
- 1 -

Persistence Software: Bridging Object-Oriented Programming
and Relational Databases1

Arthur M. Keller2 Richard Jensen3 Shailesh Agarwal4

Stanford University Persistence Software Persistence Software

and

Persistence Software

ABSTRACT

Building object oriented applications which access relational
data introduces a number of technical issues for developers
who are making the transition to C++. We describe these
issues and discuss how we have addressed them in
Persistence, an application development tool that uses an
automatic code generator to merge C++ applications with
relational data. We use client-side caching to provide the
application program with efficient access to the data.

1. INTERFACING C++ CLASSES WITH
RELATIONAL DATA

Object orientation promises dramatic benefits in software
productivity, quality and reusability. Yet as with most
technology innovations, it requires a significant break from
the development practices of the past. Specifically, the
difficulty of integrating objects with relational databases
has emerged as a major barrier to adoption of object
technology by developers who have a significant existing
base of hierarchical or relational data.

Today, C++ developers have to hand code an interface
between their objects and their existing relational databases.
For many projects, this task alone accounts for 20 - 30% of
the total programming effort. Using a code generator to
automate this work can provide improvements in
productivity and quality of C++ applications. This

1 For further information on Persistence Software, please
write to 1650 South Amphlett Blvd., Suite 100, San
Mateo, CA 94402 or info@persistence.com

2 Author's address: Stanford University, Computer Science
Dept., Stanford, CA 94305-2140,
ark@db.stanford.edu

3 Author's address: Persistence Software (see above),
rjensen@persistence.com

4 Author's address: Persistence Software (see above),
sagarwal@persistence.com

approach also provides a way for companies to transition to
C++ applications while leveraging existing investments in
relational data.

2. ALTERNATE APPROACHES

One approach for interfacing C++ classes to a relational
database is through a C++ class library, containing classes
that model relational entities such as tables, tuples and
fields. To build an application, the developer customizes
these building blocks by specifying a mapping between a
generic tuple instance and a specific class instance.
Inheritance, associations and runtime behaviors must be
hand-coded.

In contrast, a code generator produces C++ classes directly
from the application object model information. The
developer can concentrate on the correctness of the model
while the code generator automatically creates the database
interface portion of the application. The code generator can
also create a table schema based on the object model, or
map the object model into an existing table schema.

 The application object model supplies the information
about inheritance, attributes and associations; the code
generator translates these inputs into appropriate table
structures and C++ class definitions. Classes may be related
via a generalization-specialization hierarchy or binary
associations. (Persistence does not currently support
aggregation of classes or higher-order associations.)

3. BENEFITS OF DATABASE INTERFACE
GENERATOR FOR C++/RDB ACCESS

Manually interfacing C++ classes to relational tables is
feasible, but becomes tedious and prone to error when many
classes exist. It is also hard to ensure that the semantics of
the model are enforced. A Database Interface Generator
(“generator”) automates this repetitive task and provides a
uniform interface for each class in the model. By providing
consistency checks at the model level, the generator can
increase the confidence in the quality of the database access
portion of the application.

Description of Database Interface Generator
Approach

Using the application object model to drive the code
generation preserves the semantics of the model. The code
generator takes care of:

• Encapsulating database access for classes and attributes.

- 2 -

Figure 1. Class definition and mapping.

Figure 2. Inheritance.

• Inheriting attributes and methods from parent classes.

• Associating classes with one another.

The generator then emits code that enforces these semantics
for each class.

Encapsulating Database Access

C++ developers expect to be able to work with persistent
objects which encapsulate the details of data access. The
generator performs this encapsulation by mapping classes
and attributes in the application object model to tables or
views in the database.

The developer has a choice of specifying the primary key
attributes for each table or asking the generator to create and
maintain a unique OID for each instance. Within the class,
the generator provides a create and remove method for
instances and a set and get method for each attribute, fully
encapsulating the details of data access within the methods
of each class (see Figure 1).

Inheriting Methods and Attributes

Inheritance in the application object model maps to single
inheritance in the C++ classes. (Persistence currently does
not support multiple inheritance). Only leaf classes are
mapped to tables in the database (horizontal partitioning).

Attributes and associations from parent classes are
automatically propagated down to column definitions in the
leaf class table (see Figure 2).

Horizontal partitioning of tables for inheritance minimizes
the total number of tables and speeds access for single
instances (e.g., fetch Employee where name = “Smith”). It
has the disadvantage, however, of slowing access for queries
across parent classes (e.g., fetch Person where name =
“Smith”) because the query must be replicated across each
subclass table.

An alternate technique for inheritance would be to map each
class to a table (vertical partitioning). This approach speeds
queries across parent classes but slows retrieval for single
instances, which are forced to access several tables to
“rebuild” themselves each time they are accessed (e.g., first
read the Parent table, then the Employee table to retrieve
the object where name = “Smith”).

Associating Classes

Associations in the object model are implemented by
foreign keys in the database. For associations, the code
generator creates get and set methods in each class to access
instances of the other class through the association. For
example, suppose we have two classes, Department and
Employee. Each Department employs zero to many
Employees, and each Employee works in one and only one
Department (see Figure 3).

- 3 -

Figure 3. Association.

For this object model, the generator would create a
getEmploys() method in the Department class to get all the
Employees associated with a particular Department by
performing a foreign key lookup in the Employee table.
This allows direct support of navigational queries in the
developer's C++ application. Similarly, addToEmploys()
and rmvFromEmploys() would add and remove instances
from the set of Employees related to a particular
Department.

The cardinality of binary associations are enforced via
column constraints in the database and code in the C++
classes. For example, an Employee must work in one and
only one Department. Therefore the constructor for the
Employee class created by the generator will take a
Department as a required attribute.

The generator maintains the semantics of the association
during deletion via code in the C++ classes. The developer
specifies a delete constraint: block, propagate, or remove
(and set foreign key to NULL) for each class in each
relationship. For example, on deletion of a Department,
the delete action "block" would block the deletion if there
are any Employees associated with this Department, while
the delete action "propagate" would propagate the deletion
through to all associated Employees.

Violations of the delete constraints are reported to the user
via an error mechanism-regardless of whether the error was
detected by the database or by the generated C++ classes.

Benefits of Database Interface Generator
Approach

A Database Interface Generator (“generator”) can encapsulate
database access for C++ classes, providing productivity,
quality and reuse benefits over other approaches.

Increasing Productivity

The most significant benefit from a generator is the
productivity it provides for applications which access
relational data. By automating the creation of database
interface methods for each class, a code generator can reduce
the total development time for such an application by 20 to
30%.

A generator also reduces the impact of changes in the
model. This can be especially true during a prototyping
phase for a project. Significant changes to the application
object model can be implemented in minutes rather than
weeks, enabling an iterative approach to building the
application.

As the class hierarchy is changed, or new attributes or
associations are needed, the database access code is quickly
modified with the developers devoting their time to
changing their use of the interfaces for the regenerated
classes--work that would have been necessary anyway, but a
much smaller fraction of the application needs to be
changed.

Improving Code Quality

The generator produces code according to a set of rules.
Over time, these rules will be more thoroughly tested than
database interfaces written from scratch. As the rules are
modified to produce more correct and efficient code, the
benefits that have been incorporated into the generator can
be applied retroactively to existing applications - thereby
improving their quality and performance with little or no
productivity impact.

If the generator is careful to preserve the interfaces to the
generated classes, this will cost very little. If there are
interface changes, the cost of making the necessary
adaptations is still small relative to the cost of a team
making similar improvements to an existing application.

Reusing Classes

A generator can also increase the reusability of classes. One
barrier to reuse is learning the interface for classes created
by different developers. With a generator, each class shares
a core set of capabilities and a uniform interface. Once
developers have learned the basic methods for manipulating
one class, they can easily work with other classes.

A second barrier to reuse is that the original developer
usually only implements the methods they need to
complete a particular task. With a generator, each class
contains a complete set of methods for working with the

- 4 -

Figure 4. Smart pointer.

database. The developer is assured of having “complete”
classes to work with.

4. CONSIDERATIONS FOR RUNTIME
OBJECT MANAGEMENT

There are a number of important runtime issues in merging
C++ classes with relational databases. Specifically:

• Navigating objects structures which have been read from
the database

• Providing concurrent access to multiple users

• Ensuring consistency between cached objects and tuples in
the database

Here again, a code generator can be used to produce
specialized classes which resolve these issues. In addition, a
Runtime Object Management System(“runtime system”)
provides database access and object caching for applications
generated by the code generator.

The runtime system enables rapid object access and
navigation by swizzling primary and foreign key attributes
into in-memory pointers. It also provides data consistency
and concurrency by invoking the transaction and locking
mechanisms of the underlying databases.

The Runtime Object Model

The methods created by the Database Interface Generator
never return a direct pointer to the data. Instead, they return
a smart pointer to the data. This smart pointer keeps a
reference count and can be shared by several variables. For

example, if two queries return the same tuple, both query
results would point to the same smart pointer.

The smart pointer in turn contains a pointer to the data for
an instance and the primary key value for an instance. To
ensure consistency between the object cache and the
database, it is necessary to flush the data in the cache each
time a transaction is commited. When this happens, the
primary key value is used to transparently re-read the data
from the database (see Figure 4).

Navigating Object Structures

C++ instances can refer directly to other instances through
pointers. Using pointers, C++ developers can build
complex in-memory structures which can be quickly
navigated by following the pointer links between objects.
Relational tuples, however, can only refer indirectly to
other tuples through foreign key “pointers.” Navigating
relational structures, such as a bill of materials, requires a
separate query to traverse each link of the structure in each
direction.

The runtime system performs the task of converting
primary and foreign key values into in-memory pointers, a
process we call semantic key swizzling. This has the effect
of speeding performance for navigational queries once the
object instances have been read in from the database.

The runtime system supports key- based queries over
objects in the cache. For any class, given the primary key
values, if the corresponding object has already been
registered then the runtime system returns its smart pointer.
This feature enables applications to selectively cache certain
sets of objects which can then be rapidly accessed via the
object cache.

In our previous example, each Department employs zero to
many Employees. The method, getEmploys() performs a
foreign key lookup in the Employee table to retrieve all the
Employee instances which are associated with a particular
Department. The runtime system creates pointers between
the cached Department instance and its associated Employee
instances. The next time this association is navigated -
either from the Department or the Employee side - the
information will be returned immediately from the object
cache.

Enabling Concurrent Data Access

The developer uses transactions to control the level of
locking performed in the database. The three basic types of
transactions currently supported are: dirty read (no locks),
consistent read, and read/write. As data is accessed or
updated by the application, depending on the type of
transaction, the runtime system places the appropriate locks
on the corresponding tuples in the underlying database
using the database’s locking mechanism.

In addition to these transactions, the developer can specify
either shared or exclusive locks on entire tables in the
database. In cases where the application does not specify
any transaction, an implicit read-write transaction is started.

- 5 -

When the application explicitly invokes a transaction, the
implicit transaction is committed and the new transaction is
started.

Enforcing Data Consistency

As objects are retrieved, tuples corresponding to these
objects are locked in the underlying database for the
duration of the transaction. When the transaction is
committed these locks are released and the data in the cache
must be flushed.

When the transaction commits, only the data for the objects
is flushed - the smart pointers are retained in the cache. So,
the next time data corresponding to any of these objects is
requested, the appropriate locks are automatically re-acquired
and data is read from the database and cached.

The cache maintains a single copy of the data for the entire
application. This avoids duplication of data if different parts
of the application have to access data associated with a
given object. Maintaining a single copy of data ensures that
the data remains consistent. Different parts of the
application have access to the latest version of the data and
changes in one part of the application are visible
throughout the application.

Providing Database Independence

The runtime system manages the database connections,
responds to database queries and implements the transaction
mechanism. It provides a database independent interface
which enables applications to transparently access databases
from different vendors.

5. BUILDING APPLICATIONS WITH
PERSISTENCE

Persistence is an application development tool which
consists of a Database Interface Generator, to convert an
application object model into C++ classes and relational
tables; and a Runtime Object Management System, to
speed data access and provide data concurrency and
consistency.

Building an application with persistence follows a four-step
process: (i) enter an object model for the application, (ii)
generate the database interface classes, (iii) add custom code
to the generated classes, (iv) compile and link to the
appropriate runtime system.

i. Entering the Object Model

The application in this example will have two classes,
Department and Employee. The two classes have a single
association: a Department employs zero to many
Employees, and an Employee works in one and only one
Department.

The developer enters class and attribute information into the
Persistence interface. For each class, the developer specifies
inheritance and identifies the primary key attributes for the
corresponding table.

Next the developer creates the associations between the
classes and for each association identifies the foreign key
attributes which store that association in the database.

ii. Generating Database Interface Classes

Once the object model is entered, the developer presses the
generate button in Persistence to create the corresponding
classes. For each object in the model, persistence generates
a corresponding class. For example, the files,
Department.H and Department.C will be generated for the
Department object in the model. Persistence generates a
strongly typed ordered collection class, Department_Cltn,
to store query and association results.

Since the class files generated by Persistence will be
overwritten each time the application object model changes,
Persistence provides a set of include files,
Department_stubs.H and Department_stubs.C to store
custom methods for the class. The stubs files are not
overwritten when the object model schema changes,
allowing the developer to preserve their changes as the
object model evolves.

To handle runtime caching, Persistence also generates a
smart pointer, key, and data class for each object - in this
example, Department_rep, Department_keyObj and
Department_Data. These runtime classes are used to provide
object caching and consistency; they are not used by the
developer.

iii. Adding Custom Code

Once the code is generated, the developer can add custom
methods to the classes and incorporate Persistence-generated
classes into other classes and projects. Figure 5 shows a
code sample for a simple application that logs in to the
database, creates new Department and Employee instances,
and sets the association between a Department and an
Employee.

iv. Linking To Runtime System

All code generated by Persistence is database independent.
At link step, the developer links to the runtime object
management system and to the appropriate database library
to create a complete application.

6. CONCLUSIONS

We have demonstrated an approach to bridging object-
oriented programming to relational databases. Our
approach allows new applications to be written in C++
using legacy relational databases while operating
concurrently with legacy applications. Our approach has
good performance by using queries to efficiently pre-fetch
desired data from the database to take advantage of
associative search and by caching the data to permit in-
memory navigation. Thus, data is loaded into memory
based on application needs instead of its physical
organization in the database.

- 6 -

// Sample method with Persistence generated
// methods shown in bold

void demonstratePersistenceMethods()
{
 // Login to the database
 ROMS::connect(“scott”,”tiger”);

 // Create new persistent department
 Department * currDept = new

Department("Sales","Building 1");

 // Create new employee, assign to department
 Employee * emp =

new Employee("Jensen", currDept);

 // Read department with key = "Systems"
 Department * existingDept =

Department::queryKey("Systems");

 // Read all employees who work in Systems dept
 Employee_Cltn * systemsEmpSet =

existingDept-> getEmployees();

 // Update employee relationship
 // (also maintains ref integrity)
 emp-> setWorksIn(existingDept);

 // Delete Sales dept from database
 // (also checks delete constraints)
 currDept-> remove();
}

Figure 5. Application code example.

We use the client-server services of the relational DBMS,
but we provide a cache of objects on the client side. This
approach of caching on the client side is typically used by
object-oriented DBMS. However, we also take advantage
of the relational DBMS' server side caching as well as its
efficient associative search capabilities. In this way, our
customers retain their investment in application software,
relational DBMS, and their data while obtaining the
benefits of writing new software using the object paradigm.

7. ACKNOWLEDGEMENTS

Chris Keene helped improve the presentation of this
material. Derek Henninger assisted in the design of this
system. Some of the ideas presented in this work were
based on experience of the Penguin project at Stanford
University.

8. BIBLIOGRAPHY

[Barsalou 90a] Thierry Barsalou, "View Objects for
Relational Databases," Ph.D. dissertation, Stanford
University, March 1990, available as technical report
STAN-CS-90-1310.

[Barsalou 90b] Thierry Barsalou and Gio Wiederhold:
"Complex Objects For Relational Databases,"

Computer Aided Design, Vol. 22 No.8, Buttersworth,
Great Britain, October 1990.

[Cattell 91] Rick Cattell, Object Data Management: Object
Oriented and Extended Relational Systems, Addison-
Wesley, 1991.

[Barsalou 91] Thierry Barsalou, Niki Siambela, Arthur M.
Keller, and Gio Wiederhold, "Updating Relational
Databases through Object-Based Views," ACM
SIGMOD, Denver, CO, May 1991.

[Keller 85] Arthur M. Keller, "Updating Relational
Databases Through Views," Ph.D. dissertation,
Stanford University, February 1985, available as
technical report STAN-CS-85-1040.

[Keller 86a] Arthur M. Keller, "The Role of Semantics in
Translating View Updates,'' IEEE Computer, 19:1,
January 1986.

[Keller 86b] Arthur M. Keller, "Choosing a View Update
Translator by Dialog at View Definition Time,'' 12th
Int. Conf. on Very Large Data Bases, Kyoto, Japan,
August 1986.

[Keller 86c] Arthur M. Keller, "Unifying Database and
Programming Language Concepts Using the Object
Model" (extended abstract), Int.\ Workshop on Object-
Oriented Database Systems, IEEE Computer Society,
Pacific Grove, CA, September 1986.

[Keller 87] Arthur M. Keller and Laurel Harvey, "A
Prototype View Update Translation Facility," Report
TR-87-45, Dept. of Computer Sciences, Univ. of
Texas at Austin, December 1987,

[Law 90] Kincho H. Law, Gio Wiederhold, Thierry
Barsalou, Niki Sambela, Walter Sujansky, and David
Zingmond, "Managing Design Objects in a Sharable
Relational Framework," CIFE, Stanford University,
March 1990, ASME meeting, Boston, August 1990.

[Lee 90a] Byung Suk Lee and Gio Wiederhold, "Outer Joins
and Filters for Instantiating Objects from Relational
Databases through Views," Center for Integrated
Facilities Engineering (CIFE), Stanford University,
Technical Report 30, May 1990.

[Lee 90b] Byung Suk Lee, "Efficiency in Instantiating
Objects from Relational Databases Through Views,"
Ph.D. dissertation, Stanford University, December
1990, available as technical report STAN-CS-90-1346.

[Wiederhold 86] Gio Wiederhold, "Views, Objects, and
Databases," IEEE Computer, 19:12, December 1986.

[Wiederhold 89] Gio Wiederhold, Thierry Barsalou, and
Surajit Chaudhuri, "Managing Objects in a Relational
Framework," Stanford Technical report CS-89-1245,
January 1989, Stanford University.

[Wiederhold 91] Gio Wiederhold, Thierry Barsalou, Byung
Suk Lee, Niki Siambela, and Walter Sujansky, "Use of
Relational Storage and a Semantic Model to Generate
Objects: The PENGUIN Project," Database `91:
Merging Policy, Standards and Technology, The
Armed Forces Communications nd Electronics
Association, Fairfax VA, June 1991, pages 503-515.

