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ABSTRACT 
In the design of FPGA architectures, it is important to understand 
wiring requirements of placed circuits.  Rent’s Rule is an 
empirical metric of connectivity and congestion in a circuit that 
has applications in the prediction of interconnect usage. 
Traditional methods of calculating Rent exponents are based on 
recursive partitioning, with the exception of some recent work 
[21], [22] that defines an alternative Rent exponent of a circuit 
based on a placement-induced partitioning tree. 
In this paper we take a different look at the calculation of Rent 
exponents in placement, contrasting several different methods 
empirically and outlining the relevant biases in each.    We will 
compare the Rent exponent observed for timing-driven vs. purely 
congestion-driven placement algorithms, and for different types of 
benchmark circuits.   We also observe the temporal behaviour of 
Rent exponents through a simulated annealing placement and its 
correlation to the placement cost function and wirelength.  Finally 
we apply the empirical results to the analysis of the Cyclone 
FPGA architecture and comment on the routability of the device. 

Categories and Subject Descriptors 
B.7.2  [Integrated Circuits] Design Aids -- layout, placement 
and routing. 

General Terms 
Algorithms, Measurement, Experimentation, Design, Theory. 

Keywords 
SLIP, interconnect prediction, Rent, FPGA architecture. 

1. INTRODUCTION 
Rent’s Rule [15] is a well-known power-law equation found to 
describe the empirical relationship between the size of a sub-
circuit and the number of connectors that sub-circuit has to the 

outside world.  It is usually phrased in the form   T = k B
r 

where 
B is the size of a typical block or sub-circuit and T is the number 

of connectors (terminals or pins) on it.  The parameter r is the 
Rent exponent, which is commonly viewed as an intrinsic 
property or characteristic of the individual design, and t is often 
defined as the average number of pins incident to an atomic block. 
Early formulations of Rent’s Rule do not specify an algorithm for 
computing the Rent relationship, though the typical assumption is 
to use the regions defined by a recursive partitioning tree.  
However even then the result is subject to the algorithm which 
generates the partitioning tree. 
This motivated Hagen et. al. [13] to define the intrinsic Rent 
parameter as that based on the “best” partition tree possible for a 
given circuit, and they showed that the results do change 
empirically based on the choice and quality of algorithms.  
Since the primary motivation of Rent’s Rule is the understanding 
of placement properties and interconnect usage there have been a 
number of phrasings with reference to placement.  Donath [11] 
related the Rent parameter of a placed circuit to the Rent 
calculation induced by applying a recursive partitioning tree to the 
placement itself.  Feuer [12] argued that for a “good” placement 
an arbitrary region of the placement grid with a center and 
constant radius could be used to describe regions for the 
calculation of Rent’s Rule.  More recently, Verplaetse et. al. [21] 
and Yang et. al.  [22] defined and computed the placement Rent 
exponent of a circuit by imposing a partitioning hierarchy on the 
placed circuit with recursive bisection as suggested by Donath’s 
theory.  These studies showed that the Rent exponents computed 
from a placement-induced partitioning tree are larger than those 
arising from a natural partitioning hierarchy.   
Though interesting in general, the primarily use of Rent’s Rule 
arises from extensions that attempt to predict interconnect 
requirements for a circuit based on its Rent characteristic.  (See 
[7], [17] as representative of a body of literature on this topic).  
There are two applications of this concept.  First, and more 
common, is to estimate interconnect as a preprocessor to 
placement, providing useful information to the placement tool.  
However, a second application is in the design of FPGA 
architectures ([4], [14], [10], [16]).   Some key differences in the 
second application is that the FPGA architecture problem requires 
accuracy over speed of calculation, and is more sensitive to worst-
case interconnect than to average interconnect – both in contrast 
to interconnect estimation for CAD tools. 
A thesis of this paper is that partitioning-based methods of 
calculating the Rent exponent are not natural reflections of 
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The structure of the paper is as follows:  Section 2 outlines our 
experimental platform.  In Section 3 we propose and contrast 
alternative methods for calculating the placement Rent exponent.  
As a natural extension of calculating Rent exponents during 
placement we show results in Section 4 which illustrate the 
behaviour of the Rent exponent of individual circuits through the 
progress of a simulated-annealing based placement tool, and show 
correlations between the placement cost-function, Rent exponent 
and bounding-box wirelength.  Section 5 briefly discusses 
wirelength measurement for the Cyclone FPGA architecture. 
Section 6 applies the empirical results from the previous sections 
to analyze the routability of Cyclone.  We conclude in Section 7. 

2. EXPERIMENTAL PLATFORM 
The empirical results in this paper are based on a number of 
industrial VHDL/Verilog circuits targeting the Cyclone FPGA 
architecture [1], and using Altera’s Quartus II V3.0 software for 
synthesis, placement and routing.       
Because the circuits and target architecture contain embedded 
RAM and arithmetic circuitry (dedicated ripple carry), both of 
which generate placement constraints, we have some loss of 
abstraction.  However, what we lose in loss of abstraction is 
compensated for by the volume of data we can generate on a large 
number of “real” circuits. 
Briefly, the Cyclone FPGA consists of logic elements, which pair 
a 4-input lookup tables (LUTs) with a DFF.  These are grouped 
into clusters called LABs, each of which contains 10 logic 
elements.  For the purposes of this paper, the connectivity in a 
LAB is a full crossbar.  LABs are arranged in an n by m grid that 
can be thought of as similar to a gate-array with large grid-
elements.  Prefabricated interconnect exists between the LABs in 
the form of horizontal (H) and vertical (V) wires, all of length 4, 
which can be driven at their end-point but tapped at any point.  
The width of each channel in the grid is 80 tracks (wires), 
independent of orientation.  Logic elements in a given LAB are 
able to drive 20 distinct H lines and 40 distinct V, and are able to 
receive signals from 80 H and 160 V lines.   Simultaneously, 
however, a maximum of 26 H and V lines can drive into the same 
LAB.  A device contains roughly n⋅m⋅10 logic elements, n⋅80⋅m/4 
H lines and m⋅80⋅n/4 V lines; roughly because some number of 
LABs are replaced by dedicated RAM blocks. 
The programming of an FPGA sets SRAM bits controlling muxes 
(see Figure 1) in the switching network of the device so that a 
given input to a given logic element receives a specific signal 
from among the set of potential signals just described.   To the 
right of Figure 1 an input to a LAB is shown, similarly each H, V 
driver contains programmable muxing to determine which signal 
drives out on it. 
Our CAD flow consists of a greedy and annealing based 
clustering of logic elements into LABs, followed by a full 
simulated annealing placement.  The placement engine uses 
LABs.  The cost function for placement is a combination of 
wirelength, congestion (maximum H and V channel width), 
timing and some other factors.  Move generation is a function of a 
number of factors involving wirelength, congestion and timing.  
The number of iterations of simulated annealing is a function of 

of as “about 75”.  The number of moves per iteration is slightly 
superlinear in the design size. 
We will use 4 different devices in this study.  The C3, C6, C12 
and C20 devices have approximately 3000, 6000, 12000 and 
20000 4-LUTs respectively.  A 4-LUT can be thought of as about 
3-4 gates of combinational logic, so the general range is from 
10000 to 100000 2-input combinational gates not including flip-
flops, memories or arithmetic (carry chains).  Approximately 80 
industrial circuits will be used, ranging from 15 to 25 circuits per 
individual device. 
Note that the number of tracks per channel is constant, and is not 
a function of device size.  When feasible, such consistency can 
significantly improve the efficiency of full-custom layout efforts 
over the multiple members of a device family. 

3. RENT CALCULATION AND ANALYSIS 
As outlined earlier, our primary goal is to investigate the expected 
placement Rent exponents for a large set of industrial circuits, 
using different calculation methods and through time.  One of the 
motivations for this arises from some biases inherent in the 
partitioning-based calculation. 
Define the first calculation method for placement Rent exponents, 
PART, as based on [21] and [22]:  given a fixed placement 
impose a recursive partitioning tree and sample resulting points. 
We immediately note one inherent tradeoff in this process.  Either 
one has exponentially more points of smaller size (there are O(2i) 
regions of size i) or, as done in both studies, all regions of a given 
size are averaged.  The latter results in very few points for the 
linear regression, which can affect its statistical reliability. 
A second criticism of this method is that it is not “natural” to draw 
these boundaries at exactly the bisection boundaries.  Unless 
artificially constructed, circuits are neither a natural power of 2 in 
size, nor square.   But also, most partitioners do not attempt to cut 
circuits exactly in half, so we could be sampling regions that are 
slightly off of what the partitioner saw as being a cut if the placer 
is partitioning based also. 
This motivates exploring alternative methods to generate 
measurement regions, inspired by Feuer’s theory [12] of 
placement regions for Rent analysis. 

3.1 Defining Rent regions 
We define three alternative methods for generating points or 

Rent exponents, all three of which are 
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Figure 1.  Cyclone architecture and connectivity. 
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regions for measuring 
the device and design size which, for this density, can be thought 
based on random sampling of placement regions.  See Figure 2. 
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RND_xy_xy:  Choose two random points in the grid, and define 
the sampling region as the set of logic elements bounded by the 
two points. 
RND_xy_len:  Choose a random region size (x and y lengths).  
Then, from the set of feasible (x,y) points for the lower-left corner 
of the region of these dimensions, choose its location. 
RND_xy_rad:  Choose a random (x,y) location of a region 
“center”, and a random radius.  In this case, we allow regions to 
overlap area outside the chip by truncation. 
These definitions are somewhat arbitrary; the point is to represent 
alternative reasonable approaches to generating regions, and 
examine the behaviour of each.   For the first, size is a by-product 
of location, the second the size of the box is paramount, and the 
third the location of the box is paramount with at somewhat 
variable size. 
Note that all of these approaches, and the definition of our 
architecture mean that we are using rectangular regions in general.   
Though the mathematical modeling of this is discussed in Dambre 
et. al. [8], we haven’t made any attempts to adjust the empirical 
calculation accordingly.  One observation by Dambre was that 
rectangular boxes with less-square aspect ratios generated regions 
with more than typical pin to logic ratios.  This was also observed 
by Betz [2] in the study of non-square FPGA architectures.  To 
avoid the Region II and Region III effects on Rent behaviour [19] 
we resampled any regions found to contain more than 1/3 of the 
chip, and to make reasonable aspect ratio boxes we resampled any 
regions with aspect ratio greater than 4.  The Region III issue was 

Figure 3 illustrates sampling bias.  The PART method of choosing 
regions is “fair” – every cell contributes equally to the Rent 
calculation.   This is not true for the other methods:  RND_xy_xy 
and RND_xy_len both have a significant bias against the 
contribution of edge logic elements to the Rent calculation.  
RND_xy_rad is much more fair, but not completely fair.  In these 
figures the x and y axes represent LAB locations on the chip, and 
the z axis the sampling incidence relative to the average (100%). 
RND_xy_rad, though obviously the best for fairness, has an 
interesting distribution, which arises from a combination of the 
part having more columns than rows, and that this method allows 
truncation combined with the filtering, for all methods, of regions 
more than 1/3 the size of the chip.  If the latter is removed, the 
distribution unimodal is as the previous two, but much flatter. 
Figure 4 illustrates size bias on a linear scale.  PART is inherently 
biased towards very small regions (exponentially so).  
RND_xy_xy is less, but obviously, biased.  RND_xy_len is 
inherently unbiased by construction (and could be made moreso 
by forcing square regions).  RND_xy_rad is more complicated to 
consider due to truncation, but is reasonable.  
This is better viewed in Figure 5, which shows log-log Rent plots 

 to be a typical representative).  All 

 
Figure 3.  Sampling coverage per selection method. 

 
PART:  Regions arise 
from recursive partitioning. 
 
 
 
 
RND_xy_xy:  Randomly  
choose two (x,y) points  
to define the region boundary.
 
       
 
RND_xy_len: Randomly  
choose x and y lengths, 
then one (x,y) anchor point. 
   
 

 

RND_xy_rad: Randomly  
choose (x,y) coordinate  
of center, and radius 
(with truncation). 

Figure 2.  Alternate methods for region calculation. 
for one circuit (chosen
largely solved by using a LAB (10 logic elements) as the smallest 
measurable region for Rent calculation. methods use the same number of Rent regions for the calculation.  

PART and RND_xy_rad are fair samplings of points (not visible 
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in these graphs).  On both the linear and logarithmic scales, it is 
clear that RND_xy_rad yields the best sampling.  Hidden in the 
PART calculation is the averaging of many points at the smaller 
end, which would otherwise show its bias to the smaller regions.  
Note that a visually even distribution on the log-plot would 
represent an over-sampling of smaller regions, not a truly even 
distribution. 
Figure 6 shows the aggregate results for each method, sorted by 
RND_xy_rad.  There is surprisingly little correlation between the 
different methods, which we would have expected from most of 
the general theory to be similar.  Figure 7 shows a scatter-plot 
between RND_xy_rad and the PART method to differentiate the 
two.  Recalling that Yang et. al. [22] found that the placement 
Rent exponent was typically larger than that arising from a pure 
partitioning tree, we note that the RND_xy_rad method, which we 
believe more natural and statistically accurate for placement, 
would appear to further raise the Rent exponent. 
Looking at absolute Rent exponents we observe a range from 0.45 
to 0.70.  Given the large sampling size and relative reliability 

values up to 0.75 as sometimes seen.   Chiba [5] found a range of 
0.5 to 0.6 in his survey. Many other early papers quoted regions 
such as “0.6 to 0.75”. 
We also see no significant correlation between the device size and 
the extracted Rent parameter.  For designs compiled on the C3, 
C6, C12 and C20 the average Rent exponent was 0.57, 0.61, 0.61, 
0.58 respectively with a relatively common distribution. 

3.2 Circuit Characterization 
Many early studies made hypotheses that Rent parameters were 
related to the functionality or amount of parallelism present in 
circuits.  Thus it is interesting to compare Rent parameters against 
the type of circuit. 
We manually divided the circuits in the benchmark set into four 
categories.  This division is only approximate, because such 
classifications are clearly not black-and-white in nature.  
Networking designs, arising from switching applications, are 
generally expected to have multiplexors, packet processing and 
other switching components.  Image processing (which includes 
audio processing) involves transformation and modification of a 
bitstream.  Digital signal processing typically contains many 

and is heavily datapath oriented.  The 

 
Figure 5.  Rent measurement by method. 

 
Figure 4.  Region sizes per selection method. 
multipliers and adders, 
coming from many large and “real” circuits, it would thus appear 
that 0.5 to 0.65 would be a more reasonable range for generating 
Rent exponents when using random circuit generators rather than 

control logic category includes designs such as processors, 
controllers and arbitrators. 
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Figure 8 shows the results.  It would appear that there is no real 
correlation for this design-set by classification.  The averages for 
each category of design lie between 0.58 and 0.60.  The most 
likely reason for this is that designs of this size are really 
composed of many smaller functional blocks.  Any trends that 
exist for very specific circuits would thus be averaged out over the 
course of a system-level design.  
One might expect utilization (fullness) of the device to be relevant 
as well.  However, there is no correlation here either (Figure 9).  
Note that this is partly by construction – the clustering algorithm 
generally tries to pack LABs fully for timing reasons and, given 
that, there is no particular incentive for an 80% full design to 
behave differently than a sub-placement of a 100% full design. 

3.3 Timing-Driven Compilation 
The default flow for our software is to perform timing-driven 
compilation (TDC) to minimize the worst-case combinational 
delay between registers.  One would expect that this would 
adversely affect wirelength, and this is clear empirically – Figure 
10 shows the average change in wirelength, per circuit, when 
timing-driven compilation is on vs. off.  Wirelength here is 
measured as post-routing H and V usage of all nets.   

There is an expected increase in Rent exponent (Figure 11).   On 
average, the Rent exponent reported in previous data would 
decrease by 4.3% were we to use the non-TDC compilations.   
It is not true, however, that the two are directly correlated.  Figure 
12 shows the two charts superimposed and sorted by wirelength.  
In general, though TDC increases both Rent exponents and 
wirelength on average, this varies by circuit.  (In Figures 6,8,10-
12 each bar represents the result for one test circuit). 

applied to the same circuit.  Verpletse et. al. [21] looked at the 
change in the Rent exponent over the course of a refined 
placement with simulated annealing, and found a decrease in Rent 
exponent from 0.967 to 0.635 during the placement of one circuit   
Figures 13 and 14 show the behaviour of the extracted Rent 

 
Figure 8.   Rent parameters by design type. 

 
Figure 9.  Rent parameter by utilization (% full). 

 
    Figure 10.  Average routed wirelength. 

 
     Figure 11.   Rent exponent change, TDC on vs. off. 

 
Figure 6. Final Rent exponents, by method. 

 
Figure 7.  RND_xy_rad gives larger Rent than PART. 
4. TEMPORAL RENT BEHAVIOUR 
There is a generally held belief that the Rent parameter can also 
be viewed as a metric of the quality of different algorithms 

exponent and bounding-box wirelength, which is a primary 
component of the placement cost function, for two circuits.  We 
note a surprisingly strong linear correlation between the two 
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curves.  One would not expect Rent exponents and wirelength to 
correlate linearly, but it does appear that from the point of view of 
placement quality measurement on the same circuit (thus with all 
other netlist properties held constant) the relationship is strong. 
Note the increased Rent exponent towards the last half of the 
anneal.  This represents a behaviour that can be seen as unique to 
FPGAs:  once the maximal wirelength requirements are met for an 
individual design, wires are “free” and the placer is free to 
concentrate more heavily on timing if such moves are found and 
seen as beneficial. 

5. WIRELENGTH ESTIMATION 
Valid wirelength measurement requires some additional thought 
for our experimental setup.  Because of the architecture of 
Cyclone we have largely ignored all the nets that lie inside a LAB 
for Rent analysis.  This is reasonable for Rent parameter 

wirelength as estimated by the Feuer model [12] (not shown) in 
which there is essentially no correlation between estimated and 
actual wirelength.  The Feuer model computes expected average 
wirelength as purely a function of the number of cells N in the 
netlist and the Rent parameter.   
We adjust Feuer as follows:  for the measured wirelength (total H 
+ V lines after routing), we know empirically that about ½ of nets 
are local to a LAB, while ½ of all nets are global.  Approximating 
a 10 LE LAB to consume a roughly 3x3 grid of physical space, 
we then re-state the measured wirelength as 3*measured + 3*N/2 
– the first component simply multiplies the global wirelength by 
the grid-size, and the second adds in the unmeasured local nets 
with an average length of 3.   The latter constant is simply a guess.  
We could use a half-bounding box of 6, but in reality the LAB is 
more dominated by the constant area and delay in muxing the 
connections through LAB lines than in the distance traveled, and 
there is no geometric placement in the LAB, so 3 “feels better”. 
For the estimated wirelength, we have the following from Feuer : 

     α = 2 – 2*r 

    )5.0(*
)4)(3(
)5)(2(*2 −

−−
−−= rLR

αα
αα  

Note that the wirelength calculation is based on LABs rather than 
LEs, so the computation uses the number of LABs in the circuit. 

To compute the expected total wirelength, we then multiply R  by 
N/2 (for number of global-driving nets) and do the same 
transformation made to the measured wirelength to normalize to 
the grid-size and add the local nets. 
The results are shown in Figures 15 and 16, for the Rent 
exponents calculated by PART and RND_xy_rad respectively.  

 
  Figure 12.  Rent exponent and wirelength. 

Figure 13.  Wirelength and placement Rent exponent. 

Figure 14.  Wirelength and placement Rent exponent. 

Figure 15. Adjusted Feuer wirelength prediction for 
PART method of computing Rent. 
extraction alone, but to estimate wirelength we are ignoring 

essentially half the nets in the circuit by measuring only the global 
wires outside of a LAB.   This is clear from a naïve plotting of 

Figure 16.  Adjusted Feuer wirelength prediction for 
RND_xy_rad method of computing Rent. 
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We note that, as generally expected, the wirelength estimates are 
close to 2X the actual. 
These wirelength predictions should not be taken too seriously.  A 
useful follow-up to this study would be to formally define and 
measure the true wirelength more accurately, and to modify the 
mathematical justifications of the Feuer model to match the 
architecture.  A more aggressive goal would be to modify the 
more involved Davis [9] theory to this placement architecture.  
However, it is nonetheless interesting that we can get a reasonably 
good measurement (off by the expected constant) with this naïve 
modification, despite the loss of abstraction resulting from the 
FPGA architecture, timing-driven compilation effects, carry 
chains, placement restrictions and memories.  This is also a 
verification of Feuer’s thesis that an arbitrary region continues to 
satisfy the properties of Rent’s Rule normally associated with a 
partitioning tree. 
It is disappointing that the results are more consistent, as 
measured by R2 (goodness of fit coefficient) for the regressions, 
for the PART method.  We continue to believe that more natural 
models of measuring placement Rent exponents should generate 
better results, but the bottom-line data does not support that 
belief.  Not shown are the RND_xy_xy and RND_xy_len 
methods, both of which performed worse than RND_xy_rad as 
measured by the regression coefficient R2. 

6. FPGA ARCHITECTURE APPLICATION 
To use the empirical analysis in this study, we will apply basic 
Rent analysis to measure the routability of the Cyclone 
architecture itself. 
Even though the architectural model is complicated by the 
heterogeneous and hierarchical nature of the interconnect imposed 
by LABs, it is not hard to estimate a Rent exponent for the device. 
As previously mentioned, the architecture consists of row and 
column interconnect with a channel width of 80 in both 
directions, and all wires of length 4.   Given the set of regions 
with their x*y size, we compute the possible number of device 
terminals for the region as the number of wires entering or leaving 
the region, unless the size of the region is small enough such that 
the LAB connectivity (26 inputs to a LAB + one output per LE) is 
smaller.  The latter is relatively important, because even though 
80 H and 80 V wires pass over a given LAB of size 10 LEs, only 
these 26+10 terminals can possibly enter and leave the LAB. 
Overall, this gives an empirical Rent exponent for the architecture 
of 0.7256.  It is worth noting that this is actually the average of 
two constant Rent exponents, as can be seen by the plot in Figure 
17, and these can be computed exactly.  The lower portion of the 
Rent curve corresponds to the LAB-limited regions, which have a 
Rent exponent of exactly 1.0.  For this area of the curve a 
doubling of the block-size also doubles the number of terminals.  
The upper portion corresponds to the interconnect-limited regions 
with a Rent parameter of exactly 0.5.  This Rent exponent arises 
from the fact that the channel width is a constant, so additions to 
block-size correspond to additions in terminals directly 
proportional to the perimeter of the block. 
Shown are the Rent plots for three individual circuits against the 
Rent plot for the FPGA itself.  The three designs are chosen as 
typical, stressed and very stressed in terms of routing resources.  
One can see here one goal of FPGA architecture design, which is 

that the worst case designs are able to place&route comfortably in 
the device, even though the average design might have more than 
sufficient resources. 
Since the average Rent exponent of all designs is 0.60 and the 
standard deviation 0.063, we note that the architecture of Cyclone 
has a Rent exponent of approximately average plus two standard 
deviations, which can be seen as a proxy for fitting “about 95% or 
more of all designs” by construction. 
Though nearly perfect fitting is generally the goal of all 
commercial FPGA production, it is important to note that it is not 
necessarily the most efficient possible goal.  DeHon, among 
others, has argued [10] that one would be better to design 
architectures which fail to fit some proportion of designs in order 
to use fewer programmable wires overall. 
In a previous study [14], similar calculations for the Apex FPGA 
architecture showed average circuit Rent exponents between 0.5 
and 0.8, and a Rent exponent for Apex itself of about 0.78.  We 
believe that the ability to decrease the Rent exponent of the device 
in this time reflects an improvement both in CAD tools to give 
more efficient placements and also ever-improving technology in 
the design of the architectures itself, which allow for the existing 
wires to be more accessible to the programmable routing fabric.   

 
Figure 17.  Placement Rent plots vs. maximum wiring 
availability of the Cyclone architecture. 
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The latter point is actually a key issue not touched upon in this 
paper, which is that the appropriate design of the programmable 
switching architecture is as important to routability as the raw 
wire-counts.   It is well-known in the industry that minor mistakes 
in the detailed switching architecture within the prototype 
software can dramatically affect the routability of the device 
independently of the available interconnect. 
This aspect of FPGA architecture is not modeled at all by the Rent 
theory, though in some ways the measurement of Rent exponents 
of designs vs. the expected can be seen as a metric of the 
switching network efficiency as it is similarly seen as a metric of 
the CAD tool efficiency. 

7. CONCLUSIONS 
In this paper we have made a number of contributions.  We gave 
empirical measurements for a commercial FPGA architecture and 
tools on a large number of industrial FPGA circuits against the 
Rent-based theory that underlies a body of research in wirelength 
estimation.  We argued that the traditional methods of estimating 
Rent exponents via partitioning, though satisfying the goal of quick 
estimation for placement preprocessing, are biased and less natural 
than sampling regions of the final placement as suggested by Feuer.  
In analyzing alternative methods, we also showed empirical 
justification of Feuer’s theory of contiguous regions of placement 
following Rent’s Rule. 
We showed that, though different methods for generating Rent 
exponents perform similarly on average they don’t correlate well on 
individual designs.  We found that for a fixed netlist in placement 
there is a surprisingly strong linear correlation between the Rent 
exponent extracted from the placement and the bounding-box 
estimated wirelength, and thus the Rent exponent linearly measures 
placement quality on a given design.  We presented a minor 
modification to Feuer’s wirelength estimation in order to apply the 
theory to the Cyclone architecture. 
Finally, we measured the Rent exponent of the Cyclone FPGA 
architecture, and contrasted the placement Rent behaviour of 
place&route on several designs against the designed-in Rent 
parameter of the device. 
Further work arising from this analysis would be to work on a 
mathematically sound method for wirelength calculation on a 
heterogeneous FPGA architecture, for example to express the site 
occupation probabilities of the Davis model, which shows accurate 
wirelength estimation for general grids. 
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