
Placement Rent Exponent Calculation Methods, Temporal
Behaviour and FPGA Architecture Evaluation

Joachim Pistorius
Altera Corp.

101 Innovation Drive
San Jose, CA
408-544-7604

jpistori@altera.com

Mike Hutton
Altera Corp.

101 Innovation Drive
San Jose, CA
408-544-0253

mhutton@altera.com

ABSTRACT
In the design of FPGA architectures, it is important to understand
wiring requirements of placed circuits. Rent’s Rule is an
empirical metric of connectivity and congestion in a circuit that
has applications in the prediction of interconnect usage.
Traditional methods of calculating Rent exponents are based on
recursive partitioning, with the exception of some recent work
[21], [22] that defines an alternative Rent exponent of a circuit
based on a placement-induced partitioning tree.
In this paper we take a different look at the calculation of Rent
exponents in placement, contrasting several different methods
empirically and outlining the relevant biases in each. We will
compare the Rent exponent observed for timing-driven vs. purely
congestion-driven placement algorithms, and for different types of
benchmark circuits. We also observe the temporal behaviour of
Rent exponents through a simulated annealing placement and its
correlation to the placement cost function and wirelength. Finally
we apply the empirical results to the analysis of the Cyclone
FPGA architecture and comment on the routability of the device.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits] Design Aids -- layout, placement
and routing.

General Terms
Algorithms, Measurement, Experimentation, Design, Theory.

Keywords
SLIP, interconnect prediction, Rent, FPGA architecture.

1. INTRODUCTION
Rent’s Rule [15] is a well-known power-law equation found to
describe the empirical relationship between the size of a sub-
circuit and the number of connectors that sub-circuit has to the

outside world. It is usually phrased in the form T = k B
r

where
B is the size of a typical block or sub-circuit and T is the number

of connectors (terminals or pins) on it. The parameter r is the
Rent exponent, which is commonly viewed as an intrinsic
property or characteristic of the individual design, and t is often
defined as the average number of pins incident to an atomic block.
Early formulations of Rent’s Rule do not specify an algorithm for
computing the Rent relationship, though the typical assumption is
to use the regions defined by a recursive partitioning tree.
However even then the result is subject to the algorithm which
generates the partitioning tree.
This motivated Hagen et. al. [13] to define the intrinsic Rent
parameter as that based on the “best” partition tree possible for a
given circuit, and they showed that the results do change
empirically based on the choice and quality of algorithms.
Since the primary motivation of Rent’s Rule is the understanding
of placement properties and interconnect usage there have been a
number of phrasings with reference to placement. Donath [11]
related the Rent parameter of a placed circuit to the Rent
calculation induced by applying a recursive partitioning tree to the
placement itself. Feuer [12] argued that for a “good” placement
an arbitrary region of the placement grid with a center and
constant radius could be used to describe regions for the
calculation of Rent’s Rule. More recently, Verplaetse et. al. [21]
and Yang et. al. [22] defined and computed the placement Rent
exponent of a circuit by imposing a partitioning hierarchy on the
placed circuit with recursive bisection as suggested by Donath’s
theory. These studies showed that the Rent exponents computed
from a placement-induced partitioning tree are larger than those
arising from a natural partitioning hierarchy.
Though interesting in general, the primarily use of Rent’s Rule
arises from extensions that attempt to predict interconnect
requirements for a circuit based on its Rent characteristic. (See
[7], [17] as representative of a body of literature on this topic).
There are two applications of this concept. First, and more
common, is to estimate interconnect as a preprocessor to
placement, providing useful information to the placement tool.
However, a second application is in the design of FPGA
architectures ([4], [14], [10], [16]). Some key differences in the
second application is that the FPGA architecture problem requires
accuracy over speed of calculation, and is more sensitive to worst-
case interconnect than to average interconnect – both in contrast
to interconnect estimation for CAD tools.
A thesis of this paper is that partitioning-based methods of
calculating the Rent exponent are not natural reflections of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To

copy otherwise, or republish, to post on servers or to redistribute to
interconnect because of hidden biases, we prefer other methods
more reminiscent of Feuer’s theory.

lists, requires prior specific permission and/or a fee.
SLIP’03, April 5–6, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-627-7/03/0004…$5.00.

31

The structure of the paper is as follows: Section 2 outlines our
experimental platform. In Section 3 we propose and contrast
alternative methods for calculating the placement Rent exponent.
As a natural extension of calculating Rent exponents during
placement we show results in Section 4 which illustrate the
behaviour of the Rent exponent of individual circuits through the
progress of a simulated-annealing based placement tool, and show
correlations between the placement cost-function, Rent exponent
and bounding-box wirelength. Section 5 briefly discusses
wirelength measurement for the Cyclone FPGA architecture.
Section 6 applies the empirical results from the previous sections
to analyze the routability of Cyclone. We conclude in Section 7.

2. EXPERIMENTAL PLATFORM
The empirical results in this paper are based on a number of
industrial VHDL/Verilog circuits targeting the Cyclone FPGA
architecture [1], and using Altera’s Quartus II V3.0 software for
synthesis, placement and routing.
Because the circuits and target architecture contain embedded
RAM and arithmetic circuitry (dedicated ripple carry), both of
which generate placement constraints, we have some loss of
abstraction. However, what we lose in loss of abstraction is
compensated for by the volume of data we can generate on a large
number of “real” circuits.
Briefly, the Cyclone FPGA consists of logic elements, which pair
a 4-input lookup tables (LUTs) with a DFF. These are grouped
into clusters called LABs, each of which contains 10 logic
elements. For the purposes of this paper, the connectivity in a
LAB is a full crossbar. LABs are arranged in an n by m grid that
can be thought of as similar to a gate-array with large grid-
elements. Prefabricated interconnect exists between the LABs in
the form of horizontal (H) and vertical (V) wires, all of length 4,
which can be driven at their end-point but tapped at any point.
The width of each channel in the grid is 80 tracks (wires),
independent of orientation. Logic elements in a given LAB are
able to drive 20 distinct H lines and 40 distinct V, and are able to
receive signals from 80 H and 160 V lines. Simultaneously,
however, a maximum of 26 H and V lines can drive into the same
LAB. A device contains roughly n⋅m⋅10 logic elements, n⋅80⋅m/4
H lines and m⋅80⋅n/4 V lines; roughly because some number of
LABs are replaced by dedicated RAM blocks.
The programming of an FPGA sets SRAM bits controlling muxes
(see Figure 1) in the switching network of the device so that a
given input to a given logic element receives a specific signal
from among the set of potential signals just described. To the
right of Figure 1 an input to a LAB is shown, similarly each H, V
driver contains programmable muxing to determine which signal
drives out on it.
Our CAD flow consists of a greedy and annealing based
clustering of logic elements into LABs, followed by a full
simulated annealing placement. The placement engine uses
LABs. The cost function for placement is a combination of
wirelength, congestion (maximum H and V channel width),
timing and some other factors. Move generation is a function of a
number of factors involving wirelength, congestion and timing.
The number of iterations of simulated annealing is a function of

of as “about 75”. The number of moves per iteration is slightly
superlinear in the design size.
We will use 4 different devices in this study. The C3, C6, C12
and C20 devices have approximately 3000, 6000, 12000 and
20000 4-LUTs respectively. A 4-LUT can be thought of as about
3-4 gates of combinational logic, so the general range is from
10000 to 100000 2-input combinational gates not including flip-
flops, memories or arithmetic (carry chains). Approximately 80
industrial circuits will be used, ranging from 15 to 25 circuits per
individual device.
Note that the number of tracks per channel is constant, and is not
a function of device size. When feasible, such consistency can
significantly improve the efficiency of full-custom layout efforts
over the multiple members of a device family.

3. RENT CALCULATION AND ANALYSIS
As outlined earlier, our primary goal is to investigate the expected
placement Rent exponents for a large set of industrial circuits,
using different calculation methods and through time. One of the
motivations for this arises from some biases inherent in the
partitioning-based calculation.
Define the first calculation method for placement Rent exponents,
PART, as based on [21] and [22]: given a fixed placement
impose a recursive partitioning tree and sample resulting points.
We immediately note one inherent tradeoff in this process. Either
one has exponentially more points of smaller size (there are O(2i)
regions of size i) or, as done in both studies, all regions of a given
size are averaged. The latter results in very few points for the
linear regression, which can affect its statistical reliability.
A second criticism of this method is that it is not “natural” to draw
these boundaries at exactly the bisection boundaries. Unless
artificially constructed, circuits are neither a natural power of 2 in
size, nor square. But also, most partitioners do not attempt to cut
circuits exactly in half, so we could be sampling regions that are
slightly off of what the partitioner saw as being a cut if the placer
is partitioning based also.
This motivates exploring alternative methods to generate
measurement regions, inspired by Feuer’s theory [12] of
placement regions for Rent analysis.

3.1 Defining Rent regions
We define three alternative methods for generating points or

Rent exponents, all three of which are

H channel

V channel

LAB

LAB lines

LE

Figure 1. Cyclone architecture and connectivity.

L

A

B

R
regions for measuring
the device and design size which, for this density, can be thought
based on random sampling of placement regions. See Figure 2.

32

RND_xy_xy: Choose two random points in the grid, and define
the sampling region as the set of logic elements bounded by the
two points.
RND_xy_len: Choose a random region size (x and y lengths).
Then, from the set of feasible (x,y) points for the lower-left corner
of the region of these dimensions, choose its location.
RND_xy_rad: Choose a random (x,y) location of a region
“center”, and a random radius. In this case, we allow regions to
overlap area outside the chip by truncation.
These definitions are somewhat arbitrary; the point is to represent
alternative reasonable approaches to generating regions, and
examine the behaviour of each. For the first, size is a by-product
of location, the second the size of the box is paramount, and the
third the location of the box is paramount with at somewhat
variable size.
Note that all of these approaches, and the definition of our
architecture mean that we are using rectangular regions in general.
Though the mathematical modeling of this is discussed in Dambre
et. al. [8], we haven’t made any attempts to adjust the empirical
calculation accordingly. One observation by Dambre was that
rectangular boxes with less-square aspect ratios generated regions
with more than typical pin to logic ratios. This was also observed
by Betz [2] in the study of non-square FPGA architectures. To
avoid the Region II and Region III effects on Rent behaviour [19]
we resampled any regions found to contain more than 1/3 of the
chip, and to make reasonable aspect ratio boxes we resampled any
regions with aspect ratio greater than 4. The Region III issue was

Figure 3 illustrates sampling bias. The PART method of choosing
regions is “fair” – every cell contributes equally to the Rent
calculation. This is not true for the other methods: RND_xy_xy
and RND_xy_len both have a significant bias against the
contribution of edge logic elements to the Rent calculation.
RND_xy_rad is much more fair, but not completely fair. In these
figures the x and y axes represent LAB locations on the chip, and
the z axis the sampling incidence relative to the average (100%).
RND_xy_rad, though obviously the best for fairness, has an
interesting distribution, which arises from a combination of the
part having more columns than rows, and that this method allows
truncation combined with the filtering, for all methods, of regions
more than 1/3 the size of the chip. If the latter is removed, the
distribution unimodal is as the previous two, but much flatter.
Figure 4 illustrates size bias on a linear scale. PART is inherently
biased towards very small regions (exponentially so).
RND_xy_xy is less, but obviously, biased. RND_xy_len is
inherently unbiased by construction (and could be made moreso
by forcing square regions). RND_xy_rad is more complicated to
consider due to truncation, but is reasonable.
This is better viewed in Figure 5, which shows log-log Rent plots

 to be a typical representative). All

Figure 3. Sampling coverage per selection method.

PART: Regions arise
from recursive partitioning.

RND_xy_xy: Randomly
choose two (x,y) points
to define the region boundary.

RND_xy_len: Randomly
choose x and y lengths,
then one (x,y) anchor point.

RND_xy_rad: Randomly
choose (x,y) coordinate
of center, and radius
(with truncation).

Figure 2. Alternate methods for region calculation.
for one circuit (chosen
largely solved by using a LAB (10 logic elements) as the smallest
measurable region for Rent calculation. methods use the same number of Rent regions for the calculation.

PART and RND_xy_rad are fair samplings of points (not visible

33

in these graphs). On both the linear and logarithmic scales, it is
clear that RND_xy_rad yields the best sampling. Hidden in the
PART calculation is the averaging of many points at the smaller
end, which would otherwise show its bias to the smaller regions.
Note that a visually even distribution on the log-plot would
represent an over-sampling of smaller regions, not a truly even
distribution.
Figure 6 shows the aggregate results for each method, sorted by
RND_xy_rad. There is surprisingly little correlation between the
different methods, which we would have expected from most of
the general theory to be similar. Figure 7 shows a scatter-plot
between RND_xy_rad and the PART method to differentiate the
two. Recalling that Yang et. al. [22] found that the placement
Rent exponent was typically larger than that arising from a pure
partitioning tree, we note that the RND_xy_rad method, which we
believe more natural and statistically accurate for placement,
would appear to further raise the Rent exponent.
Looking at absolute Rent exponents we observe a range from 0.45
to 0.70. Given the large sampling size and relative reliability

values up to 0.75 as sometimes seen. Chiba [5] found a range of
0.5 to 0.6 in his survey. Many other early papers quoted regions
such as “0.6 to 0.75”.
We also see no significant correlation between the device size and
the extracted Rent parameter. For designs compiled on the C3,
C6, C12 and C20 the average Rent exponent was 0.57, 0.61, 0.61,
0.58 respectively with a relatively common distribution.

3.2 Circuit Characterization
Many early studies made hypotheses that Rent parameters were
related to the functionality or amount of parallelism present in
circuits. Thus it is interesting to compare Rent parameters against
the type of circuit.
We manually divided the circuits in the benchmark set into four
categories. This division is only approximate, because such
classifications are clearly not black-and-white in nature.
Networking designs, arising from switching applications, are
generally expected to have multiplexors, packet processing and
other switching components. Image processing (which includes
audio processing) involves transformation and modification of a
bitstream. Digital signal processing typically contains many

and is heavily datapath oriented. The

Figure 5. Rent measurement by method.

Figure 4. Region sizes per selection method.
multipliers and adders,
coming from many large and “real” circuits, it would thus appear
that 0.5 to 0.65 would be a more reasonable range for generating
Rent exponents when using random circuit generators rather than

control logic category includes designs such as processors,
controllers and arbitrators.

34

Figure 8 shows the results. It would appear that there is no real
correlation for this design-set by classification. The averages for
each category of design lie between 0.58 and 0.60. The most
likely reason for this is that designs of this size are really
composed of many smaller functional blocks. Any trends that
exist for very specific circuits would thus be averaged out over the
course of a system-level design.
One might expect utilization (fullness) of the device to be relevant
as well. However, there is no correlation here either (Figure 9).
Note that this is partly by construction – the clustering algorithm
generally tries to pack LABs fully for timing reasons and, given
that, there is no particular incentive for an 80% full design to
behave differently than a sub-placement of a 100% full design.

3.3 Timing-Driven Compilation
The default flow for our software is to perform timing-driven
compilation (TDC) to minimize the worst-case combinational
delay between registers. One would expect that this would
adversely affect wirelength, and this is clear empirically – Figure
10 shows the average change in wirelength, per circuit, when
timing-driven compilation is on vs. off. Wirelength here is
measured as post-routing H and V usage of all nets.

There is an expected increase in Rent exponent (Figure 11). On
average, the Rent exponent reported in previous data would
decrease by 4.3% were we to use the non-TDC compilations.
It is not true, however, that the two are directly correlated. Figure
12 shows the two charts superimposed and sorted by wirelength.
In general, though TDC increases both Rent exponents and
wirelength on average, this varies by circuit. (In Figures 6,8,10-
12 each bar represents the result for one test circuit).

applied to the same circuit. Verpletse et. al. [21] looked at the
change in the Rent exponent over the course of a refined
placement with simulated annealing, and found a decrease in Rent
exponent from 0.967 to 0.635 during the placement of one circuit
Figures 13 and 14 show the behaviour of the extracted Rent

Figure 8. Rent parameters by design type.

Figure 9. Rent parameter by utilization (% full).

 Figure 10. Average routed wirelength.

 Figure 11. Rent exponent change, TDC on vs. off.

Figure 6. Final Rent exponents, by method.

Figure 7. RND_xy_rad gives larger Rent than PART.
4. TEMPORAL RENT BEHAVIOUR
There is a generally held belief that the Rent parameter can also
be viewed as a metric of the quality of different algorithms

exponent and bounding-box wirelength, which is a primary
component of the placement cost function, for two circuits. We
note a surprisingly strong linear correlation between the two

35

curves. One would not expect Rent exponents and wirelength to
correlate linearly, but it does appear that from the point of view of
placement quality measurement on the same circuit (thus with all
other netlist properties held constant) the relationship is strong.
Note the increased Rent exponent towards the last half of the
anneal. This represents a behaviour that can be seen as unique to
FPGAs: once the maximal wirelength requirements are met for an
individual design, wires are “free” and the placer is free to
concentrate more heavily on timing if such moves are found and
seen as beneficial.

5. WIRELENGTH ESTIMATION
Valid wirelength measurement requires some additional thought
for our experimental setup. Because of the architecture of
Cyclone we have largely ignored all the nets that lie inside a LAB
for Rent analysis. This is reasonable for Rent parameter

wirelength as estimated by the Feuer model [12] (not shown) in
which there is essentially no correlation between estimated and
actual wirelength. The Feuer model computes expected average
wirelength as purely a function of the number of cells N in the
netlist and the Rent parameter.
We adjust Feuer as follows: for the measured wirelength (total H
+ V lines after routing), we know empirically that about ½ of nets
are local to a LAB, while ½ of all nets are global. Approximating
a 10 LE LAB to consume a roughly 3x3 grid of physical space,
we then re-state the measured wirelength as 3*measured + 3*N/2
– the first component simply multiplies the global wirelength by
the grid-size, and the second adds in the unmeasured local nets
with an average length of 3. The latter constant is simply a guess.
We could use a half-bounding box of 6, but in reality the LAB is
more dominated by the constant area and delay in muxing the
connections through LAB lines than in the distance traveled, and
there is no geometric placement in the LAB, so 3 “feels better”.
For the estimated wirelength, we have the following from Feuer :

 α = 2 – 2*r

)5.0(*
)4)(3(
)5)(2(*2 −

−−
−−= rLR

αα
αα

Note that the wirelength calculation is based on LABs rather than
LEs, so the computation uses the number of LABs in the circuit.

To compute the expected total wirelength, we then multiply R by
N/2 (for number of global-driving nets) and do the same
transformation made to the measured wirelength to normalize to
the grid-size and add the local nets.
The results are shown in Figures 15 and 16, for the Rent
exponents calculated by PART and RND_xy_rad respectively.

 Figure 12. Rent exponent and wirelength.

Figure 13. Wirelength and placement Rent exponent.

Figure 14. Wirelength and placement Rent exponent.

Figure 15. Adjusted Feuer wirelength prediction for
PART method of computing Rent.
extraction alone, but to estimate wirelength we are ignoring

essentially half the nets in the circuit by measuring only the global
wires outside of a LAB. This is clear from a naïve plotting of

Figure 16. Adjusted Feuer wirelength prediction for
RND_xy_rad method of computing Rent.

36

We note that, as generally expected, the wirelength estimates are
close to 2X the actual.
These wirelength predictions should not be taken too seriously. A
useful follow-up to this study would be to formally define and
measure the true wirelength more accurately, and to modify the
mathematical justifications of the Feuer model to match the
architecture. A more aggressive goal would be to modify the
more involved Davis [9] theory to this placement architecture.
However, it is nonetheless interesting that we can get a reasonably
good measurement (off by the expected constant) with this naïve
modification, despite the loss of abstraction resulting from the
FPGA architecture, timing-driven compilation effects, carry
chains, placement restrictions and memories. This is also a
verification of Feuer’s thesis that an arbitrary region continues to
satisfy the properties of Rent’s Rule normally associated with a
partitioning tree.
It is disappointing that the results are more consistent, as
measured by R2 (goodness of fit coefficient) for the regressions,
for the PART method. We continue to believe that more natural
models of measuring placement Rent exponents should generate
better results, but the bottom-line data does not support that
belief. Not shown are the RND_xy_xy and RND_xy_len
methods, both of which performed worse than RND_xy_rad as
measured by the regression coefficient R2.

6. FPGA ARCHITECTURE APPLICATION
To use the empirical analysis in this study, we will apply basic
Rent analysis to measure the routability of the Cyclone
architecture itself.
Even though the architectural model is complicated by the
heterogeneous and hierarchical nature of the interconnect imposed
by LABs, it is not hard to estimate a Rent exponent for the device.
As previously mentioned, the architecture consists of row and
column interconnect with a channel width of 80 in both
directions, and all wires of length 4. Given the set of regions
with their x*y size, we compute the possible number of device
terminals for the region as the number of wires entering or leaving
the region, unless the size of the region is small enough such that
the LAB connectivity (26 inputs to a LAB + one output per LE) is
smaller. The latter is relatively important, because even though
80 H and 80 V wires pass over a given LAB of size 10 LEs, only
these 26+10 terminals can possibly enter and leave the LAB.
Overall, this gives an empirical Rent exponent for the architecture
of 0.7256. It is worth noting that this is actually the average of
two constant Rent exponents, as can be seen by the plot in Figure
17, and these can be computed exactly. The lower portion of the
Rent curve corresponds to the LAB-limited regions, which have a
Rent exponent of exactly 1.0. For this area of the curve a
doubling of the block-size also doubles the number of terminals.
The upper portion corresponds to the interconnect-limited regions
with a Rent parameter of exactly 0.5. This Rent exponent arises
from the fact that the channel width is a constant, so additions to
block-size correspond to additions in terminals directly
proportional to the perimeter of the block.
Shown are the Rent plots for three individual circuits against the
Rent plot for the FPGA itself. The three designs are chosen as
typical, stressed and very stressed in terms of routing resources.
One can see here one goal of FPGA architecture design, which is

that the worst case designs are able to place&route comfortably in
the device, even though the average design might have more than
sufficient resources.
Since the average Rent exponent of all designs is 0.60 and the
standard deviation 0.063, we note that the architecture of Cyclone
has a Rent exponent of approximately average plus two standard
deviations, which can be seen as a proxy for fitting “about 95% or
more of all designs” by construction.
Though nearly perfect fitting is generally the goal of all
commercial FPGA production, it is important to note that it is not
necessarily the most efficient possible goal. DeHon, among
others, has argued [10] that one would be better to design
architectures which fail to fit some proportion of designs in order
to use fewer programmable wires overall.
In a previous study [14], similar calculations for the Apex FPGA
architecture showed average circuit Rent exponents between 0.5
and 0.8, and a Rent exponent for Apex itself of about 0.78. We
believe that the ability to decrease the Rent exponent of the device
in this time reflects an improvement both in CAD tools to give
more efficient placements and also ever-improving technology in
the design of the architectures itself, which allow for the existing
wires to be more accessible to the programmable routing fabric.

Figure 17. Placement Rent plots vs. maximum wiring
availability of the Cyclone architecture.

37

The latter point is actually a key issue not touched upon in this
paper, which is that the appropriate design of the programmable
switching architecture is as important to routability as the raw
wire-counts. It is well-known in the industry that minor mistakes
in the detailed switching architecture within the prototype
software can dramatically affect the routability of the device
independently of the available interconnect.
This aspect of FPGA architecture is not modeled at all by the Rent
theory, though in some ways the measurement of Rent exponents
of designs vs. the expected can be seen as a metric of the
switching network efficiency as it is similarly seen as a metric of
the CAD tool efficiency.

7. CONCLUSIONS
In this paper we have made a number of contributions. We gave
empirical measurements for a commercial FPGA architecture and
tools on a large number of industrial FPGA circuits against the
Rent-based theory that underlies a body of research in wirelength
estimation. We argued that the traditional methods of estimating
Rent exponents via partitioning, though satisfying the goal of quick
estimation for placement preprocessing, are biased and less natural
than sampling regions of the final placement as suggested by Feuer.
In analyzing alternative methods, we also showed empirical
justification of Feuer’s theory of contiguous regions of placement
following Rent’s Rule.
We showed that, though different methods for generating Rent
exponents perform similarly on average they don’t correlate well on
individual designs. We found that for a fixed netlist in placement
there is a surprisingly strong linear correlation between the Rent
exponent extracted from the placement and the bounding-box
estimated wirelength, and thus the Rent exponent linearly measures
placement quality on a given design. We presented a minor
modification to Feuer’s wirelength estimation in order to apply the
theory to the Cyclone architecture.
Finally, we measured the Rent exponent of the Cyclone FPGA
architecture, and contrasted the placement Rent behaviour of
place&route on several designs against the designed-in Rent
parameter of the device.
Further work arising from this analysis would be to work on a
mathematically sound method for wirelength calculation on a
heterogeneous FPGA architecture, for example to express the site
occupation probabilities of the Davis model, which shows accurate
wirelength estimation for general grids.

REFERENCES
[1] Altera Corp. “Cyclone Family Data-Sheet”. Available at

www.altera.com.
[2] V. Betz, “Directional Bias and Non-Uniformity in FPGA Global

Routing Architectures”, IEEE TVLSI, pp. 445-456, Sept. 1998.
[3] V. Betz, J Rose and A. Marquardt. Architecture and CAD for

Deep-Submicron FPGAs. Kluwer, 1999.
[4] P. Chan, M. Schlag and J. Zien, “On Routability Prediction for

Field-Programmable gate Arrays.” In. Proc. ACM/IEEE Design
Automation Conference (DAC). pp. 326-330, 1993.

[5] T. Chiba, “Impact of the LSI on high-speed computer
packaging,” IEEE Trans. Comput., Vol C-27, pp. 319-325,
1978.

[6] P. Christie, “Rent Exponent Prediction Methods.” IEEE Trans.
VLSI Vol 8(6), pp. 639-688, 2000.

[7] P. Christie and D. Stroobandt, “The Interpretation and
Application of Rent’s Rule”. IEEE Trans. VLSI. Vol 8(6), pp.
639-648, 2000.

[8] J. Dambre, P. Verplaetse, D. Stroobandt and J. Van
Campenhout, “Getting more out of Donath’s hierarchical model
for interconnect prediction.” In Proc. ACM/SIGDA Int’l
Workshop on System-Level Interconnect Prediction (SLIP). pp
9-16, 2002.

[9] J. Davis, V. De and J. Meindl, “A stochastic wire-length
distribution for gigascale integration (GSI): Part II: Application
to clock frequency, power dissipation and chip-size estimation,”
IEEE Trans. Electron Devices, Vol. 45. pp 590-597. Mar,
1998.

[10] A. DeHon. “Balancing Interconnect and Computation in a
Reconfigurable Computing Array (or, why you don’t really want
100% LUT utilization)”, In Proc. ACM/IEEE Symposium on
FPGAs (FPGA). pp. 69-77, 1999.

[11] W.E. Donath, “Placement and Average Interconnection Lengths
of Computer Logic.” IEEE Trans. Circuits and Systems, Vol
26(4), pp. 272-277, 1979.

[12] M. Feuer, “Connectivity of Random Logic”, IEEE Trans. On
Computers, Vol C-31, pp. 29-33, 1982.

[13] L. Hagen, A.B. Kahng, F.J. Kurdahi and C. Ramachandran, “On
the Intrinsic Rent Parameter and Spectra-Based Partitioning
Methodologies.” IEEE Trans. CAD. Vol 13:1, pp. 27-37, 1994.

[14] M. Hutton. “Interconnect Prediction for Programmable Logic
Devices.” In Proc. ACM/SIGDA Int’l Workshop on System-
Level Interconnect Prediction (SLIP). pp. 125-134, 2001.

[15] B Landman and R. Russo, “On a Pin vs. Block Relationship for
Partitions of Logic Graphs.” IEEE Trans. On Computers, Vol.
C-20. pp 1469-1479, 1971.

[16] A. Singh and M. Marek-Sadowska. “FPGA Interconnect
Planning”. In Proc. ACM/SIGDA Int’l Workshop on System-
Level Interconnect Prediction (SLIP). pp. 23-30, 2002.

[17] D. Stroobandt, A Priori Wire Length Estimates for Digital
Design, Kluwer, 2001.

[18] D. Stroobandt, “A Priori System-Level Interconnect Prediction:
Rent’s Rule and Wire Length Distribution Models”, In Proc.
ACM/SIGDA ACM/SIGDA Int’l Workshop on System-Level
Interconnect Prediction(SLIP). pp. 3-21, 2001.

[19] D. Stroobandt, “On an Efficient Method for Estimating the
Interconnection Complexity of Designs and on the Existence of
Region III in Rent’s Rule”, In Proc. Great Lakes Symposium on
VLIS (GVLSI). pp. 136-141, 1999.

[20] P. Verplaetse, J. Van Campenhout and D. Stroobandt. “On
Synthetic Benchmark Generation Methods.” In Proc. Intl. Symp.
On Circuits and Systems (ISCAS) pp. IV 213-216, May 2000.

[21] P. Verplaetse, J. Dambre, D. Stroobandt and J.Van Campenhout,
“On Partitioning vs. Placement Rent Properties.” In Proc.
ACM/SIGDA Int’l Workshop on System-Level Interconnect
Prediction (SLIP). pp 33-40, 2001.

[22] X. Yang, E. Bozorogzadeh and M. Sarrafzadeh, “Wirelength
Estimation Based on Rent Exponents of Partitioning and
Placement.” In Proc. ACM/SIGDA Int’l Workshop on System-
Level Interconnect Prediction (SLIP). pp 25-32, 2001.

[23] P. Zarkesh-Ha, J. Davis and J. Meindl, “Prediction of Net-
Length Distribution for Global Interconnects in a Heterogeneous
System-on-a-Chip.” IEEE Trans. on VLSI, Vol. 8, No. 6. pp
649-659, Dec 2002.

38

	INTRODUCTION
	EXPERIMENTAL PLATFORM
	RENT CALCULATION AND ANALYSIS
	Defining Rent regions
	Circuit Characterization
	Timing-Driven Compilation

	TEMPORAL RENT BEHAVIOUR
	WIRELENGTH ESTIMATION
	FPGA ARCHITECTURE APPLICATION
	CONCLUSIONS
	REFERENCES

