
A Framework for Supporting Data IntegrationUsing the Materialized and Virtual Approaches�Richard Hull Gang ZhouyComputer Science DepartmentUniversity of ColoradoBoulder, CO 80309-0430fhull, gzhoug@cs.colorado.eduOctober 27, 1995Contact Author: Richard Hullphone: 303-492-0259fax: 303-492-2844email: hull@cs.colorado.eduAbstractThis paper presents a framework for data integration cur-rently under development in the Squirrel project. The frame-work is based on a special class of mediators, called Squirrelintegration mediators. These mediators can support the tra-ditional virtual and materialized approaches, and also hybridsof them. This permits considerable
exibility when adaptingto diverse data integration environments.In the Squirrel mediators described here, a relation in theintegated view can be supported as (a) fully materialized,(b) fully virtual, or (c) partially materialized (i.e., with someattributes materialized and other attributes virtual). Ingeneral, (partially) materialized relations of the integratedview are maintained by incremental updates from the sourcedatabases. Squirrel mediators provide two approaches fordoing this: (1) materialize all needed auxiliary data, so thatdata sources do not have to be queried when processingthe incremental updates; and (2) leave some or all of theauxiliary data virtual, and query selected source databaseswhen processing the incremental update.A central construct used by Squirrel mediators to supportintegrated views is the notion of \View Decomposition Plan"(VDP). A VDP provides a systematic framework for support-ing materialized, virtual, and hybrid relations, including sup-port for (i) retrieval from source databases of virtual dataneeded to answer queries, and (ii) incremental update of ma-terialized data (including querying of source databases as nec-essary). VDPs provide a framework for optimizing supportfor integrated views in a manner reminiscent of query execu-tion plans.�This research was supported in part by NSF grant IRI-931832,and ARPA grants BAA-92-1092 and 33825-RT-AAS.yA student at the University of SouthernCalifornia, in residenceat the University of Colorado.

The paper also presents formal notions of consistencyand "freshness" for integrated views de�ned over multipleautonomous source databases. It is shown that Squirrelmediators satisfy these properties.Random notes of Rick...1. change bib listing for squirrel:materialized-tech to beJIIS, to appear.2. Fix Section 23. intro refers to a conc section1 IntroductionThe advent of the Information Superhighway has dra-matically increased the need for e�cient and
exiblemechanisms to provide integrated views over multipleinformation sources. The traditional approach to thisproblem is to represent the view in a virtual fashion;queries against the view are decomposed and sent tothe remote sources [SBG+81, DH84, LMR90, T+90,ADD+91, ACHK93]. A complementary approach hasemerged recently, that is based on storing the view inma-terialized form [WHW89, ZHKF95, ZHK95, ZGHW95].In that approach, updates are propagated from the in-formation sources to the view incrementally. Speakingbroadly, the virtual approach may be better if the in-formation sources are changing frequently, whereas thematerialized approach may be better if the informationsources change infrequently and very fast query responsetime is needed. The virtual and materialized approachesrepresent two ends of a vast spectrum of possibilities.This paper develops a general and
exible framework for1

supporting integrated views using a hybrid of these twoappraoches.In the framework developed here, a relation in theintegated view can be supported as(a) fully materialized,(b) fully virtual, or(c) partially materialized (i.e., with some attributesmaterialized and other attributes virtual).In general, (partially) materialized relations of theintegrated view are maintained by incremental updatesfrom the source databases. Two approaches for doingthis are provided in our framework:(1) \fully materialized support": materialize all neededauxiliary data, so that data sources do not have tobe queried when processing the incremental updates;and(2) leave some or all of the auxiliary data virtual, andquery selected source databases when processing theincremental update.The framework presented in this paper forms oneaspect of the Squirrel project currently under way atthe University of Colorado [ZHKF95, ZHK95]. Theframework is based on a special class of mediators[Wie92], called Squirrel integration mediators. Squirrel isa tool that can be used to generate these mediators fromhigh-level speci�cations (see [ZHK95]). The Squirrelproject is focused rather broadly on supporting a widevariety of kinds of information sources, and supportingintegrated views in a wide variety of ways.The present paper is focused on algorithms and im-plementation techniques for supporting hybrid material-ized/virtual integrated views. In particular, we describethe architecture of Squirrel mediators for supporting hy-brid integrated views, and we present the key algorithmsused by these mediators. The discussion here is presentedin terms of the relational model, and the general spiritof our techniques can be applied in the context of theobject-oriented database model.Squirrel mediators implement a synthesis of severaltechnologies, including query processing against virtualintegrated views [LMR90], algorithms for updating ma-terialized views [?, ?, ?, ZGHW95], the use of the ac-tive paradigm to implement those algorithms [?, ?], andthe use of \active modules" to provide light-weight, cus-tomizable activeness [?, ?].A central construct used by Squirrel mediators to sup-port integrated views is the notion of "View Decom-position Plan" (VDP). A VDP provides a systematicframework for synthesizing the above technologies in or-der to support materialized, virtual, and hybrid rela-tions. In particular, this includes support for (i) retrievalfrom source databases of virtual data needed to answerqueries, and (ii) incremental update of materialized data

(including querying of source databases as necessary).VDPs provide a framework for optimizing support forintegrated views in a manner reminiscent of query exe-cution plans.This paper also presents formal notions of consistencyand \freshness" for integrated views de�ned over multipleautonomous source databases. Consistency guarenteesthat the state of the view at any time corresponds to afamily of states of the source databases (although notnecessarily states that existed simultaneously). Fresh-ness ensures that updates to source databases are re-
ected in the view within a bounded time. It is shownthat if the source databases and network satisfy certainnatural conditions, then Squirrel mediators satisfy theconsistency and \freshness" properties.Section ?? uses a simple example to illustrate di�er-ent kinds of hybrid integrated views and how Squirrelmediators can support them. Section 3 presents the for-mal notions of consistency and \freshness". Section 4presents the architecture of Squirrel mediators. Section5 describes VDPs. Section 6 describes the three cen-tral algorithms used by Squirrel mediators to supporthybrid integrated views. Section 7 shows that Squirrelmediators satisfy the consistency and freshness proper-ties. Brief conclusions are o�ered in Section ??. Due tospace limitations, many details are omitted in this paper;see [?].2 Motivating Examples and IntuitiveRemarksThis section gives an informal overview of several key as-pects of Squirrel mediators. This section presents threerelated examples to give a progressive overview of severalkey aspects of Squirrel mediators. Example 2.1 illus-trates how a Squirrel mediator maintains a materializedrelation T that has fully materialized support, and in-troduces the central notion of annotated VDP. Example2.2 modi�es the �rst example by allowing some of theauxiliary supporting data to be virtual. Providing sup-port for T as a hybrid (partially materialized) relation isdescribed in Example 2.3.Example 2.1: Let R(r1; r2; r3; r4) with key r1and S(s1; s2; s3) with key s1 be two relations fromdistinct databases. Suppose that the integrated viewsupported by a mediator has the single export relationT = �r1;s1;s2(�r4=100R 1r2=s1 �s3<50S). A VDPfor T is shown in Figure 1. Each non-leaf node inthe VDP corresponds to a relation maintained by themediator, and each leaf node corresponds to a relationin a source database. The dotted line separates themediator relations from the source database relations.The attributes of the relations are shown to the left of thenodes. The relationship between a node and its children2

R’ S’

= πr1,r3,,s1,s2 (R’

= πs1,s2σs3 < 50S

r2 = s1 S’)

= πr1,r2σr4 = 100R

T

R S

Mediator

Source DBs
[r1, r2, r3, r4] [s1, s2, s3]

[r1
m, r2

m,r3
m] [s1

m, s2
m]

[r1
m, r3

m, s1
m, r3

m]

Figure 1: An annotated VDP for an integrated viewT = �r1;r3;s1;s2(�r4=100R 1r2=s1 �s3<50S)nodes indicates that the relation of the parent node isderived directly from relations of the children nodes.An attribute of a relation of a non-leaf node is anno-tated as either materialized or virtual. The attribute no-tation [rm1 ; sm1 ; sm2] for the node T , for instance, indicatesall three attributes are materialized, i.e., the relation Tis fully materialized. In fact, all the relations maintainedby this mediator are fully materialized.Supporting queries against relation T is trivial. Theincremental maintenance of T is supported by the aux-iliary relations R0 and S0 that are fully materialized. Aswill be discussed in Subsection 5.2, the rules responsiblefor propagating updates from R0 and S0 to T are:rule #1: on changes to R0, �T = �R0 1 S0;rule #2: on changes to S0, �T = R0 1 �S0;where �R denotes the net change to a relation R. Withthis setting T can be maintained using incremental up-dates from the source databases and information local tothe mediator without polling of the source databases. 2The next example modi�es the previous example byselectively materializing the auxiliary data for T , namelyR0 and S0. This can be viewed as a generalization of theapproach in [ZGHW95], where T is materialized but allauxiliary relations are virtual. Under that approach, Tis maintained using incremental updates from the sourcedatabases and polling of the source databases.Example 2.2: Let's assume that updates to relation Rare frequent, but updates to relation S are infrequent. Toreduce the overhead of continually maintainingR0 and toconserve space in the mediator, we change the annotationof R0 to be [rv1; rv2; rv3], where the superscript v stands forvirtual. So R0 is fully virtual. The annotations for S0 andT are unchanged. The rule #1 introduced in Example2.1 shows that in response to a change �R0 to R0, �Tis solely computed based on �R0 and S. So R0 canbe kept virtual without delaying the propagation of R0which makes the bulk of the update propagation in this

case. In the rare case when updates to relation S occur,the mediator must incur the expense of sending queriesto relation R to compute �T , because R0 is virtual. 2The next example will not only have some auxiliarydata virtual, but also keep some infrequently accessedattributes of the export relation T virtual. This is calleda hybrid view. We also show how the values of virtualattributes are obtained when needed.Example 2.3: Let's assume queries against relation Tmainly refer to attributes r1 and s1, i.e., �r1;s1T . For thisexample, we choose the annotation for the VDP to be:T [rm1 ; rv3; sm1 ; sv2], R0[rv1; rv2; rv3], S0[sv1; sv2]. The responsetime to the queries that only refer to r1 and s1 is nota�ected by the fact that r3 and s2 are virtual. With thisannotation, answering queries involving attributes r1 ands1 is straightforward.How does the mediator answer a query involving one ormore virtual attributes, say a query q = �r3;s1�r3<100T?The answer is to construct a temporary relation thatis equivalent to the answer of q. For this example, thetemporary relation will be Ttmp = �r3;s1�r3<100T .In general cases, Ttmp can be constructed fromrelations of the children nodes of T , namely R0 and S0,as:Ttmp = �r3;s1(�r3<100R0 1r2=s1 S0)Sometimes Ttmp can also be constructed from T and oneof the auxiliary relations. Since this method involveskey(s), we call it key-based construction of temporaryrelation. In this particular example, Ttmp can beconstructed from T and R0. Note that the following istrue:(1) R0: r1 ! r3. That is, in R0, attribute r3 isfunctionally dependent on attribute r1, because r1is the key in R0.(2) �r1;r3T � �r1;r3R0From (1) and (2) we infer:(3) T : r1 ! r3That implies:Ttmp = �r3 ;s1(�r1 ;r3�r3<100T 1 �r1 ;s1T) by (1)= �r3 ;s1(�r1 ;r3�r3<100R0 1 �r1;s1T) by (3)In this particular example, the key-based constructionof Ttmp from R0 and T is more e�cient than the con-struction fromR0 and S0, because �r1;s1T is materialized,while S0 is fully virtual. Although key-based construc-tion is not always more e�cient, the key-based approachdoes present one more choice with regards to construct-ing temporary relations.In general, virtual attributes are more expensive toaccess. However, the major assumption about keeping3

an attribute virtual is that the attribute is not frequentlyaccessed, so that occasional accesses to virtual attributeswill not signi�cantly a�ect the overall performance of themediator. 2The preceding examples showed how a single VDP canbe used to support a variety of di�erent combinationof materialized and virtual support for an integratedview. Although the examples used a very simple VDP, ingeneral VDPs can be of any size. Indeed, the constructVDP is very powerful for supporting integrated viewunder various circumstances.VDPs are quite similar to query execution plans(e.g. [Ull82]), in that both data structures represent adecomposition of one or more queries. VDPs are usedto support queries against an integrated view, to holdmaterialized portions of the view, and to organize theincremental maintenance of those materialized portions.As a result, the VDP of a Squirrel mediator is relativelystatic. In contract, query execution plans are typicallydeveloped on a query by query basis.3 Formal Notions of Correctness forIntegrated ViewsThe kind of consistency that should be supported fora view depends on the context of the view de�nition. Ifsource data and a (materialized or virtual) view is withina single database system, then the view can be designedto re
ect the current database state. In the materializedcase this is accomplished by combining within singletransactions both updates and update propagation to theview. Typically, a virtual or materialized view de�nedover remote databases will re
ect some state of thesources, but not necessarily their current state.This section develops formal notions of correctness forthe context where an integrated view over multiple sourcedatabases is supported in a separate database system.We assume that the source databases are relativelyautonomous, and do not assume that they participatein global transactions (as in, e.g., InterSQL [ME93]). Asa result, there is generally no global state of the multipleautonomous databases. The formal de�nitions givenbelow capture natural intuitions about consistency and\freshness" in this context. As will be seen in Section 7,the integration mediators described in this paper satisfythese properties.An integration environment consists of a sequence~DB = hDB1; : : : ; DBni of source databases, a viewde�nition � that de�nes an integrated view of portionsof the source databases, and a \database" V , whichis intended to hold that view. The environment ispresumed to include software that supports V in somemanner. (The view may be either materialized or virtual,or a hybrid of these.)

We model \global time" using a totally ordered set(T ime;<) isomorphic to (a subset of) the real numbers.(The choice of continuous, dense, or discrete time islargely irrelevant to our discussion.) We assume thatsimple arithmetic can be used in connection with T ime.We do not require that any of the database processeshave knowledge of the global time. However, to simplifythe discussion, we assume that no two events (e.g.,transaction commits, sending or receiving of messages)occur at precisely the same time.We shall use the following notation.� ~t: a time vector in the form of ht1; :::; tni. We write~t � ~t0, if ti � t0i for i 2 [1; n]. Also, ~t < ~t0, if ~t � ~t0 and~t 6= ~t0. If t is a time and ~t0 a time vector, then t � ~t0means that ht; : : : ; ti � ~t0i; t < ~t0, etc., are de�nedanalogously.� state(d; t): the state of a d at time t, where d rangesover DBi or V .� state(~DB;~t): the state vector of databases ~DB attime ~t, i.e., hstate(DB1 ; t1); : : : ; state(DBn; tn)i.� �(s): a view de�ned on a state (vector) s of sourcedatabase(s).We now de�ne the notions of consistency and \fresh-ness" for integration environments. These de�nitions areinspired and generalize notions of correctness developedin [ZGHW95], that considers a warehouse based on a sin-gle remote source database. In these de�nitions we lettview init denote the time at which the view is initalized.De�nition: Consistency:An integration environment is consistent after timetview init if there exists a function ~reflect : T ime !(T ime)n such that:(a) Validity: For each time t � tview init,state(V; t) = �(state(~DB; ~reflect(t)).Intuitively, this means that the state of the view attime t should correspond to some state vector of thesource databases. (We do not insist that the viewcorresponds to the set of source database states at asingle time t0, because updates from and accesses tothe source databases will typically be asynchronous.)(b) Chronology: For each time t � tview init,t � ~reflect(t)i for each i 2 [1; n].Intuitively, this insists that the state of the view attime t corresponds to the source databases at a times� t, i.e., the view does not \forecast the future".(c) Order preserving: For each pair t1; t2 of timessatisfying tview init � t1 � t2,~reflect(t1) � ~reflect(t2).4

time state(DB) state(V)t1 fR(a; a)g fS(a)gt2 fR(b; b)g fS(a)gt3 fR(c; a)g fS(b)gt4 fR(d; a)g fS(a)gt5 fR(e; a)g fS(b)gt6 fR(f; a)g fS(a)gFigure 2: Scenerio satisfying pseudo-consistency but notconsistencyIntuitively, this insists that successive states of theview correspond to successive (vectors of) states ofthe source databases.Remark 3.1: The reader may wonder whether theabove de�nition could be rephrased in the followingsimpler form: \An integration environment is pseudo-consistent after time tview init if for each pair of timest1; t2 satisfying tview init � t1 � t2, there are time vectors~t01 � ~t02 such that state(V; t1) = �(state(~DB; ~t01)) andstate(V; t2) = �(state(~DB; ~t02))." (cf. [ZGHW95]). Weshow that pseudo-consistency does not imply consistency.Assume that there is one source database DB that holdsa single binary relation R, and a view V , where theview de�nition � is S = �2(R). Figure 2 shows thestate of DB and V at six times. At each time, R holdsexactly one tuple. It is assumed thatDB does not changeexcept at the six times shown. This scenerio satis�espseudo-consistency but not consistency. Furthermore,this scenerio does not appear to satisfy natural intuitionsconcerning how a view over a source database shouldbehave. (Analogous remarks hold if the focus is on\events" rather than instants in time.) 2We now give a de�nition that captures an intuitiveproperty of \freshness":De�nition: Guaranteed freshness:An integration environment is guarenteed fresh withintime vector ~f after time tview init if for each t � tview initthere is a ~t0 such that state(V; t) = �(state(~DB; ~t0)) andt� t0i � fi for i 2 [1; n].Intuitively, this states that for each time t � tview init,the contents of the view at time t correspond to\recent" states of the source databases. The de�nitionis based on a time vector ~f rather than a single time,to accommodate integration environments where somedatabases announce updates very quickly, while othersannounce them only periodically (e.g., once every 24hours).

4 Overview of Squirrel MediatorsSquirrel mediators support integrated views derivedfrom multiple remote source databases (see Figure3). A mediator consists of �ve components: a localstore, a query processor (QP), a virtual attributesprocessor (VAP), an update-queue, and an incrementalupdate processor (IUP). The local store contains theVDP that represents the schema and the derivationrelationship between relations in the local store (moredetails in Section 5), the materialized portion of the view,other supporting materialized data, and a rulebase thatspeci�es the incremental maintenance of the materializeddata in a declarative fashion. The QP provides theinterface for querying the view. Upon receiving a queryagainst the view, the QP determines �rst whether thequery can be answered solely based on the materializedportion of the view. In case virtual data is needed toanswer the query, the QP requests the VAP to constructtemporary relations containing the relevant data (seeSubsection 6.3). The update-queue holds incrementalupdates from remote information sources, and the IUPis responsible for propagating the updates accumulatedin the queue into the materialized data according to therules in the rulebase (see Subsection 6.4).There are three kinds of information
ow within anintegration mediator. One involves incremental updatesagainst the source databases, which
ow into the update-queue; they are then propagated into the integratedview under the control of the IUP. The second kindof information
ow is generated by the VAP thatsends (receives) queries (answers) to (from) the sourcedatabases. The third kind of information
ow involvesqueries posed against the integrated view, and answersmade in response to them. Importantly, humans andprocesses that query the Squirrel mediator need only beaware of the query processor and the local store.There are three ways a source database can beassociated with the mediator. First, a source databaseis called a materialized-contributor, if all its contributionto the mediator is in the materialized data portion of themediator. Secondly, a source database is called a hybrid-contributor, if part of its contribution to the mediatoris in the materialized portion and the other part to thevirtual portion. Finally, a database is called a virtual-contributor, if it only contributes to the virtual dataportion of the mediator.Source databases in the �rst two categories must havethe ability to actively send relevant net updates againstits data to the mediator, so that the updates can bepropagated into the materialized data in the mediator. Inorder to guarantee that the integrated views satisfy thecorrectness conditions de�ned in Section 3, we assumethat the messages transferred from one source databaseto the mediator must be in order and every source5

from data sources
Queue for updates

update
processor

Incremental
Query processor

processor
Virtual attribute

Squirrel Mediator

incremental updates

Queries Answers

polling of sources

Local store

VDP

Rulebase

materialized-
contributor DBs

hybrid-
contributor DBs

virtual-
contributor DBs

Materialized portion
of the view

data

and
other materialized

Figure 3: A Squirrel mediator connected with multiple source DBsdatabase sends all the updates that re
ect the di�erencebetween two database states in a single undividablemessage to the mediator. Databases in the last twocategories must be able to answer queries from the virtualdata processor, so that the relevant virtual data portionin the mediator can be evaluated when necessary. Sincea virtual-contributor database only needs to be able toanswer queries, its role can be played by all kinds ofDBMS, including legacy systems that do not have activedatabase capabilities.5 Annotated View Decomposition Plan(VDP)>>> something about the organization of the section<<<The skeleton of a Squirrel-generated integration medi-ator is provided by its View Decomposition Plan (VDP).A VDP speci�es the relations that the integration media-tor will maintain (either materialized, virtual, or hybrid),and provides the basic structure for supporting incre-mental maintenance of materialized data and (possibly)evaluation of virtual data. As noted in the Introduction,VDPs are analogous to query execution plans as used inquery optimization. This subsection presents the de�ni-tion of VDP and gives an example.As will be de�ned formally below, the VDP of anintegration mediator is a directed acyclic graph (dag)that represents a decomposition of the integrated viewsupported by that mediator (see Figures 1 and 4).The leaf nodes correspond to relations in the sourcedatabases, and the other nodes correspond to derivedmaterialized or virtual relations which are maintainedby the mediator. An edge from node u to node v in a

VDP indicates that the relation of v is used directly inthe derivation of the relation of u. The propagation ofincremental updates will proceed along the edges, fromthe leaves to the top of a VDP. Analogous to queryexecution plans, di�erent VDPs for the same integratedview speci�cation may be appropriate under di�erentquery and update characteristics of the application.The language currently supported by Squirrel for spec-ifying integrated views includes the relational algebra.We use an attribute-based form of the algebra. In theinterest of clarity, in the discussion below, we do not con-sider the use of attribute-renaming (see [?]). (Anotherpart of the language speci�es \object matching". See[ZHKF95, ZHK95].) Although the view de�nition lan-guage is is based on set semantics, some of the relationsstored inside an integration mediator may be bags, in or-der to support our incremental maintenance algorithms;this occurs if the integrated view involves projection orunion.5.1 De�nitionFormally, a VDP is a labeled dag V = (V;E; relation;source; def; Export) where V is a set of nodes, E is a setof edges over V , and such that:1. The function relation maps each node v 2 V intoa speci�cation of a distinct relation, which includes thename of the relation and its attributes. We often referto a node v by using the name of relation(v).2. source is a function that maps the leaves of V intothe set of source databases of the mediator. The leavesof V correspond to relations in the source databases,and are depicted using the 2 symbol. Other nodes are6

depicted using a circle.3. An edge (a; b) 2 E indicates that relation(a)is directly derived from relation(b) (and possibly otherrelations). If b is a leaf node, a is called a leaf-parentnode.4. For each non-leaf v 2 V , def(v) is an expression inthe view de�nition language that refers to frelation(u) j(v; u) 2 Eg. Intuitively speaking, def(v) de�nes the pop-ulation of relation(v) in terms of the relations corre-sponding to the immediate descendants of v. Similar toquery execution plans, some combinations of operatorsare permitted in conjunction with a single node of thetree and its immediate descendants, while others are not.The restrictions are follows: (a) the immediate parentsof leaf nodes can involve only projection and selection onthose leaf nodes. Otherwise for node v, (b) def(v) can bearbitrary combination of selects, projects and joins; (c)def(v) can have the form of a union or a di�erence, witharbitrary selects and projects underneath that. Non-leafnodes involving di�erence are called set nodes, and allother non-leaf nodes are called bag nodes. The relationsassociated with set nodes are stored as sets, while therelations associated with bag nodes are stored as bags.5. Export � V denotes the set of export relations.Each maximal node (i.e., node with no in-edges) is inExport; other non-source nodes may also be in Export.Elements of Export are depicted using a double circle.If V is a VDP and v is a node and relation(v) has nameR and attributes a1; :::; an, then an annotation for R isa function from fa1; :::; ang into fm; vg. For example,if R has attributes fa; b; cg, the [am; bv; cm] denotes theannotation that maps a and c tom and b to v. Intuitively,this annotation indicates that attributes a and c are tobe materialized and b is to be virtual. If all attributesof a relation R are mapped to m, then R is to be fullmaterialized, and likewise for v. Given a VDP V, anannotation for V is a function ann de�ned on the set ofnon-leaf nodes, such that ann(v) is an annotation of therelation of v, for each non-leaf node v 2 V .Example ?? in Section sec:ex gives a VDP for a verysimple integrated view. A more complex VDP will begiven in Example 5.1 in Subsection 5.3.5.2 Sample rules for update propagationEvery edge (a; b) in a VDP is associated with an updatepropagation rule which computes an incremental update(�relation(a)) to the relation relation(a) based on anupdate �relation(b). Due to the space limitation, wepresent only two sample rules for relations de�ned withselect/project/join and di�erence (SPJ) operators.SPJ: Suppose a relation T in a VDP is de�ned withSPJ operators: T = �p�f (�p1�f1R1 1g1 : : : 1gn�1

�pn�fnRn). The sub-VDP for T is analogous tothe one in Example 2.1, with V = fT;R1; :::; Rng andE = f(T;R1); :::; (T;Rn)g. The rule for the edge (T;Ri)is (using the bag semantics):rule for SPJ: edge (T;Ri)on new �Ri;�T = �p�f (�p1�f1R1 1g1 : : : 1gi�1 �pi�fi�Ri 1gi: : : 1gn�1 �pn�fnRn);Di�erence: Suppose a relation in a VDP is de�ned asT = R1 � R2. The sub-VDP for T consists of threenodes, fT;R1; R2g, and two edges, (T;R1) and (T;R2).The rules for edges (T;R1) and (T;R2) are:rule for di�1: edge (T;R1)on new �R1,then (�T)+ = (�R1)+ � R2; (�T)� = (�R1)� \R2;rule for di�2: edge (T;R2)on new �R2,then (�T)+ = (�R2)� \R1; (�T)� = (�R2)+ \R1;5.3 Heuristics for optimizationThe issue of virtual attributes vs. materialized attributesis an issue of space vs. performance. We do not attemptto give precise guidelines to the user about when anattribute should be maintained virtual or materialized.Rather we give general suggestions about the trade-o�sof virtual and materialized approaches. Generally, if anattribute is rarely accessed or the data of the attributecan be derived relatively easily from other materializeddata, it is a candidate to be selected as a virtual attribute.The issues about the access frequency to the data ofcertain virtual attributes are discussed in Example 2.1and Example 2.2. We focus here on the costs of derivingthe value of the attribute in turn.There are some general rules about the costs ofevaluating a virtual attribute, which apply in mostcases. The leaf-parent nodes are expensive to evaluate,because they are derived from relations in remotedatabases and their evaluation involves retrieving datafrom those databases to the mediator. The costs ofevaluating virtual attributes in a join node depends onwhether indices can be used to perform the join. If noindex can be used, a fully virtual join relation is veryexpensive to compute. The minimal suggested amountof materialization for expensive join relations are thekey attributes from the underlying relations, so thatthe virtual attributes of the join relation can be fetchede�ciently from its underlying relations.The following example illustrates an integrated viewthat is supported by the hybrid approach, following someof the suggested guidelines about virtual attributes.7

A’

F

= πa1,b1E - F

= π(C’

= πσ(A)

G

A B C

c1 = d1D’)

D’ = πσ(D)= πσ(C)B’ = πσ(B)

D

E

[c2
v, d1

v]

[a1, a2, a3] [b1, b2] [c1, c2, c3] [d1,d2, d3]

[d1
v]

[c1
m, c2

m][b1
v][a1

m, a2
m]

[a1
m, b1

m]

[a1
m, a2

v, b1
m]

= π(A’ a1 + a2 < b1B’)

C’

22

H

Figure 4: Annotated VDP of E = �a1;a2;b1�(A 1a21+a2<b22 B); G = �a1;b1E � ��(C 1c1=d1 D)Example 5.1: Let two export relations E and Gbe de�ned as: E = �a1;a2;b1�(A 1a21+a2<b22 B);G =�a1;b1E���(C 1c1=d1 D) (see Figure 4). To simplify theexposition, obvious or irrelevant selection conditions andprojection attributes are omitted in the view de�nition.Apparently, relationE is expensive to evaluate due to thecomplex join condition, while the evaluation for relationF is straightforward.A suggested annotated VDP is shown in Figure 4,where both relations B0 and F are virtual, relation Eis partially materialized, and all the other relations arefully materialized. The reason to make E hybrid,[am1 ; av2; bm1], is that a1 and b1 are not only needed toanswer queries, but also needed to compute updates to bepropagated to relation G in response to updates comingfrom F sub-VDP. Furthermore, E is very expensive toevaluate unless it is at least partially materialized. Sincethe key a1 is materialized in E, the virtual attribute a2can be very e�ciently retrieved from A0, in case a queryagainst the view refers to attribute a2. Finally, relationF is easy to evaluate, so that a virtual relation F wouldnot cause a heavy performance penalty. 26 Accessing Virtual Data andMaintaining Materialized DataThis section describes the two primary algorithms used ina Squirrel mediator to support hybrid integrated views.The �rst algorithm (Subsection 6.3) is performed bythe Virtual Attribute Processor (VAP), and materializestemporary relations that hold the \current" value of(projections of) virtual or hybrid relations. Thesetemporary relations might be needed to answer a query,or to incrementally update materialized data. Thesecond algorithm (Subsection 6.4) is performed by theIncremental Update Processor (IUP), and incrementallyupdates materialized data to re
ect updates receivedfrom the source databases.

Before presenting the algorithms, we develop formal-ism for describing their behavior (Subsection 6.1). Dur-ing the presentation of the algorithms this formalismwillbe used to verify certain properties of the algorithms. InSection ?? we continue to use the formalism when prov-ing that Squirrel mediators are consistent and (under cer-tain assumptions concerning the environment) guarenteefreshness.Also, in Subsection 6.2 we give some technical back-ground used in the description of the algorithms.6.1 Formal properties of the VAP and IUPalgorithmsThis section establishes notation for describing how aSquirrel mediator operates through time, and describeshow a function r~ef as in the de�nition of consistency canbe constructed for Squirrel mediators.We assume that the mediator receives queries asyn-chronously from the user/applications and incrementalupdates from the source databases. Internally the medi-ator performs a series of sequential transactions of twokinds:Query transaction: Compute the answer to an externalqueryUpdate transaction: Empty the incremental update queueand propagate those updates to all a�ected material-ized data in the mediatorIn general, transaactions of these two kinds will beinterleaved, to form a sequence such astview init; tu1 ; tq1; tu2 ; tq2; tq3; tq4; tu3 ; tu4 ; tq5; : : :where tview init is the time when the view is initiated;tq1; tq2; tq3; tq4; tq5; : : : are the commit times of the querytransactions; and tu1 ; tu2 ; tu3 ; tu4 ; : : : are the commit timesof the update transactions. The times tqj are called querytransaction times and the times tui are called update8

transaction times. While the mediator may performparts of these transactions concurrently, we assume thatthe implicit serial order of the concurrent executionmatches the order of the transaction commmit times.The algorithms of Squirrel mediators are carefullydevised to ensure that the mediator is consistent, inthe sense de�ned in Section 3. We now describe how afunction r~ef satisfying the de�nition of consistency canbe constructed for the mediator, based on the timing ofthe update and query transactions. Let DB1; : : : ; DBnbe the source databases, and let � de�ne the view of themediator. We focus here on the �rst property of r~ef inthe de�nition of consistency, namly that for each time twe should have state(V; t) = �(~DB; r~ef (t)).Let DB1; : : : ; DBm be the materialized-contributorand hybrid-contributor databases (see Section 4), andDBm+1 ; : : : ; DBn be the virtual-contributor databases.Let V 0 be the relational database schema that includes allmaterialized portions of relations in the annotated VDPof the mediator, and let � 0 be the function derived from �and the VDP that speci�es how V 0 should be populatedfrom the source databases DB1; : : : ; DBm. To describer~ef , we de�ne �rst the function r~ef 0 : T ime ! (T ime)m ,with the property that for each update transaction timetui we have state(V 0; tui) = � 0(~DB[1;m]; r~ef 0(tui)) (where~DB[1;m] = (DB1; : : : ; DBm)).Consider an update transaction time tui . As detailedin Subsection 6.4 below, with each execution the IUPprocesses the full set of deltas \currently" in the queue.Thus, for the execution of the IUP that ends attime tui , there is some earlier time empty queue(tui)when the IUP \
ushes" the update queue, and usessmash to combine all of the individual updates intoa delta value �. Time empty queue(tui) > tui�1,because the mediator is assumed to perform the updatetransactions serially (or in a manner that is equivalentto a serial execution). Furthermore, � will hold allincremental updates communicated to the mediator fromthe source databases between empty queue(tui�1) andempty queue(tui).Continuing with our focus on time tui , for each k 2[1;m], let tk be the time that DBk sent the last up-date to the mediator that was received before timeempty queue(tui). Set r~ef 0(tui) = (t1; : : : ; tm). TheIUP will guarentee that for each i, state(V 0; tui) =�0(~DB[1;m]; r~ef 0(tui)) This will follow from two basicfacts: (a) the IUP correctly incorporates the impact of� into V 0, and (b) if virtual data is needed to deter-mine the appropriate incremental update to some re-lation in V 0, then a generalization of the Eager Com-pensation Algorithm of [ZGHW95] is used to guarenteethat virtual data from database DBk corresponds tostate(DBk ; tk) = state(DBk ; r~ef 0(tui):k).As just de�ned, the domain of function r~ef 0 is

ftu1 ; tu2 ; : : :g. This is extended to all times � tview initin the natural fashion: if tui � t < tui+1, then r~ef 0(t) =r~ef 0(tui).The de�nition of consistency gives conditions aboutthe state of the integrated view that are supposed tohold at all times. It is su�cient to ensure that theseconditions hold at all query execution times. We nowdescribe how the function r~ef is de�ned for each queryexecution time tqj .Suppose �rst that the query q processed at time tqjrequires access only to the materialized data in the VDP.As detailed in Subsection 6.3, this query is answered bysimply accessing data in the local store of the mediator.This data will correspond to � 0(~DB[1;m]; r~ef 0(tqj)). Inthis case we de�ner~ef (tqj):k = � r~ef 0(tqj):k if k 2 [1;m]tqj if k 2 [m + 1; n](Because DBk is not involved for k 2 [m+1; n], the queryoutput does re
ect the \current" state of DBk, i.e., thestate at time tqj .)Suppose now that the query q associated with queryexecution time tqj involves virtual data. Under thealgorithm of the VAP, virtual data coming from ahybrid-contributor DBk will come from the state ofDBk at time r~ef 0(tqj):k. Virtual data from virtual-contributors is obtained by the VAP through directpolling of the relevant source databases. Supposethat DBk is a relevant virtual-contributor. The VAPpackages all queries againstDBk into a single transactionagainst DBk, so that the answers received from DBk allcorrespond to a single time, say tk. In this case we de�ner~ef (tqj):k = 8>>>>>>>><>>>>>>>>: r~ef 0(tqj):k if k 2 [1;m]tk if k 2 [m1; n] andDBk contributesto qtqj if k 2 [m+ 1; n] andDBk does notDBk contribute to q(As before, ifDBk does not contribute to the query, thenwe use the state of DBk at the \current" time.)During the presentation of the algorithms we shalluse the notation developed above, to con�rm that thealgorithms behave as described. In Section ?? we usethis notation when proving that Squirrel mediators areconsistent and (under certain assumptions concerningthe environment) guarentee freshness.>>> some kind of wrap-up ?? <<<6.2 Tools to manage deltasThe update queue of a Squirrel mediator holds incremen-tal updates received from the source databases. These in-cremental updates are processed by the mediator, both9

during the propagation of updates to materialized dataand in some cases during evaluation of virtual data. Thissubsection introduces the notation and tools used by themediator to manipulate these incremental updates.We use the Heraclitus paradigm [HJ91, GHJ94, ?],which elevates \deltas", or the di�erences betweendatabase states, to be �rst-class citizens in databaseprogramming languages. Speaking loosely, in the rela-tional case, a delta (value) is simply a set of insertionatoms of the form `+R(~t)' and deletion atoms of the form`�R(~t)', subject to the consistency condition: two con-
icting atoms +R(~t) and �R(~t) cannot both occur in thedelta. A delta can simultaneously contain atoms thatrefer to more than relation. Deltas have also been gen-eralized to bags [DHR95]. Incremental updates in theupdate queue and incremental updates computed duringupdate propagation are are represented as deltas.Two important operators for deltas are apply andsmash. Given delta � and database state db, apply(db;�)denotes the result of applying the atoms in � to db. If �refers only to relation R, we also write apply(R;�). Itturns out that apply commutes with select and project,e.g., if � refers only to R, then �C�fapply(R;�) =apply(�C�fR; �C�f�).Smash, denoted `!', is a kind of compose operator. Inparticular, for any state and deltas,apply(db;�1!�2) = apply(apply(db;�1);�2)For the relational case, the smash �1!�2 can becomputed by forming the union of �1 and Delta2, andthen deleting any element of �1 that con
icts with andelement of �2 [HJ91]. Smash can also be easily computedfor bag deltas.An insertion atom +R(~t) in � is redundant for state dbif ~t is in R under db; and similarly for deletion atoms. Inthe context of Squirrel mediators, no atom of any deltathat is used is redundant. As a result, the natural inverseoperator -1, that reverses the sign of all atoms in a delta,has the property (for the states and deltas that arise)apply(apply(db;�);�-1) = dbNote also that (�1!�2)-1 = �-12 !�-11In the discussion below, we assume that an incrementalupdate from a source database is a delta expressed interms of the relations of the source database. Becauseeach leaf-parent holds a relation which is a project-selectof a source database relation, it is easy to \�lter" thedeltas in the update queue so that they are applicable tothe leaf-parent nodes. (A straightforward optimizationthat can be applied in some cases is to \�lter" theincremental updates at the source databases.)

6.3 Accessing virtual dataThis subsection presents how the virtual attribute pro-cessor (VAP) of the mediator supports accesses to thevirtual data by the query processor (QP) and the incre-mental update processor (IUP). When QP or IUP needsto evaluate a query q = �A�fR, where the attribute setA contains at least one virtual attribute, the VAP con-structs a temporary relation T = �A�fR as indicated inSection 2. The QP or IUP noti�es the VAP with a setof queries involving virtual attributes. The input set Iis in the form of f(R1; A1; f1); :::; (Rm; Am; fm)g, where(Ri; Ai; fi) corresponds to the query Ti = �Ai�fiRi. Inorder to construct the temporary relation Ti, we mustdetermine the relations from which Ti is derived. Let Sbe one of those relations. If at least part of the data in Sused to construct Ti is virtual, a temporary relation S0must be constructed before the construction of Ti. S0 willcorrespond to the projection and selection of the portionof S that is referred to in the construction of Ti.We now introduce a function derived from on arelation T , that returns a set of projections and selectionsfrom which T can be derived.De�nition: Function derived from:Let v be a non-leaf node in a VDP, R = relation(v),attr(R) be the whole attribute set of R, A � attr(R),and f is a selection condition. We de�ne the functionderived from(R;A; f) = f(S1; B1; g1); :::; (Sn; Bn; gn)g,where A � attr(R) and Si is a relation in the VDP, giis a selection condition, and Bi � attr(Si) is minimalsuch that �A�fR can be derived from �Bi�giSi (pos-sibly together with other relations). More speci�cally,f(S1; B1; g1); :::; (Sn; Bn; gn)g are determined as follows:1(1) If def(v) = �C�hS and D � attr(S) is a setof attributes involved in the select condition h,derived from(R;A; f) = f(S;B1; f)g, where B1 =A [D.(2) If2 def(v) = �C�h(�C1�h1Si1 1j1 ::: 1jm�1 �Cm�hmSim),where fi1; :::; img � f1; :::; ng and Di is the setof attributes in attr(Si) that is used in the se-lect and join conditions, derived from(R;A; f) =f(S1; B;f1); :::; (Sn; B;fn)g, where Bi = (A\attr(Si))[Di.(3) If def(v) = (�C�h1S1) [(�C�h2S2), where Diis the set of attributes in attr(Si) that is usedin the select conditions, derived from(R;A; f) =f(S1; B1; f); (S2; B2; f)g, where Bi = (A\attr(Si))[Di.1In the interest of clarity, we present these de�nitions informally.Also, as indicated in Section 5, we ignore the possibility thatrenaming of attributes might be in the def(v).2Note the same relation may be referred multiple times in an-way join formula.10

(4) If def(v) = (�C�h1S1) � (�C�h2S2), where Di is de-�ned analogously as in (3), derived from(R;A; f) =f(S1; B1; f); (S2; B2; f)g, where Bi = (A\attr(Si))[Di [C.The execution of the VAP has two phases. During the�rst phase, all the temporary relations to be constructedare speci�ed. Then they are constructed in a bottom-upfashion through the VDP during the second phase.The �rst phase is speci�ed by the following algorithm:(1) Initialization: Let Unprocessed hold the input setf(R1; A1; f1); :::; (Rn; An; fn)g, where Ai � attr(Ri).The elements in Unprocessed is topologically sortedsuch that a parent node is sorted before its childrennodes. The order is maintained, even when newelements are inserted. The output set Processed isset to ;.(2) Processing the Unprocessed set: While Unprocessedis not empty, for the �rst (R;A; f) 2 Unprocessedaccording to the topological order do:(2a) Identifying further temporary relations to be con-structed: For each (R0i; A0i; f) 2 derived from(R;A; f),if A0i contains one or more virtual attributes, then atemporary relation T = �A0i�fR0i needs to be con-structed as well.(2b) Merging temporary relations: If there is alreadya candidate temporary relation T 0 in Unprocessedcorresponding to a projection of R0i, T should bemerged with T 0. Let T 0 correspond to a pair(R0i; B; g). (R0i; B; g) is replaced by (R0i; (B [A0i); f _ g). If there is no such T 0, (R0i; A0i; f) isadded into Processed.(2b) Move (R;A; f) from Unprocessed to Processed.We now turn to the second phase of the VAPexecution. The output set Processed of last phase is theinput of this phase. For each pair (R;A; f) 2 Processed,a temporary relation T is constructed as �Adef(v), whereR = relation(v). They can be easily constructed in abottom-up fashion, except for the case where v is a leaf-parent node. The rest of this subsection focuses on theleaf-parent node case.Suppose there exists (R;A) 2 Processed such thatR isassociated with a leaf-parent node and the correspondingtemporary relation is T . Since R is a virtual or hybridrelation, T can only be derived from a relation S ofa hybrid-contributor source DBk or a relation S0 of avirtual-contributor source DB0k . In order to construct T ,the VAP polls S or S0.We consider the case that T is derived from S �rst.As pointed out in Subsection 6.1, the data polled fromS must be consistent with the materialized data also

contributed from the same source where S resides.To guarantee this consistency, we have developed thefollowing mechanism using ECA (see Section ??): Usingnotation de�ned in Subsection 6.1, suppose tu is thetime of the last update of the materialized data in themediator. The portion of materialized data derivedfrom DBk corresponds to the state(DBk ; ~ref(tu):k) ofDBk . In this case we desire the result from polling ofS corresponds to the above state of DBk as well. Notethat the source relation S may have been updated sincetime ~ref (tu):k. To obtain the \correct" value for S, i.e.,the value for S as of time ~ref (tu):k, we use the ECA.More speci�cally, the inverse of smash of the updates forS that are in the update-queue up to the time when theresult of polling R is received.If T 0 is derived from S0, the only restriction to thepolling of S0 is: for constructing temporary relationsfor a given view state, each virtual-source can only bepolled at most once, so that no more than one stateof the same source can contribute to the view state.For our speci�c case, this means: the VAP �nds allthe leaf-parent temporary relations identi�ed in the setProcessed and packages all pollings of DBk into a singletransaction (see Subsection 6.1).6.4 Incremental maintenance of materializeddataThe IUP is based primarily on the use of active databasetechniques to propagate incremental updates from theupdate queue into the materialized portions of the VDP.However, because some of the intermediate relationsmight be virtual or hybrid, in the general case the IUPmay have to materialize some of that virtual data. Todescribe the action of the IUP, we begin with somepreliminary comments. We then describe the \IUPKernel Algorithm". This can be used directly in thesimpli�ed context where the updates in the update queuea�ect only fully materialized relations that have fullymaterialized support. We then describe the general IUPalgorithm, which uses two variants of the IUP KernelAlgorithm.As indicated in Subsection 6.1, the IUP process isexecuted at a series of times tu1 ; tu2 ; : : : called \updatetransaction times". In each such transaction, the entirecontents of the incremental update queue are combinedinto a single delta �, which is propagated upwardsthrough the VDP.As indicated in Subsection 5.2, based on the de�nitionsof non-leaf nodes, a rule specifying how updates shouldbe propagated is associated with each edge of the VDP.We de�ne a VDP-rulebase to be a pair (V;edge rule),where(a) V = (V;E; class; source; def ; Export) is a VDP; and11

(b) edge rule is a function that maps each edge in E to arule.(This will be indepedent of annotations for V.)The IUP Kernel Algorithm: We now describe theIUP Kernel Algorithm, which can be used directly for thesimpli�ed case that all relations a�ected by the update� are fully materialized and have fully materializedsupport. In this case, the IUP acts as a specializedactive database execution model, that applies rules fromthe rulebase in an order determined by the VDP. Inparticular, the VDP is traversed once from the leavesto the root according to a topological sort of the VDP,computing incremental updates for successive nodesalong the way.Suppose that an Squirrel mediator with VDP V andannotation A) has been deployed. Two repositories areassociated with each non-leaf node v of V. Suppose thatrelation(v) = R. The �rst repository is denoted simplyas `R', and holds the \current" population of relationR. The second repository is denoted by `�R', and holdsthe smash of incremental changes for R that result fromthe incremental propagation of updates during a singleexecution of the IUP.Before continuing, it is convenient to extend thefunction edge rule in the de�nition of VDP to apply tonodes as follows:edge rule(v) = fedge rule(v0; v) j (v0; v) 2 EgIntuitively, edge rule(v) holds all rules of in-edges to v,i.e., all rules that propagate updates out of v to itsparents.Some care must be taken if along the way incrementalupdates a�ect two or more children of a node, asillustrated next.Example 6.1: Recall Example 2.1, where T , R0 and S0are materialized and T = R0 1 S0. Suppose that updates�R0 and �S0 have been computed. The rules of Example2.1 must be applied. However, it would be incorrect tocompute �T = (R0 1 �S0) [(�R0 1 S0)because this will \miss" the contribution of �R0 1 �S0.One correct solution is to compute�T = (R0 1 �S0) [(�R0 1 apply(S0 ;�S0))This captures all of (R0 1 �S0), (�R0 1 S0) and(�R0 1 �S0) 2To avoid the problem of \missing" contributions ofdeltas illustrated in the previous example, we developa systematic approach to �ring rules and applying deltasto relations. Let v be a node with relation(v) = R. By

the phrase \process node v" we mean to �re all eligiblerules in edge rule(v) (in any order) and then to executethe following steps:R := apply(R;�R);�R := ;;During IUP processing, a node v will not be processeduntil all of its children have been processed. As a result,all incremental changes to a node v are accumulatedbefore any of these changes are propagated to parentsof v.We now present the IUP Kernel Algorithm for VDPs.This assumes that all a�ected relations are fullymaterial-ized and have fully materialized support. Suppose that aSquirrel mediator has been deployed with VDP-rulebaseR = (V; edge rule), where V = (V;E; relation; source; def ;Export). We assume that the queue holding incremen-tal updates from the source databases is nonempty. Thealgorithm proceeds as follows:(1) Initialization: Let � hold the smash of all incrementalupdates held in the queue at time t. � can bebroken into a set �R1; : : : ;�Rk of subdeltas thatrefer to some set R1; : : : ; Rk of source databaserelations that are associated with leaf nodes v1; : : : ; vk(respectively) of V. During this phase, two thingsoccur:(1a) All eligible rules in [fedge rule(vi) j i 2 [1; k]g are�red, in any order.(1b) All entries in the queue that contributed to � aredeleted. (It may be that during the execution ofstep (1a) additional deltas were added to the queue.These will remain in the queue until the next cycleof rule �ring is initiated.)(2) \Upward" traversal of (V;E): During this phaseeach non-leaf node is processed according to sometopological sort of (V;E), i.e., in an order thatsatis�es the following restriction: A node v cannot beprocessed until all of its children have been processed.Suppose that the above algorithm is executed at timetui , and that the most recent execution of the algorithmthat occurred before tui took place at time tui�1. The �rststep of the algorithm propagates the updates in � tothe nodes that are directly above the leaf nodes of theVDP (although it does not \process" those nodes). It isstraightforward to verify that(A) If a non-leaf node v with relation(v) = R has beenprocessed, then(i) the corresponding repository R will hold the pop-ulation for R that re
ects the state of the sourcedatabases at time tui , and(ii) the associated repository �R is empty.(B) If a non-leaf node v with relation(v) = R has notbeen processed, then12

(i) the corresponding repository R will hold the pop-ulation for R that re
ects the state of the sourcedatabases at time tui�1.(ii) the associated repository �Rmay hold informationcorresponding to some or all of the incrementalupdates implied for relation R by the incrementalupdates to the source databases reported betweentimes tui�1 and tui .(C) A node v with relation(v) = R is not processed untilall contributions to �R have been computed.In particular, then, after execution terminates, all ofthe a�ected nodes will hold the state refecting all up-dates that reached the queue up until the time of
ush-ing the queue, i.e., empty queue(tui) in the notation ofSubsection 6.1. As a result, we have state(V; tui) =�0(~DB[1;m]; r~ef 0(tui)) as promised in Subsection 6.1.The general IUP algorithm: We now describethe general IUP algorithm, that supports incrementalupdate to arbitrary materialized relations. We againassume that this update transaction has time tui . Thegeneral execution of IUP has three phases, namely (a)determine needed temporary relations; (b) populateneeded temporary relations (using the VAP); and (c)propagate updates.Example 6.2: To understand why temporary relationsare needed, recall Example 2.2, where T and S0 arematerialized but R0 is virtual. If during processing�S0 becomes non-empty, then the value of R0 must beobtained, in order to apply rule #1 of Example 2.1. 2To perform phase (a), i.e., to determine the neededtemporary relations, we apply a variant of the IUP Ker-nel Algorithm, called the IUP Preparation Algorithm.In this algorithm, the IUP Kernal Algorithm is simu-lated, to see what rules would be �red based on the delta� obtained from the update queue. This yields a setI = f(R1; A1); : : : ; (Rn; An)g of projections of virtual re-lations that will be needed. (If two temporary relations(R;A) and (R;A0) are needed for the same node, thenthese are merged.)The second phase (b) is simply a call to the VAPto obtain temporary relations for all of I. Notethat all source databases that are accessed are hybrid-contributors. [Materialized data in the VDP dependson them because they were identi�ed by phase (a), andvirtual data in the VDP depends on them because theyare being accessed to populate relations in I with virtualattributes.]Because the input queue holds all incremental updatesreceived after tui�1, the VAP populates I to the statecorresponding to r~ef 0(tui�1). This is appropriate, becausesome of the updates in � might imply updates that

are to be applied to the materialized portions of hybridrelations that participate in I.Phase (c) of the general IUP algorithm is to applythe IUP Kernel Algorithm, except using the temporaryrelations in place of their associated hybrid or virtualrelations. When the IUP Kernel Algorithm is �nished,update the materialized part of any hybrid relationaccording to the value of the associated temporaryrelation. By the properties of the IUP Kernel Algorithmdiscussed above, after completion of these steps thematerialized portion of the VDP will correspond tostate(~DB [1;m]; r~ef 0(tui)).7 Correctness of Squirrel MediatorsThis section brie
y sketches the proofs that Squirrel me-diators are both consistent and (under natural assup-tions) guarentee freshness.Theorem 7.1: Squirrel mediators are consistent.Proof: (sketch) To prove consistency, we begin with thefunction r~ef constructed in Subsection 6.1. As veri�edduring the presentations of the IUP and VAP algorithms,state(V; tqj) = �(~DB; r~ef (tqj))and so condition 1 of the de�nition of consistency issatis�ed. Also, it is straightforward to verify thatConditions 2 and 3 of the de�nition consistency. 2To show that mediators guarentee freshness, we �rstidentify some natural properties that the overall environ-ment can be assumed to satisfy. The following lengths oftime are important:� announcement delayi (ann delayi): the period be-tween the time when updates are committed indatabase DBi and the updates are \announced" tothe mediator� communication delayi (comm delayi): the time ittakes for messages from DBi to reach the mediator,and for messages from the mediator to reach DBi.� update holding delaymed (u hold delaymed): the lengthof time in the worst case between when an updatemight arrive at the mediator and when the mediatorstarts the next update transaction. update processingdelaymed (u proc delaymed): the length of time in theworst case between when the mediator starts an up-date transaction and completes it, excluding the timetaken to query the source databases. at the mediatorand when the e�ect of that update is propagated intothe materialized data of the mediator.� query processing delayi (q proc delayi): the length oftime it takes in the worst case for DBi to answer aquery posed against it. (It is 0 if queries are not madeagainst DBi.)13

� query processing delaymed (q proc delaymed): thelength of time it takes in the worst case for themediator to do processing associated with the QP andVAP, excluding the time taken to query the sourcedatabases.Both ann delayi and u proc delaymed are dictated pri-marily by policies, e.g., on how often source databasesshould transmit updates to the mediator, and how fre-quently the mediator should
ush its incremental updatequeue.We now state:Theorem 7.2: Suppose that in an integration envi-ronment involving source databases DB1; : : : ; DBn andSquirrel mediator, the delays are bounded by ann delayi,comm delayi, u hold delaymed, u proc delaymed,q proc delayi, and q proc delaymed. De�ne vector ~f sothat for materialized- and hybrid-contributors DBi andvirtual-contributors DBj we have:fi = ann delayi + comm delayi+u hold delaymed + u proc delaymed+�nk=1(q proc delayk + comm delayk)+q proc delaymedfj = �nk=1(q proc delayk + comm delayk)+q proc delaymedThen the integration environment is guarenteed freshwithin ~f after time tview init.Proof: (sketch) From the proof of Theorem 7.1we know that for each query transaction time tqj ,state(V; tqj) = �(~DB; r~ef (tqj)). Also, it is easy toverify that for each source database DBi we have tqj �r~ef (tqj):i � fi. 2The choice of ~f in the above theorem re
ects the worstcase, in which a query against the mediator must accessall hybrid- and virtual-contributor source databases.Importantly, if a query against fully materialized datais asked, then the \freshness" for each materialized-contributor database DBi isfi = ann delayi + comm delayi+u hold delaymed + u proc delaymedReferences[ACHK93] Y. Arens, C.Y. Chee, C.N. Hsu, and C.A.Knoblock. Retrieving and integrating datafrom multiple information sources. Intl.Journal of Intelligent and Cooperative Infor-mation Systems, 2(2):127{158, 1993.

[ADD+91] R. Ahmed, P. DeSmedt, W. Du, W. Kent,M. Ketabchi, W. Litwin, A. Ra�i, and M. C.Shan. Pegasus heterogeneous multidatabasesystem. IEEE Computer, December 1991.[DH84] U. Dayal and H.Y. Hwang. View de�nitionand generalization for database integrationin a multidatabase system. IEEE Trans.on Software Engineering, SE-10(6):628{644,1984.[DHR95] M. Doherty, R. Hull, and M. Rupawalla.Structures for manipulating proposed up-dates in object-oriented databases, 1995.Technical report in preparation.[GHJ94] S. Ghandeharizadeh, R. Hull, and D. Ja-cobs. Heraclitus[Alg,C]: Elevating deltasto be �rst-class citizens in a database pro-gramming language. Technical Report USC-CS-94-581, Computer Science Department,Univ. of Southern California, 1994.[HJ91] R. Hull and D. Jacobs. Language constructsfor programming active databases. In Proc.of Intl. Conf. on Very Large Data Bases,pages 455{468, 1991.[LMR90] W. Litwin, L. Mark, and N. Roussopo-los. Interoperability of multiple autonomousdatabases. ACM Computing Surveys,22(3):267{293, September 1990.[ME93] J. G. Mullen and A. E. Elmagarmid. Inter-SQL: A multiatabase transaction program-ming language. In Proc. of Intl. Workshopon Database Programming Languages, 1993.[SBG+81] J. M. Smith, P. A. Bernstein, N. Good-man, U. Dayal, T. Landers, K.W.T. Lin, andE. Wong. Multibase { Integrating heteroge-nous distributed database systems. In Na-tional Computer Conference, pages 487{499,1981.[T+90] G. Thomas et al. Heterogeneous distributeddatabase systems for production use. ACMComputing Surveys, 22(3):237{266, Septem-ber 1990.[Ull82] Je�rey D. Ullman. Principles of DatabaseSystems (2nd edition). Computer SciencePress, Potomac, Maryland, 1982.[WHW89] S. Widjojo, R. Hull, and D. Wile. Dis-tributed Information Sharing using World-Base. IEEE O�ce Knowledge Engineering,3(2):17{26, August 1989.14

[Wie92] G. Wiederhold. Mediators in the architec-ture of future information systems. IEEEComputer, pages 38{49, March 1992.[ZGHW95] Y. Zhuge, H. Garcia-Molina, J. Hammer,and J. Widom. View maintenance in a ware-housing environment. In Proc. ACM SIG-MOD Symp. on the Management of Data,pages 316{327, San Jose, California, May1995.[ZHK95] G. Zhou, R. Hull, and R. King. Gener-ating data integration mediators that usematerialization. Technical report, Com-puter Science Department, University ofColorado, May 1995. Revised Septem-ber, 1995. Available via anonymous ftp atftp://ftp.cs.colorado.edu//users/hull/squirrel:tech-report-materialization.ps.[ZHKF95] G. Zhou, R. Hull, R. King, and J-C. Fran-chitti. Using object matching and material-ization to integrate heterogeneous databases.In Proc. of Third Intl. Conf. on CooperativeInformation Systems (CoopIS-95), Vienna,Austria, May 1995.

15

