
Wire Length Prediction in Constraint Driven
Placement

Qinghua Liu, Bo Hu Malgorzata Marek-Sadowska
Department of Electrical and Computer Engineering Department of Electrical and Computer Engineering
Univ. of California, Santa Barbara, CA 93106, USA Univ. of California, Santa Barbara, CA 93106, USA

1-805-893-5678 1-805-893-2721

{qinghual, hb}@ece.ucsb.edu mms@ece.ucsb.edu

Abstract
Experiments show that lengths of individual wires are different for
different placement algorithms. To achieve accurate wire length
prediction, some knowledge of a placer’s details is necessary. We
postulate that wire length prediction should be coupled with place-
ment flow to obtain accurate results. In this paper, we embed wire
length prediction into our constraint-driven placer, developed in
Fast Placer Implementation (FPI) framework [15]. We predict indi-
vidual wire lengths during the clustering step. The predicted wire
lengths act as constraints for the simulated annealing refinement
stage, which guides the placement towards a solution fulfilling the
predictions. Experimental results show that our wire length predic-
tion process yields accurate results without quality loss at a small
cost of placement effort. This is the first time that constraints have
been used to guide placement and thus increase the accuracy of
wire length prediction.

Categories and Subject Descriptors
J.6 Computer-Aided Engineering-Computer-aided Design (CAD)

General Terms
Algorithms

Keywords
Clustering, Wire length prediction

1. Introduction
With the trend toward decrease of feature sizes, the contribution of
interconnects to critical path delay increases and becomes compara-
ble to that of active devices. Interconnect estimation is now of criti-
cal importance because early wire optimization is needed in the
design flow to achieve timing closure. Whether a design can
achieve required objectives, such as performance,

routability, and power, is largely determined by the placer’s quality
and its ability to conform to the predicted interconnect lengths.
Let’s consider timing-driven placement in the context of intercon-
nect length prediction. Timing driven placement algorithms can be
grouped into two major categories: path-based [12][17][22] and
net-based. The path-based algorithms, try to control critical path
delays directly, are usually computationally expensive because of
the exponential number of such paths. In net-based algorithms, tim-
ing constraints are first translated into physical requirements such
as net weights [2][7] or delay budgets[18][21]. Net weights cannot
control placement results well since it is hard to force wire lengths
by assigning net weights. Constraints in a form of delay budgets or
individual wire length predictions allow for more reasonable con-
straint distribution.
During the past two decades, different approaches have been pro-
posed. The early experimental work analyzing wiring requirements
was performed by Rent in the early 1960’s. Donath [6] and Feuer
[8] showed that the average interconnection wire length can be cal-
culated from the Rent’s exponent. Pedram and Preas [19][20] pre-
sented an interconnection length and layout area predictor for
standard cell layouts. Their approach considers all possible distri-
butions of pins on rows. Hamada and Cheng [11] proposed a topo-
logical analysis technique of networks. They characterized the local
network structure by a growing sequence of multilevel neighbor-
hoods. They found the wire length distribution by solving equations
for the probability density of multilevel neighborhoods. Caldwell
and Kahng [4] proposed a net bounding box estimation based on a
Uniform Pin Distribution Model. Heineken and Maly [14] proposed
an empirical interconnect length model to predict the distribution
parameters of net lengths. The model takes as input a standard cell
netlist and provides as output the estimates of mean and variance of
net lengths on a net-by-net basis. Bodapati and Najm [1] estimated
individual wire lengths based on characterization of typical designs.
This paper addresses the problem of individual wire length predic-
tion. Experiments show that individual wire lengths depend on
placement algorithms. Wire length predictions accurate for one
placement flow may be inaccurate for another. So wire length pre-
dictions should be coupled with placement flows. Based on this
observation, we embed wire length prediction into the constraint-
driven placer that we developed in the Fast Placer Implementation
(FPI) framework [15]. Our placement flow includes both structural
and physical levels. In the structural level, we reduce the size of an
initial netlist by clustering. In the physical level, we apply global
placement optimization and simulated-annealing-based refinement.
We make wire length predictions based only on clustering informa-
tion. That is to say, wire length prediction is performed at the struc-
tural level of the placement flow, and is referred to as in-placement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SLIP’03, April 5-6, 2003, Monterey, California, USA
Copyright 2003 ACM 1-58113-627-7/03/0004...$5.00.

99

prediction. Experimental results show that wire-length predictions
made during the clustering stage of the placement flow can be sat-
isfied in the final placement without quality losses.
The rest of this paper is organized as follows. In Section 2 we dis-
cuss relationship between the individual wire lengths and the
placement algorithm, and clarify our motivation to couple wire
length prediction with a placement flow. In Section 3 we discuss
how appropriate constraints can help prediction. In Section 4 we
explain the basic flow of our constraint-driven placement with
wire length prediction. In Section 5 we discuss mutual-contraction
clustering and constraint generation. In Section 6 we introduce our
constraint driven placement. We present experimental results in
Section 7. Section 8 concludes the paper.

2. Relationship between individual wire
length and placement

Different algorithms may produce different individual wire lengths
in their final placements. Take for example the recent placement
techniques based on recursive multi-level partitions [3][24]. In
those algorithms, clustering strategy plays a key role in determin-
ing the individual wire lengths. In some clustering metrics, a par-
ticular net may be totally absorbed into one cluster and become an
intra-cluster net. The same net may become an inter-cluster net if
we apply another clustering metric. So the length of this net could
be significantly different in the final placement results.

 Figure 1: Net lengths obtained by different placers
Experimental results in figure 1 illustrate this point. In this figure,
we compare individual wire lengths for 3 pin nets in different
placement flows. The x-axis corresponds to the net id’s, and the y-
axis to the net lengths. In figure 1(a) we compare the results
obtained from the FPI2.0 [15] and Capo [3], and in figure 1(b) we
compare FPI2.0 and Dragon [24]. For easy understanding, suppose
that FPI2.0 produces “accurate” net lengths and the other algo-

rithms produce “erroneous” lengths. We sort “accurate” lengths
and connect them into a solid line as shown in the figure. The
“erroneous” lengths are represented by points around the solid line.
We define the error of a net’s i length as

 (EQ1)

where actual(i) is the actual net length produced by the “errone-
ous” placer (Dragon or Capo) and accurate(i) is the net length
from the “accurate” placer (FPI2.0). We calculate the average
length error(ave_error) and length error standard devia-
tion(error_sd) for Dragon and Capo, and list them in Table 1.

From this experiment we observe that three different placement
algorithms result in significantly different lengths of individual
wires.
Since individual wire length is a function of the placement algo-
rithm, accurate predictions are possible only if the prediction pro-
cess is coupled with a placement flow. In our constraint-driven
placement flow, we predict individual wire length based on cluster-
ing information.

3. Constraints help prediction

A purely total wire length (TWL) driven placement does not take
individual wire lengths into account. For example, it cannot distin-
guish the three placement solutions shown in figure 2, since each
of them yields the same total wire length. But if we apply wire
length constraints on individual nets, such constraints will guide
placer to a solution which will satisfy them. For example, in the
case above if we put a larger length-constraint on net_1 and a
smaller length-constraint on net_2, a placer will most likely pro-
duce a solution similar to that in figure 2(b).
We will view the wire length prediction as a constraint generation
process in the following section.

TABLE 1. Length error for Dragon and Capo

 Dragon Capo

 ave_error 0.72 0.59

 error_sd 0.90 1.28

error i() actual i() accurate i()–
accurate i()

--=

 (a)

net_1 net_2

net_2
net_2

net_1 net_1

 (b) (c)
 Figure 2: Three placement solutions with the same TWL

100

4. Constraint driven placement with wire
length prediction

We embed the wire length prediction into our placement flow
based on FPI [15] framework. The basic flow is shown in Figure 3.
Our constraint-driven placement consists of 3 stages. In stage 1,
we reduce the size of the initial large scale netlist by clustering.
Several clustering techniques have been proposed in the past years.
In this paper, we use the mutual-contraction-based clustering algo-
rithm [16], which has proved to produce better global placement
results compared with algorithms based on deterministic connec-
tivity [13] and edge-separability [5]. After clustering information
is available, we introduce the wire length prediction step. Since the
relative location of cells in the same cluster can be maintained after
global placement of a reduced netlist, we can easily control the
wire length of those nets totally absorbed in clusters. We estimate
individual wire lengths of such nets. The detailed description of
the clustering algorithm and the wire length prediction process is
detailed in Section 5. In stage 2 of the constraint-driven placement

flow, global placement optimization is applied on the reduced
netlist. We use Capo8.5 [26] at this stage. Some bad decisions
made during the clustering phase may cause placement quality
losses, so we need a strategy to recover from such effects. That is
the purpose of stage 3, where we refine placement by applying a
simulated annealing technique. Unfortunately, such a recovery
process may invalidate the wire length predictions made in stage 1.
By using the predicted wire lengths as constraints in this stage, our
simulated annealing process improves placement quality and
guides the placement towards the predictions. The detailed process
of constraint driven placement is discussed in section 6.
We distinguish two types of wire length predictions associated
with a placement: a priori prediction and a posteriori prediction.
The a priori prediction determines wire lengths of a layout design
in advance, before placement. The a posteriori prediction occurs
when we are given a fixed placement and want to estimate the
post-routing wire lengths. This is of value whenever routing
requires a significant amount of CPU time. In order to get more
accurate prediction results, our wire length prediction is embedded
into the placement flow when clustering information is available.

This strategy is different from the existing prediction types. We
label this kind an in-placement prediction.

5. Mutual contraction-based clustering with
wire length prediction

5.1 Mutual contraction
In [16] we introduced the mutual contraction as a metric to evalu-
ate proximity of connected elements in a netlist. Compared with
connectivity[13] and edge separability[5], our metric is capable of
predicting short connections more accurately.
To calculate the mutual contraction of a connection(u,v), we first
introduce the relative weight of connections incident to a node u as
stated in equation 2.

 (EQ2)

In (EQ2), is a weight of the connection (u,x). The sum-
mation is carried over all nodes x adjacent to u.
Then we use a product of wr(u,v) and wr(v,u) to measure the

mutual contraction of connection(u,v), as stated in equation 3.

 (EQ3)

We have established a good correlation between the contraction of
a connection(u,v), measured by the mutual contraction metric, and
the length of (u,v). The connections with strong contraction most
likely will end up having short lengths. This observation provides
a basis for the deterministic clustering algorithm detailed in the
next section.

5.2 Mutual-contraction-based clustering
We apply a pair-wise clustering strategy in stage 1 of our con-
straint-driven placement flow. The cluster size constraints are
given at the beginning of the process. A priority queue is main-
tained for all connections in the hypergraph. A connection with the
largest contraction is on the top of the queue. We pick consecutive
connections (x,y) from the queue to see whether grouping x and y
violates cluster size constraints. If it does, we discard this connec-
tion and continue the process. If grouping x and y does not violate
the cluster size constraints, we create a new node z which repre-
sents both x and y, and update the connectivity information for z.
Meanwhile, we also update incrementally the priority queue. Note
that we set cluster size constraints according to average cell area.
For example, if we set a cluster size constraint to 5, the overall area
of cells inside one cluster should be smaller than 5 times the aver-
age cell area. We also set a target cluster number. The clustering
process terminates when no more clustering is possible due to the
size constraints, or when the cluster number limit has been
reached.

5.3 Wire length prediction
Wire length prediction is performed during the clustering process.
After each grouping operation as discussed in section 5.2., we
check if there are nets totally absorbed in the newly created cluster.
If there are, for example, net i in Figure 4, we estimate the length
of such a net i as follows:

C lus ter ing w ith
co ns tra in t
gen era t ion

G lob al p la cem en t
fo r re du ced netlis t

C on stra in t d rive n
sim u la ted ann eal ing

ref ine m e n t

S tage 1 :

S tage 2 :

S tage 3 :

Figure 3: Constraint-driven placement flow

wr u v,() w u v,()
w u x,()

x
∑
-------------------------=

w u x,()

cp x y,() wr x y,()wr y x,()=

101

 (EQ4)

In (EQ4) Wj and Hj are the width and height of the cells in the
cluster. We use the boundaries to predict the actual wire lengths.
We do not make wire length predictions on the inter-cluster nets
which are difficult to control during the global placement stage.

The wire-length predictions will serve as constraints in our simu-
lated annealing refinement stage, which will be discussed in the
next section.

6. Constraint-driven placement
The goal of constraint-driven placement is to meet wire length
constraints with minimum placement quality loss. Different
approaches have been proposed such as net weighting [9][23], lin-
ear programming [10] and simulated annealing [25].
In our constraint driven placement with wire length prediction
flow, we use a simulated annealing approach to improve the place-
ment and guide it towards the predictions.
We first partition the chip area into global bins. Cells can move
between global bins during the annealing. The cost function is:

 (EQ5)

where li is the current length and ci is the constraint we impose on

net i. WL is the total bounding-box-based wire length. λ is a
parameter balancing between the wire length and constraint viola-
tion optimization. The second term in (EQ5), without the parame-
ter λ, measures the constrains violation. We refer to it as vio_len in
the experimental results section.
Constraints we put on the nets during the annealing process make
our prediction accurate.

7. Experimental results
We implemented the constraint-driven placer with wire length pre-
diction in the FPI [15] framework. The experiments were con-
ducted on 2.8Ghz Pentium 4 linux machine with 1 gigabyte
memory. We obtained the IBM-place benchmarks from[27]. Sizes
of the benchmarks used in our experiments are listed is Table 3.

7.1 Constraints guided prediction
In the first experiment, we take benchmark ibm04 and observe the
effect of constraints in our placement flow with wire length predic-
tions. We show wire length prediction results for 3-pin nets in Fig-

ure 5. In this figure, on the x-axis are net id’s and on the y-axis are
net lengths. The solid line represents wire length predicted in stage
1 after sorting them and connecting into a line. The points repre-
sent the actual wire lengths in the final placement. If we do not
apply constraints in our simulated annealing-based placement
refinement stage, we get the result depicted in figure 5(a). When
constraints are applied, we get the result depicted in figure 5(b).

 Figure 5: Prediction results for 3-pin nets in ibm04

We define a normalized length violation of a net i as:

 (EQ6)

Then we calculate the average normalized violation (ave_vio) and
standard deviation of the normalized violation (vio_sd). The data
for the ibm04 benchmark are shown in Table 2.

It is clear that constraints guide our placement process and make
the wire length prediction accurate. Note that in most cases, the
actual wire lengths are smaller than the constraints imposed on
them. The reason is that the constraints serve as upper bounds in
the cost function EQ5.

Boundary i()

Wj
j

∑ Hj
j

∑+

2
---------------------------------=

c lu s ter

n e t i

Figure 4: Length prediction for absorbed net

WL λ max li ci– 0(,)

i 1=

E

∑+

TABLE 2. Constraint violation of ibm04

 ibm04 non-constraint constraint

 ave_vio 0.36 0.04

 vio_sd 0.95 0.17

vio i()
max li ci– 0,()

ci
-----------------------------------=

102

7.2 Penalty for guidance of constraints
In our placement flow, we use constraints to guide the placement
towards the predictions, which may cause some extra placement
effort or quality losses. In this experiment, we compare the place-
ment results of the non-constraint placement and the constraints-
driven placement. We set cluster size constraint to 5 during stage 1.
In table 4, #pre_nets denotes the number of nets on which we make
predictions, as a percentage of the total number of nets. We report
the total constraint violation length (vio_len) and the total wire
length (twl) in meters. We report the corresponding CPU run times
in seconds. The constraint-driven placement results are normalized
with respect to those of non-constraint driven placement. In the
third column we report the total wire length achieved by Capo8.5
to evaluate our placement quality.
We have two conclusions from the data. First, under the cluster
size constraint of 5, wire lengths of nearly 50% of nets can be pre-
dicted accurately. The results from our constraint-driven placement
show that the total constraint violation is very small compared with
total wire length. Second, the constraint-driven placement helps in
getting accurate predictions without loss of placement quality. The
only penalty is a slight increase in the run time. In other words,
appropriately determined constraints make our wire length predic-
tion accurate with a small run time penalty.

7.3 Prediction vs. placement effort
During the stage 1 of our placement flow, if we increase the cluster
size constraint, we will get fewer clusters of larger size. Then more
nets will be absorbed which means we can make length prediction
on more nets. On the other side, we have to put more effort in sim-
ulated annealing stage to recover placement quality from bad deci-
sions made during clustering. Experiments in this section quantify
placement effort as a function of the number of nets on which
length predictions are made. In all the experiments we maintain the
same placement quality.
We increase the cluster size constraint from 5 to 10 and 15. Using
the same simulated annealing schedule as in section 7.2, we com-
pare the results in table 5 and 6. Table 5 shows non-constraint
driven placement results and table 6 shows constraint driven place-
ment results. Results of cluster size 10 and 15 have been normal-
ized with respect to those of cluster size 5.
To achieve the same placement quality as in the case of cluster size
5, we adjust the simulated annealing schedule for cluster size 10
and 15. The results are shown in table 7. CPU run times for cluster
sizes 10 and 15 have been normalized with respect to those of clus-
ter size 5. Note that the total wire lengths in those three scenarios
are almost the same.
From the experiments we draw two conclusions. First, we can
make more predictions by increasing cluster size constraints. Sec-
ond, increasing the number of length-predicted-nets comes
together with placement quality losses. We have to put more effort
on placement refinement to recover from them.
Another way to make more nets predictable is to apply multi-level
clustering and predict wire length in different clustering level. We
will address this problem in our future work.

8. Conclusions
In this paper we show that some knowledge of a specific place-
ment flow is necessary for accurate wire length predictions. We

also demonstrate that constraints, generated for the target place-
ment flow, can be used to assist wire length predictions. Experi-
mental results indicate that by enforcing constraints in placement,
the length of interconnects can be predicted without placement
quality losses.

9. Acknowledgements
This work was supported by the DARPA/MARCO Giga Scale
Research Center.

References

[1] S.Bodapati and F.N.Najm, “Pre-layout Estimation of Individ-
ual Wire Lengths”, ACM Intl. Workshop on System-Level
Interconnect Prediction, pp.93-98, Apr 2000.

[2] M.Burstein and M.N.Youssef, “Timing Influenced Layout
Design”, In Design Automation Conference, pp.124-130,
1985.

[3] A.E.Caldwell, A.B.Kahng and I.L.Markov, “Can Recursive
Bisection alone Produce Routable Placements”, Design Auto-
mation Conference, pp.260-263, 2000.

[4] A.E.Caldwell, A.B.Kahng, S.Mantik, I.L.Markov and A.Zelik-
ovsky, “On Wirelength Estimations for Row-based Place-
ment”, IEEE Transactions on Computer-Aided Design,
pp.1265-1278, Sep 1999.

[5] J.Cong and S.K.Lim, “Edge Separability Based Circuit Clus-
tering with Application to Circuit Partitioning”, Proc. ASP-
DAC, pp.429-434, 2000

[6] W.E.Donath, “Placement and Average Interconnection Lengths
of Computer Logic”, IEEE Transactions on Circuits and Sys-
tems, vol.CAS-26, pp.272-277, Apr 1979.

[7] A.E.Dunlop, V.D.Agrawal, D.N.Deutsch, M.F.Jukl, P.Kozak
and M.Wiesel, “Chip Layout Optimization Using Critical Path
Weighting”, In Design Automation Conference, pp.133-136,
1984.

[8] M.Feuer, “Connectivity of Random Logic”, IEEE Transactions
on Computers, vol. C-31, no.1, pp.29-33, Jan 1982.

[9] B. Halpin, C.Y.R. Chen and N. Sehgal, “A Sensitivity Based
Placer for Standard Cells”, GLS-VLSI, 1999.

[10]B. Halpin, C.Y.Roger Chen and N. Sehgal, “Timing Driven
Placement using Physical Net Constraints”, Design Automa-
tion Conference, pp.780-783, 2001

[11]T.Hamada, C.K.Cheng and P.M.Chau, “A Wire Length Esti-
mation Technique Utilizing Neighborhood Density Equations”,
In Design Automation Conference, pp. 57-61, 1992.

[12]T.Hamada, C.K.Cheng and PlM.Chau, “Prime: A Timing-
Driven Placement Tool Using a Piecewise Linear Resistive
Network Approach”, In Design Automation Conference,
pp.531-536, 1993.

[13]S.Hauck and G.Borriello, “An Evaluation of Bipartitioning
Techniques”, IEEE Transactions on Computer-Aided Design,
vol 16, No.8, 1997.

[14]H.T.Heineken and W.Maly, “Standard Cell Interconnect
Length Prediction From Structural Circuit Attributes”, Proc.
Custom Integrated Circuits Conference, pp.167-170, May
1996.

[15]B.Hu and M.Marek-Sadowska, “Fine-granularity Clustering
for Large-scale Placement Problems”, to appear in Proc. Intl.
Symp. on Physical Design,2003.

[16]B.Hu and M.Marek-Sadowska, “Wire Length Prediction based
Clustering and its Application in Placement”, submitted.

[17]M.A.B.Jackson and E.S.Kuh, “Performance-Driven Placement
of Cell Based IC’s”, In Design Automation Conference, pp.
370-375, 1989.

103

[18]R.Nair, C.L.Berman, P.S.Hauge and E.J.Yoffa, “Generation of
Performance Constraints for Layout”, IEEE Transactions on
Computer Aided Design,8(no.8):860-874, Aug 1989.

[19]M.Pedram and B.Preas, “Interconnection Length Estimation
for Optimized Standard Cell Layouts”, Proc. of Int. Conf. on
Computer-Aided Design, pp.100-108, Oct. 1989.

[20]M.Pedram and B.Preas, “Accurate Prediction of Physical
Design Characteristics for Random Logic”, Proc. of Int. Conf.
on Computer Design, pp.390-393, Nov. 1989.

[21]M.Sarrafzadeh, D.A.Knol and G.E.Tellez, “A Delay Budget-
ing Algorithm Ensuring Maximum Flexibility in Placement”,
IEEE Transactions on Computer Aided Design, 16(11):1332-
1341, 1997.

[22]W.Swartz and C.Sechen, “Timing Driven Placement for Large
Standard Cell Circuits”, In Design Automation Conference,
pp.211-215, 1995.

[23]R.S. Tsay and J. Koehl, “An Analytic Net Weighting Approach
for Performance Optimization in Circuit Placement”, Design
Automation Conference, pp. 620-624, 1991.

[24]M.Wang, X.Yang and M.Sarrafzadeh, “Dragon2000: Stan-
dard-cell Placement Tool For Large Industry Circuits”, Proc.
Int. Conf. on Computer-Aided Design, pp.260-264, 2000.

[25]X. Yang, B.K. Choi and M. Sarrafzadeh, “Timing-Driven
Placement using Design Hierarchy Guided Constraint Genera-
tion”, Proc. Int. Conf. on Computer-Aided Design, 2002

[26]Latest Capo(version 8.5): http://vlsicad.ucsd.edu/Resources/
Software Links/PDtools/

[27]IBM-place benchmarks:http://gigascale.org/bookshelf/.

TABLE 3. Benchmark size

bench ibm01 ibm02 ibm03 ibm04 ibm05 ibm06 ibm07

#cell 12274 19321 22207 26633 29347 32185 45098

#net 11507 18429 21621 26163 28446 33354 44394

TABLE 4. Effect of constraints on placement quality(cluster size constraint: 5)

#pre_nets Capo twl

 non-constraint constraint

bench vio_len twl cpu vio_len% twl% cpu%

ibm01 47.9% 55.8 1.94 54.4 155.65 0.17 1.01 1.07

ibm02 47.4% 159.8 3.44 157.9 324.12 0.26 0.99 1.04

ibm03 48.9% 10.1 0.277 9.59 328.45 0.10 1.00 1.03

ibm04 47.1% 13.1 0.632 12.5 393.11 0.09 1.01 1.06

ibm05 47.0% 35.0 0.995 34.3 488.39 0.10 0.99 1.05

ibm06 46.3% 14.9 0.373 15.4 590.92 0.13 0.98 1.05

ibm07 47.7% 370.0 10.92 358.7 697.04 0.14 1.01 1.05

ave 1.02 1.00 1.00 1.00 0.14 1.00 1.05

TABLE 5. Cluster size VS placement quality(non-constraint)

bench

 5 10 15

vio_len twl cpu vio_len% twl% cpu% vio_len% twl% cpu%

ibm01 1.94 54.4 155.65 0.88 1.08 0.99 0.99 1.11 0.97

ibm02 3.44 157.9 324.12 1.08 1.02 0.96 1.31 1.04 0.93

ibm03 0.277 9.59 328.45 1.67 1.07 0.99 1.55 1.13 0.96

ibm04 0.632 12.5 393.11 1.07 1.04 0.98 0.88 1.07 0.98

ibm05 0.995 34.3 488.39 2.27 1.04 1.03 1.87 1.07 1.02

ibm06 0.373 15.4 590.92 1.26 1.01 0.99 1.13 1.03 1.00

ibm07 10.92 358.7 697.04 1.15 1.07 1.03 1.34 1.07 1.03

ave 1.00 1.00 1.00 1.34 1.05 0.99 1.30 1.07 0.98

TABLE 6. Cluster size VS placement quality(with constraint)

bench

 5 10 15

vio_len twl cpu vio_len% twl% cpu% vio_len% twl% cpu%

104

ibm01 0.33 54.9 166.99 1.16 1.06 0.96 1.60 1.09 0.92

ibm02 0.90 156.7 338.00 1.32 1.01 0.93 1.64 1.05 0.95

ibm03 0.03 9.59 337.74 2.16 1.05 0.98 2.40 1.07 0.97

ibm04 0.06 12.6 417.61 1.53 1.04 1.01 1.27 1.05 0.97

ibm05 0.10 33.9 513.86 4.69 1.07 1.01 5.17 1.07 0.98

ibm06 0.05 15.1 620.9 1.46 1.02 0.98 1.36 1.05 1.00

ibm07 1.50 362.9 734.04 1.71 1.05 1.01 2.06 1.07 1.04

ave 1.00 1.00 1.00 2.00 1.05 0.98 2.21 1.06 0.98

TABLE 7. Prediction VS placement quality

bench

 5 10 15

#pre_nets cpu #pre_nets cpu% #pre_nets cpu%

ibm01 47.9% 166.99 59.9% 1.12 63.7% 1.27

ibm02 47.4% 338.00 56.4% 1.02 59.3% 1.15

ibm03 48.9% 337.74 63.6% 1.10 67.0% 1.21

ibm04 47.1% 417.61 61.7% 1.08 65.0% 1.15

ibm05 47.0% 513.86 62.0% 1.14 63.0% 1.21

ibm06 46.3% 620.9 59.7% 1.08 63.4% 1.15

ibm07 47.7% 734.04 60.6% 1.10 63.9% 1.21

ave 47.5% 1.00 60.6% 1.10 63.6% 1.18

TABLE 6. Cluster size VS placement quality(with constraint)

105

