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Abstract

We present an efficient and robust algorithm for finding points of
collision between time-dependent parametric and implicit surfaces.
The algorithm detects simultaneous collisions at multiple points of
contact. When the regions of contact form curves or surfaces, it
returns a finite set of points uniformly distributed over each contact
region.

Collisions can be computed for a very general class of surfaces:
those for which inclusion functions can be constructed. Included
in this set are the familiar kinds of surfaces and time behaviors
encountered in computer graphics.

We use a new interval approach for constrained minimization to
detect collisions, and a tangency condition to reduce the dimension-
ality of the search space. These approaches make interval methods
practical for multi-point collisions between complex surfaces. An
interval Newton method based on the solution of the interval lin-
ear equation is used to speed convergence to the collision time and
location. This method is more efficient than the Krawczyk–Moore
iteration used previously in computer graphics.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling; G.4 [Mathematical Software]: Relia-
bility and Robustness

General Terms: collision detection, parametric surface, con-
strained minimization, interval analysis

Additional Key Words: inclusion function, interval Newton
method, interval linear equation

1 Introduction

Detecting geometric collisions between curved, time-dependent
(moving and deforming) objects is an important and difficult prob-
lem in computer graphics. This paper discusses a practical and ro-
bust algorithm for detecting collisions between objects represented
as parametric or implicit surfaces. We ignore the problem of com-
puting the physical response to collisions; much of this topic is
treated in other work [BARA90,META92]. Instead, we concen-
trate on the purely geometric problem of computing a solution set

before collision at collision

Figure 1: Problem Statement: Given a collection of time-dependent curved
surfaces, find a set of collision points representing the contact regions. In
this example, the dots show the points detected by the collision algorithm
when a torus moves down over a cone, contacting it in a circle.

of points where a set of time-dependent surfaces first contact (Fig-
ure 1).

Previous work on geometric collision detection is fairly extensive,
both in computer graphics and in other fields such as CAD/CAM
and robotics. Detection of collisions between polyhedral objects
was studied in [MOOR88]. Baraff [BARA90] presented a method
of computing collisions between parametric or implicit surfaces
by computing extremal points using non-linear equation solvers.
Sclaroff and Pentland [SCLA91] present a method for detecting
collisions between implicit surfaces by “plugging” vertices of a
polyhedral approximation of one surface into the inside-outside
function of the other. Von Herzen, et. al., [VONH90] presented an
algorithm for detecting collisions of parametric surfaces using Lip-
schitz bounds. Duff [DUFF92] used interval methods to compute
collisions between boolean combinations of implicit surfaces.

To make collision detection practical, much of the previous work
traded off accuracy and robustness for efficiency, or limited the
kinds of shapes that could be handled. Polyhedral methods such
as in [MOOR88], although fairly efficient, are not well suited to
surfaces that deform in time. Exploiting coherence for rolling or
sliding contact of polyhedral objects is difficult, and use of a fixed
sampling mesh can cause severe approximation errors. Polyhedral
methods also require many numerically difficult special cases which
led [MOOR88] and [SCLA91] to neglect cases where “tunneling”
may occur either between polygon edges or between small implicit
surfaces passing entirely through a large polygon.

Baraff [BARA90] chose to limit objects to the union of con-
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take one or more steps in the ODE solver
compute collisions in the resulting time interval
if a collision occurs (at time t�) in the interval

compute a collision response
reset ODE solver to t = t�

endif

Figure 2: Computational Model for Collision Detection and Response

vex polyhedra and strictly convex closed surfaces. This restriction
simplified his collision detection algorithm and allowed tracking
of single contact points between curved objects. He did not treat
non-convex surfaces (such as saddle shapes) and manifolds with
boundary (such as half a sphere). We solve the problem for a more
general class of surfaces with many points of contact, as shown in
Figure 1.

As noted in [VONH90], methods which depend solely on point-
wise evaluations, including the above methods, cannot guarantee
accurate collision detection. To solve this problem, Von Herzen
bounded the output of functions over a region using a Lipschitz
bound. Duff [DUFF92] used interval analysis to produce tighter
bounds than Von Herzen’s Lipschitz bound. Both of these methods
used binary subdivision to search for collisions; we speed up the
approach significantly by combining binary subdivision with an
interval Newton method.

The technique we describe offers several fundamental improve-
ments over previous techniques:

1. The most novel aspect of our technique is the ability to detect
simultaneous collisions (multiple contacts at the same time),
even when the collisions occur at a higher dimensional mani-
fold of contact, rather than at a set of isolated points. In this
case, the algorithm samples the region of contact with a finite,
uniformly-distributed set of points. The spatial sampling den-
sity is a parameter to the algorithm. To our knowledge, no
previous algorithm handles this situation.

2. Our technique works for both rigid and deforming objects, and
for implicit or parametric objects.

3. Our technique is practical for computer graphics applications,
and has been used in animations involving hundreds of objects.

4. Our technique includes a method (tangency constraints) to
reduce the dimensionality of the space of possible solution
points, as shown in Figure 3, dramatically speeding up the
method. The tangency constraints also provide a square system
of equations for the interval Newton method, helping us detect
isolated point collisions.

5. Our technique uses a test for uniqueness of roots of a system of
equations in a region. This test can be verified in many cases,
allowing the algorithm to terminate without further subdivision
around collision points.

6. Our technique can be used both to compute collisions between
formerly disjoint bodies which come into contact, or to com-
pute additional points of contact between bodies as they roll or
slide over each other (see Section 1.1).

1.1 Fitting Collision Detection into a Larger System

Figure 2 shows how collision detection fits into a larger pro-
gram for computing physical simulations of dynamic systems. The
system is composed of three parts: the ODE (ordinary differential
equation) solver module, the collision detection module, and the

collision response computation module. The ODE solver computes
the motions of objects over time, using equations governing the dy-
namic behavior of bodies, and produces a functional representation
of the motion.1 Motion is computed without considering collisions,
so that the results are only valid until the next collision occurs. The
collision detection module takes the functional representation pro-
duced by the ODE solver and computes when and where the first
collision occurs in the given time interval. If a collision occurs, a
collision response is computed, which may discontinuously change
the state of the system of bodies. The ODE solver continues forward
in time from this computed collision time, discarding any state after
it.

Two modes of operation are required in collision detection:

1. compute any collisions for bodies that are initially not in con-
tact

2. compute additional collisions for bodies that are already in
continuous (rolling or sliding) contact

The algorithm described in this paper handles both situations. For
greatest efficiency and modularity, we advocate handling coherence
in the ODE solver. By coherence, we mean the tracking of contact
points between bodies rolling or sliding over each other. In these
situations, collision detection is required only to compute new points
of contact not already tracked by the ODE solver (mode 2 above).
The solver must therefore inform the collision detection module of
the motion of the contact points it is tracking, so that these points
may be excluded from consideration (see Eq. 7). The collision
detection module must also compute the initial points of contact
when the simulation is begun or when continuous contact begins
between bodies (mode 1 above).

1.2 Overview

The mathematics of the collision detection problem is treated in
Section 2. Sections 3, 4, and 5 discuss the constrained minimiza-
tion algorithm, an interval Newton enhancement, and termination
criteria, respectively. Section 6 presents a simple culling test which
discards non-colliding surface pairs and tightens a bound on the
collision time. The full collision algorithm, combining constrained
minimization, the culling test, and other tools from computational
geometry, is presented in Section 7. Our technique, like all interval
methods, requires inclusion functions, whose construction is sum-
marized in Section 8. Finally, results and conclusions are described
in Sections 9 and 10. Appendix A extends our approach to sur-
faces that are piecewise smooth by adding conditions for face, edge,
and vertex interactions (see Figure 11). Appendix B describes the
construction of inclusion functions for Chebyshev polynomials.

2 The Collision Problem

The equations that specify that two surfaces collide may be di-
vided into two parts: a contact constraint, that specifies that the
two surfaces intersect, and a tangency constraint, that specifies that
the two surfaces are tangent at their point of intersection. The tan-
gency constraint reduces the dimensionality of the space of possible
collision points, as shown in Figure 3. It also allows faster conver-
gence (using interval Newton, which we will describe in Section 4)

1In our rigid body simulations, the solver produces a time-varying quaternion and
translation vector. Each component of the quaternion and vector is represented using
univariate Chebyshev polynomials.
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contact with tangency contact without tangency

Figure 3: Reducing the Dimensionality of the Space of Collision Points
Using the Tangency Condition: The intersection of two bodies (like a sphere
moving to the right with a stationary plane) typically forms a whole 2D
manifold of contact through time. With the tangencyconstraint, the solution
space is often reduced to one or a few points by eliminating cases like that
shown on the right. Reducing the solution space to an isolated space-time
point is one of the ideas that makes this method practical.

incoming collision outgoing collision

Figure 4: Incoming and Outgoing Collisions: The unbroken circles repre-
sent bodies later in time. A dot represents the collision point; the arrows
represent the direction of movement.

and robust testing of isolated collisions (using an interval solution
uniqueness test described in Section 5).

We also distinguish between incoming collisions, in which the
surfaces collide by moving closer to each other, and outgoing colli-
sions, in which the surfaces are interpenetrating and become tangent
as they move apart. These situations are compared in Figure 4. The
distinction is necessary in the simulation of dynamic systems where
each surface encloses a solid. Eliminating outgoing collisions al-
lows the simulator to ignore collisions which were previously de-
tected; i.e., collisions between surfaces already in contact which are
moving away as a response to the collision.

2.1 Parametric Surfaces

Let two deforming parametric surfaces be represented by the
twice-differentiable mappings S1(u1; v1; t) and S2(u2; v2; t), where
Si: R3 ! R3. At a particular instant of time, each of the surfaces
is formed by the image of Si over a rectangle in (ui; vi) space.2

In this section, we consider the case of collisions between solids
each bounded by a single, smooth, closed parametric surface. Ap-
pendix A generalizes the discussion to parametric surfaces which
are only piecewise smooth.

Contact Constraint The contact constraint merely states that the
two surfaces intersect (i.e., the vector difference of the two surfaces

2Using a rectangular domain for parametric surfaces does not limit the kinds of
surfaces that can be collided. Parametric surfaces defined on non-rectangular domains
can be handled by mapping a rectangle into the required non-rectangulardomain before
mapping onto the surface [SNYD92b].

is the zero vector):

S1(u1; v1; t)� S2(u2; v2; t) = 0: (1)

Tangency Constraint The tangency constraint implies that the
instantaneous normal vectors on the two surfaces at their point of
contact are anti-parallel. Stated another way, the (u; v) tangent
vectors on one surface must be perpendicular to the instantaneous
normal vector on the other surface. We thus have the following
system of two equations3

0
B@

@S1

@u1
(u1; v1; t) � N2(u2; v2; t)

@S1

@v1
(u1; v1; t) � N2(u2; v2; t)

1
CA = 0 (2)

where N1 and N2 are the outward normal vectors to the surfaces S1

and S2, respectively, given by

Ni(ui; vi; t) �
@Si

@ui
(ui; vi; t)�

@Si

@vi
(ui; vi; t) for i = 1; 2:

The algorithms that follow here assume that N1 and N2 are nowhere
0; that is, surfaces have a nonvanishing normal vector everywhere
and for all relevant time.4 The whole collision equality constraint
is given by a nonlinear system of 5 equations in 5 variables, three
from Eq. 1 and two from Eq. 2.

Incoming Constraint The incoming collision condition states
that the relative velocity of the collision point must face the same way
as the surface normal (the two vectors must form an acute angle),5

and the two normals must face in opposite directions (forming an
obtuse angle). This condition yields two inequality constraints:

(
@S1

@t
(u1; v1; t)�

@S2

@t
(u2; v2; t)) � N1(u1; v1; t) � 0

and � N1(u1; v1; t) � N2(u2; v2; t) � 0:

(3)

2.1.1 Example: Rigid Parametric Surfaces

The above constraints may be applied to the special case of rigid
parametric surfaces. In this case, we have two time-independent
surfaces s1(u1; v1) and s2(u1; v1). The time-varying version of these
surfaces is given by

Si(ui; vi; t) � Ri(t) si(u1; v1) + Ti(t) for i = 1; 2

where Ri(t) is a time-varying rotation matrix and Ti(t) is a time-
varying translation vector, specifying the trajectory of surface i’s
coordinate origin.

Contact Constraint The contact constraint may be expressed as

R1(t) s1(u1; v1) + T1(t) � R2(t) s2(u2; v2) � T2(t) = 0:

3A similar, though functionally dependent, constraint may be derived by switching
S1 and S2.

4If the calculated normal vector becomes zero, such as at the poles of a parametric
sphere, the tangency constraint becomes trivially true. The algorithm will therefore
rely on the contact constraint to detect a collision in this case.

5We assume here that the surfaces are parameterized so that the normals N1 and N2
face outward.
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Tangency Constraint Let n1(u1; v1) and n2(u2; v2) be the time-
independent normals of the surfaces s1 and s2, given by

ni(ui; vi) �
@si

@ui
(ui; vi)�

@si

@vi
(ui; vi):

The time-varying surface normals can therefore be expressed as

Ni(ui; vi; t) � Ri(t) ni(ui; vi)

since Ri(t) is a rotation matrix. The tangency constraint is then given
by 0

B@ (R1(t)
@s1

@u1
(u1; v1)) � N2(u2; v2; t)

(R1(t)
@s1

@u2
(u1; v1)) � N2(u2; v2; t)

1
CA = 0:

Incoming Constraint The incoming constraint is given by

�
_R1(t) s1(u1; v1) + _T1(t)� _R2(t) s2(u2; v2)�

_T2(t)
�
� N1(u1; v1; t) � 0

and � N1(u1; v1; t) � N2(u2; v2; t) � 0

where _Ri and _Ti are the time derivatives of the rotation matrix and
translation vector of the two surfaces.

2.2 Implicit Surfaces

Let two time-varying implicit surfaces be represented using the
scalar functions F1(x; y; z; t) and F2(x; y; z; t). Points on each surface
are defined as the zero-sets of these functions.

Contact Constraint The contact constraint is the system of two
equations �

F1(x; y; z; t)
F2(x; y; z; t)

�
= 0: (4)

Tangency Constraint Let the functionrFi(x; y; z; t) be the spatial
gradient of the implicit functions (i.e., with respect to x, y, and z).
The tangency constraint is then given by

rF1(x; y; z; t)�rF2(x; y; z; t) = 0: (5)

This constraint, although a system of three equations, contains only
two functionally dependent equations. The entire collision equality
constraint for implicit surfaces is thus given by a system of five (four
functionally independent) equations in the four variables x, y, z, and
t (Eqs. 4 and 5).6

Incoming Constraint The incoming constraint is given by

�
@F1

@t
(x; y; z; t) krF2(x; y; z; t)k �

@F2

@t
(x; y; z; t) krF1(x; y; z; t)k � 0

and �rF1(x; y; z; t) � rF2(x; y; z; t) � 0:

(6)

6We note that detecting collisions between implicit and parametric surfaces is a
simpler problem than colliding pairs of parametric or implicit surfaces. By substituting
the output of the parametric surface as the input ( x; y; z) of the implicit surface, a system
in 3 variables, (u; v; t), results, where u and v are the parametric surface coordinates.

t < t� t = t�

Figure 5: Simultaneous Collisions — The tori collide at two isolated points.

We also note that CSG operations on implicit surfaces, as in
[DUFF92], can be handled very efficiently using our techniques.
Assume the surface F1 is represented as the boolean subtraction of
two simple implicit surfaces Fa(x; y; z; t) and Fb(x; y; z; t). The first
equation in the contact constraint (Eq. 4) then becomes

(Fa = 0 and Fb � 0) or (Fb = 0 and Fa � 0)

assuming implicit surface functions are positive outside the surface
they represent. Similar restricted equality constraints can be derived
for the tangency constraint.

Constraints for rigid motion of implicit surfaces are easily de-
rived by applying the above general equations to the rigidly moving
implicit surface

F(x; y; z; t) � f (w) where w � RT (t)((x; y; z)T � T(t))

where f : R3 ! R is the implicit equation of the time-independent
surface, RT (t) is the transpose of the time-varying rotation matrix,
and T(t) is the time-varying translation vector.

2.3 Collision As a Constrained Minimization Problem

The final collision constraint may be described as an equality con-
straint involving a function C (for the contact and tangency con-
straints) and a logical composition of inequality constraints in-
volving a function D (for the incoming constraint). For colli-
sions between parametric surfaces, C and D are vector functions
of (u1; v1; u2; v2; t) (equations 1–3); for implicit surfaces they are
functions of (x; y; z; t) (equations 4–6). We are interested only in the
minimum t collision, since our representation for the time behavior
of the surfaces may be invalid after this time.

The desired collision time for parametric surfaces, t�, can there-
fore be expressed using the constrained minimization problem

minimum
(u1;v1;u2 ;v2;t)2X0

�
t j

C(u1; v1; u2; v2; t) = 0 and
D(u1; v1; u2; v2; t) � 0

�
:

A similar statement results for detection of collisions between im-
plicit surfaces. We would like to compute t� or detect that the
constraint is satisfied nowhere in the parameter space X0.

We also need the location of the collision and the surface normal
vectors there. There may be multiple points of contact at the time
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of collision, which we call simultaneous collisions, as shown in
Figure 5. The points of contact may be a finite number of isolated
points as in Figure 5, or they may form a curve or surface, called the
contact manifold. For example, if the falling torus from Figure 5
were in the same orientation as the stationary one at the bottom, the
collision points would form a circle.

To detect simultaneous collisions, we need to detect minimum
t solutions which are simultaneous or simultaneous within some
tolerance �. Mathematically, we require the set of collision points
(u�1 ; v�1 ; u�2 ; v�2 ) such that

C(u�1 ; v�1 ; u�2 ; v�2 ; t�) = 0 and D(u�1 ; v�1 ; u�2 ; v�2 ; t�) � 0:

For a given collision point, the location of the collision, p�, is

p� � S1(u�1 ; v�1 ; t�) � S2(u�2 ; v�2 ; t�):

The normal vectors at the collision may be defined similarly by
evaluating N1 and N2 at the collision point.

To compute a collision among a set of N time-varying parametric
surfaces Si(ui; vi; t), we first use simple culling procedures to exclude
pairs of surfaces which can’t collide. Section 3.2 will discuss a
method of solving these sets of constrained minimization problems
which can compute simultaneous collisions and which does not
spend undue computation on collisions which occur after t�. It
returns the collision points when these occur at a finite set of isolated
points, or a finite subset of the collision points uniformly distributed
over the contact manifold.

3 Interval Tools for Computing Collisions

We now turn to a discussion of the interval tools necessary to solve
the sets of constrained minimization problems that arise in colli-
sions.

3.1 Review of Interval Analysis

An interval, A = [a; b], is a closed subset of R defined as

[a; b] � fx j a � x � b; x; a; b 2 Rg :

The lower and upper bounds of an interval are written as

lb[a; b] � a

ub[a; b] � b:

A vector-valued interval of dimension n , A = (A1;A2; . . . ;An), is a
subset of Rn defined as

A � fx j xi 2 Ai; i = 1; 2; . . . ; ng

where each Ai is an interval. An interval Ai that is a component of
a vector-valued interval is called a coordinate interval of A.

The width of an interval, written w([a; b]), is defined by

w([a; b]) � b� a:

The midpoint of an interval, written mid([a; b]), is defined by

mid([a; b]) �
a + b

2
:

Similarly, the width and midpoint of a vector-valued interval of

dimension n, A, are defined as

w(A) =
n

max
i=1

w(Ai)

mid(A) = (mid(A1);mid(A2); . . . ;mid(An)):

Hereafter, we will use the term interval to refer to both intervals
and vector-valued intervals; the distinction will be clear from the
context.

An inclusion function for a function f , written 2f , produces an
interval bound on the output of f over an interval representing its
input domain. Mathematically, for all intervals X in the domain of
f , if a point x is in the input interval X then f (x) is contained in the
output interval 2f (X); i.e.,

x 2 X ) f (x) 2 2f (X) for all x 2 X:

Much more information about inclusion functions and their prop-
erties can be found in the literature (see, for example, [MOOR79,
ALEF83,RATS88]). Section 8 and the Appendices discuss ways to
create inclusion functions given the functions they are to bound.

3.2 Constrained Minimization Algorithm

The constrained minimization problem involves finding the global
minimizers7 of an objective function f : Rn ! R for all points that
satisfy a constraint function F: Rn ! f0; 1g.

For the caseof computing collisions between parametric surfaces,
we have the following variables, objective function, and constraint
function:

x � (u1; v1; u2; v2; t)

f (x) � t

F(x) � (C(u1; v1; u2; v2; t) = 0) and

(D(u1; v1; u2; v2; t) � 0)

A region in the minimization algorithm is a 5D interval vector of
the form

X � (U1;V1;U2;V2;T)

� (
�
ul

1; uu
1

�
;
�
vl

1; vu
1

�
;
�
ul

2; uu
2

�
;
�
vl

2; vu
2

�
;
�
tl
; tu
�
)

where the superscripts l and u denote lower and upper bounds. The
relevant inclusion functions are8

2f (X) �
�
tl
; tu
�

2F(X) �

(
[0;1] ; if lb2C(X) � 0; ub2C(X) � 0;

and ub2D(X) � 0
[0;0] ; otherwise

where 2C is an inclusion function for the collision equality con-
straint C, and2D is an inclusion function for the incoming inequal-
ity constraint D.

The algorithm in Figure 6 finds solutions to the constrained min-
imization problem in a specified region X0. The algorithm uses a
priority queue to order regions based on the upper bound of the
objective function. Regions bounding the set of global minimizers

7The global minimizers are the domain points at which the global minimum of the
objective function is achieved, subject to the constraints.

8The terminology lb2C(X) � 0 denotes that lb2Ci (x) � 0 for each component
interval i of 2C(X) (and similarly for upper bounds).
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Minimize(2f ,2F,A,X0 ,2d,�,�)
place initial region X0 on priority queue L
initialize f ’s upper bound u +1
initialize solution setS ;
initialize singular solution setS ;
while L is nonempty

get next region Y from L
if lb2f (Y) > u + � discard Y
else if lb2f (Y) > u� � and

there exists Si 2 S such that k2d(Y)� 2d(Si)k < �
then discard Y

else if Y satisfies acceptance criteria A then
add Y to solution list S
if Y doesn’t contain a unique feasible point

add Y to S
endif
u min(u;ub2f (Y))
delete from S and S all Si 3 lb2f (Si) > u + �

else
subdivide Y into regions Y1 and Y2
for Yi 2 fY1; Y2g

evaluate 2F on Yi

if 2F(Yi) = [0; 0] discard Yi

evaluate 2f on Yi

if lb2f (Yi) > u + � discard Yi

insert Yi into L according to ub2f (Yi)
endfor

endif
endwhile

Figure 6: Global Constrained Minimization Algorithm: This algorithm
finds the global minimizers of an objective function f , with constraints F,
acceptance criteria A, initial region X0, solution distance mapping function
d, simultaneity threshold �, and solution separation distance �.

are subdivided until they are rejected or satisfy the acceptance cri-
teria, A, and are accepted as solutions. It halts with an empty list of
solutions if there are no solutions to the constraint function in X0,
or a list of regions, S, representing the set of global minimizers of
the constrained minimization problem.

The variable u is a progressively refined least upper bound for the
global minimum of the objective function. If we were only looking
for a single collision point, we could halt the algorithm immediately
after finding the first solution. To find collisions at multiple points
of contact, the algorithm must be continued until the priority queue
is empty. The variable u helps to prune the search after finding the
first solutions.

Selecting Finite Sets of Points from Contact Manifolds The
parameters �, �, and 2d allow the algorithm to select a finite set of
regions distributed “uniformly” within the set of global minimizers,
when this set is not finite. The parameter � is the simultaneity
threshold, which specifies how close the value of the objective
function must be for two points to be considered global minimizers.
For collisions, � specifies how close in time two events must be in
order to be consideredsimultaneous. The parameter � is the solution
separation distance, which specifies how far apart two accepted
regions must be to be accepted as separate solutions. The parameter
2d is an inclusion function for the mapping which takes points in
parameter space to points in whatever space we desire distances to
be compared. We call the function d the solution distance mapping
function.

As the algorithm progresses, it maintains two solution lists, S and
S. S contains all accepted regions. We call S the singular solution
set. The elements of S not in S are regions in which the existence
of a unique feasible point has been verified. The statements

if lb2f (Y) > u� � and there exists Si 2 S
such that k2d(Y) �2d(Si)k < �

then discard Y

check that the region Y is not too close to regions already accu-
mulated onto S. Note that the test lb2f (Y) > u � � is critical to
ensure that Y doesn’t have an objective function value small enough
to invalidate all the currently accepted regions.9

We use two lists, S and S, so that in the case that the global
minimizers form a finite set of points, the algorithm can find all
such points without discarding some based on distance to those
already found. The algorithm is therefore able to resolve multiple
isolated collisions that happen in a small area, regardless of the
value of �.10

Ordering Based on Upper Bounds Constrained minimization
algorithms that have appeared before [RATS88,SNYD92c] order
regions based on the lower bound of the objective function. We use
the upper bound to make tractable computing solutions on a contact
manifold.

At any time, the union of all regions on the priority queue forms a
bound on the set of global minimizers of the constrained minimiza-
tion problem. As the algorithm progresses, regions are subdivided
or rejected, so that the regions which remain on the priority queue
become a tighter bound on this set. Because of the inclusion mono-
tonicity property of inclusion functions,11 as regions on the queue
shrink, the computed lower bound on the objective function tends
to increase and the upper bound tends to decrease.

Assume the set of global minimizers forms a continuousmanifold
rather than a finite collection of isolated points, as shown Figure 1.
If the priority queue is ordered using lower bounds, when a given
region is subdivided, its children will generally have larger lower
bounds for the objective function, and will be placed in the priority
queue behind less highly subdivided regions. A breadth first traver-
sal tends to result, with less highly subdivided regions examined
first. If we have a whole manifold of global minimizers and strin-
gent acceptance criteria, we will have to compute a huge number of
tiny regions bounding the entire solution manifold before even the
first region is accepted as a solution.

By ordering based on the upper bound, more highly subdivided
regions tend to be examined first because they tend to have smaller
upper bounds. We quickly get to a region which is small enough to
satisfy the acceptance criteria. This allows our upper bound u to be
updated. It also allows regions to be accumulated onto our singular
list S. Regions that are too close to any member of S can then be
eliminated, making it possible to find a distribution of points on the
contact manifold without undue computation.

Acceptance Criteria The constraint inclusion function, 2F(X),
because it contains an equality constraint, returns either [0; 0] (i.e.,
the constraint is satisfied nowhere in X) or [0; 1] (i.e., the constraint

9If a region can possibly have a feasible point with a value of f less than � from the
value of f in regions on S, we should not reject it just because it is close with respect to
the function d to these regions. The algorithm might then discard a global minimizer
because of its closeness to regions which are possibly far from the global minimizer, in
terms of bounds on the objective function.

10One problem with this technique is that if the collisions happened at a contact
manifold and a finite number of additional isolated points, the algorithm may discard
some of the isolated points because of the closeness criterion. We consider this problem
minorsince the set of globalminimizers is infinite and the algorithmmust chose a subset
anyway.

11An inclusion function, 2f , is inclusion monotonic if Y � X ) 2f (Y) � 2f (X).
In practice, the standard ways of constructing inclusion functions generate inclusion
monotonic inclusion functions.
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may be satisfied in X). We must resort to other means to determine
if the constraint is actually satisfied. Section 5 discusses conditions
which guarantee that a region contains a unique solution to the
equality constraints. These conditions can therefore be used as
acceptance criteria in the algorithm, which we call the isolated
point acceptance criteria. They also allow the upper bound u to be
updated via

u min(u;ub2f (Y))

since Y is guaranteed to contain a feasible point.
The algorithm also makes use of emergency acceptance criteria

which do not guarantee a unique solution but are guaranteed to
be satisfied for regions of small enough size.12 The simplest such
criterion isw(X) < �; a better one is w(2S(X)) < �where2S is the
parametric mapping of one of the colliding surfaces. Regions which
are accepted via the emergency acceptance criteria are inserted both
onto the list of solutions, S, and the singular solutions, S.

Subdivision The simplest method of subdividing candidate in-
tervals in the minimization algorithm is bisection, in which two
intervals are created by subdividing one of the input dimensions at
its midpoint. Many methods can be used to select which dimension
to subdivide. For example, we can simply pick the dimension of
greatest width. A better alternative is to scale the parametric width
by some measure of its importance to the problem we are solving.
For each variable in the collision problem xi, and a given candidate
region X, we have used a scaling value si defined by

si �

mX
j=1

max(j lb2
@fj
@xi

(X)j; jub2
@fj
@xi

(X)k):

Here, f refers to the equality constraints (contact and tangency) of
the collision problem. We then pick a dimension to subdivide, i,
such that the scaled width si w(Xi) is largest.

Given a candidate interval, techniques also exist which allow
us to compute a smaller interval which can possibly contain feasi-
ble points of the constraint. These methods and how they can be
added to our simple minimization algorithm are discussed in Sec-
tion 4. Even more sophisticated subdivision methods exist, such as
Hansen’s method which involves accumulating gaps inside candi-
date intervals by using infinite interval division (see [RATS88] for
a full description).

Multiple Element Constrained Minimization The algorithm
can easily be modified to accept an array of sets of minimization pa-
rameters (2f ;2F;A;X0)i . This allows simultaneous solution of sets
of problems from different pairs of surfaces, or different tangency
situations for the same pair of piecewise parametric surfaces. As a
result, computation is not wasted on collisions which happen after
the first collision, t > t�. We call this modified constrained mini-
mization algorithm the multiple element constrained minimization
algorithm.

Sets of minimization subproblems may be implemented by asso-
ciating the array index of the appropriate minimization subproblem
with each region inserted onto the priority queue, and using the ap-
propriate indexed inclusion functions and acceptance criteria when
processing the region.

12Although we cannot guarantee a region X contains a solution, we can guarantee
that it is arbitrarily close, in the sense that w(2C(X)) < � where 2C is an inclusion
function for the collision equality constraint function C.

Avoiding Detection of Tracked Points We can add additional
inequality constraints to the constraint function F in order to avoid
detecting collisions which occur at contact points already being
tracked. If p is such a tracked point on a surface S(u; v; t), the ODE
solver computes a trajectory for p = S(~u(t);~v(t); t). We then dis-
card all global minimizers to the constrained minimization problem
which satisfy

kS(u; v; t)� S(~u(t);~v(t); t)k < �; (7)

where � is a constant chosen by the user. The functions ~u and ~v
have known representations, as computed by the solver. A natural
interval extension of this constraint involving an inclusion function
for S is then included in the constraint inclusion 2F. An additional
constraint is added for each tracked point.

4 Interval Newton Methods

In order to more quickly refine our intervals towards the solutions
of the collision equality constraint C = 0, we make use of an
interval Newton method. Interval Newton methods are applicable
to the general problem of finding zeroes of a differentiable function
f : Rn ! Rm in an interval X � Rn. They allow us to find an interval
bound on the set

X� = fx 2 X j f (x) = 0g

Let Z(X) be such a bound (i.e., X� � Z(X)). We can reduce the size
of our candidate region X by13

X0 = X
\

Z(X)

In particular, Z(X)
T

X = ; implies that X contains no solutions.
We call the operator Z(X) the interval Newton operator.

Since X can only decrease in size after it is intersected with Z(X),
this procedure can be applied iteratively to produce smaller and
smaller regions, as in

Xi+1 = (Xi

\
Z(Xi))

Note however that a smaller region is not necessarily produced.
Interval Newton methods should therefore be combined with bisec-
tion. When interval Newton iteration is effective at reducing the
size of X its use is continued. Otherwise, bisection subdivision is
performed.

The following sections present three methods for computing
Z(X):

� use of the Krawczyk-Moore form (Section 4.1)
� use of the interval inverse (Section 4.2.1)
� use of matrix iteration (Section 4.2.2)

In each case, we modify the constrained minimization algorithm
from Figure 6 by replacing the subdivide step with the code shown
in Figure 7.

4.1 Fixed Point Methods: the Krawczyk–Moore Form

The familiar (point-wise) Newton’s method is used to converge on
the solution to a system of equations f (x) = 0 where f : Rn ! Rn.

13A
T

B denotes the interval formed by the intersection of the intervals A and B.
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Newton(Y)
compute interval Newton step onY
if step succeeds then

Y0  Y
T

Z(Y)
if Y0 = ;, discard Y

(proceed with next region)
else if Y0 is sufficiently smaller than Y, insert Y0 into L

(proceed with next region)
else subdivide Y0

(continue with Y replaced by Y0)
else subdivide Y

(continue with Y)

Figure 7: Interval Newton Modification to the Constrained Minimization
Algorithm: The above algorithm replaces the subdivide step in the algo-
rithm of Figure 6.

The method starts with an initial “guess”at a solution x0 and iterates
via

xi+1 = p(xi)

where
p(x) = x � Yf (x):

Y is a nonsingular n� n matrix which in straightforward Newton’s
method is the inverse of the Jacobian matrix of f at x, i.e.

Y � J�1(x)

Under certain conditions, this iterative procedure converges to a
fixed point x�. If convergence is achieved, then the fixed point x� is
a solution since

p(x�) = x� () f (x�) = 0

because Y is nonsingular.
An interval analog of this method may be developed. Let X be an

interval in Rn in which zeroes of f are sought. We require a bound
on X�. But

X� � fx 2 X j f (x) = 0g

= fx 2 X j p(x) = xg � (2p(X)
\

X)

where2p(X) is an inclusion function for the Newton operator p(x).
The Krawczyk–Moore form, K(X; c;Y), provides the necessary

inclusion function for the Newton operator p(x). It is simply a mean
value form for p (see [SNYD92c] for a discussion of the mean value
form) given by

K(X; c;Y) � c� Yf (c) + (I � Y2J(X))(X � c)

where I is the n� n identity matrix,2J(X) is an inclusion function
for the Jacobian of f evaluated on X, and c is any point in X.
Note that the vector addition and subtraction and the matrix/vector
multiplication operations used in K must be computed using interval
arithmetic.

We therefore have

X� � (X
\

K(X; c;Y))

for any c 2 X and nonsingular matrix Y . Thus, K(X; c;Y) can be
used as an interval Newton operator. Fairly good results can be
achieved with c = mid(X) and Y = J�1(c) [TOTH85,MITC92].

In our research, we have found a different method to be superior,
described in the next section.

4.2 Linear Interval Equation Methods

A second method for finding an interval bound on X� involves
solving the interval analog of a linear equation.

Let the coordinates of x be x1; x2; . . . ; xn. By the Mean Value
Theorem, given a c 2 X, for each x 2 X, there exist n points,
�1; �2; . . . ; �n such that

f (x) = f (c) + J(�1; . . . ; �n)(x � c);

where the jacobian matrix J is given by

Jij(�1; �2; . . . ; �n) =
@fi
@xj

(�i)

and where each �i 2 X. Let 2J be an inclusion function for the
Jacobian matrix of f , i.e.,

2J(X) �

�
J j Jij 2 2

@fi
@xj

(X)

�

If x is a zero of f , then there exists J 2 2J(X) such that

f (x) = 0 = f (c) + J(x� c):

Therefore, if Q(X) is the set of solutions

Q(X) � fx j f (c) + J(x� c) = 0 for some J 2 2J(X)g ;

then Q(X) contains all zeroes of f in X.
To compute an interval bound, Z, on Q(X), let y = x� c, and let

Z0 be an interval bound on the set

fy j Jy = �f (c) for some J 2 2J(X)g :

Then the interval Z defined using interval addition as

Z � Z0 + [c; c];

is an interval bound on Q(X). Thus, computing the interval Newton
bound Z can be accomplished by solving an interval linear equation
of the form

Mx = b

where M � 2J(X) is an n� n interval matrix, and b � �f (c) is an
interval vector.14 Stated another way, we require a bound on the set

Q(M; b) � fx j 9M 2 M; � 2 b such thatMx = �g :

The next two sections discuss two methods for solving these interval
linear equations.

4.2.1 Solving the Interval Linear Equation with the Interval
Inverse

One method to bound the set of solutions to the interval linear
equation involves computing the interval inverse. We seek a bound
on Q(M; b): the set of solutions, x, for Mx = b. If M is an n � n
interval matrix, an interval that bounds Q(M; b) is

Z � M�1b

14In this case, the interval b has a lower bound equal to its upper bounds in each
coordinate (called a point interval), neglecting inaccuracies in the computation of f .
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where M�1 is the interval inverse of the interval matrix. Assuming
M contains no singular matrices, the interval inverse is an interval
bound on the set

fm�1 j m 2 Mg

A simple way of computing the interval inverse is to use the
interval analog of LU decomposition. That is, we take the LU
decomposition algorithm [PRES86, pages 31–38] and replace all
arithmetic operations with their corresponding interval arithmetic
counterparts (see [MOOR79] for a discussion of interval arithmetic).
If at any point in the iteration we attempt to divide by an interval
which contains zero, then we cannot compute the interval inverse,
and the interval Newton step fails (but see the next section for a way
to reduce the size of candidate regions without using the interval
inverse). After enough iterations of the constrained minimization
algorithm, and assuming the conditions discussed in Section 5 hold,
candidate regions are usually small enough to make this technique
effective.

4.2.2 Solving the Interval Linear Equation with Matrix Itera-
tion

Another method to bound the set of solutions to the interval linear
equation involves matrix iteration. The algorithm we present here
requires an initial bound on the set of solutions; that is it finds a
bound on the set Q(M; b)

T
X where X is a given interval. The

algorithm is therefore effective at reducing the size of a candidate
interval in which solutions to an equality constraint are sought, but
cannot be used to verify solution existence using the theorems in
Section 5.15

Figure 8 contains the code for Linear Solve, which finds bounds
on the solution to the linear interval equation. Linear Solve is
based on the observation that the i-th equation of the linear system
Mx = b:

Mi1x1 + Mi2x2 + � � � + Minxn = bi

implies, for each j such that Mij 6= 0, that

xj =
bi �

P
k6=j Mikxk

Mij
:

The interval analog of this equation may therefore be used for each
interval matrix entry, Mij, which does not contain 0 to find a bound
on one of the variables xj. This bound is intersected with the old
bound on xj yielding an interval which is possibly smaller but no
larger than it was. Reducing the size of one interval may then further
reduce the sizes of others as the iteration proceeds. Note that the
algorithm does not halt when an interval element of M contains 0;
it just proceeds to the next element which excludes 0.

An important property of Linear Solve is that it can be ap-
plied to a nonsquare linear equation,16 and is therefore useful in the
“overconstrained” equality constraint for implicit surfaces, and the
vertex-to-edge and vertex-to-vertex tangency situations of piece-
wise parametric surfaces (see Appendix A). Linear Solve can be
applied in many situations where LU decomposition fails because
of the singularity of the interval Jacobian matrix. Even when the
Jacobian matrix is singular at the solution point, Linear Solve is
usually effective at reducing the widths of some of the input vari-

15This is because, unlike the technique presented in Sections 4.2.1, this technique
does not bound Q(M; b) directly, but instead bounds Q(M; b)

T
X.

16That is, the number of equations, m, is unequal to the number of variables, n.

Linear Solve(M,b,x)
repeat

loop through rows ofM (i = 1; 2; . . . ;m)
loop through columns ofM (j = 1;2; . . . ;n)

if 0 62 Mij then
x0j  (bi �

P
k6=j

Mikxk)=Mij

xj  x0j
T

xj

if xj = ; return no solution
endif

endloop
endloop

while there is sufficient improvement inx

Figure 8: Interval Linear Equation Solution Algorithm: This algorithm
computes the interval Newton step (first statement of the algorithm in Fig-
ure 6).

ables. These features are critical in making the singular situations
described in Section 5 computationally tractable.17

The “sufficient improvement” condition mentioned in the algo-
rithm can be implemented as

w(xi+1) � �w(xi)

where a typical value of the improvement factor, �, is 0.9. Here xi

denotes the interval bound computed after i iterations of the repeat
loop. Specifying a maximum number of repeat iterations also
limits the amount of computation.

5 Termination Criteria

Two theorems in interval analysis specify conditions under which a
square system of equations contains a unique solution in a region. 18

Theorem 1 (Krawczyk–Moore Existence) If K(X; c;Y) � X,
K(X; c;Y) 6= ;, and kI � Y2J(X)k < 1, then there is a unique root
in X, and pointwise Newton’s method will converge to it.

Theorem 2 (Linear Interval Equation Existence) If Q(X) � X
and Q(X) 6= ;, then there is a unique root in X.

The conditions implied by these theorems thus lead to acceptance
criteria, A, for the constrained minimization algorithm. Implemen-
tation of Theorem 1’s conditions is clear from the discussion in
Section 4.1. To verify the conditions of Theorem 2, we use the in-
terval inverse method discussedin Section 4.2.1. We have been able
to verify solution uniqueness much earlier (i.e., in larger regions)
using Theorem 2’s test.

We note the conditions for Theorems 1 and 2 can only be verified
when the determinant of the Jacobian of the equality constraint
function, C, is nonzero in some neighborhood of the solution. For
collision detection, the Jacobian determinant is zero at a solution to
the contact and tangency constraints in the following situations:

� the contacting surfaces become tangent but never interpene-
trate. They can even stay tangent for an interval of time.

17We prefer the method of matrix iteration described here to a faster method (the
interval analog of Gauss-Seidel iteration) which involves solving only for the diagonal
matrix elements after a preconditioning step (see [RATS88]). This method requires
a square system of equations, and will fail when the Jacobian matrix is singular at
the solution. Interval computations in the preconditioning step also have the effect of
increasing the size of the solution set Q(M; b) even before any iteration takes place.

18See [TOTH85] for a proof sketch and references for Theorem 1, [SNYD92b] for a
proof of Theorem 2.
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Figure 9: Bounding Sphere Collision Time Bound

� the surfaces contact instantaneously on a curve or higher-
dimensional region.

� both — the surfaces contact at an infinite set of points through
an interval of time.

In these cases, we can not verify that a unique solution exists and
must resort to heuristic criteria (the “emergency” criteria of the
constrained minimization algorithm). That is, we consider surfaces
to have collided when a bound on C is sufficiently small in a region.19

If a solution is on the boundary of a candidate region, we note that
the conditions of either theorem will be difficult to verify since the
set result (e.g., Q(X)) will always slightly spill out of the original
region X. To solve this problem, we should slightly increase the
region examined for acceptance, X, via

X0 � c + (X � c)(1 + 
)

where 
 is a small constant (like .1). We then can perform the
test on this bigger region X0. Then, even if the solution is on the
boundary of X, the theorem conditions will eventually be satisfied if
the Jacobian of C is nonsingular in a neighborhood of the solution.

6 A Simple Bound for the Time of Collision

We can save time in the collision algorithm by using a fast algorithm
to reduce the time interval over which collisions are searched. This
time bound may also tell us, with a minimum of computation, if
the two surfaces fail to intersect, obviating the need for further
computation. The test presented here uses 1D minimization (only
over time) rather than minimization over the 4 or 5 dimensional
space required to solve the full problem.

As shown in Figure 9, we compute two bounding spheres around
each of our parametric surfaces. In the case of rigid motion, this
may be computed beforehand as a preprocessing step. We specify
two points for each parametric surface O1 and O2 about which to
compute a bounding sphere. These points should be chosen to
minimize the size of the resulting bound; using the center of mass
of the surface is a good choice. The bounding radii are:

R1 � max
(u1;v1)

ks1(u1; v1)�O1k

R2 � max
(u2;v2)

ks2(u2; v2)�O2k:

19This implies, because of the contact constraint, that the surfaces come within a
specified constant.

Note that these bounding radii can be computed using a 2D un-
constrained minimization problem, for which the algorithm of Sec-
tion 3.2 is suitable.

Using the constrained minimization algorithm, this time on a
simple 1D problem, we then find a bound on the time of collision
via

t�0 � minimum
t2[t0;t1]

f t j kT1(t) + O1 � T2(t)� O2k � R1 + R2g

t�1 ��minimum
t2[t0;t1]

f�t j kT1(t) + O1 � T2(t)� O2k � R1 + R2g:

We can then replace the [t0 ; t1] interval in the full collision mini-
mization problem for that pair of surfaces with [t�0 ; t�1 ], or cull the
pair of surfaces if no solutions to the 1D problem are found.

7 The Full Collision Algorithm

The complete algorithm for detecting collisions can now be de-
scribed. The following discussion pertains to a set of parametric
surfaces; a similar algorithm can be developed for the case of im-
plicit surfaces or parametric/implicit combinations. We are given a
set of solids defined by a parametric boundary representation, and
a time interval in which to detect collisions, [t0; t1]. The following
steps summarize the final algorithm:

1. Detect pairs of objects which can possibly collide. For this
step, we bound each time-varying surface by evaluating an
inclusion function for its time-varying mapping over [t0; t1].
More precisely, a bounding box through time on the surface
S(u; v; t) is given by

2S([0; 1]; [0; 1]; [t0 ; t1])

assuming S is evaluated on the unit square.20 We can then
test whether any of the resulting bounding boxes intersect us-
ing highly efficient algorithms from computational geometry
[SIX82]. All pairs of bounding boxes which do intersect must
be processed further; the rest are culled.

2. For rigid bodies, additional object pairs can be culled using the
bounding sphere test of Section 6. A variant of this test can
also be used for deformable surfaces.

3. If any pairs of objects remain to be processed, we must invoke
the full constrained minimization algorithm. Here, we distin-
guish between “free” objects and objects already in continuous
contact, whose contact points are being tracked with the ODE
solver. For objects already in continuous contact, additional
constraints are added (Section 3.2) to prevent re-detection of
the tracked points. All such problems are placed on the initial
priority queue of the multiple element constrained minimiza-
tion algorithm.

4. We use local methods,such as Newton’s method, to converge to
the actual collision point in each solution region which contains
an isolated collision (i.e., for which the interval existence and
uniqueness test of Section 5 succeeded). We arbitrarily choose
the midpoint as the collision point for the rest of the solution
regions (termed singular solutions in Section 3).

20Note that for rigid surfaces we can cache a bounding box on the time-independent
rigid surface and computeonly a boundover time on the resulting rotated and translated
bounding box.
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8 Implementing Inclusion Functions

The collision detection algorithm depends on inclusion functions
for the time-varying surfaces and their various derivatives. Note
that the equality constraint for the parametric surface case (Equa-
tion 2) involves derivatives of the time-varying surface mappings
Si(ui; vi; t). The interval Newton method then requires an additional
derivative of the equality constraint with respect to each of the inde-
pendent variables. Interval analysis provides the necessary theory
for constructing inclusion functions for these functions.

For simple polynomial surfaces (e.g., bicubic patches or algebraic
surfaces) interval arithmetic suffices to provide an inclusion func-
tion for the time-independent surface. Toth [TOTH85] has presented
efficient inclusion functions for Bezier surfaces. Mitchell and Han-
rahan have proposed a simple stack-based representation of surfaces
which allows generation of inclusion functions for the surface and
its derivatives [MITC92]. Inclusion functions for more complicated
surfaces and their derivatives can also be constructed. We have used
the system described in [SNYD92a,SNYD92b], which automates
the construction of inclusion functions (and inclusion functions for
the derivatives) of any functions formed by the composition of a
quite powerful set of symbolic operators.

For physical simulations, the ODE solver computes a represen-
tation of the time behavior of the surfaces. The solver may directly
compute a continuousrepresentation or it may be later reconstructed
by point sampling the solver’s results, typically producing a poly-
nomial. Appendix B discusses a method to bound Chebyshev poly-
nomials.

9 Results

We have successfully tested this method on a series of collision
detection examples, including both rigidly moving and deforming
objects. For example, Figure 12 shows the results of a difficult
collision detection run in which the contact manifold forms a series
of disjoint 2D regions. A collection of 59 points was generated
in the contact region with a simultaneity threshold of 0.001 and
solution separation distance of 0.04, using 28704 iterations and
88.81 CPU seconds.21 While the running time may seem large, the
problem itself is sufficiently difficult that its running time exceeded
our threshold of 8 CPU hours without the use of every new technique
presented in this paper: adding the tangency constraint (rather than
using the contact constraint alone), sorting by upper bound in the
constrained minimization algorithm (rather than by lower bound),
and using Linear Solve for the interval Newton step (rather than
the Krawczyk–Moore operator). Figure 1, 5, and 12–16 show the
results of the algorithm for several different time-varying shapes.

The table in Figure 10 compares running times for a second
example involving two rotating and translating bumpy parametric
surfaces which collide at an isolated point. Several solution meth-
ods are compared: LEQN (interval Newton using the linear equation
solution techniques of Section 4.2), KM (interval Newton using the
Krawczyk–Moore operator), NIN (without interval Newton), and
NTAN (without the tangency condition). Since the collision occurs
at an isolated point, both the LEQ and KM methods were able to ac-
cept a single solution region by verifying the solution existence and

21The term iteration refers to an evaluation of the inclusion functions 2f and 2F
(objective function and constraint function) in the constrained minimization algorithm.
All CPU times are measured on a HP 9000 Series 750 computer.

Running Times
Example Iterations CPU (secs)
LEQN 6331 32.67
KM 10087 148.28
NIN,
=1e-3 17395 8.58
NIN,
=1e-4 29921 15.46
NIN,
=1e-5 40127 21.52
NIN,
=1e-6 48187 23.25
NIN,NTAN,
=1e-3 52307 14.59
NIN,NTAN,
=1e-4 587711 169.87
NIN,NTAN,
=1e-5 3822605 1207.46

Figure 10: Table of Results for Various Methods: see Section 9

uniqueness test. The other methods required an accuracy parameter
for acceptance; we used the simple criterion w(X) < 
.

Because we used a prototype system to gather the data, we em-
phasize the importance of iteration count data over CPU time. Our
system requires the traversal of a complicated data structure for each
inclusion function evaluation which overwhelms the floating point
computation actually needed in the function. The interval Newton
methods are sensitive to this bias, since their implementation re-
quired many symbolic operators. We believe the iteration counts
shown here to be a reasonable measure of expected running time, if
the inclusion functions are hand-coded for the surfaces of interest.

10 Conclusions

We have presented a robust interval algorithm that can detect col-
lisions between complex curved surfaces. The algorithm handles a
greater range of situations than previous algorithms. It detects both
isolated collision points and collision points on contact manifolds.
It can avoid detection of points close to a set of tracked points with
specified trajectories. It efficiently handles detection of simultane-
ous collisions between sets of moving objects. The technique is
practical for simulations involving large numbers of moving and
deforming objects (see Figures 15 and 16).

We draw several conclusionsfrom our experimental results. First,
interval methods, such as [VONH90] and [DUFF92], which do not
make use of the interval Newton method or the tangency condition
soon become impractical as we increase the accuracy parameter
(refer to the NIN,NTAN lines of the table in Figure 10). Interval
Newton iteration combined with the tangency condition (especially
using the interval linear equation approach) is very effective at re-
ducing computation. Second, our method can solve the difficult
problem of detecting collision points on a contact manifold. We
have found the methods described here to be indispensable, includ-
ing the idea of the tangency constraint, the constrained minimization
algorithm discussed in Section 3, and the interval linear equation
approach to interval Newton iteration.

We note that many areas for improvement remain. Sorting by
lower bound of the objective function rather than by upper bound
is more efficient for isolated point collisions. We have noted an
efficiency gain of a factor of from 1 to 10 in using the lower bound
for such cases. On the other hand, sorting by lower bound is com-
pletely impractical for detecting collisions on a contact manifold.
If we know the nature of the collision solution set a priori, we
can choose the appropriate method. Alternatively, combining the
two approaches, perhaps by “racing” them in parallel on the same
problem, may decrease the average running time. We are study-
ing several ways to increase efficiency that involve more optimally
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choosing the next dimension to subdivide, and determining a sub-
division location other than the midpoint.
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A Collision Constraints for Piecewise Parametric
Surfaces

A piecewise surface is composedof a set of smooth faces,a set of edges where
these faces meet, and a set of vertices or points where edges meet. Edges
form the 1D boundaries over which the surface is not smooth; vertices are
the 0D boundaries between smooth edge curves. A data structure containing
the faces, edges, and vertices of a solid is called its boundaryrepresentation .
For example, the boundary representation of a cylindrical solid contains
three faces: one cylinder and two circular endcaps, two edges where the
cylinder and endcap meet, but no vertices.

To detect collisions between two piecewise surfaces, we must search for
collisions between each pair of faces, between edges and faces, between
vertices and faces, etc. The constraints governing collisions are different in
each of these cases, which we call tangency situations. There are 6 types of
tangency conditions in a collision between piecewise surfaces as shown in
Figure 11. Constraints for the face-to-face tangencysituation are identical to
the constraints discussed in Section 2.1. The following paragraphs discuss
the other tangency situations.

We must combine all the constrained minimization problems for the
various possible types of tangencysituations. For example, if the surfaces are
a pair of cylindrical solids, we obtain 25 separate constrained minimization
subproblems: 9 face-to-face problem, 12 edge-to-face problems, and 4
edge-to-edgeproblems. Two tori require only a single face-to-face problem.
Each problem is then solved simultaneously using the multiple element
constrained minimization algorithm.
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Edge-to-Face For the edge-to-face case, we have an edge curve, C(s; t),
which forms a boundary of a surface, Sa(ua; va; t), and another surface,
S(u; v; t). The edge curve is typically formed by evaluating a parametric
surface Sa at a specific value for either the u or v parameter, e.g.

C(s; t) � Sa(s; vfixed; t)

where vfixed is a constant set at one of the extremes of the v interval over
which Sa is evaluated. The contact constraint for edge-to-face collisions is

C(s; t)� S(u; v; t) = 0 (8)

and the tangency constraint by

@C

@s
(s; t) � N(u; v; t) = 0 (9)

where N is the time-varying normal to the surface S. The edge-to-face
equality constraint can be represented a system of 4 equations in 4 variables.

To define the incoming collision condition, we need to define what “out-
wardness” means on an edge curve. Assuming all surfaces form the valid
boundaries of a closed solid, the edge curve C(s; t) is shared between two
surfaces Sa and Sb. We can therefore define two “outward” directions, given
by the outward pointing normals to the shared surfaces Sa and Sb. For
example, these outward directions may be defined as

Coutward-1(s; t) � Na(s; vfixed; t)

Coutward-2(s; t) � Nb(ufixed; s; t)

where Na and Nb are the outward normal vectors of the respective surfaces.
The incoming constraint forces the relative velocity between the surface

and the edge curve to be in the same direction (using a dot product test) as
the surface’s normal. The surface’s normal must also face away from at least
one of the edge curve’s outward directions. The incoming constraint is:

(
@S

@t
(u; v; t)�

@C

@t
(s; t)) � N(u; v; t) � 0 and�

�N(u; v; t) � Coutward-1(s; t) � 0 or

�N(u; v; t) � Coutward-2(s; t) � 0
�
:

(10)

Edge-to-Edge The edge-to-edge case involves two edgecurves, C1(s1; t)
and C2(s2; t). For this case, just a contact constraint is sufficient, given by
the following system of three equations in three variables:

C1(s1; t)� C2(s2; t) = 0: (11)

To define the incoming collision condition, we define two outward direc-
tions for each edge curve, as in the previous discussion for the edge-to-face
case. The relative velocity between the edge curves must face in the same
direction as at least one of the first curve’s outward directions:

(
@C1

@t
(s1; t)�

@C2

@t
(s2; t)) � Coutward-1

1 (s1; t) � 0 or

(
@C1

@t
(s1; t)�

@C2

@t
(s2; t)) � Coutward-2

1 (s1; t) � 0

(12)

Also, at least one of the outward directions on one curve must face away
from one of the outward directions of the other curve. A logical combination
of 6 inequalities is the result.

Vertex-to-Face, Vertex-to-Edge, Vertex-to-Vertex The vertex-to-
face case involves a vertex P(t) and a surface S(u;v; t). As in the edge-to-edge
case, a contact constraint is sufficient, of the form

P(t) � S(u; v; t) = 0: (13)

where the point P is formed by evaluating a surface at a fixed point in its
(u; v) parameter space, e.g.

P(t) � Sa(ufixed; vfixed; t)

A system of three equations in three unknowns results. Similarly, a system
of three equations in two unknowns results for the vertex-to-edgecase, and a

system of three equations in a single unknown for the vertex-to-vertex case.
The incoming collision condition can be derived by defining a number

of outward directions for the colliding vertex, corresponding to the normal
vector of each surface containing that vertex. The normal to the surface
S must face away from at least one of these outward directions, as in the
edge-to-face case. The relative velocity between the surface and the vertex
must face in the same direction as the surface’s normal, via

(
@S

@t
(u; v; t)�

@P

@t
(t)) � N(u; v; t) � 0:

Similar systems of inequalities can be derived for situations where a vertex
collides with an edge or another vertex.

B Inclusion Functions for Chebyshev Polynomials

Chebyshev polynomials are a good basis for a continuous representation of
time behavior. They allow simple control of approximationerror, and can be
differentiated using a simple method to produce a Chebyshev representation
of the derivative (see [PRES86, pages 158–165] for a discussion of the
advantages of Chebyshev polynomials, their properties, and algorithms for
their manipulation). The basis functions for a Chebyshev polynomials are

Tn(x) � cos(n arccos(x))

which expand to a series of polynomials of the form

T0(x) = 1

T1(x) = x

T2(x) = 2x2 � 1

...

Tn+1(x) = 2xTn(x)� Tn�1(x) n � 1

The function Tn(x) has n + 1 extrema with values of �1 at the locations

xi � cos(
�i

n
) i = 0;1; . . . ; n

The i-th extremumof the basis function Tn is either a minimum or maximum
according to the rules

Tn(xi) =
n
�1; if (i + n) � 1 mod 2
+1; if (i + n) � 0 mod 2

A Chebyshev approximation of order N is given by specifying N coeffi-
cients ci; i = 0; 1; . . . ;N � 1, which determine the polynomial

C(x) =

N�1X
i=1

ciTi(x) +
c0

2

Given the order of the Chebyshev approximation function C(x), N, we
can easily compute an inclusion function for C(x). Let the interval over
which we are to bound C(x) be given by X = [x0; x1]. As a preprocessing
step, we first tabulate the locations of the extrema of the basis functions, up
to some maximum order. (Note that the results can then be used for any
approximating polynomial.) For each Chebyshev basis function, Ti(x); i =
0;1; . . . ;N � 1, we first evaluate Ti(x0) and Ti(x1). We then determine
whether any extrema of Ti(x) occur in [x0; x1] using the tabulated locations
of the extrema. A lower bound on the basis function over [ x0; x1], b0

i is

b0
i �

n
min(Ti(x0); Ti(x1);�1); if min of Ti(x) 2 [x0; x1]
min(Ti(x0); Ti(x1)); otherwise.

Similarly, an upper bound is

b1
i �

n
max(Ti(x0); Ti(x1); 1); if max of Ti(x) 2 [x0; x1]
max(Ti(x0); Ti(x1)); otherwise.

The final inclusion function is then

2C(X) �

N�1X
i=1

ci[b0
i ; b1

i ] +
c0

2

where operations are computed with interval arithmetic.

333



Scenes from test animations: In the following figure pairs, the upper image is the scene immediately before the collision, while the bottom
image is the scene at the collision time. Points of contact are shown as white dots, which are uniformly distributed over regions where there are
line and surface contacts. At the time of collision, surfaces become transparent to make the dots visible.

Figure 12: Two bumpy objects collide at one
point.

Figure 13: A time-varying tube contacts a cush-
ion along a curve.

Figure 14: A wavy object contacts a raised
checkerboardfloor in several flat patches.

Scenes from “Fruit Tracing”: This animation shows the results of collision detection for a more complicated setting involving hundreds of
colliding objects. In this animation, moving parametric surfaces representing fruit are collided with a static lobster shape, defined as an implicit
surface. (Lobster data generated by David Laidlaw, Matthew Avalos, Caltech, and Jose Jimenez, Huntington MRI Center.)

Figure 15: Colliding dynamic fruits. Figure 16: Scene showing lobster shape.
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