
CPU Reservations and Time Constraints:
Efficient, Predictable Scheduling of Independent Activities

Michael B. Jones

Microsoft Research, Microsoft Corporation
One Microsoft Way, Building 9s/1

Redmond, WA 98052

mbj@microsoft.com
http://research.microsoft.com/~mbj/

Daniela RoÒu, Marcel-C�t�lin RoÒu
College of Computing,

Georgia Institute of Technology
Atlanta, GA 30332-0280

daniela@cc.gatech.edu, rosu@cc.gatech.edu
http://www.cc.gatech.edu/{~daniela,~rosu}/

Abstract
Workstations and personal computers are

increasingly being used for applications with real-time
characteristics such as speech understanding and
synthesis, media computations and I/O, and animation,
often concurrently executed with traditional non-real-time
workloads. This paper presents a system that can
schedule multiple independent activities so that:
• activities can obtain minimum guaranteed execution

rates with application-specified reservation
granularities via CPU Reservations,

• CPU Reservations, which are of the form “reserve X
units of time out of every Y units”, provide not just an
average case execution rate of X/Y over long periods of
time, but the stronger guarantee that from any instant of
time, by Y time units later, the activity will have
executed for at least X time units,

• applications can use Time Constraints to schedule tasks
by deadlines, with on-time completion guaranteed for
tasks with accepted constraints, and

• both CPU Reservations and Time Constraints are
implemented very efficiently. In particular,

• CPU scheduling overhead is bounded by a constant and
is not a function of the number of schedulable tasks.

Other key scheduler properties are:
• activities cannot violate other activities’ guarantees,
• time constraints and CPU reservations may be used

together, separately, or not at all (which gives a round-
robin schedule), with well-defined interactions between
all combinations, and

• spare CPU time is fairly shared among all activities.
The Rialto operating system, developed at Microsoft
Research, achieves these goals by using a precomputed
schedule, which is the fundamental basis of this work.

Note
This work-in-progress report is a synopsis of work

originally presented at the 16th ACM Symposium on
Operating Systems Principles in Saint-Malo, France, in
October, 1997 [Jones et al. 97]. For a copy of the full
paper, see http://research.microsoft.com/~mbj/.

1. Introduction

1.1 Terminology and Abstractions
This paper describes a real-time scheduler,

implemented as part of the Rialto operating system at
Microsoft Research, that allows multiple independent real-
time applications to be predictably and efficiently run on
the same machine, along with traditional timesharing
applications. Three fundamental abstractions are provided
in Rialto to enable these goals to be met:

• Activities
• CPU Reservations, and
• Time Constraints.

An Activity object [Jones et al. 95] is the abstraction
to which resources are allocated and against which
resource usage is charged. Normally each distinct
executing program or application is associated with a
separate activity. Examples of such tasks are: real-time
audio synthesis, playing a studio-quality video stream, and
accepting voice input for a speech recognition system.

Activities may span address spaces and machines and
may have multiple threads of control associated with them.
Each executing thread has an associated activity. When
threads execute, any resources used are charged against
their activity. Threads making RPCs are treated similarly
to migrating threads [Ford & Lepreau 94] in that the server
thread runs under the same activity as the client thread.

CPU Reservations are made by activities to ensure a
minimum guaranteed execution rate and granularity. CPU
reservation requests are of the form reserve X units of time
out of every Y units for activity A. This requests that for
every time interval of size Y, runnable threads of A be
scheduled for at least X time units. For example, an
activity might request at least 800µs every 5ms, 7.5ms
every 33.3ms, or one second every minute.

Rialto’s CPU Reservations are continuously
guaranteed. If A has a reservation for X time units out of
every Y, then for every time T, A will be run for at least X
time units in the interval [T, T+Y], provided it is runnable.
This is a stronger guarantee than provided by other kinds
of CPU reservations. [Mercer et al. 94, Leslie et al. 95]
and periodic schedulers only guarantee X when T is an
integral multiple of Y plus a constant offset. [Nieh & Lam
97, Stoica et al. 96, Waldspurger 95], and [Jones et al. 96]
guarantee either the proportion X/Y or a weighted fair
share but over unspecified periods of time.

A Time Constraint is a dynamic request issued by a
thread to the scheduler that the code associated with the
constraint be run to completion between the associated
start time and deadline. The request also contains an
upper bound on the execution time of the code. Varieties
of constraints are described in [Northcutt 88, Mercer et al.
94, Jones et al. 96], and [Nieh & Lam 97].

In Rialto, constraint deadlines may be tighter than the
caller’s CPU Reservation period and the estimate may
request more time between the start time and deadline than
the caller’s CPU reservation (if any) can guarantee. The
extra time is guaranteed, when possible, by using free time
in the schedule.

Feasibility analysis is done for all time constraints
when submitted, including those with a start time in the
future. The requesting thread is either guaranteed that
sufficient time has been assigned to perform the specified
amount of work when requested or it is immediately told
via a return code that this was not possible, allowing the
thread to take alternate action for the unsatisfiable
constraint. For instance, a thread might skip part of a
computation, temporarily shedding load in response to a
failed constraint request. Providing constraints that can be
guaranteed in advance, even when the CPU reservations
are insufficient or non-existent, is one feature that sets
Rialto apart from other constraint-based schedulers.

When a thread makes a call indicating that it has
completed a time constraint, the scheduler returns the
actual execution time the code took to run as a result from
the call. This provides a basis for computing accurate run-
time estimates for subsequent constraint executions.

Time constraints are inherited across synchronization
objects, providing a generalization of priority inheritance
[Sha et al. 90]. Likewise, constraints are also inherited
when a thread makes a remote procedure call.

1.2 Goals
The top-level Rialto goal is to make it possible to

develop independent real-time applications independently,
while enabling their predictable concurrent execution, both
with each other and with non-real-time applications. This
goal has driven all the rest.

Towards this end, we wanted a system meeting these
(already previously described) goals:

• Guaranteed CPU reservations
• Application-specified reservation granularity
• Fine-grained constraint-based scheduling
• Accurate time constraint feasibility analysis
• Guaranteed execution of feasible time constraints
• Proactive denial of infeasible time constraints

Additional related goals (not previously described) are:
• Very low scheduling overhead
• Timesharing/fair sharing of free time

Secondary goals of this research are:
• Fairness for threads within an activity
• Best effort to honor CPU reservations for briefly

blocked activities

• Best effort to satisfy denied time constraints
• Best effort to finish underestimated time constraints

2. Programming Model

2.1 Adaptive Real-Time Applications
The abstractions provided by Rialto are designed to

allow multiple independently authored applications to be
concurrently executed on the same machine, providing
predictable scheduling behavior for those applications
with real-time requirements. Rialto is designed to enable
applications to perform predictably in dynamic, open
systems, where such factors as the speeds of the processor,
memory, caches, busses, and I/O channels are not known
in advance, and the application mix and available
resources may change during execution.

Consequently, real-time applications must monitor
their own performance and resource usage, modifying
their behavior and resource requests until their
performance and predictability are satisfactory. The
system plays two roles in this model. It provides facilities
for applications to monitor their own resource usage and it
provides facilities for applications to reserve the resources
that they need for predictable performance.

2.2 Programming with CPU Reservations
As previously described, activities submit CPU

reservation requests of the form reserve X units of time out
of every Y units to ensure a minimum execution rate and
an execution granularity. Threads within each activity are
scheduled round-robin unless time constraints or thread
synchronization primitives dictate otherwise. An activity
is blocked when it has no runnable threads. Blocked
activities do not accumulate credits for time reserved but
not used; unused time is given to others ready to run.

 Activities may ask at any time how much CPU time
they have used since their creation. This provides a basis
for applications to be aware of their CPU usage and adapt
their reservation requests in light of their actual usage.

2.3 Programming with Time Constraints
An application can request that a piece of code be

executed by a particular deadline as follows:

Calculate constraint parameters
schedulable = BeginConstraint(

start_time, estimate, deadline);
if (schedulable) {

Do normal work under constraint
} else {

Transient overload — shed load if possible
}
time_taken = EndConstraint();

The start_time and deadline parameters are
straightforward to calculate since they directly follow from
what the code is intended to do and how it is implemented.
The estimate parameter requires more care, since
predicting the run time of a piece of code is a hard
problem (particularly in light of variations in processor &
memory speeds, cache & memory sizes, I/O bus

bandwidths, etc., between machines) and overestimating it
increases the risk of the constraint being denied.

Rather than trying to calculate the estimate in some
manner from first principles (as is done for some hard
real-time embedded systems), one can base the estimate on
feedback from previous executions of the same code. In
particular, the time_taken result from the EndConstraint()
provides the basis for this feedback.

The schedulable result informs the calling code
whether a requested constraint can be guaranteed, enabling
it to react appropriately when it can not. This might be
caused by transient overload conditions or an application
optimistically trying to schedule more work than its CPU
reservation can guarantee.

Finally, note that constraint deadlines may be small
relative to their thread’s reservation period. For instance,
it’s both legal and meaningful for a thread to request 5ms
of work in the next 10ms when its activity’s reservation
only guarantees 8ms every 24ms. The request may or may
not succeed but if it succeeds, the scheduler will have
reserved sufficient time for the constraint.

 3. Scheduler Implementation
 Key aspects of the scheduler implementation are:

• Precomputed Scheduling Graph: A scheduling
graph is precomputed from the set of CPU
reservations, preallocating sufficient time to satisfy all
reservations on an ongoing basis.

• Time Interval Assignment: Specific time intervals
are set aside within the scheduling graph for the
execution of feasible time constraints.

• EDF Constraint Execution: Feasible constraints are
executed in Earliest Deadline First order.

• Threads Round-Robin Within Activity: Threads
within an activity with no active time constraints
execute in a round-robin fashion.

• Timeshared Remainder: Free (unreserved) and
unused reserved CPU time is shared among all
runnable activities.

Due to space limitations, only the graph is described here.

3.1 Precomputed Scheduling Graph

The fundamental basis of this scheduling work is the
ability to precompute a repeating schedule such that all
accepted CPU reservations can be honored on a continuing

basis and accurate feasibility analysis of time constraints
can be performed. Furthermore, this schedule may be
represented in a data structure that may be used at run-
time to decide, in time bounded by a constant, which
activity to run next. We currently represent this
precomputed schedule as a binary tree, although more
generally it could be a directed graph.

Figure 3-1 shows a scheduling graph for six activities
with the following reservations:

Activity A B C D E F
Amount 4ms 3ms 2ms 1ms 1ms 5ms
Period 20ms 10ms 40ms 20ms 10ms 40ms

Each node in the graph represents a periodic interval of
time that is either dedicated to the execution of a particular
activity or is free. For instance, the leftmost node
dedicates 3ms for the execution of activity B.

Each left-to-right path through the graph is the same
length, in this case 10ms. This length is the base period of
the scheduling graph and corresponds to the minimum
active reservation period.

The scheduler repeatedly traverses the graph from left
to right, alternating choices each time a branching point is
reached. When the right ends of the graph are reached,
traversal resumes again at the left. In this example, the
schedule execution order is:

(B, 3ms), (E, 1ms), (A , 4ms), (free, 2ms),
(B, 3ms), (E, 1ms), (D, 1ms), (C, 2ms), (free, 3ms),
(B, 3ms), (E, 1ms), (A, 4ms), (free, 2ms),
(B, 3ms), (E, 1ms), (D, 1ms), (F, 5ms).

After this the schedule repeats.
The execution times associated with schedule graph

nodes are periodic and fixed during the lifetime of the
graph; they do not drift. For instance, if activity D is first
scheduled to run during the time interval [T, T+1ms], it
will next run during [T+20ms, T+21ms], then
[T+40ms, T+41ms], etc. Of course, when an interrupt
occurs, whatever time it takes is unavailable to the node
intervals in which it executes, causing them to receive less
time than planned. However, the effects of such an event
are limited to the executing activity and thread, rather than
being propagated into the future. Allowing perturbations
to affect the future execution of the scheduling plan would
have disastrous effects to the satisfiability of already
granted time constraints.

Each node following a branching point in the graph is
scheduled only half as often as those preceding it. For
instance, activity A is only scheduled every 20ms — half
as often as activity E at 10ms. Likewise, C is scheduled
every 40ms, half as often as D. This makes it possible to
schedule reservations with different periods using the
same graph, provided that each reservation period is a
power-of-two multiple of the base period.

Reservations where the period is not such a multiple
are scaled and scheduled at the next smaller power-of-two
multiple of the base period. For instance, A might have
originally requested 6ms every 30ms but because the base
period of the graph is 10ms, its reservation was actually

3: B

5: F

4: A

1: D

2: free

3: free2: C
1: E

Figure 3-1: Scheduling graph with a base period of
10ms

granted at 4ms per 20ms — the same CPU percentage but
at a higher frequency. Applications are told the actual
reservation granted, allowing them to iterate and change
their reservation request in response if they deem it
appropriate.

Benefits of the precomputed scheduling graph
include:

• CPU reservations are enforced with essentially no
additional run-time scheduling overhead. The
scheduling decision involves only a small number of
pointer indirections. This number is bounded by a
constant and is independent of the number of threads,
activities, and time constraints.

• Accurate feasibility analysis for time constraints can
be performed because it is known in advance when an
activity will be executed and when free time intervals
will occur.

 4. Sample Results

Figure 5-1 compares the effectiveness of two
schedulers when playing six concurrent AVI video streams
from Tiger [Bolosky et al. 97] on our set-top box. The
first is the round-robin scheduler used in Microsoft’s
Interactive TV trials [Jones 97] and the second is the
Rialto scheduler. Under Rialto, the AVI streams each had
1.2ms/10ms (12%) reservations and the kernel had
2.1ms/10ms (21%).

Figure 5-2 is similar, but substitutes an MPEG player
application using decompression hardware for one of the
AVI players. In this case, the reservations used under

Rialto were 1ms/10ms (10%) for the MPEG player,
1.2ms/10ms (12%) for AVI 1, 1.15ms/10ms (11.5%) for
AVIs 2-4, 1.1ms/10ms (11%) for AVI 5, and 5.0ms/20ms
(25%) for the kernel.

Note that the AVI player and MPEG player
applications were designed to run on the round-robin
scheduler. Yet, we were able to significantly improve the
performance of these unmodified applications by running
them and the kernel (which reads incoming network
packets) with appropriate CPU reservations. These are
examples of enabling multiple real-time applications to co-
exist on the same system through use of CPU reservations.

5. Conclusions
This research demonstrates the effectiveness and

practicality of using a Precomputed Scheduling Graph
both to implement continuously guaranteed CPU
Reservations with application-defined periods and to
implement guaranteed Time Constraints with accurate a
priori feasibility analysis. Our results show that one need
not sacrifice efficiency to gain the predictability benefits
of CPU reservations and time constraints.

Furthermore, CPU reservations and time constraints
lend themselves to incremental development of real-time
applications. There is no hard line between real-time and
non-real-time applications in Rialto. Use of CPU
reservations and time constraints can be incrementally
added both to existing applications and those under
development as needed to ensure local and global
timeliness properties of the code.

Another advantage of these abstractions is that their
correct use requires no advance coordination among
applications that might be concurrently executed. Because
the parameters to both time constraints and CPU
reservations are derived only from properties of the
applications using them (and not, by way of contrast, from
a global priority ordering among or timing analysis of all
applications), they may be used to develop independent
real-time applications that can be concurrently executed
with one another and with non-real-time applications,
while still guaranteeing the timing properties of all real-
time applications, providing of course, that sufficient
actual resources exist to do so.

Our experiences gained from implementing and
experimenting with the algorithms described in this paper
lead us to the conclusion that there is no sound reason why
practical, efficient, real-time services enabling
independent real-time applications can not and should not
be present in nearly all general-purpose operating systems.

 References
All references used in this paper are contained in:

[Jones et al. 97] Michael B. Jones, Daniela RoÒu, Marcel-
C�t�lin RoÒu. CPU Reservations and Time
Constraints: Efficient, Predictable Scheduling of
Independent Activities. In Proceedings of the
16th ACM Symposium on Operating Systems
Principles. Saint-Malo, France, pp. 198-211,
October, 1997.

They are omitted here due to space limitations.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6

AVI stream number

%
 F

ra
m

es
 R

en
d

er
ed

Round-robin
scheduler

Rialto
scheduler

Figure 5-1: Concurrent execution of 6 AVI video player
applications under round-robin and Rialto scheduling

0%

20%

40%

60%

80%

100%

M
PEG

AVI 1
AVI 2

AVI 3
AVI 4

AVI 5

Application

%
 F

ra
m

es
 R

en
d

er
ed

Round-robin
scheduler

Rialto
Scheduler

Figure 5-2: Concurrent execution of 1 MPEG and 5 AVI
video player applications under round-robin and Rialto

