CPU Reservations and Time Constraints:
Efficient, Predictable Scheduling of Independent Activities

Michael B. Jones Daniela Rosu, M ar cel-Catalin Rosu
Microsoft Research, Microsoft Corporation College of Computing,
One Microsoft Way, Building 9s/1 Georgia Institute of Technology
Redmond, WA 98052 Atlanta, GA 30332-0280
mbj@ microsoft.com daniela@cc.gatech.edu, rosu@cc.gatech.edu
http://research.microsoft.com/~mbj/ http://www.cc.gatech.edu/{~daniela,~rosu}/
Abstract

Workstations and personal computers are 1. Introduction

increasingly being used for applications with réiahe 1.1 Terminology and Abstractions
characteristics such as speech understanding and This paper describes a real-time scheduler,

synthesis, media computations and I/O, and animatio implemented as part of the Rialto operating systm

often concurrently executed with traditional noraréime Microsoft Research, that allows multiple indeperideal-
workloads. ~ This paper presents a system that cantime applications to be predictably and efficientiyn on
schedule multiple independent activities so that: the same machine, along with traditional timestwarin

+ activities can obtain minimum guaranteed execution applications. Three fundamental abstractions avgiged
rates with application-specified reservation in Rialto to enable these goals to be met:

granularities viaCPU Reservations « Activities
* CPU Reservations, which are of the formeserveX « CPU Reservationand
units of time out of every units, provide not just an « Time Constraints

average case execution rate of X/Y over long psriafd

. s An Activity object [Jones et al. 95] is the abstraction
time, but the stronger guarantee that framy instant of

. : . L i to which resources are allocated and against which
time, by Y time units later, the activity will have \oqq,ce usage is charged. Normally each distinct
executed for at least X time units, executing program or application is associated wéth

* applications can us&ime Constraintdo schedule tasks separate activity. Examples of such tasks aral-time
by deadlines, with on-time completion guaranteed fo aydio synthesis, playing a studio-quality vide@atn, and

tasks with accepted constraints, and accepting voice input for a speech recognitionesyst
» both CPU Reservations and Time Constraints are Activities may span address spaces and machines and
implemented very efficiently. In particular, may have multiple threads of control associatedth thiem.
» CPU scheduling overhead is bounded by a constamt an Each executing thread has an associated activityeriV
is not a function of the number of schedulable tasks. threads execute, any resources used are chargéustaga
Other key scheduler properties are: their activity. Threads making RPCs are treatexdilaily
« activities cannot violate other activities’ guaraes, to migrating threads [Ford & Lepreau 94] in thas erver

dthread runs under the same activity as the cltaetd.

CPU Reservations are made by activities to ensure a
minimum guaranteed execution rate and granula@ipU
reservation requests are of the famserve X units of time
out of every Y units for activity. AThis requests that for
every time interval of sizeY, runnable threads oA be
scheduled for at leasX time units. For example, an
activity might request at least 809 every 5ms, 7.5ms
every 33.3ms, or one second every minute.

Rialto's CPU Reservations arecontinuously
guaranteed If A has a reservation fof time units out of

Note everyY, then foreverytime T, A will be run for at leask

This work-in-progress report is a synopsis of work time units in the intervall], T+Y], provided it is runnable.
originally presented at the ¥6ACM Symposium on This is a stronger guarantee than provided by dtheds
Operating Systems Principles in Saint-Malo, Frarioe, of CPU reservations. [Mercer et al. 94, Leslie et9%]
October, 1997 [Jones et al. 97]. For a copy of ftiie and periodic schedulers only guarantee X wfeis an
paper, see http://research.microsoft.com/~mbj/. integral multiple ofY plus a constant offset. [Nieh & Lam
97, Stoica et al. 96, Waldspurger 95], and [Jones. 96]
guarantee either the proportion X/Y or a weightad f
share but over unspecified periods of time.

« time constraints and CPU reservations may be use
together, separately, or not at all (which givesoand-
robin schedule), with well-defined interactionsvie¢n
all combinations, and

« spare CPU time is fairly shared among all actistie

The Rialto operating system, developed at Microsoft

Research, achieves these goals by using a precedhput

schedule, which is the fundamental basis of thikwo

A Time Constraint is a dynamic request issued by a
thread to the scheduler that the code associatéd the
constraint be run to completion between the astagtia
start time and deadline. The request also contams
upper bound on the execution time of the code. ietlas
of constraints are described in [Northcutt 88, Meret al.
94, Jones et al. 96], and [Nieh & Lam 97].

In Rialto, constraint deadlines may be tighter ttzen
caller's CPU Reservation period and the estimatgy ma
request more time between the start time and deattian
the caller's CPU reservation (if any) can guaraniElee
extra time is guaranteed, when possible, by ugieg time
in the schedule.

Feasibility analysis is done for all time consttain
when submitted, including those with a start timethe
future. The requesting thread is either guaranted
sufficient time has been assigned to perform trexifipd
amount of work when requested or it is immediatelyl
via a return code that this was not possible, atligvthe
thread to take alternate action for the unsatidiab
constraint. For instance, a thread might skip pmdra
computation, temporarily shedding load in respotsa
failed constraint request. Providing constraihiat tcan be
guaranteed in advance, even when the CPU resamgatio
are insufficient or non-existent, is one featurattisets
Rialto apart from other constraint-based schedulers

When a thread makes a call indicating that it has
completed a time constraint, the scheduler retuhres
actual execution time the code took to run as altré®mm
the call. This provides a basis for computing aatirun-
time estimates for subsequent constraint executions

Time constraints are inherited across synchroromati
objects, providing a generalization of priority arfiance
[Sha et al. 90]. Likewise, constraints are alsbenited
when a thread makes a remote procedure call.

1.2 Goals

The top-level Rialto goal is to make it possible to
develop independent real-time applications indepatig,
while enabling their predictable concurrent exemutiboth
with each other and with non-real-time applicatiorisis
goal has driven all the rest.

« Best effort to satisfy denied time constraints
» Best effort to finish underestimated time constisin

2. Programming Model

2.1 Adaptive Real-Time Applications

The abstractions provided by Rialto are designed to
allow multiple independently authored applicatiadosbe
concurrently executed on the same machine, proyidin
predictable scheduling behavior for those appliceti
with real-time requirements. Rialto is designedet@ble
applications to perform predictably in dynamic, ope
systems, where such factors as the speeds of tleegsor,
memory, caches, busses, and 1/0O channels are peirkn
in advance, and the application mix and available
resources may change during execution.

Consequently, real-time applications must monitor
their own performance and resource usage, modifying
their behavior and resource requests until their
performance and predictability are satisfactory. heT
system plays two roles in this model. It provideslities
for applications to monitor their own resource wsagd it
provides facilities for applications to reserve tesources
that they need for predictable performance.

2.2 Programming with CPU Reservations

As previously described, activities submit CPU
reservation requests of the foreserve X units of time out
of every Y unitgdo ensure a minimum execution rate and
an execution granularity. Threads within eachwitgtiare
scheduled round-robin unless time constraints oeatth
synchronization primitives dictate otherwise. Agtiaty
is blocked when it has no runnable threads. Blocked
activities do not accumulate credits for time resdrbut
not used; unused time is given to others readyro r

Activities may ask at any time how much CPU time
they have used since their creation. This provaléssis
for applications to be aware of their CPU usage adhapt
their reservation requests in light of their actushge.

2.3 Programming with Time Constraints
An application can request that a piece of code be
executed by a particular deadline as follows:

Towards this end, we wanted a system meeting these

(already previously described) goals:

¢ Guaranteed CPU reservations

» Application-specified reservation granularity

¢ Fine-grained constraint-based scheduling

¢ Accurate time constraint feasibility analysis

« Guaranteed execution of feasible time constraints

* Proactive denial of infeasible time constraints
Additional related goals (not previously describad):

¢ Very low scheduling overhead

¢ Timesharing/fair sharing of free time
Secondary goals of this research are:

¢ Fairness for threads within an activity

e Best effort to honor CPU reservations for briefly
blocked activities

Calculate constraint parameters
schedulable = BeginConstraint(
start_time, estimate, deadline);
if (schedulable) {
Do normal work under constraint
}else{
Transient overload — shed load if possible
}

time_taken = EndConstraint();

The start_time and deadline parameters are
straightforward to calculate since they directlifda from
what the code is intended to do and how it is irmaeted.
The estimate parameter requires more care, since
predicting the run time of a piece of code is adhar
problem (particularly in light of variations in pessor &
memory speeds, cache & memory sizes, /0O bus

bandwidths, etc., between machines) and overestignét
increases the risk of the constraint being denied.
Rather than trying to calculate tlstimatein some
manner from first principles (as is done for sonardh
real-time embedded systems), one can base theagstim

feedback from previous executions of the same cdde.
particular, thetime_takenresult from the EndConstraint()

provides the basis for this feedback.

The schedulableresult informs the calling code

whether a requested constraint can be guaranteatlirg
it to react appropriately when it can not. Thisghti be
caused by transient overload conditions or an apfidin
optimistically trying to schedule more work thas €PU
reservation can guarantee.

Finally, note that constraint deadlines may be bkma

relative to their thread’s reservation period. Kwstance,
it's both legal and meaningful for a thread to resfusms
of work in the next 10ms when its activity’s resaion

only guarantees 8ms every 24ms. The request maagr

not succeed but if it succeeds, the scheduler halle
reserved sufficient time for the constraint.

3. Scheduler Implementation
Key aspects of the scheduler implementation are:
* Precomputed Scheduling Graph: A scheduling
graph is precomputed from
reservations, preallocating sufficient time to sfigtiall
reservations on an ongoing basis.
» Time Interval Assignment: Specifictime intervals

are set aside within the scheduling graph for the

execution of feasible time constraints.

* EDF Constraint Execution: Feasible constraints are

executed in Earliest Deadline First order.
e Threads Round-Robin Within Activity: Threads

within an activity with no active time constraints

execute in a round-robin fashion.
e Timeshared Remainder:

the set of CPU traversal resumes again at the left.

Free (unreserved) and

basis and accurate feasibility analysis of timesti@ints
can be performed. Furthermore, this schedule may b
represented in a data structure that may be usednat
time to decide, in time bounded by a constant, Wwhic
activity to run next. We currently represent this
precomputed schedule as a binary tree, althoughe mor
generally it could be a directed graph.

Figure 3-1 shows a scheduling graph for six adgisit
with the following reservations:

Activity |A B C D E F
Amount |[4ms |3ms | 2ms| 1Img 1m$ 5nys
Period [20ms| 10m$ 40ms 20ms 10ms 40ms

| Each node in the graph represents a periodic iatef/

time that is either dedicated to the execution pédicular
activity or is free For instance, the leftmost node
dedicates 3ms for the execution of actiBty

Each left-to-right path through the graph is thenea
length, in this case 10ms. This length ishhse periobf
the scheduling graph and corresponds to the minimum
active reservation period.

The scheduler repeatedly traverses the graph fedim |
to right, alternating choices each time a branclgant is
reached. When the right ends of the graph areheshc
In this examime
schedule execution order is:

(B,3ms), €, 1ms), A ,4ms), free,2ms),

(B,3ms), E,1ms), O, 1ms), C, 2ms), free,3ms),

(B,3ms), €,1ms), @, 4ms), free,2ms),

(B,3ms), €, 1ms), O, 1ms), £, 5ms).

After this the schedule repeats.

The execution times associated with schedule graph
nodes are periodic and fixed during the lifetime tbé
graph; they do not drift. For instance, if acivid is first
scheduled to run during the time interval, T+1ms], it
will next run during [T+20ms,T+21ms], then
[T+40ms,T+41ms], etc. Of course, when an interrupt

unused reserved CPU time is shared among allgccurs, whatever time it takes is unavailable ® tiode

runnable activities.
Due to space limitations, only the graph is desttibere.

3.1 Precomputed Scheduling Graph

DEO.

Figure 3-1: Scheduling graph with a base period of
10ms

intervals in which it executes, causing them tenee less
time than planned. However, the effects of sucleant
are limited to the executing activity and threaather than
being propagated into the future. Allowing peratibns
to affect the future execution of the schedulingnpivould
have disastrous effects to the satisfiability ofeatly
granted time constraints.

Each node following a branching point in the gréph
scheduled only half as often as those precedingFibr
instance, activityA is only scheduled every 20ms — half
as often as activitfe at 10ms. LikewiseC is scheduled
every 40ms, half as often & This makes it possible to
schedule reservations with different periods usthg
same graph, provided that each reservation pesod i
power-of-two multiple of the base period.

Reservations where the period is not such a meiltipl
are scaled and scheduled at the next smaller pofateve

The fundamental basis of this scheduling work & th multiple of the base period. For instanéemight have

ability to precompute a repeating schedule such #fia

accepted CPU reservations can be honored on anoorgi

originally requested 6ms every 30ms but becausddse
period of the graph is 10ms, its reservation wasialy

granted at 4ms per 20ms — the same CPU percentage bwRialto were 1ms/10ms (10%) for the MPEG player,

at a higher frequency. Applications are told ttotual
reservation granted, allowing them to iterate ahdnge
their reservation request in response if they deem
appropriate.

1.2ms/10ms (12%) for AVI 1, 1.15ms/10ms (11.5%) for

AVIs 2-4, 1.1ms/10ms (11%) for AVI 5, and 5.0ms/Z0m

(25%) for the kernel.
Note that the AVI

player and MPEG player

Benefits of the precomputed scheduling graph applications were designed to run on the roundrrobi

include:

scheduler. Yet, we were able to significantly ioye the

» CPU reservations are enforced with essentially no performance of these unmodified applications byning

additional run-time scheduling overhead. The

scheduling decision involves only a small number of packets) with appropriate CPU reservations.
This number is bounded by a examples of enabling multiple real-time applicasida co-

pointer indirections.
constant and is independent of the number of tisread
activities, and time constraints.

¢ Accurate feasibility analysis for time constrairsn

be performed because it is known in advance when an

activity will be executed and when free time inedsv
will occur.

4. Sample Results

100% -
i)
S 80% - .
° 1 Round-robin
g 60% A scheduler
04)
2 40% | W Rialto
c scheduler
< 20% -
LL
X

0% -
1 2 3 4 5 6

AVl stream number

Figure5-1: Concurrent execution of 6 AVI video player
aoplications under round-robin and Rialto scheda
Figure 5-1 compares the effectiveness of two
schedulers when playing six concurrent AVI videeains
from Tiger [Bolosky et al. 97] on our set-top boxXhe
first is the round-robin scheduler used in Micrasof
Interactive TV trials [Jones 97] and the secondths
Rialto scheduler. Under Rialto, the AVI streamstehad
1.2ms/10ms (12%) reservations and the kernel
2.1ms/10ms (21%).

20% -

100% -
K
5 80% - O Round-robin
g 60% | scheduler
4 .

H Rialto

0 % |
£ 40% Scheduler
©
LL
X

0% !
O
RSN N
O
Application

Figure5-2: Concurrent execution of 1 MPEG and 5 AVI

video plaver apolications under round-robin andtB
Figure 5-2 is similar, but substitutes an MPEG play

application using decompression hardware for onéhef
AVI players. In this case, the reservations usedeu

them and the kernel (which reads incoming network
These

exist on the same system through use of CPU resemga

5. Conclusions

This research demonstrates the effectiveness and
practicality of using aPrecomputed Scheduling Graph
both to implement continuously guaranteeGPU
Reservations with application-defined periods and to
implement guarantee@dime Constraints with accuratea
priori feasibility analysis. Our results show that omedh
not sacrifice efficiency to gain the predictabilibenefits
of CPU reservations and time constraints.

Furthermore, CPU reservations and time constraints
lend themselves to incremental development of tiesd-
applications. There is no hard line between riga¢tand
non-real-time applications in Rialto. Use of CPU
reservations and time constraints can be increrttenta
added both to existing applications and those under
development as needed to ensure local and global
timeliness properties of the code.

Another advantage of these abstractions is that the
correct use requires no advance coordination among
applications that might be concurrently executBecause
the parameters to both time constraints and CPU
reservations are derived only from properties oé th
applications using them (and not, by way of comtrirem
a global priority ordering among or timing analysisall
applications), they may be used to develop independ
real-time applications that can be concurrently cexed

hadwith one another and with non-real-time applicagion

while still guaranteeing the timing properties dif real-
time applications, providing of course, that suéfitt
actual resources exist to do so.

Our experiences gained from implementing and
experimenting with the algorithms described in théper
lead us to the conclusion that there is no souagae why
practical, efficient, real-time services enabling
independent real-time applications can not and Ishoat
be present in nearly all general-purpose operajistems.

References
All references used in this paper are contained in:

[Jones et al. 97] Michael B. Jones, DanielglRdarcel-
Catalin Rosu. CPU Reservations and Time
Constraints: Efficient, Predictable Scheduling of
Independent Activities. IfProceedings of the
16" ACM Symposium on Operating Systems
Principles Saint-Malo, France, pp. 198-211,
October, 1997.

They are omitted here due to space limitations.

