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Abstract

The number of polygons comprising interesting architectural mod-
els is many more than can be rendered at interactive frame rates.
However, due to occlusion by opaque surfaces (e.g., walls), only a
small fraction of a typical model is visible from most viewpoints.

We describe a method of visibility preprocessing that is effi-
cient and effective for axis-aligned or axial architectural models. A
model is subdivided into rectangular cells whose boundaries coin-
cide with major opaque surfaces. Non-opaque portals are identified
on cell boundaries, and used to form an adjacency graph connect-
ing the cells of the subdivision. Next, the cell-to-cell visibility is
computed for each cell of the subdivision, by linking pairs of cells
between which unobstructed sightlines exist.

During an interactive walkthrough phase, an observer with a
known position and view cone moves through the model. At each
frame, the cell containing the observer is identified, and the con-
tents of potentially visible cells are retrieved from storage. The set
of potentially visible cells is further reduced by culling it against
the observer’s view cone, producing the eye-to-cell visibility. The
contents of the remaining visible cells are then sent to a graphics
pipeline for hidden-surface removal and rendering.

Tests on moderately complex 2-D and 3-D axial models reveal
substantially reduced rendering loads.

CR Categories and Subject Descriptors: [Computer Graph-
ics]: I.3.5 Computational Geometry and Object Modeling – geomet-
ric algorithms, languages, and systems; I.3.7 Three-Dimensional
Graphics and Realism – visible line/surface algorithms.

Additional Key Words and Phrases: architectural simulation,
linear programming, superset visibility.zComputer Science Department, Berkeley, CA 94720

1 Introduction

Interesting architectural models of furnished buildings may consist
of several million polygons. This is many more than today’s work-
stations can render in a fraction of a second, as is necessary for
smooth interactive walkthroughs.

However, such scenes typically consist of large connected ele-
ments of opaque material (e.g., walls), so that from most vantage
points only a small fraction of the model can be seen. The scene
can be spatially subdivided into cells, and the model partitioned into
sets of polygons attached to each cell. Approximate visibility infor-
mation can then be computed offline, and associated with each cell
for later use in an interactive rendering phase. This approximate in-
formation must contain a superset of the polygons visible from any
viewpoint in the cell. If this “potentially visible set” or PVS [1] ex-
cluded some visible polygon for an observer position, the interac-
tive rendering phase would exhibit flashing or holes there, detract-
ing from the simulation’s accuracy and realism.

1.1 Visibility Precomputation

Several researchers have proposed spatial subdivision techniques
for rendering acceleration. We broadly refer to these methods as
“visibility precomputations,” since by performing work offline they
reduce the effort involved in solving the hidden-surface problem.
Much attention has focused on computing exact visibility (e.g., [5,
12, 16, 19, 22]); that is, computing an exact description of the vis-
ible elements of the scene data for every qualitatively distinct re-
gion of viewpoints. Such complete descriptions may be combinato-
rially complex and difficult to implement [16, 18], even for highly
restricted viewpoint regions (e.g., viewpoints at infinity).

The binary space partition or BSP tree data structure [8] obviates
the hidden-surface computation by producing a back-to-front order-
ing of polygons from any viewpoint. This technique has the draw-
back that, for an n-polygon scene, the splitting operations needed
to construct the BSP tree may generate O(n2) new polygons [17].
Fixed-grid and octree spatial subdivisions [9, 11] accelerate ray-
traced rendering by efficiently answering queries about rays propa-
gating through ordered sets of parallelepipedal cells. To our knowl-
edge, these ray-propagation techniques have not been used in inter-
active display systems.

Given the wide availability of fast polygon-rendering hardware
[3, 14], it seems reasonable to search for simpler, faster algorithms
which may overestimate the set of visible polygons, computing a
superset of the true answer. Graphics hardware can then solve the

1



eye

obstacle

invisible
  object

Figure 1: Cone-octree culling: the boxed object is reported visible.

hidden-surface problem for this polygon superset in screen-space.
One approach involves intersecting a view cone with an octree-
based spatial subdivision of the input [10]. This method has the un-
desirable property that it can report as visible an arbitrarily large part
of the scene when, in fact, only a tiny portion can be seen (Figure 1).
The algorithm may also have poor average case behavior for scenes
with high depth complexity; i.e., many viewpoints for which a large
number of overlapping polygons paint the same screen pixel.

Another overestimation method involves finding portals, or non-
opaque regions, in otherwise opaque model elements, and treating
these as lineal (in 2-D) or areal (in 3-D) light sources [1]. Opaque
polygons in the model then cause shadow volumes [6] to arise with
respect to the light sources; those parts of the model inside the
shadow volumes can be marked invisible for any observer on the
originating portal. This portal-polygon occlusion algorithm has not
found use in practice due to implementation difficulties and high
computational complexity [1, 2].
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Figure 2: Ray casting: the boxed object is not reported visible.

A third approach estimates visibility using discrete sampling, af-
ter spatial subdivision. Conceptually, rays are cast outward from a
stochastic, finite point set on the boundary of each spatial cell. Poly-
gons hit by the rays are included in the PVS for that cell [1]. This
approach can underestimate the cell’s PVS by failing to report visi-
ble polygons (Figure 2). In practice, an extremely large number of
rays must be cast to overcome this problem.

1.2 Overview

This paper describes a new approach to spatial subdivision and the
visibility problem. The scene space is subdivided along its ma-

jor opaque features; small, detailed scene elements are considered
“non-occluding” and are ignored. After subdivision, a maximal set
of sightlines is found from each cell to the rest of the subdivision. A
novel aspect of our algorithm is that sightlines are not cast from dis-
crete sample locations. Instead, cell-to-cell visibility is established
if a sightline exists from any point in one cell to any point in another.
As a consequence, the cells reached by sightlines provably contain
a superset of the PVS for any given cell.

The data structure created during this gross visibility determi-
nation is stored with each cell, for use during an interactive walk-
through phase. The cell-to-cell visibility can be further dynamically
culled against the view cone of an observer, again producing a reli-
able superset of the visible scene data, the eye-to-cell visibility. The
detailed data contained in each visible cell, along with associated
normal, color, texture data etc., are passed to a hardware renderer
for removal of hidden surfaces (including, crucially, those polygons
invisible to the observer). The two-fold model pruning described
admits a dramatic reduction in the complexity of the exact hidden-
surface determination that must be performed by a real-time render-
ing system.

We describe the spatial subdivision along major structural ele-
ments in Section 2, and the cell-to-cell visibility computation in Sec-
tion 3. Section 4 describes the additional culling possible when the
position and viewing direction of the observer are known. Some
quantitative experimental results are given in Section 5, based on
an implementation for axial 2-D models. Section 6 describes work
in progress toward a more general algorithm.

2 The Spatial Subdivision

2.1 Assumptions About Input

We make two simplifying assumptions. First, we restrict our atten-
tion to “faces” that are axial line segments in the plane; that is, line
segments parallel to either the x- or y-axis. These admit a particu-
larly simple subdivision technique, and are useful for visualization
and expository purposes. Second, we assume that the coordinate
data occur on a grid; this allows exact comparisons between posi-
tions, lengths, and areas. Relaxing either assumption would not af-
fect the algorithms conceptually, but would of course increase the
complexity of any robust implementation.

Throughout the paper we use example data suggestive of archi-
tectural floorplans, since realizing truly interactive architectural and
environmental simulations is a primary goal of our research. How-
ever, we note that the methods we describe have a modular nature
and can be used to accelerate a range of graphics computations, for
example ray-tracing and radiosity methods, flight simulators, and
object-space animation and shadowing algorithms.

2.2 Subdivision Requirements

We require that any spatial subdivision employed consist of convex
cells, and support point location, portal enumeration on cell bound-
aries, and neighbor finding. We will demonstrate the algorithm’s
correctness for any such spatial subdivision. Its effectiveness, how-
ever, depends on the more subjective criterion that cell boundaries
in the subdivision be “mostly opaque.”

2.3 Subdivision Method

The input or scene data consists of n axial faces. We perform the
spatial subdivision using a BSP tree [8] whose splitting planes con-



tain the major axial faces. For the special case of planar, axial data,
the BSP tree becomes an instance of a k-D tree [4] with k = 2. Ev-
ery node of a k-D tree is associated with a spatial cell bounded byk half-open extents [x0;min ::: x0;max); :::; [xk�1;min ::: xk�1;max).
If a k-D node is not a leaf, it has a split dimension s such that0 � s < k; a split abscissa a such that xs;min < a < xs;max;
and low and high child nodes with extents equivalent to that of the
parent in every dimension except k = s, for which the extents
are [xs;min:::a) and [a:::xs;max), respectively. A balanced k-D tree
supports logarithmic-time point location and linear-time neighbor
queries.

The k-D tree root cell’s extent is initialized to the bounding box
of the input (Fig. 3-a). Each input face F is classified with respect
to the root cell as:� disjoint if F has no intersection with the cell;� spanning if F partitions the cell interior into components that

intersect only on their boundaries;� covering if F lies on the cell boundary and intersects the
boundary’s relative interior;� incident otherwise.

Spanning, covering, and incident faces, but not disjoint faces, are
stored with each node. Clearly no face can be disjoint from the root
cell. The disjoint class becomes relevant after subdivision, when a
parent may contain faces disjoint from one or the other of its chil-
dren.

x = m
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Figure 3: (a): A k-D tree root cell and input face classifications.
(b): The right-hand cell and contents after the first split at x = m.

We say that face A cleaves face B if the line supporting A inter-
sects B at a point in B’s relative interior (Fig. 3-a). We recursively
subdivide the root node, repeatedly subjecting each leaf cell of thek-D tree to the following procedure:� If the k-D cell has no incident faces (its interior is empty), do

nothing;

� if any spanning faces exist, split on the median spanning face;� otherwise, split on a sufficiently obscured minimum cleaving
abscissa; i.e., along a face A cleaving a minimal set of faces
orthogonal to A.

“Sufficiently obscured” means that the lengths of the faces at this
abscissa sum to more than some threshold. If several abscissae are
minimally cleaving, the candidate closest to that of the median face
is chosen. Figure 4 depicts four minimally cleaving abscissae in x,
marked as 0; the median abscissa is marked as *.
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Figure 4: Cleaving abscissae (the split abscissa is marked *).

After each split, the contents of the parent node are reclassified as
disjoint, spanning, covering, or incident with respect to each child,
and all but the disjoint faces are stored with the child. Figure 3-a
depicts a k-D tree root node; after this node is split at x = m, Figure
3-b shows the reclassification of the root’s contents with respect to
its high (i.e., right-hand) child.

This recursive subdivision continues until no suitable split abscis-
sae are identified. We have found that these criteria, although some-
what naive, yield a tree whose cell structure reflects the “rooms”
of the architectural models fairly well. Moreover, the splitting pro-
cedure can be applied quickly. At the cost of performing an initialO(n lg n) sort, the split dimension and abscissa can be determined
in time O(f) at each split, where f is the number of faces stored
with the node.

After subdivision terminates, the portals (i.e., non-opaque por-
tions of shared boundaries) are enumerated and stored with each
leaf cell, along with an identifier for the neighboring cell to which
the portal leads (Figure 5). Enumerating the portals in this fashion
amounts to constructing an adjacency graph over the subdivision
leaf cells, in which two leaves (vertices) are adjacent (share an edge)
if and only if there is a portal connecting them.

3 Cell-to-Cell Visibility

Once the spatial subdivision has been constructed, we compute cell-
to-cell visibility information about the leaf cells by determining cells
between which an unobstructed sightline exists. Clearly such a
sightline must be disjoint from any opaque faces and thus must in-
tersect, or stab, a portal in order to pass from one cell to the next.
Sightlines connecting cells that are not immediate neighbors must
traverse a portal sequence, each member of which lies on the bound-
ary of an intervening cell. Observe that it is sufficient to consider
sightlines originating and terminating on portals since, if there ex-
ists a sightline through two points in two cells’ interiors, there must
be a sightline intersecting a portal from each cell. Thus the problem
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Figure 5: Subdivision, with portals and adjacency graph.

of finding sightlines between cell areas reduces to finding sightlines
between line segments on cell boundaries.
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Figure 6: Oriented portal sequences, and separable sets L and R.

We say that a portal sequence admits a sightline if there exists a
line that stabs every portal of the sequence. Figure 6 depicts four
cells A, B, C, and D. There are four portal sequences originating
at A that admit sightlines: [A/B, B/C, C/D], [A/C, C/B, B/D],
[A/B, B/D], and [A/C, C/D], where P=Q denotes a portal from
cell P to cell Q. Thus A, B, C, and D are mutually visible.

3.1 Generating Portal Sequences

To find sightlines, we must generate candidate portal sequences,
and identify those sequences that admit sightlines. We find candi-
date portal sequences with a graph traversal on the cell adjacency
graph. Two cells P and Q are neighbors if their shared boundary is
not completely opaque. Each connected non-opaque region of this
shared boundary is a portal from P to Q. Given any starting cell C
for which we wish to compute visible cells, a recursive depth-first
search (DFS) ofC’s neighbors, rooted atC, produces candidate por-
tal sequences. Searching proceeds incrementally; when a candidate
portal sequence no longer admits a sightline (according to the crite-
rion described below), the depth-first search on that portal sequence
terminates. The cells reached by the DFS are stored in a stab tree
(see below) as they are encountered.

3.2 Finding Sightlines Through Portal Sequences

The fact that portal sequences arise from directed paths in the sub-
division adjacency graph allows us to orient each portal in the se-
quence and find sightlines easily. As the DFS encounters each por-
tal, it places the portal endpoints in a set L or R, according to the
portal’s orientation (Figure 6). A sightline can stab this portal se-
quence if and only if the point sets L and R are linearly separable;
that is, iff there exists a line S such thatS � L � 0; 8 L 2 LS �R � 0; 8R 2 R: (1)

For a portal sequence of length m, this is a linear programming
problem of 2m constraints. Both deterministic [15] and randomized
[20] algorithms exist to solve this linear program (i.e., find a line
stabbing the portal sequence) in linear time; that is, time O(m). If
no such stabbing line exists, the algorithms report this fact.

3.3 The Algorithm

Assume the existence of a routine Stabbing Line(P) that, given a
portal sequence P, determines either a stabbing line for P or de-
termines that no such stabbing line exists. All cells visible from a
source cell C can then be found with the recursive procedure:

Find Visible Cells (cell C, portal sequence P, visible cell set V)V = V [ C
for each neighbor N of C

for each portal p connecting C and N
orient p from C to NP0 = P concatenate p
if Stabbing Line (P0) exists then

Find Visible Cells (N , P0, V)
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Figure 7: Finding sightlines from I .

Figure 7 depicts a spatial subdivision and the result of invoking
Find Visible Cells (cell I , P = empty, V = ;). The invocation
stack can be schematically represented as

Find Visible Cells (I, P = [ ], V = ;)
Find Visible Cells (F ,P = [I/F ], V = fIg)

Find Visible Cells (B, P = [I/F , F /B], V = fI; Fg)
Find Visible Cells (E,P = [I/F , F /E], V = fI; F; Bg)

Find Visible Cells (C, P = [I/F , F /E, E/C], V = fI; F; B;Eg)
Find Visible Cells (J , P = [I/J], V = fI; F; B;E; Cg)

Find Visible Cells (H, P = [I/J , J /H1], V = fI; F; B;E; C; Jg)
Find Visible Cells (H, P = [I/J , J /H2], V = fI; F; B;E; C; J;Hg)



The last line shows that the cell-to-cell visibility V returned isfI; F;B;E;C; J;Hg.
The recursive nature of Find Visible Cells() suggests an efficient

data structure: the stab tree (Figure 8). Each node or vertex of
the stab tree corresponds to a cell visible from the source cell (cellI in Fig. 7). Each edge of the stab tree corresponds to a portal
stabbed as part of a portal sequence originating on a boundary of
the source cell. Note that the stab tree is isomorphic to the call graph
of Find Visible Cells() above, and that leaf cells are included in the
stab tree once for each distinct portal sequence reaching them. A
stab tree is computed and stored with each leaf cell of the spatial
subdivision; the cell-to-cell visibility is explicitly recoverable as the
set of stab tree vertices.
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Figure 8: The stab tree rooted at I .

3.4 Algorithmic Complexity

Since linear programs are solvable in linear time, Find Visible Cells
adds or rejects each candidate visible cell in time linear in the length
of the portal sequence reaching that cell. Determining a useful up-
per bound on the total number of such sequences as a function of jVj
seems challenging, as this quantity appears to depend on the spatial
subdivision in a complicated way. However, for architectural mod-
els, we expect the length of most portal sequences to be a small con-
stant, since most cells will not see more than a constant number of
other cells. Were this not so, most of the model would be visible
from most vantage points, and visibility preprocessing would be fu-
tile.

Our algorithm does not yet fully exploit the coherence and sym-
metry of the visibility relationship. Visibility is found one cell at
a time, and the sightlines so generated are effectively useful only
to the source cell. Later visibility computations on other cells do
not “reuse” the already computed sightlines, but instead regener-
ate them from scratch. To see why reusing sightlines is not easily
accomplished, consider a general cell with several portals. Many
sightlines traverse this cell, each arriving with a different “history”
or portal sequence. Upon encountering a cell, it may be more work
for a sightline to check every prior-arriving sightline than it is for the
new sightline to simply generate the (typically highly constrained)
set of sightlines that can reach the cell’s neighbors.

The algorithm as stated may require storage quadratic in the num-
ber of leaf cells (since, in the worst case, every leaf cell may see ev-
ery other through many different portal sequences). In practice we
expect the storage required to be linear in the number of leaf cells,

with a constant close to the average portal sequence length. Never-
theless, we are seeking ways to combine all of the stab trees into a
single, suitably annotated adjacency graph.

4 Eye-to-Cell Visibility

The cell-to-cell visibility is an upper bound on the view of an un-
constrained observer in a particular cell; that is, one able to look si-
multaneously in all directions from all positions inside the cell. Dur-
ing an interactive walkthrough phase, however, the observer is at a
known point and has vision limited to a view cone emanating from
this point (in two dimensions, the cone can be defined by a view di-
rection and field of view; in three dimensions, by the usual left, right,
top, and bottom clip planes). We define the eye-to-cell visibility as
the set of cells partially or completely visible to an observer with a
specified view cone (Figure 9). Clearly the eye-to-cell visibility of
any observer is a subset of the cell-to-cell visibility for the cell con-
taining the observer.

4.1 Eye-to-Cell Culling Methods

Let O be the cell containing the observer, C the view cone, S the
stab tree rooted at O, and V the set of cells visible from O (i.e.,fO;D;E;F;G;Hg). We compute the observer’s eye-to-cell visi-
bility by culling S and V against C. We discuss several methods of
performing this cull, in order of increasing effectiveness and com-
putational complexity. All but the last method yield an overestima-
tion of the eye-to-cell visibility; that is, they can fail to remove a cell
fromV for which no sightline exists inC. The last method computes
exact eye-to-cell visibility.
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Figure 9: Culling O’s stab tree against a view cone C.

Disjoint cell. The simplest cull removes from V those cells that
are disjoint from C; for example, cells E and F in Figure 9-a. This
can be done in O(jVj) time, but does not remove all invisible cells.



CellG in Figure 9-a has a non-empty intersection with C, but is not
visible; any sightline to it must traverse the cell F , which is disjoint
fromC. More generally, in the cell adjacency graph, the visible cells
must form a single connected component, each cell of which has
a non-empty intersection with C. This connected component must
also, of course, contain the cell O.

Connected component. Thus, a more effective cull employs a
depth-first search from O in S , subject to the constraint that every
cell traversed must intersect the interior of C. This requires timeO(jSj), and removes cell G in Figure 9-a. However, it fails to re-
move G in Figure 9-b, even though G is invisible from the observer
(because all sightlines in C from the observer to G must traverse
some opaque input face).

Incident portals. The culling method can be refined further by
searching only through cells reachable via portals that intersect C’s
interior. Figure 9-c shows that this is still not sufficient to obtain an
accurate list of visible cells; cell H passes this test, but is not visible
in C, since no sightline from the observer can stab the three portals
necessary to reach H .

Exact eye-to-cell. The important observation is that for a cell to
be visible, some portal sequence to that cell must admit a sightline
that lies inside C and contains the view position. Retaining the stab
tree S permits an efficient implementation of this sufficient crite-
rion, since S stores with O every portal sequence originating at O.
Suppose the portal sequence to some cell has length m. As before,
this sequence implies 2m linear constraints on any stabbing line. To
these we add three linear constraints: one demanding that the stab-
bing line contain the observer’s view point, and two demanding that
the stabbing ray lie inside the two halfspaces whose intersection de-
finesC (in two dimensions). The resulting linear program of 2m+3
constraints can be solved in time O(m), i.e., O(jVj) for each portal
sequence.

This final refinement of the culling algorithm computes exact eye-
to-cell visibility. Figure 9-c shows that the cull removes H from
the observer’s eye-to-cell visibility since the portal sequence [O/F ,F /G, G/H] does not admit a sightline through the view point.

During the walkthrough phase, the visible area (volume, in 3-D)
can readily be computed from the stored stab tree. The visible area
in any cell is always the intersection of that (convex) cell with one
or more (convex) wedges emanating from the observer’s position
(Figure 10). The stab tree depth-first search starts at the source cell,
and propagates outward along the stab tree. Upon passing through
a portal, the wedge is either suitably narrowed by the portal’s ex-
trema (e.g., portal I=F in Figure 10), or completely eliminated if the
wedge is disjoint from the portal (e.g., portal F=B in Figure 10). In
this case, the DFS branch terminates, descending no further into the
stab tree.

4.2 Frame-to-Frame Coherence

In practice, there is considerable frame-to-frame coherence to be ex-
ploited in the eye-to-cell visibility computation. During smooth ob-
server motion, the observer’s view point will typically spend several
frame-times in each cell it encounters. Thus, the stab tree for that
cell can be cached in fast memory as long as the observer remains in
the cell. Moreover, the cell adjacency graph allows substantial pre-
dictive power over the observer’s motion. For instance, an observer
exiting a known cell must emerge in a neighbor of that cell. An in-
telligent walkthrough program might prefetch all polygons visible
to that cell before the observer’s arrival, minimizing or eliminating
the waiting times associated with typical high-latency mass-storage
databases.
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Figure 10: The view cone during the stab tree DFS.

5 Experimental Results

We have implemented the algorithms described for 2-D axial en-
vironments, and all but the eye-to-cell computation for 3-D axial
environments. The subdivision and visibility computation routines
contain roughly five thousand lines of C language, embedded in an
interactive visualization program written for a dual-processor, 50-
MIP, 10-MFLOPS graphics superworkstation, the Silicon Graphics
320 GTX.

Our test model was a floorplan with 1000 axial faces (Figure 11-
a). Subdividing the k-D tree to termination with the procedure of
Section 2.3 required 15 CPU seconds, allocated 1 Mb of main mem-
ory, and produced about 700 leaf cells. Portal enumeration, creation
of the cell adjacency graph, and the cell-to-cell visibility computa-
tion were then performed for every leaf cell. This required 30 CPU
seconds and increased the memory usage to 2 Mb. Roughly 10,500
total stab tree vertices were allocated to store all of the 700 leaf cells’
stab trees (Figure 11-b). Thus the average stab tree size was about
15.

We empirically evaluated the efficacy of cell-to-cell visibility
pruning and several eye-to-cell culling methods using the above
floorplan. We performed 10,000 visibility queries at random loca-
tions within the model, with the view direction chosen randomly,
and for both 360� and 60� view cones (Figures 11-c and 11-d). For
every generated view cone, visibility was computed with each of the
culling methods of Sections 3 and 4. The area of the potentially visi-
ble region was averaged over the random trials to produce the figures
tabulated below. The quantities shown are generally sums of cell ar-
eas and are expressed as percentages of total model area. The last
row displays the total area of the view cone’s intersection with all
cells reached by the stab tree DFS (e.g., the shaded areas in Figure
10).

culling method 360� view cone 60� view cone
vis. reduction vis. reduction

area factor area factor
none (cell-to-cell vis.) 8.1% 10x 8.1% 10x
disjoint cell 8.1% 10x 3.1% 30x
connected component 8.1% 10x 2.4% 40x
incident portals 8.1% 10x 2.2% 40x
exact eye-to-cell 4.9% 20x 1.8% 50x
exact visible area 2.1% 50x 0.3% 300x



(a) A source cell (dark blue), its cell-to-cell
visibility (light blue), and stabbing lines (green).

(b) The source cell (dark blue), cell-to-cell
visibility (light blue), and stab tree (cyan).

(c) An observer with a 360� view cone.
The eye-to-cell visibility is shown in blue;

the exact visible area is shown in blue-green.
The green cells have been dynamically culled.

(d) The same observer, with a 60� view cone.
The eye-to-cell visibility is shown in blue;

the exact visible area is shown in blue-green.
The green cells have been dynamically culled.

Figure 11: An axial model with roughly 1,000 faces (black), subdivided into about 700 spatial cells (white).



6 Extensions and Discussion

We briefly discuss extensions of the visibility computation algo-
rithms to three-dimensional scenes.

6.1 Three-Dimensional Models

Here we assume that all faces are rectangles whose normals and
edges are parallel to the x, y, or z axis. Subdivision again proceeds
with a k-D tree (and k = 3). The face classification and splitting cri-
teria extend directly to three dimensions. Portals are no longer line
segments, but are instead rectilinear non-convex regions formed by
(rectangular) cell boundaries minus unions of covering faces.

There are at least two ways to accommodate these more general
portals. First, given any set of non-convex portals, rectangular large
portals may be created by computing the axial bounding box of
the set. Replacing collections of portals (e.g., all portals through a
boundary) with large portals can only increase the computed cell-to-
cell visibility estimation, ensuring that it remains a superset of the
true visibility.

A second alternative is to decompose each non-rectangular portal
into rectangles. This approach should produce smaller potentially
visible sets than the one above, since it does not overestimate por-
tal sizes. However, this improved upper bound comes at the cost
of increased combinatorial complexity, since many invocations of
Find Visible Cells will be spawned in order to explore the more nu-
merous portals.

In either event, sightlines are found by stabbing oriented rectan-
gle sequences (Figure 12), in analogy to the two-dimensional case.
To accomplish this, we have developed and implemented a novel al-
gorithm that determines sightlines through rectangles [13]. Briefly,
the algorithm operates in a dual space in which the problem reduces
to performing a linear number of convex polygon-polygon intersec-
tions, each requiring logarithmic time [7]. The algorithm finds a
stabbing line through n oriented, axis-aligned rectangles, or deter-
mines that no such stabbing line exists, in O(n lg n) time.
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Figure 12: Stabbing a sequence of rectangular portals in 3-D.

Assuming a rectangular display for rendering, culling against a
three-dimensional view pyramid is a direct extension of the planar
culling methods described earlier. When the observer’s position is
known, each portal edge contributes a linear constraint on the eye-
to-cell visibility. The view pyramid implies four additional linear
constraints; one each for the left, right, top, and bottom clipping
planes. Thus, computing eye-to-cell visibility in three dimensions
again reduces to a linear-time linear programming problem.

Generalizing the visibility computations described here to non-
axial scenes appears to pose problems both conceptual and technical

in nature. First, suitable techniques must be found for decompos-
ing large collections of general polygons into convex spatial sub-
divisions, generating an appropriate cell adjacency graph, and enu-
merating the portals of each subdivision cell. Second, efficient algo-
rithms are needed for stabbing portal sequences comprised of gen-
eral polygons in three dimensions. We have made some headway
against the latter problem by developing a randomized O(n2) algo-
rithm that stabs sequences of n oriented convex polygons [21].

6.2 Discussion

The methods described here are particularly appropriate for input
with somewhat restricted “true” visibility, such as that occurring in
many architectural models. However, adversarially chosen input
can produce unbalanced spatial subdivision trees under our naive
criteria, slowing basic operations on the subdivision. Input with a
large number of portals per cell boundary (for example, walls with
tens or hundreds of windows) may confound the cell-to-cell visi-
bility algorithm with a combinatorially explosive set of sightlines.
Large portals ameliorate this problem, at the possible cost of de-
creasing the usefulness of the attained (overlarge) visibility esti-
mates.

It may occur that subdivision on the scene’s major structural ele-
ments alone does not sufficiently limit cell-to-cell visibility. In this
instance, further refinement of the spatial subdivision might help (if
it indeed reduces visibility) or hurt (if it leaves visibility unchanged
but increases the combinatorial complexity of finding sightlines).
Again, there is an ameliorating factor: when subdividing a leaf cell,
its children can see only a subset of the cells seen by their parent,
since no new exterior portals are introduced (and the childrens’ free-
dom of vision is reduced). Thus each child’s sightline search is
heavily constrained by its parent’s portal/visibility list. Moreover,
the portals generated by the subdivision will generally restrict vis-
ibility during the walkthrough phase. We are studying the issue of
how to subdivide spatial cells as a function of cell-to-cell visibility
and cell data density.

Conclusion

We have implemented and analyzed an efficient and effective vis-
ibility preprocessing and query algorithm for axial architectural
models. The algorithm’s effectiveness depends on a decomposition
of the models into rectangular or parallelepipedal cells in which sig-
nificant parts of most cell boundaries are opaque.

The cell-based visibility determination relies on an efficient
search for sightlines connecting pairs of cells through non-opaque
portals. In two dimensions, this search reduces to a linear pro-
gramming problem. Finding sightlines through portals in three di-
mensions is somewhat harder. We show that, when relevant por-
tal sequences are retained, determining viewpoint-based visibility in
both two and three dimensions also reduces to a linear programming
problem.

We present some empirical evidence of rendering speedups for
axial two-dimensional environments. The visibility computation
can be performed at reasonable preprocessing and storage costs and,
for most viewpoints, dramatically reduces the number of polygons
that must be processed by the renderer.
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