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duce similar probability distributions among the targetfeatures that co-occur with the words in question. Thereasoning can be understood intuitively as follows. If twodi�erent words \vote" similarly among the possible an-swers in the task at hand, then joining those two words,(and causing each of them to vote according to the aver-age of their individual votes), will not hurt performance.In fact, performance may be increased by clustering whentraining data is sparse, because averaging statistics forsimilar words can result in more robust estimates. Sim-ilarity between distributions is measured by a variant ofKullback-Leibler divergence.In document classi�cation, the target concept is theclass label. Thus, in this paper, we measure word similar-ity by the distributions of class labels associated with thewords in question. For example, consider classifying doc-uments about sports into categories by individual sport(e.g. baseball, hockey, tennis). In the training data, thewords puck and goaliemay occur only in the in the hockeyclass. Thus, for the purposes of this classi�cation task,there is no need to distinguish between them. All wordsthat are strongly indicative of the hockey class will beclustered together. Furthermore, Distributional Cluster-ing will sensibly cluster words that are indicative of morethan one class. The word team may occur with equalfrequency in classes baseball and hockey; the word team-mates may also occur equally in just those two classes.These words could be merged. The following section givesa more detailed example of this idea.1.1 Bene�ts of Word ClusteringThere are three key bene�ts of using word clustering: (1)useful semantic word clusterings, (2) higher classi�cationaccuracy and (3) smaller classi�cation models. The sec-ond two reasons are shared with feature selection, andthus feature clustering can be seen as a complement or al-ternative to feature selection. Feature clustering is betterat reducing the number of redundant features, whereasfeature selection is better at removing detrimental, noisyfeatures.Word clustering can provide useful semantically-relatedgroups of words|in e�ect, an automatically generatedthesaurus. An interesting aspect of the semantic groupsproduced by our algorithm is that they depend on theclass labels assigned to the documents. This reects thefact that some words that are synonyms in one contextare not in another. The clusters are based on a super-vised machine learning paradigm, and are task-focussed.The usefulness of an automatically-generated thesaurusis di�cult to evaluate, however, and is not the subject ofthis paper.Second, word clustering can result in higher classi�-



cation accuracy, as described above. This will be furtherdiscussed in later sections.Third, the size of the classi�cation model can begreatly reduced because separate sets of parameters formany words are replaced with a single set of parame-ters for a word cluster. Our results include successfulsize reductions by several orders of magnitude, from, forexample, 50,000 to 50.We argue that successful use of small-footprint textclassi�cation models becomes increasingly important withthe wide-spread and popular use of text classi�cation.For example, large population, high-volume routing tasks,as required by companies such as WiseWire [21], can in-volve text categorization with hundreds of thousands ofclass labels on a stream of documents arriving a rate ofhundreds per second|the use of word clustering canavoid the need for machines with many gigabytes ofmemory. At the other end of the scale, consider hand-held computers that automatically organize their databy text classi�cation|word clustering can allow clas-si�cation models to �t in these restricted-memory ma-chines. As text classi�cation spreads beyond servers andresearch machines, and onto home computers, secretariesmachines and network computers, reducing the numberof features for which statistics must be maintained be-comes more important.Furthermore, we maintain that the dramatically-reduceddimensionality allows the use of more complex algorithmsthat would not have been feasible with the 50,000 originaldimensions.1.2 ContributionsThis paper introduces the application of DistributionalClustering to document classi�cation with a naive Bayesclassi�er. We derive naive Bayes, explain its assump-tions, and discuss its close ties to cross-entropy. Wedescribe Distributional Clustering and show how Distri-butional Clustering clusters features so as to minimizeerrors in cross entropy.We present experimental results on three real-worldtext corpora, including newswire stories, UseNet articlesand Web pages. Results show that Distributional Clus-tering can reduce the feature dimensionality by three or-ders of magnitude, and lose only 2% accuracy. This per-formance is signi�cantly better than class-based clus-tering using mutual information [1], clustering by LatentSemantic Indexing [6], feature selection by informationgain [23] and feature selection by Markov-blanket [13].On one of the data sets we show that clustering increasesclassi�cation accuracy. We hypothesize why this did nothappen in more cases, and discuss possible future im-provements.2 Clustering Words by Class DistributionsThis section introduces our probabilistic framework, de-rives the naive Bayes classi�er and explains Distribu-tional Clustering.Like previous work in Distributional Clustering [20]we use a form of \Kullback-Leibler divergence to themean." Unlike their work, we use a weighted averageinstead of a simple average, we use hard clustering in-stead of soft, and we use a greedy agglomerative methodinstead of a divisive entropy-based method.

2.1 Probabilistic Framework and Naive BayesWe approach text classi�cation in a Bayesian learningframework. We assume that the text data was generatedby a parametric model, and use training data to calculateBayes optimal estimates of the model parameters. Then,equipped with these estimates, we classify new test doc-uments by using Bayes rule to turn the generative modelaround and calculate the probability that a class wouldhave generated the test document in question. Classi�ca-tion then becomes a simple matter of selecting the mostprobable class.The training data consists of a set documents, D =fd1; d2; :::; dng, where each document is labeled with aclass from a set of classes C = fc1; c2; :::; cmg.We assume that the data is generated by a mixturemodel, (parameterized by �), with a one-to-one cor-respondence between mixture model components andclasses. Thus, the data generation procedure for a doc-ument, di, can be understood as (1) selecting a classaccording to the class priors, P(cj j�), then (2) havingthe corresponding mixture generate a document accord-ing to its own parameters, with distribution P(dijcj ; �).The probability of generating document di independentof its class is thus a sum of total probability over allmixture components:P(dij�) = jCjXj=1 P(cj j�)P(dijcj ; �) (1)Now we expand our notion of how a document is gen-erated by an individual mixture component. In this pa-per we approach document generation as language mod-eling. Thus, unlike some notions of naive Bayes in whichdocuments are `events' and the words in the documentare `attributes' of that event (a multi-variate Bernoullimodel), we instead consider words to be `events' (a multi-nomial model) [19]. Multinomial naive Bayes has beenshown to out-perform the multi-variate Bernoulli onmany real-world corpora [19]. We say a document iscomprised of an ordered sequence of word events, andwrite dik for the word in position k of document di.Given this, we can expand the expression for the prob-ability of a document given class cj , P(dijcj ; �), sayingthat the probability of the sequence is equal the productof the probabilities of the events in the sequence, alsoremembering that each event may depend on the eventsthat preceded it:P(dijcj ; �) = P(jdij) jdijYk=1P(dikjcj ; �; diq; q < k); (2)where we assume that document length, jdij, is dis-tributed independently of class.Next we make the naive Bayes assumption: we as-sume that the probability of each word event in a docu-ment is independent of the word's context, and further-more, independent of its position in the document. Notethat this is the same as saying we use a uni-gram languagemodel. Each word event is drawn from a multinomialdistribution over the set of all words in the vocabulary,V . We write wt for the t-th word in V , and given thatdik = wt, we can express the naive Bayes assumption bywriting P(dikjcj ; �; diq; q < k) = P(wtjcj ; �): (3)



Given the assumption about one-to-one correspon-dence between mixture model components and classes,and the naive Bayes assumption, the mixture model iscomposed of disjoint sets of parameters for each classcj , and the parameter set for each class is composed ofprobabilities for each word, �wtjcj � P(wtjcj ; �). Theonly other parameters in the model are the class priorprobabilities, written �cj � P(cj j�).We can now calculate estimates of �, (written �̂), ofthese parameters from the training data. The �wtjcj es-timates consist of straightforward counting of events,supplemented by `smoothing' with a Laplacean priorthat primes each estimate with a count of one. De�neN(wt; di) to be the count of the number of times wordwt occurs in document di, and de�ne P(cj jdi) = f0; 1gas given by the document's class label, then the estimateof the probability of word wt in class cj is�̂wtjcj � 1 +PjDji=1N(wt; di)P(cj jdi)jV j+PjV js=1PjDji=1N(ws; di)P(cj jdi) : (4)The class prior parameters, �cj , are estimated bymaximum-likelihood estimate|the fraction of documentsin each class in the corpus:�̂cj � PjDji=1 P(cj jdi)jDj : (5)Given estimates of these parameters calculated fromthe training documents, classi�cation can be performedon test documents by calculating the probability of eachclass given the evidence of the test document, and select-ing the class with the highest probability. We formulatethis by �rst applying Bayes rule, and then substitutingfor P(dijcj ; �) and P(dij�) using equations 1, 2 and 3.P(cj jdi; �̂) = P(cj j�̂)P(dijcj ; �̂)P(dij�̂) (6)= P(cj j�̂)Qjdijk=1 P(wdik jcj ; �̂)PjCjr=1 P(crj�̂)Qjdijk=1 P(wdik jcr; �̂)Both the mixture model and word independence as-sumptions are violated in practice with real-world data;however, there is empirical evidence that naive Bayes of-ten performs well in spite of these violations [16, 23, 10,4]. Friedman and Domingos and Pazzani discuss whythe violation of the word independence assumption some-times does little damage to classi�cation accuracy [9, 7].2.2 Measuring Word Similarity for Distribu-tional ClusteringNow we address the question of how to cluster words inthe context of our generative model and naive Bayes.Word clustering algorithms de�ne a similarity mea-sure between words, and collapse similar word into singleevents that no longer distinguish among their constituentwords. Typically, the parameters of the cluster becomethe weighted average of the parameters of its constituentwords.Consider, for example, the random variable over classes,C, and its distribution given a particular word, wt. Wewrite this distribution P(Cjwt). When words wt andws are clustered together, the new distribution is theweighted average of the individual distributions
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Figure 1: In the 20 Newsgroups data set, class probabil-ity distributions for words tire and steering and for theircombinationP(Cjwt _ ws) = P(wt)P(wt) + P(ws)P(Cjwt)+ P(ws)P(wt) + P(ws)P(Cjws) (7)Distributional Clustering di�ers from some other ma-chine learning approaches to similarity metrics (e.g. k-nearest neighbor [2]) in that it measures similarity basedon the target variable that it is trying to estimate forthe task at hand, not the other \input" attributes. Morespeci�cally, it examines the the probability distributionover the target variable induced by the di�erent events tobe clustered, and measures similarity between the eventsas similarity between the induced target variable distri-butions.In the context of document classi�cation, the targetvariable for the task at hand is the class label. Dis-tributional clustering thus measures the similarity be-tween two words wt and ws as the similarity betweenthe class variable distributions they induce: P(Cjwt) andP(Cjws).An example of these class distributions in data fromthe 20 Newsgroups corpus is shown in �gure 1. Considerthe line for the word tire. The horizontal axis has ticksfor the (order-irrelevant) list of class labels. The verti-cal axis indicates the probability of each class given theword tire, and the shape of the line shows the proba-bility distribution over classes given tire, P(Cjtire). Thegraph indicates that the word occurs mostly in classes 8(rec.autos) and 9 (rec.motorcycles), and only mildly inother classes.Remembering the classi�cation task, the graph canalso be interpreted as a picture of how much the wordtire \votes" for each of the classes whenever it occurs ina test document. The line thus shows the essence of howtire contributes to the classi�cation algorithm.In the same �gure, notice the line for the word steer-ing. The shape of its distribution is quite similar to thatof tire. The third line, labeled Cluster 1204, shows theclass distribution from a cluster containing both words,and since the words have similar distributions, the dis-tribution of the cluster is similar to each. Thus, if theword tire voted according to the distribution of Cluster1204 instead of according to the tire class distribution, itwould not be voting much di�erently, and the �nal clas-si�cation scores would not be very far o�. (Table 1 shows



Cluster 1204 Cluster 1287 Cluster 1473(Motorcycle and (Motorcycle) (Baseball andAutomobile) Hockey)honda bike seasonrear biker playerswheel yamaha scoredsteering harley rookietire riders phillysuspension bikers rosterthrottle harleys announcersmechanic countersteering coachesrust wheelie leaguesTable 1: Lists of highest probability words from threeclusters (out of 1200) created by Distributional Cluster-ing on the 20 Newsgroups dataset.other words that also fall in cluster 1204, and two otherclusters.)This example expresses the core intuition behind Dis-tributional Clustering for document classi�cation: theclass distributions, P(Cjw), express how individual wordscontribute to classi�cation, and we cluster words so as topreserve the shape of these distributions.Now we turn to the question of how exactly to mea-sure the di�erence between two probability distributions.Kullback-Leibler divergence is an information-theoreticmeasure that does just this.The KL divergence between the class distributions in-duced by wt and ws is written D(P(Cjwt)jjP(Cjws)), andis de�ned jCjXj=1 P(cj jwt) log�P(cj jwt)P(cj jws)� (8)In the context of information theory, KL divergencecan be intuitively understood as a measure of ine�ciencythat occurs when messages are sent according to one dis-tribution, (P(Cjwt)), but encoded with a code that isoptimal for a di�erent distribution, (P(Cjws)).KL divergence has some odd properties. It is notsymmetric, and it is in�nite when an event with non-zeroprobability in the �rst distribution has zero probabilityin the second distribution.Thus, in Distributional Clustering we use a relatedmeasure that does not have these problems. It is theaverage of the KL divergence of each distribution to theirmean distribution, called \KL divergence to the mean."Unlike earlier work [20] we use a weighted average insteadof a simple average.P(wt) �D(P(Cjwt)jjP(Cjwt _ ws))+ P(ws) �D(P(Cjws)jjP(Cjwt _ ws)) (9)This metric can be understood as the expected amountof ine�ciency incurred if, instead of compressing two dis-tributions optimally with their own code, we use the codethat would be optimal for their mean. This explanationmakes it clear why this metric is such a good �t for aclustering distance metric. It describes perfectly the ef-fect of clustering|events that formerly generated theirown individual statistics, now, once clustered, generatecombined statistics.

- Sort the vocabulary by mutual information with theclass variable.- Initialize the M clusters as singletons with the topM words.- Loop until all words have been put into one of theM clusters:- Merge the two clusters which are most similar(Equation 9), resulting in M � 1 clusters.- Create a new cluster consisting of the nextword from the sorted list, restoring the numberof clusters to M .Table 2: The Algorithm2.3 Distributional Clustering MinimizesError in Naive Bayes ScoreClassi�cation by naive Bayes is intimately related to in-formation theory. It can easily be shown that, assuminga uniform class prior, choosing the most probable classby naive Bayes is identical to choosing the class that hasthe minimal cross entropy with the test document.Beginning with the naive Bayes classi�cation formulain equation 6, assume uniform class prior by droppingP(cj j�), then make a series of transformations that donot change which class gets the highest score: (1) dropthe denominator (which is a constant over all classes),(2) transform the product over word position in the doc-ument into an equivalent expression with a product overwords in the vocabulary, (3) take the log of the entire ex-pression, and �nally (4) divide by document length, jdij.This results in� jV jXt=1 P(wtjdi) � log �P(wtjcj ; �̂)� (10)which is precisely the expression of the cross entropy be-tween the distribution of words in the document, P(W jdi)and the distribution of words in the class P(W jcj) [3],where W is a random variable over words.Using this cross entropy as a representative of thenaive Bayes score for each class, we can express the \errorin naive Bayes score incurred by clustering two words."It is the di�erence between (1) the cross entropies be-fore two words are joined and (2) cross entropy after twowords are joined.Simple algebraic manipulation of this error expressionresults exactly in equation 9, the weighted sum of two KLdivergences to the mean. Thus, we conclude, when wordsare clustered according to this similarity metric, increasein the \error in naive Bayes scores" is minimized.2.4 Clustering AlgorithmNow we address the question of how to use the similar-ity metric to form clusters. We create clusters with de-terministic word membership using a simple, greedy ag-glomerative approach that works well in practice, whilescaling extremely e�ciently to large vocabulary sizes. In-stead of comparing the similarity of all possible pairs ofwords, (a daunting O(jV j2) operation), we consider allpairs of a much smaller subset, of size M , where M is



the �nal number of clusters desired. At all stages, the al-gorithm has not more than M clusters. The clusters areinitialized with theM words that have highest mutual in-formation with the class variable. The most similar twoclusters are joined, then the next word is added as a sin-gleton cluster to bring the total number of clusters backup to M . Table 2 contains an outline of our algorithm.In contrast, probabilistic \soft" clustering, as used inprevious Distributional Clustering work [20, 15], is moreformally rigorous, and allows the clustering to be lessgreedy. However, we avoid the costly EM-style updateprocedure that must be used to �nd a stable con�gura-tion of the cluster centroids and the cluster membershipprobabilities.3 Related WorkDistributional Clustering has been used [20, 5, 15] to ad-dress the problem of sparse data in building statisticallanguage models for natural language processing, but ithas not previously been applied to document classi�ca-tion. We have used larger data sets with more prevalentsparseness and fewer class labels.ChiMerge [12] uses a form of Distributional Clusteringto discretize numeric attributes for subsequent classi�ca-tion. It is an agglomerative, hard clustering algorithmthat uses the �2 statistic as the the similarity metric.We have also tried �2 in our experiments and found thatthe KL divergence average yields better performance.Chi2 [18] is an extension of ChiMerge for use as afeature selector of numeric attributes. Liu and Setionoobserve that if all the values of any attribute are clusteredtogether, then that value is irrelevant to the classi�cationtask and can be removed.Class-based clustering [1] uses an agglomerative, hardclustering algorithm where the clustering criterion is de-signed to maximize the overall average mutual informa-tion between clusters and the class variable. This crite-rion implicitly measures the similarity between the dis-tributions P(Cjwt) and P(Cjws) as well as the similaritybetween the distributions P(Cj:wt) and P(Cj:ws) fortwo features. We �nd that average mutual informationis not a good clustering criterion for text classi�cationwith a multinomial naive Bayes model because it con-siders the information about the class label that is indi-cated by both the presence and the absence of a word ina document, whereas the classi�er only considers thosewords that are present in a document. A clustering cri-terion based only on class distributions given words thatdo appear is better suited to a multinomial naive Bayesclassi�er. We argue that KL-divergence is a good choiceamong such criteria.In that clustering reduces the dimensionality of fea-ture space, our work can be seen as a form of feature se-lection, although we do not actually remove any features.A previous study found feature selection by mutual infor-mation with the class label to be the best for text, amongseveral common, time/space-e�cient methods [23].However, mutual information between words and classesdoes not capture dependencies between words. Kollerand Sahami present a Markov-blanket-based feature se-lection algorithm that aims to address exactly this [13].Their technique is based on the same principles as Dis-tributional Clustering|it examines P(Cjwt), and triesto preserve the proper C distribution.Latent Semantic Indexing [6] is an unsupervised di-mensionality reduction technique for information retrieval

that explicitly accounts for the dependencies betweenwords. In brief, it applies Principle Component Analysis(PCA) to documents represented as word vectors. Du-mais applies it to text classi�cation [8] by representingeach class as a centroid, which is the vector sum of allthe feature vectors of all the documents in that class. Anew document is labelled with the class of the centroidto which its feature vector is closest, as measured by thecosine-similarity between the two vectors.The Linear Least Squares Fit (LLSF) method [22] isanother classi�cation algorithm based on PCA, which isequivalent to Dumais' use of LSI for classi�cation exceptthat LLSF uses the dot-product to compute similarityinstead of the cosine and is thus sensitive to the lengthof the two vectors being compared.4 Experimental ResultsThis section provides empirical evidence that Distribu-tional Clustering is able to aggressively reduce the num-ber of features while maintaining high classi�cation accu-racy. At equal feature dimensionality, it achieves signif-icantly higher accuracy than four other feature cluster-ing and feature selection algorithms: supervised LatentSemantic Indexing [8], class-based clustering [1], featureselection by mutual information with the class variable[23] and feature selection by a Markov-blanket method[13].The 20 Newsgroups data set, collected by Ken Lang,contains about 20,000 articles evenly divided among 20UseNet discussion groups [10]. Several of the topic classesare quite confusable: four of them are about computers;three discuss religion. In tokenizing the data we skippedall UseNet headers, used a stoplist, but did not stembecause we found it to hurt accuracy. The resulting vo-cabulary, after removing words that occur only once, has62258 words.The `ModApte' test/train split of the Reuters-21578data set (http://www.research.att.com/�lewis) contains9603 training documents and 3299 testing documents,gathered from the Reuters newswire. There are 135 over-lapping topic categories, but we used only those 90 forwhich there exists at least one training and one testingdocument. The number of training documents per classvaries from 1 to nearly 4000. The largest 10 classes con-tain 77.5% of the documents; 28 classes have fewer than10 training documents. We removed all words that hadless than three occurrences. The resulting vocabularyhas 16177 words.We gathered the entirety of the Yahoo! `Science' hier-archy in July 1997. The 6294 web pages are divided into41 disjoint classes by chopping the hierarchy two levelsdeep. After removing stopwords and words that occuronly once, the vocabulary contains 44383 words.Figure 2 (top) shows classi�cation accuracy results onthe 20 Newsgroups data set for four of the �ve methodsconsidered. The horizontal axis indicates the number offeatures that were used in the classi�cation model, andthe vertical axis the percentage of the test documentsthat were correctly classi�ed. Results are averages of 5-20 trials of randomized 1/3{2/3 test-train splits, exceptin the case of supervised LSI, which uses only 1/3 fortraining instead, because training was too slow on 13000articles. Thus, for comparison, we show two performancecurves for Distributional Clustering, one with 2/3 train-ing and one with 1/3 training. Notice that with only 50features (a reduction of more than three orders of magni-
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Figure 2: Top: Classi�cation accuracy on the 20 News-groups data set, for varying numbers of features. Thetwo highest curves are both for Distributional Cluster-ing. The (extremely tight) bars on each data point showstandard error. Bottom: Classi�cation accuracy on asubset of the 20 Newsgroups data set. Temporary tech-nical problems prevent the curve for the Markov-blanketfeature selector from continuing under �ve features.tude) Distributional Clustering achieves 82.1% accuracy,only 2% lower than at the full vocabulary. In comparison,supervised LSI reaches only 60% accuracy. Feature se-lection by mutual information and class-based clusteringare lower still with 46.3% and 14.5% respectively.Furthermore, note that Distributional Clustering ac-tually provides a small, but statistically-signi�cant in-crease over the best performance possible without clus-tering. The highest accuracy without clustering is 84.2%,with the full vocabulary. All of our clustering resultswith more than 400 features are higher than this; thebest, with 1200 clusters, is 85.7%. The increased perfor-mance indicates that Distributional Clustering is provid-ing slightly more accurate estimates of �wtjcj . SupervisedLSI never resulted in higher accuracy than the raw fea-ture set on this data.The Markov blanket feature selector is missing fromthis graph because, due to the memory and CPU require-ments of the algorithm, we were not able to run it on thefull data set. The bottom graph in Figure 2 shows resultson a corpus consisting of only the three talk.politics.*classes of the 20 Newsgroups data set. This reduced dataset has 3000 documents, and after removing words occur-ring in fewer than 50 documents, a 1407 word vocabulary.The performance of Distributional Clustering on thisdata set is striking. Not only is it consistently betterthan the other techniques, but with only three featuresit maintains accuracy near 80% while the other tech-niques fall into the 50's and 40's. Examination of thethree features show clusters indicative of each of the three

classes. The Markov-blanket feature selector sometimesperformed slightly better than feature selection by mu-tual information, but mostly performed about the sameor worse. We believe Distributional Clustering performsbetter than feature selection because merging preservesinformation instead of discarding it. Some features thatare infrequent, but useful when they do occur, get re-moved by the feature selector; feature merging keepsthem.Clustering with LSI also has the advantage that itcombines information rather than discarding it. And, in-deed the top graph shows LSI out-performing the mutual-information-based feature selector. However, the initialdimensionality reduction in LSI is unsupervised, whereasDistributional Clustering is supervised. Supervised tech-niques can take advantage of the class labels in order toconcentrate their e�orts on the speci�c task at hand. Webelieve this di�erence explains the accuracy increase ofDistributional Clustering over LSI in the top graph. Lin-ear Discriminant Analysis [11] is a supervised techniquesimilar to LSI which we feel may work well for text clas-si�cation, although we have not yet experimented withthis technique.Since LSI takes advantage of word co-occurrences, wethought that perhaps the traditional LSI classi�cationmethod may not put LSI in its best light. (The tra-ditional method classi�es test documents by measuringcosine-similarity to a class centroid. The class centroid isan average of all the training documents in the class, andthus, like naive Bayes, loses document boundaries andword co-occurrence statistics.) We tested this hypothe-sis by replacing the centroid distance component with anearest neighbor classi�er that measures distances to allthe individual training documents. The change did in-deed increase LSI's performance from 73.7% to 74.9% at400 features, but still did not beat Distributional Clus-tering's naive Bayes performance of 80.0%. Note alsothat nearest neighbor is more computationally expensivethan centroid methods.Of all the techniques in this comparison, class-basedclustering performed worst. As discussed in the previoussection, this technique is not a good match for classi�ca-tion with a multinomial naive Bayes model.On the 20 Newsgroups data set, wall clock trainingtimes for the algorithms are: our Distributional Cluster-ing 7.5 minutes, LSI 23 minutes, Markov-blanket featureselection 10 hours, mutual information feature selection30 seconds.Figure 3 shows classi�cation accuracy results on Reuters-21578. Again, when the number of features is small, Dis-tributional Clustering outperforms the other methods. Inthis data set a document can be labelled with multipleclasses. A prediction for a test document is consideredcorrect if it is any one of the given classes.Figure 4 shows classi�cation accuracy results on theYahoo! data set. Unlike the other two data sets, here fea-ture selection improves performance signi�cantly. Withall features, naive Bayes gets 52.9% accuracy; naiveBayes obtains 66.4% by using just the 500 features thathave highest mutual information with the class label.This is a case in which \losing information" is bene�cial,because the data are so noisy that the information hurtsmore than it helps.Distributional Clustering, when used as a substitutefor feature selection (i.e. clustering with all the words),does provide some bene�t over the raw feature space (seethe \all words" line in �gure 4), however, it gets evenbetter performance if it begins clustering with only the
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Figure 3: Classi�cation accuracy on the Reuters-21578data set. Computational constraints prevented us fromgetting results with LSI and Markov-blanket feature se-lection in time for the submission.
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Figure 4: Classi�cation accuracy on the Yahoo! data set,averaged over 10 runs. The error bars on each data pointshow standard error.500 selected features, (the \500 words" line). This resultindicates that Distributional Clustering was somewhatable to overcome noise by clustering, but further sug-gests that there is a place for feature-selection{feature-clustering combinations. Principled approaches to com-binations of feature selection and feature merging will bea topic of future work.5 DiscussionWe have shown that Distributional Clustering is an e�ec-tive technique for reducing the number of features neededfor text classi�cation. We are able to reduce the featurespace by one to three orders of magnitude while losingonly a few percent in classi�cation accuracy. This resultis important because, as the use of text classi�cation be-comes more widespread, and its application more diverse,the size of classi�cation models is of increasing concern.Furthermore, the reduced dimensionality will allow theapplication of more complex methods.We found that Distributional Clustering is betterthan feature selection at preserving the information con-tained in redundant features. It allows the size of themodel to be reduced much more aggressively while main-taining good performance. However, it is still susceptibleto detrimental features.Earlier work with Distributional Clustering [20, 15]shows that Distributional Clustering addresses the sparsedata problem (improving what were previously detrimen-

tal features). We also observed a small increase in classi�-cation accuracy, but this happened only on the one dataset with the most, and most evenly distributed, data.We are not surprised that Distributional Clustering doesnot address the sparse data problem in more of our ex-periments because it clusters words based on the sameestimate that a�ects performance. If we have a bad es-timate of P(Cjwi) to begin with, our clustering criterionis strongly biased toward preserving that distribution, sothat we will not overcome our lack of data. We hypothe-size that previous work in Distributional Clustering sawsparse data improvements because (1) their data was notas sparse as ours (2) they had more target variable val-ues, thus a larger number of \correct" P(cj jwi) valueson which to pattern-match in order to �ll in a \bad"P(cj jwi) estimate. We are currently investigating waysto augment Distributional Clustering to address this de-�ciency.We also plan to look at techniques for sensibly com-bining feature clustering and feature selection to take ad-vantage of the strengths of both, and to overcome theneed for specifying in advance the number of clusters tocreate or features to remove.As previously mentioned, LSI is an unsupervised di-mensionality reduction technique based on the SingularValue Decomposition of a term-document matrix. Theunderlying technique in LSI is to �nd an orthonormalbasis for the term-document space for which the axeslie along the dimensions of maximum variance. LinearDiscriminant Analysis [11] is a related technique whichinstead attempts to �nd a basis such that the distancebetween the means of the members of each class is maxi-mized while the variance within each class is minimized.We plan to investigate its use for text classi�cation.AcknowledgmentsWe are grateful to Mehran Sahami for his Markov-blanketfeature selection code, as well as to Susan Dumais for theLSI code and her friendly and responsive help making itrun on our system. Thorsten Joachims provided usefuladvice on the formatting of the Reuters data. KeikoHasegawa graciously answered questions regarding Lin-ear Discriminant Analysis. We thank Yahoo for permis-sion to use their data.References[1] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. DellaPietra, and J. C. Lai. Class-based n-gram mod-els of natural language. Computational Linguistics,18(4):467{479, 1992.[2] Thomas Cover and Peter Hart. Nearest neighborpattern classi�cation. IEEE Transactions on Infor-mation Theory, 13(1):21{27, 1967.[3] Thomas M. Cover and Joy A. Thomas. Elements ofInformation Theory. John Wiley, 1991.[4] Mark Craven, Daniel DiPasquo, Dayne Freitag, An-drew McCallum, Tom Mitchell, Kamal Nigam, andSean Slattery. Learning to extract symbolic knowl-edge from the World Wide Web. In Proceedings ofthe Fifteenth National Conference on Arti�cial In-telligence (AAAI-98), 1998.[5] Ido Dagan, Fernando Pereira, and Lillian Lee.Similarity-based estimation of word cooccurrence
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