, although a system of three equations, containsonly
two functionally dependent equations. The entire collision equality
constraint for implicit surfacesisthusgiven by asystemof five (four
functionally independent) equationsin the four variables x, y, z, and
t (Egs. 4 and 5).°

Incoming Constraint  The incoming constraint is given by

oF
- a_tl(xa Y,z t) ||VF2(Xa Y,z t)” -

%(X,y, z,t)||VFix, ¥,z 1) > 0 (6)

and — VFi(x,y,z1t)- VFa(x,y,z1t) > 0.

S\We note that detecti ng collisions between implicit and parametric surfaces is a
simpler problemthan colliding pairs of parametric or implicit surfaces. By substituting
the output of the parametric surfaceastheinput ( X, y, 2) of theimplicit surface, asystem
in 3 variables, (u, v, t), results, where u and v are the parametric surface coordinates.
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Figure5: Simultaneous Collisions— Thetori collideat twoisolated points.

We aso note that CSG operations on implicit surfaces, as in
[DUFF92], can be handled very efficiently using our techniques.
Assumethe surface F1 is represented as the bool ean subtraction of
two simple implicit surfacesFa(X, y, z,t) and Fp(X, y, z t). Thefirst
equation in the contact constraint (Eq. 4) then becomes

(Fa=0and Fpb > 0) or (Fb =0 and F5 < 0)

assuming implicit surface functions are positive outside the surface
they represent. Similar restricted equality constraintscan bederived
for the tangency constraint.

Congtraints for rigid motion of implicit surfaces are easily de-
rived by applying the above general equationsto therigidly moving
implicit surface

F(x,y,zt) = f(w) where w=R"(t)(x,y,2)" — T(t))

where f: R® — R istheimplicit equation of the time-independent
surface, R'(t) is the transpose of the time-varying rotation matrix,
and T(t) isthe time-varying translation vector.

2.3 Coallision Asa Constrained Minimization Problem

Thefinal collision constraint may be described as an equality con-
straint involving a function C (for the contact and tangency con-
straints) and a logical composition of inequality constraints in-
volving a function D (for the incoming constraint). For colli-
sions between parametric surfaces, C and D are vector functions
of (ug, vi, U, V2, 1) (equations 1-3); for implicit surfaces they are
functionsof (X, y, z,t) (equations4-6). We areinterested only inthe
minimum t collision, since our representation for the time behavior
of the surfacesmay be invalid after thistime.

The desired collision time for parametric surfaces, t*, can there-
fore be expressed using the constrained minimization problem

; -}

A similar statement results for detection of collisions between im-
plicit surfaces. We would like to compute t* or detect that the
constraint is satisfied nowhere in the parameter space Xo.

We al so need the location of the collision and the surface normal
vectors there. There may be multiple points of contact at the time

C(Ul, V1, U2, V2, t) =0

minimum
D(ug, i, Uz, V2, 1) > O

(u,v1,u2,v2,H)EXp



of collision, which we call simultaneous collisions, as shown in
Figure 5. The points of contact may be a finite number of isolated
pointsasin Figure5, or they may form acurve or surface, called the
contact manifold. For example, if the falling torus from Figure 5
werein the same orientation asthe stationary oneat the bottom, the
collision pointswould form acircle.

To detect simultaneous collisions, we need to detect minimum
t solutions which are simultaneous or simultaneous within some
tolerance . Mathematically, we require the set of collision points
(ui, vi, U3, v3) such that

C(uz, Vi, U3, V3,t%) =0 and D(uz, vi, U3, V3,t*) > 0.
For agiven collision point, the location of the collision, p*, is
p* = Si(ur, vi, 1) = S(u3, v, 7).

The normal vectors at the collision may be defined similarly by
evaluating N; and N at the collision point.

To compute acollision amongaset of N time-varying parametric
surfaces S(ui, vi, t), wefirst use simpleculling proceduresto exclude
pairs of surfaces which can’t collide. Section 3.2 will discuss a
method of solving these sets of constrained minimization problems
which can compute simultaneous collisions and which does not
spend undue computation on collisions which occur after t*. It
returnsthe collision pointswhenthese occur at afinite set of isolated
points, or afinite subset of the collision pointsuniformly distributed
over the contact manifold.

3 Interval Toolsfor Computing Collisions

We now turn to a discussion of the interval tools necessary to solve
the sets of constrained minimization problems that arise in colli-
sions.

3.1 Review of Interval Analysis
Aninterval, A= [a, b], isaclosed subset of R defined as

[a,bl={x|]a<x<b xabeR}.
Thelower and upper boundsof an interval are written as

Ib[a, b]
ub[a, b]

a
b.

A vector-valued interval of dimensionn, A= (Aq, Az, ..., Ay), isa
subset of R" defined as

A={x|xeA,i=12...,n}

where each A isan interval. Aninterval A that is a component of
avector-valued interval is called a coordinateinterval of A.
The width of aninterval, written w([a, b]), is defined by

w(ab])=b-—a

The midpoint of an interval, written mid([a, b]), is defined by

a+b
2

Similarly, the width and midpoint of a vector-valued interval of

mid([a, b]) =

325

dimension n, A, are defined as

w(A)

max w(A)

(mid(A), mid(Az), ..

mid(A) = ., mid(An)).
Hereafter, we will use the term interval to refer to both intervals
and vector-valued intervals; the distinction will be clear from the
context.

An inclusion function for a function f, written Of, produces an
interval bound on the output of f over an interval representing its
input domain. Mathematically, for al intervals X in the domain of
f, if apointx isin the input interval X then f(x) is contained in the
output interval Of(X); i.e.,

xeX=f(x) e Of(X) fordlxe X.

Much more information about inclusion functions and their prop-
erties can be found in the literature (see, for example, [MOOR79,
ALEF83,RATS88]). Section 8 and the Appendicesdiscusswaysto
createinclusion functions given the functions they are to bound.

3.2 Constrained Minimization Algorithm

The constrained minimization problem involves finding the global
minimizers’ of an objective function f: R" — R for all points that
satisfy aconstraint function F: R" — {0, 1}.

For the caseof computing collisions between parametric surfaces,
we have the following variables, objective function, and constraint
function:

X = (Ug,V, UV, 1)
fx) = t
FX) = (C(ug,va, Uz Ve, t) =0) and

(D(u1, v1, Uz, v2, 1) > 0)

A region in the minimization algorithm is a 5D interval vector of
theform

X (Uz, V1, Uz, Vo, T)

([, ] [vi ] [ ] [vor 3] L E6))

where the superscripts| and u denote lower and upper bounds. The
relevant inclusion functions are®

of(x) = [t,t]

[0,1], if IbOC(X) <0, ubOC(X) >0,
OF(X) = { and ubOD(X) > 0

[0,0], otherwise

where OC is an inclusion function for the collision equality con-
straint C, and D isan inclusion function for theincoming inequal -
ity constraint D.

The algorithm in Figure 6 finds solutions to the constrained min-
imization problem in a specified region Xo. The algorithm uses a
priority queue to order regions based on the upper bound of the
objective function. Regions bounding the set of global minimizers

"The global minimizersare the domain pointsat which the global minimum of the
objectivefunctionis achieved, subject to the constraints.

8Theterminology |b OC(X) < 0denotesthat [b 0C;(x) < 0for each component
interval i of OC(X) (and similarly for upper bounds).



Minimize(Of ,0F,A,Xo,0d,¢,6)
place initial region Xo on priority queue L
initialize f's upper bound u — +co
initialize solution setS « §
initialize singular solution setS «— @
while L is nhonempty
get next region'Y from L
if lbOf(Y) > u+ediscard Y
else if IbOf(Y) > u— ¢ and
there exists S € Ssuch that [|ad(Y) — ad(S)|| < §
then discard Y
else if Y satisfies acceptance criteria A then
add Y to solution listS
if Y doesn’t contain a unique feasible point
addYtoS
endif
u — min(u, ub af (Y))
delete fromSand Sall'§ 3 b Of(S) > u+e¢

else
subdivide Y into regions Y1 and Y»
forY; e {Y]_7 Yz}
evaluate OF on Y;
if OF(Y;) = [0, Q] discard Y;
evaluate Of onY;
if b Of (Yi) > u+e discard Y;
insert Y; into L according to ubOf(Y;)
endfor
endif
endwhile

Figure 6: Globa Constrained Minimization Algorithm: This algorithm
finds the global minimizers of an objective function f, with constraints F,
acceptance criteria A, initial region Xp, solution distance mapping function
d, simultaneity threshold ¢, and solution separation distance §.

are subdivided until they are rejected or satisfy the acceptance cri-
teria, A, and are accepted as solutions. It halts with an empty list of
solutions if there are no solutions to the constraint function in Xg,
or alist of regions, S representing the set of global minimizers of
the constrained minimization problem.

Thevariable uisaprogressively refined |east upper bound for the
global minimum of the objective function. If we were only looking
for asinglecollision point, we could halt the algorithm immediately
after finding the first solution. To find collisions at multiple points
of contact, the algorithm must be continued until the priority queue
isempty. The variable u helpsto prune the search after finding the
first solutions.

Selecting Finite Sets of Points from Contact Manifolds The
parameters ¢, 6§, and Od alow the algorithm to select afinite set of
regionsdistributed “ uniformly” within the set of global minimizers,
when this set is not finite. The parameter ¢ is the simultaneity
threshold, which specifies how close the value of the objective
function must be for two pointsto be considered global minimizers.
For collisions, ¢ specifies how close in time two events must be in
order to be consideredsimultaneous. Theparameter 6 isthesolution
separation distance, which specifies how far apart two accepted
regionsmust beto be accepted as separate solutions. The parameter
Od is an inclusion function for the mapping which takes pointsin
parameter spaceto pointsin whatever space we desire distancesto
be compared. We call the function d the solution distance mapping
function.

Asthealgorithm progresses, it maintainstwo solutionlists, Sand
S Scontainsall accepted regions. We call Sthe singular solution
set. The elements of S not in'S are regions in which the existence
of auniquefeasible point has been verified. The statements
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if IbOf(Y) > u— ¢ and there exists S € S
such that ||Od(Y) — Od(S)|| < &

then discard Y
check that the region Y is not too close to regions already accu-
mulated onto S. Note that the test |b Of(Y) > u — ¢ is critical to
ensurethat Y doesn’t have an objective function value small enough
to invalidate all the currently accepted regions.®

We use two lists, Sand S, so that in the case that the global

minimizers form a finite set of points, the algorithm can find al
such points without discarding some based on distance to those
already found. The algorithm is therefore able to resolve multiple
isolated collisions that happen in a small area, regardless of the
value of 6.1

Ordering Based on Upper Bounds Constrained minimization
algorithms that have appeared before [RATS88,SNY D92c] order
regions based on the lower bound of the objective function. We use
the upper bound to make tractable computing sol utions on a contact
manifold.

At any time, the union of all regionson the priority queueformsa
bound on the set of global minimizers of the constrained minimiza-
tion problem. As the algorithm progresses, regions are subdivided
or rejected, so that the regions which remain on the priority queue
becomeatighter bound on this set. Becauseof the inclusion mono-
tonicity property of inclusion functions,** as regions on the queue
shrink, the computed lower bound on the objective function tends
to increase and the upper bound tendsto decrease.

Assumethe set of global minimizersformsacontinuousmanifold
rather than a finite collection of isolated points, as shown Figure 1.
If the priority queueis ordered using lower bounds, when a given
region is subdivided, its children will generally have larger lower
boundsfor the objective function, and will be placed in the priority
queuebehind less highly subdivided regions. A breadth first traver-
sal tends to result, with less highly subdivided regions examined
first. If we have awhole manifold of global minimizers and strin-
gent acceptancecriteria, we will have to compute a huge number of
tiny regions bounding the entire solution manifold before even the
first region is accepted as a solution.

By ordering based on the upper bound, more highly subdivided
regionstend to be examined first becausethey tend to have smaller
upper bounds. We quickly get to aregion whichis small enoughto
satisfy the acceptancecriteria. This allows our upper bound u to be
updated. It also allows regionsto be accumulated onto our singular
list S. Regionsthat are too close to any member of S can then be
eliminated, making it possibleto find a distribution of points onthe
contact manifold without undue computation.

Acceptance Criteria The constraint inclusion function, OF(X),
becauseit contains an equality constraint, returns either [0, O] (i.e.,
the constraint is satisfied nowherein X) or [0, 1] (i.e., the constraint

9f aregion can possibly have afeasible point with avalue of f lessthan ¢ fromthe

valueof f inregionson S, we should not reject it just becauseit is close with respect to
the function d to these regions. The algorithm might then discard a global minimizer
because of its closeness to regionswhich are possibly far from the global minimizer, in
terms of boundson the objective function.

0ne problem with this technique is that if the collisions happened at a contact
manifold and a finite number of additional isolated points, the algorithm may discard
someof theisolated pointsbecause of the closeness criterion. We consider thisproblem
minor sincetheset of global minimizersisinfiniteand the algorithmmust choseasubset
anyway.

M Aninclusion function, Of, isinclusion monotonicif Y C X = 0Of(Y) C Of(X).
In practice, the standard ways of constructing inclusion functions generate inclusion
monotonicinclusion functions.



may be satisfied in X). We must resort to other meansto determine
if the constraint isactually satisfied. Section 5 discussesconditions
which guarantee that a region contains a unique solution to the
equality constraints. These conditions can therefore be used as
acceptance criteria in the algorithm, which we call the isolated
point acceptancecriteria. They also allow the upper bound u to be
updated via
u — min(u, ub Of(Y))

sinceY is guaranteed to contain afeasible point.

The algorithm also makes use of emergency acceptancecriteria
which do not guarantee a unique solution but are guaranteed to
be satisfied for regions of small enough size.'> The simplest such
criterionisw(X) < ¢; abetter oneisw(OS(X)) < e whereOSisthe
parametric mapping of one of the colliding surfaces. Regionswhich
are accepted viathe emergency acceptancecriteria areinserted both
onto the list of solutions, S, and the singular solutions, S.

Subdivision The simplest method of subdividing candidate in-
tervals in the minimization algorithm is bisection, in which two
intervals are created by subdividing one of the input dimensions at
its midpoint. Many methods can be used to select which dimension
to subdivide. For example, we can simply pick the dimension of
greatest width. A better alternative isto scale the parametric width
by some measure of its importance to the problem we are solving.
For each variablein the collision problem x;, and a given candidate
region X, we have used a scaling value s defined by

Y ] o
s = Z; max(| b 0o )|, ubD Y XD
=

Here, f refers to the equality constraints (contact and tangency) of
the collision problem. We then pick a dimension to subdivide, i,
such that the scaled width 5 w(X;) islargest.

Given a candidate interval, techniques also exist which allow
us to compute a smaller interval which can possibly contain feasi-
ble points of the constraint. These methods and how they can be
added to our simple minimization algorithm are discussed in Sec-
tion 4. Even more sophisticated subdivision methods exist, such as
Hansen's method which involves accumulating gaps inside candi-
date intervals by using infinite interval division (see [RATS88] for
afull description).

Multiple Element Constrained Minimization The algorithm
can easily be modified to accept an array of setsof minimization pa-
rameters(0f, OF, A, Xo)i. Thisallowssimultaneoussolution of sets
of problems from different pairs of surfaces, or different tangency
situations for the same pair of piecewise parametric surfaces. Asa
result, computation is not wasted on collisions which happen after
thefirst collision, t > t*. We call this modified constrained mini-
mization algorithm the multiple element constrained minimization
algorithm.

Sets of minimization subproblems may be implemented by asso-
ciating the array index of the appropriate minimization subproblem
with each region inserted onto the priority queue, and using the ap-
propriate indexed inclusion functions and acceptancecriteria when
processing the region.

12Although we cannot guarantee a region X contains a solution, we can guarantee
that it is arbitrarily close, in the sense that w(OC(X)) < ¢ where OC is an inclusion
functionfor the collision equality constraint function C.
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Avoiding Detection of Tracked Points We can add additional
inequality constraints to the constraint function F in order to avoid
detecting collisions which occur at contact points already being
tracked. If p issuch atracked point on a surface Su, v, t), the ODE
solver computes a trgjectory for p = SU(t), ¥(t), t). We then dis-
card all global minimizersto the constrained minimization problem
which satisfy

[S(u, v, ) — S(U(t), v(t), Ol < A, @)

where A is a constant chosen by the user. The functions U and ¥
have known representations, as computed by the solver. A natura

interval extension of this constraint involving an inclusion function
for Sisthen included in the constraint inclusion OF. An additional
constraint is added for each tracked point.

4 Interval Newton Methods

In order to more quickly refine our intervals towards the solutions
of the collision equality constraint C = 0, we make use of an
interval Newton method. Interval Newton methods are applicable
to the general problem of finding zeroes of a differentiable function
f:R" — RMinaninterva X C R". They alow ustofind aninterval
bound on the set

X* = {x € X|f(x) =0}

Let Z(X) besuchabound (i.e., X* C Z(X)). We canreducethesize
of our candidateregion X by*®

X' = xﬂ Z(X)

In particular, Z(X)[| X = @ implies that X contains no solutions.
We call the operator Z(X) the interval Newton operator.

Since X canonly decreasein size after it isintersected with Z(X),
this procedure can be applied iteratively to produce smaller and
smaller regions, asin

X = (% () 204))

Note however that a smaller region is not necessarily produced.
Interval Newton methods should therefore be combined with bisec-
tion. When interval Newton iteration is effective at reducing the
size of X its useis continued. Otherwise, bisection subdivision is
performed.

The following sections present three methods for computing
Z(X):

e useof the Krawczyk-Moore form (Section 4.1)

e useof theinterval inverse (Section 4.2.1)

e useof matrix iteration (Section 4.2.2)

In each case, we modify the constrained minimization algorithm
from Figure 6 by replacing the subdivide step with the code shown
inFigure7.

4.1 Fixed Point Methods: the Krawczyk—M oore Form

The familiar (point-wise) Newton’s method is used to converge on
the solution to a system of equations f(x) = O wheref: R" — R".

3p ﬂ B denotestheinterval formed by the intersection of theintervals A and B.



Newton(Y)
compute interval Newton step onY
if step succeeds then
Y —Y[Z(Y)
if Y =0, discard Y
(proceed with next region)
else if Y is sufficiently smaller thanY, insert Y’ into L
(proceed with next region)
else subdivide Y’
(continue with Y replaced by Y’)
else subdivide Y
(continue withY)

Figure 7: Interval Newton Modification to the Constrained Minimization
Algorithm: The above algorithm replaces the subdivide step in the algo-
rithm of Figure 6.

Themethod startswith aninitial “guess’ at asolution X and iterates
via
Xi+1 = P(Xi)
where
p(x) =x — Yf(X).
Y isanonsingular n x n matrix whichin straightforward Newton's
method is the inverse of the Jacobian matrix of f at x, i.e.

Y =J7Y%)

Under certain conditions, this iterative procedure converges to a
fixed point x*. If convergenceis achieved, then thefixed point x* is
asolution since

p(x*) =x* <= f(x") =0
because Y isnonsingular.

Aninterval analog of this method may be developed. Let X bean
interval in R" in which zeroes of f are sought. We require a bound
on X*. But

X*

{xe X|f(x) =0}
{xeX|pK)=x} C @p(X)[)X)

where Op(X) isan inclusion function for the Newton operator p(x).

The Krawczyk—-Moore form, K(X, ¢, Y), provides the necessary
inclusion function for the Newton operator p(x). It issimply amean
valueform for p (see[SNY D92c] for adiscussionof the mean value
form) given by

KX, c,Y)=c—Yf(c)+ (I — YOJI(X))(X —c)

where | isthe n x nidentity matrix, 0J(X) isan inclusion function
for the Jacobian of f evaluated on X, and c is any point in X.
Note that the vector addition and subtraction and the matrix/vector
multiplication operationsusedin K must be computed usinginterval
arithmetic.

We therefore have

X* C (X ﬂ K(X,c,Y))

for any ¢ € X and nonsingular matrix Y. Thus, K(X, ¢, Y) can be
used as an interval Newton operator. Fairly good results can be
achieved with ¢ = mid(X) and Y = J=}(c) [TOTH85,MITC92].

In our research, we have found a different method to be superior,
described in the next section.
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4.2 Linear Interval Equation Methods

A second method for finding an interval bound on X* involves
solving the interval analog of alinear equation.

Let the coordinates of x be xi, Xo, . .., X,. By the Mean Vaue
Theorem, given ac € X, for each x € X, there exist n points,
1,62, .., 6n such that

f(x) =f(c) +I(¢1, ..., &n)(X — ©),

wherethe jacobian matrix J is given by

_of

‘]ij(gla 52, e gn) - a_xj(gl)

and where each & € X. Let OJ be an inclusion function for the
Jacobian matrix of f, i.e,,

If xisazero of f, then there exists J € 0J(X) suchthat

ofi

0J(X) = {J | Jij € Da_Xj(X)

f(x) =0=f(c) +I(X— c).
Therefore, if Q(X) isthe set of solutions
QX)) = {x| f(c) + I(x — c) = 0for someJ € OJ(X)},

then Q(X) containsall zeroesof f in X.
To compute an interval bound, Z, on Q(X), lety = x — ¢, and let
Z’' bean interval bound on the set

{y | Jy = —f(c) for someJ € OJ(X)} .
Thentheinterval Z defined using interval addition as
Z2=7+[c,d],

isaninterval bound on Q(X). Thus, computing theinterval Newton
bound Z can be accomplished by solving an interval linear equation
of the form

Mx=b

whereM = 0OJ(X) isann x ninterval matrix, andb = —f(c) isan
interval vector.* Stated another way, we require abound on the set

QM,b) = {x|3IM € M, g € bsuchthat Mx=5}.

Thenext two sectionsdiscusstwo methodsfor solving theseinterval
linear equations.

4.2.1 Solving the Interval Linear Equation with the Interval
Inverse

One method to bound the set of solutions to the interval linear
equation involves computing the interval inverse. We seek a bound
on Q(M, b): the set of solutions, x, for Mx = b. If Misann x n
interval matrix, aninterval that boundsQ(M, b) is

Z=M"1b

Y n this case, the interval b has alower bound equal to its upper boundsin each
coordinate(called a point interval), neglecting inaccuraciesin the computationof f.



where M~ istheinterval inverse of the interval matrix. Assuming
M contains no singular matrices, the interval inverseis an interval
bound on the set

{m_1 | me M}

A simple way of computing the interval inverse is to use the
interval analog of LU decomposition. That is, we take the LU
decomposition algorithm [PRES86, pages 31-38] and replace al
arithmetic operations with their corresponding interval arithmetic
counterparts (see[MOOR79] for adiscussion of interval arithmetic).
If at any point in the iteration we attempt to divide by an interval
which contains zero, then we cannot compute the interval inverse,
and theinterval Newton step fails (but seethe next section for away
to reduce the size of candidate regions without using the interval
inverse). After enough iterations of the constrained minimization
algorithm, and assumingthe conditionsdiscussedin Section 5 hold,
candidate regions are usually small enough to make this technique
effective.

4.2.2 Solvingthelnterval Linear Equation with Matrix Itera-
tion

Another method to bound the set of solutionsto the interval linear
equation involves matrix iteration. The algorithm we present here
requires an initial bound on the set of solutions; that is it finds a
bound on the set Q(M, b) () X where X is a given interval. The
algorithm is therefore effective at reducing the size of a candidate
interval in which solutionsto an equality constraint are sought, but
cannot be used to verify solution existence using the theoremsin
Section 5.%°

Figure 8 containsthe codefor Linear_Solve, which finds bounds
on the solution to the linear interval equation. Linear_Solve is
based on the observation that the i-th equation of the linear system
Mx = b:

MizXs + MizXz + - - - + MinXn = b

implies, for eachj such that M;; # O, that

= bi — Zk% Mika.
Mij

Theinterval analog of this equation may therefore be used for each
interval matrix entry, Mj, which does not contain O to find a bound
on one of the variables x;. This bound is intersected with the old
bound on x; yielding an interval which is possibly smaller but no
larger thanit was. Reducingthe sizeof oneinterval may then further
reduce the sizes of others as the iteration proceeds. Note that the
algorithm does not halt when an interval element of M contains 0;
it just proceedsto the next element which excludes 0.

An important property of Linear_Solve is that it can be ap-
plied to a nonsquarelinear equation,® and istherefore useful in the
“overconstrained” equality constraint for implicit surfaces, and the
vertex-to-edge and vertex-to-vertex tangency situations of piece-
wise parametric surfaces (see Appendix A). Linear_Solve can be
applied in many situations where LU decomposition fails because
of the singularity of the interval Jacobian matrix. Even when the
Jacobian matrix is singular at the solution point, Linear_Solve is
usually effective at reducing the widths of some of the input vari-

BThisis because, unlike the technique presented in Sections 4.2.1, this technique
does not bound Q(M, b) directly, but instead bounds Q(M, b) ﬂ X.
16That is, the number of equations, m, is unequal to the number of variables, n.
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Linear_Solve(M,b,x)
repeat
loop through rows ofM (i =1,2,...,m)
loop through columns ofM (j =1,2,...,n)
if 0 ¢ Mjj then
X (b — Zk% MikXi) / Mij
X =X (%
if X = @ return no solution
endif
endloop
endloop
while there is sufficient improvement inx

Figure 8: Interval Linear Equation Solution Algorithm: This algorithm
computesthe interval Newton step (first statement of the algorithm in Fig-
ure6).

ables. These features are critical in making the singular situations
describedin Section 5 computationally tractable.’

The “sufficient improvement” condition mentioned in the algo-
rithm can be implemented as

wx™) < aw(X)

where atypical value of the improvement factor, «, is 0.9. Herex
denotesthe interval bound computed after i iterations of therepeat
loop. Specifying a maximum number of repeat iterations also
limits the amount of computation.

5 Termination Criteria

Twotheoremsin interval analysis specify conditionsunder which a
squaresystem of equations containsaunique solution in aregion. '8

Theorem 1 (Krawczyk—-Moore Existence) If K(X;c,Y) C X,
K(X,c,Y) Z 6, and ||l — YOI(X)|| < 1, then there is aunique root
in X, and pointwise Newton's method will convergeto it.

Theorem 2 (Linear Interval Equation Existence) If Q(X) C X
and Q(X) # 0, then thereisauniqueroot in X.

The conditionsimplied by thesetheoremsthuslead to acceptance
criteria, A, for the constrained minimization algorithm. Implemen-
tation of Theorem 1's conditions is clear from the discussion in
Section 4.1. To verify the conditions of Theorem 2, we usethein-
terval inversemethod discussedin Section4.2.1. We have been able
to verify solution uniqueness much earlier (i.e., in larger regions)
using Theorem 2'stest.

We note the conditionsfor Theorems1 and 2 can only be verified
when the determinant of the Jacobian of the equality constraint
function, C, is nonzero in some neighborhood of the solution. For
collision detection, the Jacobian determinant is zero at a solution to
the contact and tangency constraintsin the following situations:

e the contacting surfaces become tangent but never interpene-
trate. They can even stay tangent for an interval of time.

Twe prefer the method of matrix iteration described here to a faster method (the
interval analog of Gauss-Seidel iteration) which involvessolving only for the diagonal
matrix elements after a preconditioning step (see [RATS88]). This method requires
a sguare system of equations, and will fail when the Jacobian matrix is singular at
the solution. Interval computationsin the preconditioning step also have the effect of
increasing the size of the solution set Q(M, b) even before any iteration takes place.

1Bgee [TOTH8S] for a proof sketch and referencesfor Theorem 1, [SNY D92b] for a
proof of Theorem 2.
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e the surfaces contact instantaneously on a curve or higher-
dimensional region.
e both— the surfaces contact at an infinite set of pointsthrough
aninterval of time.
In these cases, we can not verify that a unique solution exists and
must resort to heuristic criteria (the “emergency” criteria of the
constrained minimization algorithm). That is, we consider surfaces
to have collided when abound on Cissufficiently small inaregion.®
If asolutionison the boundary of acandidateregion, we notethat
the conditions of either theorem will be difficult to verify since the
set result (e.g., Q(X)) will aways dightly spill out of the original
region X. To solve this problem, we should dlightly increase the
region examined for acceptance, X, via

X' =c+(X—-c)(1+7)

where v is a small constant (like .1). We then can perform the
test on this bigger region X’. Then, even if the solution is on the
boundary of X, thetheorem conditionswill eventually be satisfied if
the Jacobian of C isnonsingular in a neighborhood of the solution.

6 A SimpleBound for the Time of Collision

We can savetimein the collision algorithm by using afast algorithm
to reduce thetime interval over which collisions are searched. This
time bound may aso tell us, with a minimum of computation, if
the two surfaces fail to intersect, obviating the need for further
computation. The test presented here uses 1D minimization (only
over time) rather than minimization over the 4 or 5 dimensional
spacerequired to solvethe full problem.

Asshownin Figure 9, we compute two bounding spheresaround
each of our parametric surfaces. In the case of rigid motion, this
may be computed beforehand as a preprocessing step. We specify
two points for each parametric surface O; and O, about which to
compute a bounding sphere. These points should be chosen to
minimize the size of the resulting bound; using the center of mass
of the surfaceis agood choice. The bounding radii are:

R = max ||31(U1, V1) — 01”
(u,v1)

R = max ||sz(uz, v2) — O2|.
(u2,v2)

This implies, because of the contact constraint, that the surfaces come within a
specified constant.
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Note that these bounding radii can be computed using a 2D un-
constrained minimization problem, for which the algorithm of Sec-
tion 3.2 is suitable.

Using the constrained minimization algorithm, this time on a
simple 1D problem, we then find a bound on the time of collision
via

tz; = minimum{ t | ||T1(t) +0; — Tz(t) — 02|| < Ry + Rz}
t€[to, 1]

— minimum{—t | ||T1(t) +01 — Tz(t) — 02|| < Ry + Rz}.
te[to,t]

* —

1

We can then replace the [to, t1] interval in the full collision mini-
mization problem for that pair of surfaceswith [t3, t7], or cull the
pair of surfacesif no solutionsto the 1D problem are found.

7 TheFull Collison Algorithm

The complete algorithm for detecting collisions can now be de-
scribed. The following discussion pertains to a set of parametric
surfaces; a similar agorithm can be developed for the case of im-
plicit surfacesor parametric/implicit combinations. We are given a
set of solids defined by a parametric boundary representation, and
atime interval in which to detect collisions, [to, t1]. The following
steps summarize the final algorithm:

1. Detect pairs of objects which can possibly collide. For this
step, we bound each time-varying surface by evaluating an
inclusion function for its time-varying mapping over [to, t1].
More precisely, a bounding box through time on the surface
SHu, v, t) isgiven by

DS([O, 1]a [Oa 1]a [to, tl])

assuming S is evaluated on the unit square.’® We can then
test whether any of the resulting bounding boxes intersect us-
ing highly efficient algorithms from computational geometry
[SIX82]. All pairs of bounding boxeswhich do intersect must
be processed further; the rest are culled.

For rigid bodies, additional object pairscan be culled usingthe
bounding sphere test of Section 6. A variant of this test can
also be used for deformable surfaces.

If any pairs of objects remain to be processed, we must invoke
the full constrained minimization algorithm. Here, we distin-
guish between “free” objectsand objectsalready in continuous
contact, whose contact points are being tracked with the ODE
solver. For objects already in continuous contact, additional
constraints are added (Section 3.2) to prevent re-detection of
the tracked points. All such problems are placed on the initial
priority queue of the multiple element constrained minimiza-
tion algorithm.

Weuselocal methods, such asNewton’smethod, to convergeto
theactual collision point in each solution regionwhich contains
an isolated collision (i.e., for which theinterval existenceand
uniquenesstest of Section 5 succeeded). Wearbitrarily choose
the midpoint as the collision point for the rest of the solution
regions (termed singular solutionsin Section 3).

2ONote that for rigid surfaces we can cache a bounding box on the time-independent
rigid surfaceand computeonly aboundover time on the resulting rotated and transl ated
bounding box.



8 Implementing Inclusion Functions

The collision detection algorithm depends on inclusion functions
for the time-varying surfaces and their various derivatives. Note
that the equality constraint for the parametric surface case (Equa-
tion 2) involves derivatives of the time-varying surface mappings
S(ui, vi, t). Theinterval Newton method then requires an additional
derivative of the equality constraint with respect to each of theinde-
pendent variables. Interval analysis provides the necessary theory
for constructing inclusion functions for these functions.

For simple polynomial surfaces(e.g., bicubicpatchesor algebraic
surfaces) interval arithmetic suffices to provide an inclusion func-
tionfor thetime-independent surface. Toth [ TOTH85] haspresented
efficient inclusion functionsfor Bezier surfaces. Mitchell and Han-
rahan have proposed a simpl e stack-based representation of surfaces
which allows generation of inclusion functions for the surface and
itsderivatives[MITC92]. Inclusion functionsfor more complicated
surfacesand their derivatives can al so be constructed. We have used
the system described in [SNY D92a,SNY D92b], which automates
the construction of inclusion functions (and inclusion functions for
the derivatives) of any functions formed by the composition of a
quite powerful set of symbolic operators.

For physical simulations, the ODE solver computes a represen-
tation of the time behavior of the surfaces. The solver may directly
computeacontinuousrepresentation or it may belater reconstructed
by point sampling the solver’s results, typically producing a poly-
nomial. Appendix B discussesa method to bound Chebyshev poly-
nomials.

9 Results

We have successfully tested this method on a series of collision
detection examples, including both rigidly moving and deforming
objects. For example, Figure 12 shows the results of a difficult
collision detection run in which the contact manifold forms aseries
of digoint 2D regions. A collection of 59 points was generated
in the contact region with a simultaneity threshold of 0.001 and
solution separation distance of 0.04, using 28704 iterations and
88.81 CPU seconds.?! While the running time may seem large, the
problemitself is sufficiently difficult that its running time exceeded
our threshold of 8 CPU hourswithout the useof every new technique
presented in this paper: adding the tangency constraint (rather than
using the contact constraint alone), sorting by upper bound in the
constrained minimization algorithm (rather than by lower bound),
and using Linear_Solve for the interval Newton step (rather than
the Krawczyk—Moore operator). Figure 1, 5, and 12-16 show the
results of the algorithm for several different time-varying shapes.
The table in Figure 10 compares running times for a second
example involving two rotating and trandlating bumpy parametric
surfaces which collide at an isolated point. Several solution meth-
odsarecompared: LEQN (interval Newtonusing thelinear equation
solution techniques of Section4.2), KM (interval Newton using the
Krawczyk—Moore operator), NIN (without interval Newton), and
NTAN (without the tangency condition). Since the collision occurs
at anisolated point, both the LEQ and KM methodswere ableto ac-
cept asingle solution region by verifying the solution existence and

2L The term iteration refers to an evaluation of the inclusion functions Of and OF
(objectivefunctionand constraint function) in the constrai ned minimization algorithm.
All CPU times are measured on a HP 9000 Series 750 computer.
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Running Times

Example Iterations | CPU (secs)
LEON 6331 32.67
KM 10087 148.28
NIN,vy=1e-3 17395 8.58
NIN,y=1e-4 29921 15.46
NIN,y=1e-5 40127 21.52
NIN,y=1e-6 48187 23.25
NIN,NTAN,y=1e-3 52307 14.59
NIN,NTAN,y=1e-4 | 587711 169.87
NIN,NTAN,y=1e-5 | 3822605 1207.46

Figure 10: Table of Resultsfor Various Methods: see Section 9

uniquenesstest. Theother methods required an accuracy parameter
for acceptance; we used the simple criterion w(X) < 7.

Because we used a prototype system to gather the data, we em-
phasize the importance of iteration count data over CPU time. Our
systemrequiresthetraversal of acomplicated datastructurefor each
inclusion function eval uation which overwhelms the floating point
computation actually needed in the function. The interval Newton
methods are sensitive to this bias, since their implementation re-
quired many symbolic operators. We believe the iteration counts
shown here to be areasonable measure of expected running time, if
theinclusion functions are hand-coded for the surfacesof interest.

10 Conclusions

We have presented a robust interval algorithm that can detect col-
lisions between complex curved surfaces. The algorithm handlesa
greater range of situationsthan previous algorithms. It detects both
isolated collision points and collision points on contact manifolds.
It can avoid detection of points closeto a set of tracked points with
specified trajectories. It efficiently handles detection of simultane-
ous collisions between sets of moving objects. The technique is
practical for simulations involving large numbers of moving and
deforming objects (see Figures 15 and 16).

Wedraw several conclusionsfrom our experimental results. First,
interval methods, such as[VONH90] and [DUFF92], which do not
make use of the interval Newton method or the tangency condition
soon become impractical as we increase the accuracy parameter
(refer to the NIN,NTAN lines of the table in Figure 10). Interval
Newton iteration combined with the tangency condition (especially
using the interval linear equation approach) is very effective at re-
ducing computation. Second, our method can solve the difficult
problem of detecting collision points on a contact manifold. We
have found the methods described here to be indispensable, includ-
ingtheideaof thetangency constraint, the constrained minimization
algorithm discussed in Section 3, and the interval linear equation
approach to interval Newton iteration.

We note that many areas for improvement remain. Sorting by
lower bound of the objective function rather than by upper bound
is more efficient for isolated point collisions. We have noted an
efficiency gain of afactor of from 1 to 10 in using the lower bound
for such cases. On the other hand, sorting by lower bound is com-
pletely impractical for detecting collisions on a contact manifold.
If we know the nature of the collision solution set a priori, we
can choose the appropriate method. Alternatively, combining the
two approaches, perhaps by “racing” them in parallel on the same
problem, may decrease the average running time. We are study-
ing several waysto increase efficiency that involve more optimally



choosing the next dimension to subdivide, and determining a sub-
division location other than the midpoint.
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A Collison Constraints for Piecewise Parametric
Surfaces

A piecewisesurfaceiscomposed of aset of smooth faces, aset of edgeswhere
these faces meet, and a set of vertices or points where edges meet. Edges
form the 1D boundaries over which the surface is not smooth; vertices are

the OD boundariesbetween smooth edgecurves. A datastructure containing

thefaces, edges, and verticesof asolidis called its boundary representation.
For example, the boundary representation of a cylindrical solid contains
three faces: one cylinder and two circular endcaps, two edges where the

cylinder and endcap meet, but no vertices.

To detect collisions between two piecewise surfaces, we must search for
collisions between each pair of faces, between edges and faces, between
verticesand faces, etc. The constraints governing collisions are different in
each of these cases, which we call tangency situations. There are 6 types of
tangency conditionsin a collision between piecewise surfaces as shown in
Figure11. Constraintsfor theface-to-facetangency situationareidentical to
the constraints discussed in Section 2.1. The following paragraphs discuss
the other tangency situations.

We must combine all the constrained minimization problems for the
variouspossibletypesof tangency situations. For example, if thesurfacesare
apair of cylindrical solids, we obtain 25 separate constrained minimization
subproblems: 9 face-to-face problem, 12 edge-to-face problems, and 4
edge-to-edgeproblems. Two tori require only asingleface-to-faceproblem.
Each problem is then solved simultaneously using the multiple element
constrai ned minimization agorithm.



Edge-to-Face For the edge-to-face case, we have an edge curve, C(s, t),
which forms a boundary of a surface, Sa(ua, Va,t), and another surface,
Su,v,t). The edge curveis typicaly formed by evaluating a parametric
surface S; at a specific value for either the u or v parameter, e.g.

C(s,1) = Su(s, v*ed )

where vfiXéd is 3 constant set at one of the extremes of the v interval over
which S isevaluated. The contact constraint for edge-to-facecollisionsis

C(57 t) - S(U7 v, t) =0 (8)
and the tangency constraint by

oC

—(s,t)-N t)=0 9

560 Nw V.Y (©)

where N is the time-varying normal to the surface S The edge-to-face
equality constraint can be represented a system of 4 equationsin 4 variables.
To define the incoming collision condition, we need to define what “out-

wardness” means on an edge curve. Assuming all surfaces form the valid

boundaries of a closed solid, the edge curve C(s, t) is shared between two
surfaces Sy and S,. We can therefore definetwo “ outward” directions, given
by the outward pointing normals to the shared surfaces S and S,. For
example, these outward directions may be defined as

C:outward-l(& ) = Nas Vfixed 9

C:outward-z(& y = Nb(uﬁxed, s )

where N5 and Ny, are the outward normal vectorsof the respective surfaces.

The incoming constraint forces the relative vel ocity between the surface
and the edge curve to be in the same direction (using a dot product test) as
thesurface’snormal. The surface’snormal must al so face away from at least
one of the edge curve's outward directions. The incoming constraint is:

8s aC
—(u,v,t) — —(s,t)) - N(u,v,t) > 0 and

(o) - 22 0) - Nuv.Y >

(—N(u,v, t). couward- y > o or (10)

~N(u, v, t) - couward-2(g ) ~ o) .

Edge-to-Edge Theedge-to-edgecaseinvolvestwo edgecurves, Cy(st, t)
and Cy(s, t). For this case, just a contact constraint is sufficient, given by
the following system of three equationsin three variables:

Ca(s1;t) — Ca(s, 1) = 0. 11

To define theincoming collision condition, we define two outward direc-
tionsfor each edge curve, asin the previous discussion for the edge-to-face
case. The relative velocity between the edge curves must face in the same
direction as at least one of thefirst curve's outward directions:

aCy aCy _

(—8t (s1,t) — 0 (s2,1)) - Ci)utward 1(5170 >0 or "
9C1 oG outward-2

(W(Sl’t) - 7(5270) -C1 (s1,) >0

Also, at least one of the outward directions on one curve must face away
from oneof the outward directions of the other curve. A logical combination
of 6inequalitiesis the result.

Vertex-to-Face, Vertex-to-Edge, Vertex-to-Vertex The vertex-to-
face caseinvolvesavertex P(t) and asurface S(u, v, t). Asintheedge-to-edge
case, acontact constraint is sufficient, of the form

P(t) — Su, v, t) = 0. (13)

where the point P is formed by evaluating a surface at a fixed point in its
(u, v) parameter space, e.g.

P(t) = Si(uﬁxed Vﬁxed t)

A system of three equationsin three unknownsresults. Similarly, a system
of three equationsin two unknownsresultsfor the vertex-to-edgecase, and a

system of three equationsin asingle unknownfor the vertex-to-vertex case.

The incoming collision condition can be derived by defining a number
of outward directions for the colliding vertex, corresponding to the normal
vector of each surface containing that vertex. The normal to the surface
S must face away from at least one of these outward directions, as in the
edge-to-facecase. The relative velocity between the surface and the vertex
must face in the same direction as the surface’snormal, via

8S P
—(u,v,t) = —(t)) - N(u, v,t) > 0.
(5, v) = =) N v, 0 >

Similar systems of inequalities can be derived for situations where a vertex
collideswith an edge or another vertex.
B Inclusion Functionsfor Chebyshev Polynomials
Chebyshev polynomials are agood basis for a continuous representation of
timebehavior. They allow simple control of approximationerror, and can be
differentiated using a simple method to producea Chebyshev representation
of the derivative (see [PRES86, pages 158-165] for a discussion of the

advantages of Chebyshev polynomials, their properties, and algorithms for
their manipulation). The basis functionsfor a Chebyshev polynomiasare

Tn(X) = cog(n arccos(x))

which expand to a series of polynomialsof the form

To(X) = 1
Ti(X) = X
To(x) = 2¢-1
Tw1i(¥X) = 2XTa(¥) — Th—2 () n>1

Thefunction Tna(X) hasn + 1 extremawith values of +1 at the locations
i
Xi ECOS(%) i=0,1,...,n

Thei-th extremumof the basisfunction Ty, is either aminimum or maximum
according to the rules

~_J =1, if(i+n)=1mod2
Tnlx) = { +1, if(i+n)=0mod2
A Chebyshev approximation of order N is given by specifying N coeffi-
cientsci,i =0,1,...,N — 1, which determine the polynomial
N—1

Cx) = Z aTio) + %

i=1

Given the order of the Chebyshev approximation function C(x), N, we
can easily compute an inclusion function for C(x). Let the interval over
which we are to bound C(x) be given by X = [xo, X1]. As a preprocessing
step, wefirst tabulate the locations of the extrema of the basis functions, up
to some maximum order. (Note that the results can then be used for any
approximating polynomial.) For each Chebyshev basis function, Ti(x),i =
0,1,...,N — 1, we first evaluate Ti(xp) and Ti(x;). We then determine
whether any extremaof T;j(X) occur in [Xo, X1] using the tabulated locations
of the extrema. A lower bound on the basis function over [ Xo, X1], bi° is

bo — mi n(Ti (XO)7 Ti (X1)7 _1)7
' mi n(Ti (XO)7 Ti (Xl))7

Similarly, an upper boundis

bl — maX(T| (XO)7 Ti (X1)7 1)7

if min of Ti(x) € [0, X1]
otherwise.

if max of Ti(x) € [Xo, X1]
otherwise.

P = maX(T| (XO)7 Ti (Xl))7
Thefinal inclusion functionis then
N—1
Co
0CK) =) _alb?.bil+ 2
i=1

where operations are computed with interval arithmetic.



Scenes from test animations: In the following figure pairs, the upper image is the scene immediately before the collision, while the bottom
imageisthe scene at the collision time. Points of contact are shown as white dots, which are uniformly distributed over regionswhere there are
line and surface contacts. At the time of collision, surfaces become transparent to make the dotsvisible.

Figure 12: Two bumpy objects collide at one Figure13: A time-varyingtubecontactsacush- Figure 14: A wavy object contacts a raised
point. ionalong acurve. checkerboardfloor in several flat patches.

Scenes from “Fruit Tracing”: This animation shows the results of collision detection for a more complicated setting involving hundreds of
colliding objects. In this animation, moving parametric surfacesrepresenting fruit are collided with astatic lobster shape, defined asan implicit
surface. (Lobster data generated by David Laidlaw, Matthew Avalos, Caltech, and Jose Jimenez, Huntington MRI Center.)

Figure 15: Colliding dynamic fruits. Figure 16: Scene showing lobster shape.
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