A Framework for Supporting Data Integration

Using the Materialized and Virtual Approaches

Richard Hull

*

Gang Zhou!

Computer Science Department
University of Colorado
Boulder, CO 80309-0430
{hull, gzhou}@cs.colorado.edu

October 27, 1995

Contact Author:

Abstract

This paper presents a framework for data integration cur-
rently under development in the Squirrel project. The frame-
work is based on a special class of mediators, called Squirrel
integration mediators. These mediators can support the tra-
ditional virtual and materialized approaches, and also hybrids
of them. This permits considerable flexibility when adapting
to diverse data integration environments.

In the Squirrel mediators described here, a relation in the
integated view can be supported as (a) fully materialized,
(b) fully virtual, or (c) partially materialized (i.e., with some
attributes materialized and other attributes virtual). In
general, (partially) materialized relations of the integrated
view are maintained by incremental updates from the source
databases. Squirrel mediators provide two approaches for
doing this: (1) materialize all needed auxiliary data, so that
data sources do not have to be queried when processing
the incremental updates; and (2) leave some or all of the
auxiliary data virtual, and query selected source databases
when processing the incremental update.

A central construct used by Squirrel mediators to support
integrated views is the notion of “View Decomposition Plan”
(VDP). A VDP provides a systematic framework for support-
ing materialized, virtual, and hybrid relations, including sup-
port for (i) retrieval from source databases of virtual data
needed to answer queries, and (ii) incremental update of ma-
terialized data (including querying of source databases as nec-
essary). VDPs provide a framework for optimizing support
for integrated views in a manner reminiscent of query execu-
tion plans.

*This research was supported in part by NSF grant TR1-931832,
and ARPA grants BAA-92-1092 and 33825-RT-AAS.

t A student at the University of Southern California, in residence
at the University of Colorado.

Richard Hull

phone: 303-492-0259
fax: 303-492-2844
email: hull@cs.colorado.edu

The paper also presents formal notions of consistency
and ”freshness” for integrated views defined over multiple
autonomous source databases. It i1s shown that Squirrel
mediators satisfy these properties.

Random notes of Rick...

1. change bib listing for squirrel:materialized-tech to be
JIIS, to appear.

2. Fix Section 2

3. 1ntro refers to a conc section

1 Introduction

The advent of the Information Superhighway has dra-
matically increased the need for efficient and flexible
mechanisms to provide integrated views over multiple
information sources. The traditional approach to this
problem is to represent the view in a wvirtual fashion;
queries against the view are decomposed and sent to
the remote sources [SBGT81, DH84, LMR90, T+90,
ADDT91, ACHK93]. A complementary approach has
emerged recently, that is based on storing the view in ma-
terialized form [WHWS89, ZHKF95, ZHK95, ZGHW95].
In that approach, updates are propagated from the in-
formation sources to the view incrementally. Speaking
broadly, the virtual approach may be better if the in-
formation sources are changing frequently, whereas the
materialized approach may be better if the information
sources change infrequently and very fast query response
time is needed. The virtual and materialized approaches
represent two ends of a vast spectrum of possibilities.
This paper develops a general and flexible framework for

supporting integrated views using a hybrid of these two

appraoches.

In the framework developed here, a relation in the
integated view can be supported as

(a) fully materialized,

(b) fully virtual, or

(¢) partially materialized (i.e., with some attributes
materialized and other attributes virtual).

In general, (partially) materialized relations of the

integrated view are maintained by incremental updates

from the source databases. Two approaches for doing
this are provided in our framework:

(1) “fully materialized support”: materialize all needed
auxiliary data, so that data sources do not have to
be queried when processing the incremental updates;
and

(2) leave some or all of the auxiliary data virtual, and
query selected source databases when processing the
incremental update.

The framework presented in this paper forms one
aspect of the Squirrel project currently under way at
the University of Colorado [ZHKF95, ZHK95]. The
framework is based on a special class of mediators
[Wie92], called Squirrel integration mediators. Squirrel is
a tool that can be used to generate these mediators from
high-level specifications (see [ZHK95]). The Squirrel
project is focused rather broadly on supporting a wide
variety of kinds of information sources, and supporting
integrated views in a wide variety of ways.

The present paper is focused on algorithms and im-
plementation techniques for supporting hybrid material-
ized/virtual integrated views. In particular, we describe
the architecture of Squirrel mediators for supporting hy-
brid integrated views, and we present the key algorithms
used by these mediators. The discussion here is presented
in terms of the relational model, and the general spirit
of our techniques can be applied in the context of the
object-oriented database model.

Squirrel mediators implement a synthesis of several
technologies,; including query processing against virtual
integrated views [LMR90], algorithms for updating ma-
terialized views [?7, 7, 7, ZGHW95], the use of the ac-
tive paradigm to implement those algorithms [?, 7], and
the use of “active modules” to provide light-weight, cus-
tomizable activeness [?, 7].

A central construct used by Squirrel mediators to sup-
port integrated views is the notion of ”View Decom-
position Plan” (VDP). A VDP provides a systematic
framework for synthesizing the above technologies in or-
der to support materialized, virtual, and hybrid rela-
tions. In particular, this includes support for (i) retrieval
from source databases of virtual data needed to answer
queries, and (ii) incremental update of materialized data

(including querying of source databases as necessary).
VDPs provide a framework for optimizing support for
integrated views in a manner reminiscent of query exe-
cution plans.

This paper also presents formal notions of consistency
and “freshness” for integrated views defined over multiple
autonomous source databases. Consistency guarentees
that the state of the view at any time corresponds to a
family of states of the source databases (although not
necessarily states that existed simultaneously). Fresh-
ness ensures that updates to source databases are re-
flected in the view within a bounded time. It is shown
that if the source databases and network satisfy certain
natural conditions, then Squirrel mediators satisfy the
consistency and “freshness” properties.

Section 77 uses a simple example to illustrate differ-
ent kinds of hybrid integrated views and how Squirrel
mediators can support them. Section 3 presents the for-
mal notions of consistency and “freshness”. Section 4
presents the architecture of Squirrel mediators. Section
5 describes VDPs. Section 6 describes the three cen-
tral algorithms used by Squirrel mediators to support
hybrid integrated views. Section 7 shows that Squirrel
mediators satisfy the consistency and freshness proper-
ties. Brief conclusions are offered in Section ?7. Due to
space limitations, many details are omitted in this paper;
see [7].

2 Motivating Examples and Intuitive
Remarks

This section gives an informal overview of several key as-
pects of Squirrel mediators. This section presents three
related examples to give a progressive overview of several
key aspects of Squirrel mediators. Example 2.1 illus-
trates how a Squirrel mediator maintains a materialized
relation 7' that has fully materialized support, and in-
troduces the central notion of annotated VDP. Example
2.2 modifies the first example by allowing some of the
auxiliary supporting data to be virtual. Providing sup-
port for T" as a hybrid (partially materialized) relation is
described in Example 2.3.

Example 2.1: Let R(ry,rs,rs,re) with key rq
and S(sq,s2,s3) with key s; be two relations from
distinct databases. Suppose that the integrated view
supported by a mediator has the single export relation
T = 777‘1,51,52(0'7'4:100R Mm:sl 0'53<505)~ A VDP
for T is shown in Figure 1. Fach non-leaf node in
the VDP corresponds to a relation maintained by the
mediator, and each leaf node corresponds to a relation
The dotted line separates the
mediator relations from the source database relations.
The attributes of the relations are shown to the left of the
nodes. The relationship between a node and its children

in a source database.

Figure 1: An annotated VDP for an integrated view
T= 7T7‘1,7'3,51,52(0'r4:100R Mr2:sl 0'53<505)

nodes indicates that the relation of the parent node is
derived directly from relations of the children nodes.

An attribute of a relation of a non-leaf node is anno-
tated as either materialized or virtual. The attribute no-
tation [}, 57", s5'] for the node T, for instance, indicates
all three attributes are materialized, i.e., the relation T'
is fully materialized. In fact, all the relations maintained
by this mediator are fully materialized.

Supporting queries against relation 7' is trivial. The
incremental maintenance of 71" 1s supported by the aux-
iliary relations R’ and S’ that are fully materialized. As
will be discussed in Subsection 5.2, the rules responsible
for propagating updates from R’ and S’ to 7" are:

rule #1: on changes to R, AT = AR' X 5/,

rule #2: on changes to S/, AT = R' X AS/;
where AR denotes the net change to a relation R. With
this setting 7" can be maintained using incremental up-
dates from the source databases and information local to
the mediator without polling of the source databases. O

The next example modifies the previous example by
selectively materializing the auxiliary data for 7', namely
R’ and S’. This can be viewed as a generalization of the
approach in [ZGHW95], where T' is materialized but all
auxiliary relations are virtual. Under that approach, T'
i1s maintained using incremental updates from the source
databases and polling of the source databases.

Example 2.2: Let’s assume that updates to relation R
are frequent, but updates to relation S are infrequent. To
reduce the overhead of continually maintaining R’ and to
conserve space in the mediator, we change the annotation
of R to be [r}, ry, r4], where the superscript v stands for
virtual. So R’ is fully virtual. The annotations for 5" and
T are unchanged. The rule #1 introduced in Example
2.1 shows that in response to a change AR’ to R/, AT
is solely computed based on AR’ and S. So R’ can
be kept virtual without delaying the propagation of R’
which makes the bulk of the update propagation in this

case. In the rare case when updates to relation S occur,
the mediator must incur the expense of sending queries
to relation R to compute AT, because R’ is virtual. O

The next example will not only have some auxiliary
data virtual, but also keep some infrequently accessed
attributes of the export relation 7" virtual. This is called
a hybrid view. We also show how the values of virtual
attributes are obtained when needed.

Example 2.3: Let’s assume queries against relation 7'
mainly refer to attributes r1 and sy, i.e., m, ,,7". For this
example, we choose the annotation for the VDP to be:
T, ry, sT, s8], Ry ry, ry], S'[sY,s%]. The response
time to the queries that only refer to r; and s; is not
affected by the fact that r3 and s, are virtual. With this
annotation, answering queries involving attributes r1 and
s1 1s straightforward.

How does the mediator answer a query involving one or
more virtual attributes, say a query ¢ = 7, 5, 0r,<10017
The answer is to construct a temporary relation that
is equivalent to the answer of ¢. For this example, the
temporary relation will be T}y,p = 7r, 5, 0r, <1007

In general cases, Tin, can be constructed from
relations of the children nodes of T', namely R’ and 57,
as:

Emp — 777‘3,51(0'7'3<100R/ Mm:sl S/)
Sometimes T}y, can also be constructed from 7" and one
of the auxiliary relations. Since this method involves
key(s), we call it key-based construction of temporary
relation. In this particular example, Ti,, can be
constructed from 7" and R’. Note that the following is
true:

(LH R n That is, in R’, attribute r3 is
functionally dependent on attribute r;, because rq
is the key in R.

— T3.

(2) Tryrad C 7Tr1,r3R/
From (1) and (2) we infer:
3)T:r —rs

That implies:
Tfmp = 7.‘-7“3,51(7"-7“1,7“30-7“3<100T M 7T7“1,51T)
_ /
- 7T7“3,51(7T7“1,7“30-T3<100R M 7T7“1,51T)

by (1)
by (3)

In this particular example, the key-based construction
of Timp from R’ and T is more efficient than the con-
struction from R’ and S/, because 7,, ;, T is materialized,
while S’ is fully virtual. Although key-based construc-
tion is not always more efficient, the key-based approach
does present one more choice with regards to construct-
ing temporary relations.

In general, virtual attributes are more expensive to

access. However, the major assumption about keeping

an attribute virtual is that the attribute is not frequently
accessed, so that occasional accesses to virtual attributes
will not significantly affect the overall performance of the
mediator. O

The preceding examples showed how a single VDP can
be used to support a variety of different combination
of materialized and virtual support for an integrated
view. Although the examples used a very simple VDP, in
general VDPs can be of any size. Indeed, the construct
VDP is very powerful for supporting integrated view
under various circumstances.

VDPs are quite similar to query execution plans
(e.g. [UlI82]), in that both data structures represent a
decomposition of one or more queries. VDPs are used
to support queries against an integrated view, to hold
materialized portions of the view, and to organize the
incremental maintenance of those materialized portions.
As a result, the VDP of a Squirrel mediator is relatively
static. In contract, query execution plans are typically
developed on a query by query basis.

3 Formal Notions of Correctness for
Integrated Views

The kind of consistency that should be supported for
a view depends on the context of the view definition. If
source data and a (materialized or virtual) view is within
a single database system, then the view can be designed
to reflect the current database state. In the materialized
case this is accomplished by combining within single
transactions both updates and update propagation to the
view. Typically, a virtual or materialized view defined
over remote databases will reflect some state of the
sources, but not necessarily their current state.

This section develops formal notions of correctness for
the context where an integrated view over multiple source
databases is supported in a separate database system.
We assume that the source databases are relatively
autonomous, and do not assume that they participate
in global transactions (as in, e.g., InterSQL [ME93]). As
a result, there 1s generally no global state of the multiple
autonomous databases. The formal definitions given
below capture natural intuitions about consistency and
“freshness” in this context. As will be seen in Section 7,
the integration mediators described in this paper satisfy
these properties.

An integration environment consists of a sequence
DB = (DBy,...,DB,) of source databases, a view
definition v that defines an integrated view of portions
of the source databases, and a “database” V, which
is intended to hold that view. The environment is
presumed to include software that supports V in some
manner. (The view may be either materialized or virtual,
or a hybrid of these.)

We model “global time” using a totally ordered set
(T'ime, <) isomorphic to (a subset of) the real numbers.
(The choice of continuous, dense, or discrete time is
largely irrelevant to our discussion.) We assume that
simple arithmetic can be used in connection with Time.
We do not require that any of the database processes
have knowledge of the global time. However, to simplify
the discussion, we assume that no two events (e.g.,
transaction commits, sending or receiving of messages)
occur at precisely the same time.

We shall use the following notation.

e {: a time vector in the form of (t1,...,tn). We write
< t,ift; <t forie[l,n]. Also, i< ifi' < and
1%& . If t is a time and ¢ a time vector, then ¢t < %
means that (¢,...,1) < tZQ t < ¥, etc., are defined

analogously.

o state(d,t): the state of a d at time ¢, where d ranges
over DB; or V.

. state(D_B,fj: the state vector of databases DB at
time t, i.e., {state(DBy,11),...,state(DBy, t,)).

e v(s): a view defined on a state (vector) s of source

database(s).

We now define the notions of consistency and “fresh-
ness” for integration environments. These definitions are
inspired and generalize notions of correctness developed
in [ZGHW95], that considers a warehouse based on a sin-
gle remote source database. In these definitions we let
tview_init denote the time at which the view 1s initalized.

Definition: Consistency:

An integration environment is consistent after time
tview_inie 1f there exists a function reﬁect : Time —
(T'ime)" such that:

(a) Validity: For each time ¢ > ty;eu _init,
state(V,1) = V(state(D_B, reﬁect(t)).
Intuitively, this means that the state of the view at
time t should correspond to some state vector of the
source databases. (We do not insist that the view
corresponds to the set of source database states at a
single time t', because updates from and accesses to
the source databases will typically be asynchronous.)

(b) Chronology: For each time ¢ > ty;ew _init,
t> reﬁect(t)i for each i € [1,n].
Intuitively, this insists that the state of the view at
time ¢ corresponds to the source databases at a times
<, 1.e., the view does not “forecast the future”.

(¢) Order preserving: TFor each pair t1,t2 of times
satistying tyjew init < 1 <o,
reflect(t1) < reflect(tz).

time | state(DB)
t1 {R(a,a)} | {S(a
ty {R(
i3 {R(c, a)
iy {R(d, a)
ts {R(e,a)
ts {R(fa Cl)

Figure 2: Scenerio satisfying pseudo-consistency but not
consistency

Intuitively, this insists that successive states of the
view correspond to successive (vectors of) states of
the source databases.

Remark 3.1: The reader may wonder whether the
above definition could be rephrased in the following
simpler form: “An integration environment is pseudo-
consistent after time ty;e0_ini¢ 1f for each pair of times
tq, o satisfying tyiew_init < t1 < to, there are time vectors
t71’ < t_’é such that state(V,t;) = V(state(D_’B,t_’l’)) and
state(V,t5) = v(state(DB,1})).” (cf. [ZGHW95]). We
show that pseudo-consistency does not imply consistency.
Assume that there is one source database DB that holds
a single binary relation R, and a view V, where the
view definition v is S = my(R). Figure 2 shows the
state of DB and V at six times. At each time, R holds
exactly one tuple. It is assumed that DB does not change
except at the six times shown. This scenerio satisfies
pseudo-consistency but not consistency. Furthermore,
this scenerio does not appear to satisfy natural intuitions
concerning how a view over a source database should
behave. (Analogous remarks hold if the focus is on
“events” rather than instants in time.) O

We now give a definition that captures an intuitive
property of “freshness”:

Definition: Guaranteed freshness:

An integration environment i1s guarenteed fresh within
time vector j?after time ty; e _inse 1f for each t > tyiew _init
there is a ¢/ such that state(V,1) = V(state(D_B,t7)) and
t—t < f; for i €[1,n].

Intuitively, this states that for each time t > ;00 _init,
the contents of the view at time ¢ correspond to
“recent” states of the source databases. The definition
is based on a time vector j?rather than a single time,
to accommodate integration environments where some
databases announce updates very quickly, while others
announce them only periodically (e.g., once every 24
hours).

4 Overview of Squirrel Mediators

Squirrel mediators support integrated views derived
from multiple remote source databases (see Figure
3). A mediator consists of five components: a local
store, a query processor (QP), a virtual attributes
processor (VAP), an update-queue, and an incremental
update processor (IUP). The local store contains the
VDP that represents the schema and the derivation
relationship between relations in the local store (more
details in Section 5), the materialized portion of the view,
other supporting materialized data, and a rulebase that
specifies the incremental maintenance of the materialized
data in a declarative fashion. The QP provides the
interface for querying the view. Upon receiving a query
against the view, the QP determines first whether the
query can be answered solely based on the materialized
portion of the view. In case virtual data is needed to
answer the query, the QP requests the VAP to construct
temporary relations containing the relevant data (see
Subsection 6.3). The update-queue holds incremental
updates from remote information sources, and the TUP
is responsible for propagating the updates accumulated
in the queue into the materialized data according to the
rules in the rulebase (see Subsection 6.4).

There are three kinds of information flow within an
integration mediator. One involves incremental updates
against the source databases, which flow into the update-
queue; they are then propagated into the integrated
view under the control of the IUP. The second kind
of information flow is generated by the VAP that
sends (receives) queries (answers) to (from) the source
databases. The third kind of information flow involves
queries posed against the integrated view, and answers
made in response to them. Importantly, humans and
processes that query the Squirrel mediator need only be
aware of the query processor and the local store.

There are three ways a source database can be
assoclated with the mediator. First, a source database
is called a materialized-contributor, if all its contribution
to the mediator 1s in the materialized data portion of the
mediator. Secondly, a source database is called a hybrid-
contributor, if part of its contribution to the mediator
is in the materialized portion and the other part to the
virtual portion. Finally, a database is called a virtual-
contributor, if 1t only contributes to the virtual data
portion of the mediator.

Source databases in the first two categories must have
the ability to actively send relevant net updates against
its data to the mediator, so that the updates can be
propagated into the materialized data in the mediator. In
order to guarantee that the integrated views satisfy the
correctness conditions defined in Section 3, we assume
that the messages transferred from one source database
to the mediator must be in order and every source

Incremental
update

processai\

Virtual attribute
processor

incremental update

OO

materialized-
contributor DBs

DO

hybrid-

polling of sources

contributor DBs

virtual-
contributor DBs

Figure 3: A Squirrel mediator connected with multiple source DBs

database sends all the updates that reflect the difference
between two database states in a single undividable
message to the mediator. Databases in the last two
categories must be able to answer queries from the virtual
data processor, so that the relevant virtual data portion
in the mediator can be evaluated when necessary. Since
a virtual-contributor database only needs to be able to
answer queries, its role can be played by all kinds of
DBMS;, including legacy systems that do not have active
database capabilities.

5 Annotated View Decomposition Plan

(VDP)

>>> something about the organization of the section
<L

The skeleton of a Squirrel-generated integration medi-
ator is provided by its View Decomposition Plan (VDP).
A VDP specifies the relations that the integration media-
tor will maintain (either materialized, virtual, or hybrid),
and provides the basic structure for supporting incre-
mental maintenance of materialized data and (possibly)
evaluation of virtual data. As noted in the Introduction,
VDPs are analogous to query execution plans as used in
query optimization. This subsection presents the defini-
tion of VDP and gives an example.

As will be defined formally below, the VDP of an
integration mediator is a directed acyclic graph (dag)
that represents a decomposition of the integrated view
supported by that mediator (see Figures 1 and 4).
The leaf nodes correspond to relations in the source
databases, and the other nodes correspond to derived
materialized or virtual relations which are maintained
by the mediator. An edge from node u to node v in a

VDP indicates that the relation of v is used directly in
the derivation of the relation of u. The propagation of
incremental updates will proceed along the edges, from
the leaves to the top of a VDP. Analogous to query
execution plans, different VDPs for the same integrated
view specification may be appropriate under different
query and update characteristics of the application.

The language currently supported by Squirrel for spec-
ifying integrated views includes the relational algebra.
We use an attribute-based form of the algebra. In the
interest of clarity, in the discussion below, we do not con-
sider the use of attribute-renaming (see [?]). (Another
part of the language specifies “object matching”. See
[ZHKF95, ZHK95].) Although the view definition lan-
guage is 1s based on set semantics, some of the relations
stored inside an integration mediator may be bags, in or-
der to support our incremental maintenance algorithms;
this occurs if the integrated view involves projection or
union.

5.1 Definition

Formally, a VDP is a labeled dag V = (V, E, relation,
source, def, Export) where V' is a set of nodes, E is a set
of edges over V, and such that:

1. The function relation maps each node v € V into
a specification of a distinct relation, which includes the
name of the relation and its attributes. We often refer
to a node v by using the name of relation(v).

2. source 1s a function that maps the leaves of V' into
the set of source databases of the mediator. The leaves
of V' correspond to relations in the source databases,
and are depicted using the O symbol. Other nodes are

depicted using a circle.

3. An edge (a,b) € E indicates that relation(a)
is directly derived from relation(b) (and possibly other
relations). If b is a leaf node, a is called a leaf-parent
node.

4. For each non-leaf v € V', def(v) is an expression in
the view definition language that refers to {relation(u) |
(v,u) € E'}. Intuitively speaking, def(v) defines the pop-
ulation of relation(v) in terms of the relations corre-
sponding to the immediate descendants of ». Similar to
query execution plans, some combinations of operators
are permitted in conjunction with a single node of the
tree and its immediate descendants, while others are not.
The restrictions are follows: (a) the immediate parents
of leaf nodes can involve only projection and selection on
those leaf nodes. Otherwise for node v, (b) def(v) can be
arbitrary combination of selects, projects and joins; (¢)
def(v) can have the form of a union or a difference, with
arbitrary selects and projects underneath that. Non-leaf
nodes involving difference are called set nodes, and all
other non-leaf nodes are called bag nodes. The relations
associlated with set nodes are stored as sets, while the
relations associated with bag nodes are stored as bags.

5. FExport C V denotes the set of export relations.
Fach maximal node (i.e., node with no in-edges) is in
FExport; other non-source nodes may also be in Fzport.
Elements of Fxzport are depicted using a double circle.

If Vis a VDP and v is a node and relation(v) has name
R and attributes aq, ..., a,, then an annotation for R is
a function from {ay,...,a,} into {m,v}. For example,
if R has attributes {a, b, c}, the [a™,bY, ¢™] denotes the
annotation that maps a and ¢ to m and b to v. Intuitively,
this annotation indicates that attributes a and ¢ are to
be materialized and b is to be virtual. If all attributes
of a relation R are mapped to m, then R is to be full
materialized, and likewise for v. Given a VDP V, an
annotation for V is a function ann defined on the set of
non-leaf nodes, such that ann(v) is an annotation of the
relation of v, for each non-leaf node v € V.

Example 7?7 in Section sec:ex gives a VDP for a very
simple integrated view. A more complex VDP will be
given in Example 5.1 in Subsection 5.3.

5.2 Sample rules for update propagation

Every edge (a,b) in a VDP is associated with an update
propagation rule which computes an incremental update
(Arelation(a)) to the relation relation(a) based on an
update Arelation(b). Due to the space limitation, we
present only two sample rules for relations defined with
select/project/join and difference (SPJ) operators.

SPJ: Suppose a relation T in a VDP is defined with
SPJ operators: T = mpop(mp,opR1 My ... X

1 gn—1

Tp, 05,). The sub-VDP for T' is analogous to
the one in Example 2.1, with V = {T, Ry, ..., R,} and
E={(T,R1),....,(T,Ry)}. The rule for the edge (T, R;)
is (using the bag semantics):

rule for SPJ: edge (T, R;)

on new AR;,

AT = mpop(mp,op By Mg, o My mp 0, AR; M,

: Mgn—l ﬂ-pno-fan);
Difference: Suppose a relation in a VDP is defined as
T = Ry — Ro. The sub-VDP for T consists of three

nodes, {7, Ry, R2}, and two edges, (T, R1) and (T, R2).
The rules for edges (T, R1) and (T, Rz) are:

rule for diffl: edge (7, Ry)
on new ARy,

then (AT)T = (ARy)" — Ra; (AT)™ = (ARy)™ N Ra;
rule for diff2: edge (7, R»)

on new AR,

then (AT)T = (ARy)™ N Ry; (AT)™ = (ARs)™ N Ry;

5.3 Heuristics for optimization

The issue of virtual attributes vs. materialized attributes
is an issue of space vs. performance. We do not attempt
to give precise guidelines to the user about when an
attribute should be maintained virtual or materialized.
Rather we give general suggestions about the trade-offs
of virtual and materialized approaches. Generally, if an
attribute is rarely accessed or the data of the attribute
can be derived relatively easily from other materialized
data, it is a candidate to be selected as a virtual attribute.
The issues about the access frequency to the data of
certain virtual attributes are discussed in Example 2.1
and Example 2.2. We focus here on the costs of deriving
the value of the attribute in turn.

There are some general rules about the costs of
evaluating a virtual attribute, which apply in most
cases. The leaf-parent nodes are expensive to evaluate,
because they are derived from relations in remote
databases and their evaluation involves retrieving data
from those databases to the mediator. The costs of
evaluating virtual attributes in a join node depends on
whether indices can be used to perform the join. If no
index can be used, a fully virtual join relation is very
expensive to compute. The minimal suggested amount
of materialization for expensive join relations are the
key attributes from the underlying relations, so that
the virtual attributes of the join relation can be fetched
efficiently from its underlying relations.

The following example illustrates an integrated view
that is supported by the hybrid approach, following some
of the suggested guidelines about virtual attributes.

Figure 4: Annotated VDP of E'=7a, a,6,0(A Myzpa,cp2 B), G = Tayp, B — 70(C Moy =g, D)

Example 5.1: Let two export relations E and G
be defined as: E' = maya50,0(A My2p4,cp2 B);G =
Tay b E—70(C N, =4, D) (see Figure 4). To simplify the
exposition, obvious or irrelevant selection conditions and
projection attributes are omitted in the view definition.
Apparently, relation £ is expensive to evaluate due to the
complex join condition, while the evaluation for relation
F is straightforward.

A suggested annotated VDP is shown in Figure 4,
where both relations B’ and F' are virtual, relation F
is partially materialized, and all the other relations are
fully materialized. The reason to make F hybrid,
[a], a%, b], is that a; and by are not only needed to
answer queries, but also needed to compute updates to be
propagated to relation (G in response to updates coming
from F' sub-VDP. Furthermore, E is very expensive to
evaluate unless it is at least partially materialized. Since
the key a; 1s materialized in F, the virtual attribute as
can be very efficiently retrieved from A’, in case a query
against the view refers to attribute as. Finally, relation
I is easy to evaluate, so that a virtual relation F' would
not cause a heavy performance penalty. O

6 Accessing Virtual Data and
Maintaining Materialized Data

This section describes the two primary algorithms used in
a Squirrel mediator to support hybrid integrated views.
The first algorithm (Subsection 6.3) is performed by
the Virtual Attribute Processor (VAP), and materializes
temporary relations that hold the “current” value of
(projections of) virtual or hybrid relations. These
temporary relations might be needed to answer a query,
or to incrementally update materialized data. The
second algorithm (Subsection 6.4) is performed by the
Incremental Update Processor (IUP), and incrementally
updates materialized data to reflect updates received
from the source databases.

Before presenting the algorithms, we develop formal-
ism for describing their behavior (Subsection 6.1). Dur-
ing the presentation of the algorithms this formalism will
be used to verify certain properties of the algorithms. In
Section ?? we continue to use the formalism when prov-
ing that Squirrel mediators are consistent and (under cer-
tain assumptions concerning the environment) guarentee
freshness.

Also, in Subsection 6.2 we give some technical back-
ground used in the description of the algorithms.

6.1 Formal properties of the VAP and IUP
algorithms

This section establishes notation for describing how a
Squirrel mediator operates through time, and describes
how a function r€f as in the definition of consistency can
be constructed for Squirrel mediators.

We assume that the mediator receives queries asyn-
chronously from the user/applications and incremental
updates from the source databases. Internally the medi-
ator performs a series of sequential transactions of two

kinds:

Query transaction: Compute the answer to an external
query

Update transaction: Empty the incremental update queue
and propagate those updates to all affected material-
ized data in the mediator

In general, transaactions of these two kinds will be
interleaved, to form a sequence such as

. .. u 19 qu 49 19 49 pu gu 49
tvzew_znzta 1at1a 2at2at3at4at3at4at5a”'

where tyiew_init 18 the time when the view is initiated;
td 2 12 2 ¢l ... are the commit times of the query
transactions; and t%,14,15,13, ... are the commit times
of the update transactions. The times t? are called query

transaction times and the times ¢} are called update

transaction times. While the mediator may perform
parts of these transactions concurrently, we assume that
the 1mplicit serial order of the concurrent execution
matches the order of the transaction commmit times.

The algorithms of Squirrel mediators are carefully
devised to ensure that the mediator is consistent, in
the sense defined in Section 3. We now describe how a
function réf satisfying the definition of consistency can
be constructed for the mediator, based on the timing of
the update and query transactions. Let DBy,..., DB,
be the source databases, and let v define the view of the
mediator. We focus here on the first property of réf in
the definition of consistency, namly that for each time ¢
we should have state(V,t) = V(D_B, ref(1)).

Let DBy,...,DB,, be the materialized-contributor
and hybrid-contributor databases (see Section 4), and
DBpmt1, ..., DBy be the virtual-contributor databases.
Let V'’ be the relational database schema that includes all
materialized portions of relations in the annotated VDP
of the mediator, and let v’ be the function derived from v
and the VDP that specifies how V'’ should be populated
from the source databases DBy,..., DB,,. To describe
réf, we define first the function r&f’ : Time — (Time)™,
with the property that for each update transaction time
t¥ we have state(V' %) = V/(D_B[l, m], ref’ (%)) (where
DB[1,m] = (DBy,...,DBy)).

Consider an update transaction time . As detailed
in Subsection 6.4 below, with each execution the TUP
processes the full set of deltas “currently” in the queue.
Thus, for the execution of the ITUP that ends at
time ¥, there is some earlier time empty_queue(t})
when the TUP “flushes” the update queue, and uses
smash to combine all of the individual updates into
a delta value A. Time empty_queue(ty) > t¥ |
because the mediator is assumed to perform the update
transactions serially (or in a manner that is equivalent
to a serial execution). Furthermore, A will hold all
incremental updates communicated to the mediator from
the source databases between empty_queue(t_ ;) and
empty_queue(t?).

Continuing with our focus on time ¢}, for each k €
[1,m], let t; be the time that DBy sent the last up-
date to the mediator that was received before time
empty_queue(t¥). Set ref'(t¥) = (t1,...,tm). The
TUP will guarentee that for each i, state(V' t}) =
V’(D_B[l,m], réf’ (1)) This will follow from two basic
facts: (a) the TUP correctly incorporates the impact of
A into V', and (b) if virtual data is needed to deter-
mine the appropriate incremental update to some re-
lation in V’ then a generalization of the Eager Com-
pensation Algorithm of [ZGHW95] is used to guarentee
that virtual data from database DBj; corresponds to
state(DBy,t1,) = state(DBy, ref (t%).k).

As just defined, the domain of function ref’ is

{ty,t4%,...}. This is extended to all times > tyjew_init
in the natural fashion: if ¢¥ <t < ¢¥,, then réf'(t) =
ref'(ty).

The definition of consistency gives conditions about
the state of the integrated view that are supposed to
hold at all times. It is sufficient to ensure that these
conditions hold at all query execution times. We now
describe how the function réef is defined for each query
execution time t¢.

Suppose first that the query ¢ processed at time t?
requires access only to the materialized data in the VDP.
As detailed in Subsection 6.3, this query 1s answered by
simply accessing data in the local store of the mediator.
This data will correspond to V/(D_B[l, m], ré'f/(t;]»)). In
this case we define

g B ré'f/(t;]»).k if ke [l,m]
réf(tj)k = { 4 if k € [m+1,n]

(Because DBy, is not involved for k& € [m+1, n], the query
output does reflect the “current” state of DBy, 1.e., the
state at time t;]».)

Suppose now that the query ¢ associated with query
execution time ¢! involves virtual data. Under the
algorithm of the VAP, virtual data coming from a
hybrid-contributor DB; will come from the state of
DBy at time ré'f/(t;]»).k. Virtual data from virtual-
contributors is obtained by the VAP through direct
polling of the relevant source databases. Suppose
that DBy 1s a relevant virtual-contributor. The VAP
packages all queries against D By into a single transaction
against DBy, so that the answers received from DB, all
correspond to a single time, say ¢;. In this case we define

ref'(th) .k if ke [1,m]

tr if k € [my,n] and
DB;, contributes
ré'f(t;]»).k = to ¢
1 if k€ [m+1,n] and

J
DB;, does not

DBy, contribute to ¢

(As before, if DB}, does not contribute to the query, then
we use the state of DBj at the “current” time.)

During the presentation of the algorithms we shall
use the notation developed above, to confirm that the
algorithms behave as described. In Section 77 we use
this notation when proving that Squirrel mediators are
consistent and (under certain assumptions concerning
the environment) guarentee freshness.

>>> some kind of wrap-up 77 <<<

6.2 Tools to manage deltas

The update queue of a Squirrel mediator holds incremen-
tal updates received from the source databases. These in-
cremental updates are processed by the mediator, both

during the propagation of updates to materialized data
and in some cases during evaluation of virtual data. This
subsection introduces the notation and tools used by the
mediator to manipulate these incremental updates.

We use the Heraclitus paradigm [HJ91, GHJ94, 7],
which elevates “deltas”, or the differences between
database states, to be first-class citizens in database
programming languages. Speaking loosely, in the rela-
tional case, a delta (value) is simply a set of insertion
atoms of the form ‘—|—R(f)’ and deletion atoms of the form
‘—R(f)’, subject to the consistency condition: two con-
flicting atoms +R(f) and —R(f) cannot both occur in the
delta. A delta can simultaneously contain atoms that
refer to more than relation. Deltas have also been gen-
eralized to bags [DHR95]. Incremental updates in the
update queue and incremental updates computed during
update propagation are are represented as deltas.

Two important operators for deltas are apply and
smash. Given delta A and database state db, apply(db, A)
denotes the result of applying the atoms in A to db. If A
refers only to relation R, we also write apply(R, A). Tt
turns out that apply commutes with select and project,
e.g., if A refers only to R, then weopapply(R,A) =
apply(rcos R, oo A).

Smash, denoted ‘", is a kind of compose operator. In
particular, for any state and deltas,

apply(db, A'As) = apply(apply(db, Ay), As)

For the relational case, the smash Aj!As can be
computed by forming the union of A; and Deltas, and
then deleting any element of A; that conflicts with and
element of Ag [HJ91]. Smash can also be easily computed
for bag deltas.

An insertion atom —I—R(f) in A is redundant for state db
if {'is in R under db; and similarly for deletion atoms. In
the context of Squirrel mediators, no atom of any delta
that is used 1s redundant. As a result, the natural inverse
operator !, that reverses the sign of all atoms in a delta,
has the property (for the states and deltas that arise)

apply(apply(db, A), A™) = db

Note also that (A1!A5)™ = AZHIATL

In the discussion below, we assume that an incremental
update from a source database is a delta expressed in
terms of the relations of the source database. Because
each leaf-parent holds a relation which is a project-select
of a source database relation, it is easy to “filter” the
deltas in the update queue so that they are applicable to
the leaf-parent nodes. (A straightforward optimization
that can be applied in some cases is to “filter” the
incremental updates at the source databases.)

6.3 Accessing virtual data

This subsection presents how the virtual attribute pro-
cessor (VAP) of the mediator supports accesses to the
virtual data by the query processor (QP) and the incre-
mental update processor (IUP). When QP or TUP needs
to evaluate a query ¢ = m40; R, where the attribute set
A contains at least one virtual attribute, the VAP con-
structs a temporary relation 7' = m40; R as indicated in
Section 2. The QP or TUP notifies the VAP with a set
of queries involving virtual attributes. The input set 7
is in the form of {(Ry, A1, f1), ..., (Rm, Am, fm)}, where
(Ri, Ai, fi) corresponds to the query T} = m4,0¢,R;. In
order to construct the temporary relation T;, we must
determine the relations from which 7; is derived. Let S
be one of those relations. If at least part of the data in .S
used to construct 7; is virtual, a temporary relation S’
must be constructed before the construction of T;. S will
correspond to the projection and selection of the portion
of S that is referred to in the construction of 7.

We now introduce a function dertved_from on a
relation 7', that returns a set of projections and selections
from which 7" can be derived.

Definition: Function derived_from:

Let v be a non-leaf node in a VDP, R = relation(v),
attr(R) be the whole attribute set of R, A C attr(R),
and f is a selection condition. We define the function
derived_from(R, A, f) = {(S1,B1,91), ..., (Sn, Bn,gn)},
where A C attr(R) and S; is a relation in the VDP, ¢,
is a selection condition, and B; C attr(S;) is minimal
such that m40¢R can be derived from #g,0,,5; (pos-
sibly together with other relations). More specifically,
{(S1,B1,91), -, (Sn, Bn, gn)} are determined as follows:!

(1) If deflv) = wmeopS and D C attr(S) is a set
of attributes involved in the select condition h,
derived_from(R, A, f) = {(S,B1,f)}, where By =
AUD.

(2) 12 def(v) = Tcah(ﬁclahlsil o N wcmathim),
where {iy,...,in} C {1,...,n} and D; is the set
of attributes in attr(S;) that is used in the se-
lect and join conditions, derived_from(R, A, f) =
{(51,B,f1),...,(Sn, B,fn)}, where B; = (ANattr(S;))U
D;.

(3) If deflv) = (mcop,S1) U (meop,S2), where D
is the set of attributes in attr(S;) that is used
in the select conditions, derived_from(R, A, f) =
{(51, B1, f),(S2, Ba,)}, where B; = (ANattr(S;))U
D;.

1Tn the interest of clarity, we present these definitions informally.
Also, as indicated in Section 5, we ignore the possibility that
renaming of attributes might be in the def(v).

?Note the same relation may be referred multiple times in a
n-way join formula.

(4) If deflv) = (meon, S1) — (Teon,Sa), where D; is de-
fined analogously as in (3), derived_from(R, A, f) =
{(51, B1, f),(Sa2, Ba,)}, where B; = (ANattr(S;))U
D;uC.

The execution of the VAP has two phases. During the
first phase, all the temporary relations to be constructed
are specified. Then they are constructed in a bottom-up
fashion through the VDP during the second phase.

The first phase is specified by the following algorithm:

(1) Initialization: TLet Unprocessed hold the input set
{(R1, A1, 1)y oy (Rny Ap, fr)), where A; C attr(Ry).
The elements in Unprocessed 1s topologically sorted
such that a parent node is sorted before i1ts children
nodes. The order is maintained, even when new
elements are inserted. The output set Processed is
set to 0.

(2) Processing the Unprocessed set: While Unprocessed
is not empty, for the first (R, 4, f) € Unprocessed

according to the topological order do:

(2a) Identifying further temporary relations to be con-

structed: For each (R}, Aj, f) € derived_from(R, A, f)iransaction (see Subsection 6.1)

if AL contains one or more virtual attributes, then a
temporary relation 7' = ﬂ'A/lUng needs to be con-
structed as well.

Merging temporary relations: If there is already
a candidate temporary relation 7”7 in Unprocessed
corresponding to a projection of R, T should be
merged with 77. Let 7" correspond to a pair
(R, B,g). (R}, B,g) is replaced by (R, (B U
AN, fV g). Tf there is no such 77, (R}, AL f) is

added into Processed.

(2b) Move (R, A, f) from Unprocessed to Processed.

We now turn to the second phase of the VAP
execution. The output set Processed of last phase is the
input of this phase. For each pair (R, A, f) € Processed,
a temporary relation 7' is constructed as 74 def{v), where
R = relation(v). They can be easily constructed in a
bottom-up fashion, except for the case where v is a leaf-
parent node. The rest of this subsection focuses on the
leaf-parent node case.

Suppose there exists (R, A) € Processed such that R is
associated with a leaf-parent node and the corresponding
temporary relation is 7. Since R is a virtual or hybrid
relation, 7" can only be derived from a relation S of
a hybrid-contributor source DBj or a relation S’ of a
virtual-contributor source DBy, In order to construct T,
the VAP polls S or S5’.

We consider the case that 7' is derived from S first.
As pointed out in Subsection 6.1, the data polled from
S must be consistent with the materialized data also

11

contributed from the same source where S resides.
To guarantee this consistency, we have developed the
following mechanism using ECA (see Section ?7): Using
notation defined in Subsection 6.1, suppose t* is the
time of the last update of the materialized data in the
mediator. The portion of materialized data derived
from DB corresponds to the state(DBk,rgf(t“).k) of
DBy. In this case we desire the result from polling of
S corresponds to the above state of DBy, as well. Note
that the source relation S may have been updated since
time rgf(t“).k. To obtain the “correct” value for S, i.e.,
the value for S as of time rgf(t“).k, we use the ECA.
More specifically, the inverse of smash of the updates for
S that are in the update-queue up to the time when the
result of polling R is received.

If 7" is derived from S’, the only restriction to the
polling of 5" is: for constructing temporary relations
for a given view state, each virtual-source can only be
polled at most once, so that no more than one state
of the same source can contribute to the view state.
For our specific case, this means: the VAP finds all
the leaf-parent temporary relations identified in the set
Processed and packages all pollings of DBy, into a single

6.4 Incremental maintenance of materialized
data

The IUP is based primarily on the use of active database
techniques to propagate incremental updates from the
update queue into the materialized portions of the VDP.
However, because some of the intermediate relations
might be virtual or hybrid, in the general case the TUP
may have to materialize some of that virtual data. To
describe the action of the IUP, we begin with some
preliminary comments. We then describe the “IUP
Kernel Algorithm”. This can be used directly in the
simplified context where the updates in the update queue
affect only fully materialized relations that have fully
materialized support. We then describe the general ITUP
algorithm, which uses two variants of the TUP Kernel
Algorithm.

As indicated in Subsection 6.1, the IUP process is
executed at a series of times ¢%,¢%,... called “update
transaction times”. In each such transaction, the entire
contents of the incremental update queue are combined
into a single delta A, which is propagated upwards
through the VDP.

Asindicated in Subsection 5.2, based on the definitions
of non-leaf nodes, a rule specifying how updates should
be propagated is associated with each edge of the VDP.
We define a VDP-rulebase to be a pair (V,edge_rule),
where

(a) ¥V =(V, E, class, source, def , Export) is a VDP; and

(b) edge_rule is a function that maps each edge in F to a
rule.

(This will be indepedent of annotations for V.)

The TUP Kernel Algorithm: We now describe the
ITUP Kernel Algorithm, which can be used directly for the
simplified case that all relations affected by the update
A are fully materialized and have fully materialized
support. In this case, the TUP acts as a specialized
active database execution model, that applies rules from
the rulebase in an order determined by the VDP. In
particular, the VDP is traversed once from the leaves
to the root according to a topological sort of the VDP,
computing incremental updates for successive nodes
along the way.

Suppose that an Squirrel mediator with VDP V and
annotation .A) has been deployed. Two repositories are
associated with each non-leaf node v of V. Suppose that
relation(v) = R. The first repository is denoted simply
as ‘R’, and holds the “current” population of relation
R. The second repository is denoted by ‘AR’, and holds
the smash of incremental changes for R that result from
the incremental propagation of updates during a single
execution of the TUP.

Before continuing, it is convenient to extend the
function edge_rule in the definition of VDP to apply to
nodes as follows:

edge_rule(v) = {edge_rule(v',v) | (v',v) € F}

Intuitively, edge_rule(v) holds all rules of in-edges to v,
i.e., all rules that propagate updates out of v to its
parents.

Some care must be taken if along the way incremental
updates affect two or more children of a node, as
illustrated next.

Example 6.1: Recall Example 2.1, where T, R’ and S’
are materialized and 7' = R’ X S’. Suppose that updates
AR’ and AS’ have been computed. The rules of Example
2.1 must be applied. However, it would be incorrect to
compute

AT = (RRXAS)U(AR' XS
because this will “miss” the contribution of AR’ X AS’.
One correct solution is to compute

AT = (RNAS)YU (AR Wapply(S',AS"))
This captures all of (R' X AS"), (AR X S') and
(AR'XAS) O

To avoid the problem of “missing” contributions of
deltas illustrated in the previous example, we develop
a systematic approach to firing rules and applying deltas
to relations. Let v be a node with relation(v) = R. By

the phrase “process node v” we mean to fire all eligible
rules in edge_rule(v) (in any order) and then to execute
the following steps:

R apply(R, AR);
AR := 0;

During TUP processing, a node v will not be processed

until all of its children have been processed. As a result,

all incremental changes to a node v are accumulated
before any of these changes are propagated to parents

of v.

We now present the ITUP Kernel Algorithm for VDPs.
This assumes that all affected relations are fully material-
ized and have fully materialized support. Suppose that a
Squirrel mediator has been deployed with VDP-rulebase
R = (V,edge_rule), where V = (V, E, relation, source, def
Export). We assume that the queue holding incremen-
tal updates from the source databases is nonempty. The
algorithm proceeds as follows:

(1) Initialization: Let A hold the smash of all incremental
updates held in the queue at time t. A can be
broken into a set ARj,..., ARy of subdeltas that
refer to some set Rj,...,Rp of source database
relations that are associated with leaf nodes v1, ..., vy
(respectively) of V. During this phase, two things
occur:

(la) All eligible rules in U{edge_rule(v;) | ¢ € [1, k]} are
fired, in any order.
(1b) All entries in the queue that contributed to A are

deleted. (It may be that during the execution of
step (1a) additional deltas were added to the queue.
These will remain in the queue until the next cycle
of rule firing is initiated.)

(2) “Upward” traversal of (V,E): During this phase
each non-leaf node is processed according to some
topological sort of (V,FE), i.e., in an order that
satisfies the following restriction: A node v cannot be
processed until all of its children have been processed.

Suppose that the above algorithm is executed at time

i, and that the most recent execution of the algorithm

that occurred before ¢} took place at time ¢} ;. The first

step of the algorithm propagates the updates in A to
the nodes that are directly above the leaf nodes of the

VDP (although it does not “process” those nodes). Tt is

straightforward to verify that

(A) If a non-leaf node v with relation(v) = R has been
processed, then
(i) the corresponding repository R will hold the pop-
ulation for R that reflects the state of the source
databases at time ¢}, and
(ii) the associated repository AR is empty.
(B) If a non-leaf node v with relation(v) = R has not
been processed, then

12

(i) the corresponding repository R will hold the pop-
ulation for R that reflects the state of the source

databases at time ¢} ;.
the associated repository AR may hold information

corresponding to some or all of the incremental
updates implied for relation R by the incremental
updates to the source databases reported between
times ¢}’ ; and t;'.

(C) A node v with relation(v) = R is not processed until
all contributions to AR have been computed.

(i)

In particular, then, after execution terminates, all of
the affected nodes will hold the state refecting all up-
dates that reached the queue up until the time of flush-
ing the queue, i.e., empty_queue(t?) in the notation of
Subsection 6.1. As a result, we have state(V,t¥)
V/(D_B[l, m], réf’(t*)) as promised in Subsection 6.1.

The general IUP algorithm: We now describe
the general IUP algorithm, that supports incremental
update to arbitrary materialized relations. We again
assume that this update transaction has time ¢}. The
general execution of TUP has three phases, namely (a)
determine mneeded temporary relations; (b) populate
needed temporary relations (using the VAP); and (c¢)
propagate updates.

Example 6.2: To understand why temporary relations
are needed, recall Example 2.2, where T and S’ are
materialized but R’ is virtual. If during processing
AS’ becomes non-empty, then the value of R’ must be
obtained, in order to apply rule #1 of Example 2.1. O

To perform phase (a), i.e., to determine the needed
temporary relations, we apply a variant of the IUP Ker-
nel Algorithm, called the IUP Preparation Algorithm.
In this algorithm, the TUP Kernal Algorithm is simu-
lated, to see what rules would be fired based on the delta
A obtained from the update queue. This yields a set
I ={(R1,A1),...,(Rn, An)} of projections of virtual re-
lations that will be needed. (If two temporary relations
(R, A) and (R, A") are needed for the same node, then
these are merged.)

The second phase (b) is simply a call to the VAP
to obtain temporary relations for all of I. Note
that all source databases that are accessed are hybrid-
contributors. [Materialized data in the VDP depends
on them because they were identified by phase (a), and
virtual data in the VDP depends on them because they
are being accessed to populate relations in I with virtual
attributes.]

Because the input queue holds all incremental updates
received after ;' ;, the VAP populates I to the state
corresponding to réf’(t% ;). This is appropriate, because
some of the updates in A might imply updates that

13

are to be applied to the materialized portions of hybrid
relations that participate in I.

Phase (c¢) of the general TUP algorithm is to apply
the TUP Kernel Algorithm, except using the temporary
relations in place of their associated hybrid or virtual
relations. When the TUP Kernel Algorithm is finished,
update the materialized part of any hybrid relation
according to the value of the associated temporary
relation. By the properties of the TUP Kernel Algorithm
discussed above, after completion of these steps the
materialized portion of the VDP will correspond to
state(DB[1, m], ref'(t%)).

7 Correctness of Squirrel Mediators

This section briefly sketches the proofs that Squirrel me-
diators are both consistent and (under natural assup-
tions) guarentee freshness.

Theorem 7.1: Squirrel mediators are consistent.

Proof: (sketch) To prove consistency, we begin with the
function réf constructed in Subsection 6.1. As verified
during the presentations of the ITUP and VAP algorithms,

state(V,14) = v(DB, réf(t!))

and so condition 1 of the definition of consistency is
satisfied. Also, i1t is straightforward to verify that
Conditions 2 and 3 of the definition consistency. O

To show that mediators guarentee freshness, we first
identify some natural properties that the overall environ-
ment can be assumed to satisfy. The following lengths of
time are important:

o announcement delay; (ann_delay;): the period be-
tween the time when updates are committed in
database DB; and the updates are “announced” to
the mediator

communication delay; (comm_delay;): the time it
takes for messages from DB; to reach the mediator,
and for messages from the mediator to reach DB;.

update holding delaym.q (u_hold_delaymeq): the length
of time in the worst case between when an update
might arrive at the mediator and when the mediator

%;ealrts the next upélalte tra Sa%loﬁngﬁga?tﬁgoecﬁmﬁg

aymed u_proc AYmed
worst case between when the mediator starts an up-
date transaction and completes it, excluding the time
taken to query the source databases. at the mediator
and when the effect of that update 1s propagated into
the materialized data of the mediator.

query processing delay; (q_proc_delay;): the length of
time 1t takes 1n the worst case for DB; to answer a
query posed against it. (It is 0 if queries are not made
against DB;.)

o query processing delaymeq (qproc_delaymeq): the
length of time it takes in the worst case for the
mediator to do processing associated with the QP and
VAP, excluding the time taken to query the source
databases.

Both ann_delay; and u_proc_delay,.q are dictated pri-
marily by policies, e.g., on how often source databases
should transmit updates to the mediator, and how fre-
quently the mediator should flush its incremental update
queue.

We now state:

Theorem 7.2: Suppose that in an integration envi-
ronment involving source databases DB;,..., DB, and
Squirrel mediator, the delays are bounded by ann_delay;,
comm_delay;, u_hold_delaymeq, u_proc_delaymed,
q_proc_delay;, and q_proc_delay,.q. Define vector j?so
that for materialized- and hybrid-contributors DB; and
virtual-contributors DB; we have:

fi = ann_delay; + comm_delay;
+u_hold_delaymeqd + v_proc_delaymeq
+X7_, (g-proc_delayy + comm_delays)
+q_proc_delaymed

f;i = Xi_i(g-proc_delayr + comm_delayr)

+q_proc_delaymed

Then the integration environment is guarenteed fresh
within f after time ty;e0 _inie-

Proof: (sketch) From the proof of Theorem 7.1
we know that for each query transaction time t;]»,

state(V,t?) V(D_B,Tgf(t?)). Also, it Is easy to
verify that for each source database DB; we have t? —
ref(tf).i < f;. O

The choice of fin the above theorem reflects the worst
case, in which a query against the mediator must access
all hybrid- and virtual-contributor source databases.
Importantly, if a query against fully materialized data
is asked, then the “freshness” for each materialized-
contributor database DB; 1s

fi

ann_delay; + comm_delay;
+u_hold_delaymed + u_proc_delaymed

References

[ACHK93] Y. Arens, C.Y. Chee, C.N. Hsu, and C.A.
Knoblock. Retrieving and integrating data
from multiple information sources. Intl
Journal of Intelligent and Cooperative Infor-
mation Systems, 2(2):127-158, 1993.

14

[ADD%91] R. Ahmed, P. DeSmedt, W. Du, W. Kent,

[DHS4]

[DHRO5]

[GHI94]

[HJ91]

[LMRO0]

[ME93]

[SBG*81]

[T+90]

[U1182]

[WHWS9)

M. Ketabchi, W. Litwin, A. Rafi1, and M. C.
Shan. Pegasus heterogeneous multidatabase
system. [FEE Computer, December 1991.

U. Dayal and H.Y. Hwang. View definition
and generalization for database integration
in a multidatabase system. IFEFE Trans.
on Software Engineering, SE-10(6):628-644,
1984.

M. Doherty, R. Hull, and M. Rupawalla.
Structures for manipulating proposed up-
dates in object-oriented databases, 1995.
Technical report in preparation.

S. Ghandeharizadeh, R. Hull, and D. Ja-
cobs. Heraclitus[Alg,C]: Elevating deltas
to be first-class citizens in a database pro-
gramming language. Technical Report USC-
(CS-94-581, Computer Science Department,
Univ. of Southern California, 1994.

R. Hull and D. Jacobs. Language constructs
for programming active databases. In Proc.
of Intl. Conf. on Very Large Data Bases,
pages 455-468, 1991.

W. Litwin, L. Mark, and N. Roussopo-
los. Interoperability of multiple autonomous
databases. ACM Computing Surveys,
22(3):267-293, September 1990.

J. G. Mullen and A. E. Elmagarmid. Inter-
SQL: A multiatabase transaction program-
ming language. In Proc. of Intl. Workshop
on Database Programming Languages, 1993.

J. M. Smith, P. A. Bernstein, N. Good-
man, U. Dayal, T. Landers, K.W.T. Lin, and
E. Wong. Multibase — Integrating heteroge-
nous distributed database systems. In Na-
tional Computer Conference, pages 487-499,
1981.

G. Thomas et al. Heterogeneous distributed
database systems for production use. ACM
Computing Surveys, 22(3):237-266, Septem-
ber 1990.

Jeffrey D. Ullman. Principles of Database
Systems (2nd edition). Computer Science
Press, Potomac, Maryland, 1982.

S. Widjojo, R. Hull, and D. Wile. Dis-
tributed Information Sharing using World-
Base. IFEE Office Knowledge Engineering,
3(2):17-26, August 1989.

[Wie92] G. Wiederhold. Mediators in the architec-
ture of future information systems. IEEE
Computer, pages 38-49, March 1992.

[ZGHW95] Y. Zhuge, H. Garcia-Molina, J. Hammer,
and J. Widom. View maintenance in a ware-
housing environment. In Proc. ACM SIG-
MOD Symp. on the Management of Data,
pages 316-327, San Jose, California, May
1995.

[ZHK95] G. Zhou, R. Hull, and R. King. Gener-
ating data integration mediators that use
materialization. Technical report, Com-
puter Science Department, University of
Colorado, May 1995. Revised Septem-
ber, 1995. Available via anonymous ftp at
ftp://ftp.cs.colorado.edu/ /users/hull /squirrel:tech-
report-materialization.ps.

[ZHKF95] G. Zhou, R. Hull, R. King, and J-C. Fran-
chitti. Using object matching and material-
ization to integrate heterogeneous databases.
In Proc. of Third Intl. Conf. on Cooperative
Information Systems (CooplS-95), Vienna,
Austria, May 1995.

15

