
Automatically Validating
Temporal Safety Properties of Interfaces

Thomas Ball
Microsoft Research
One Microsoft Way

Redmond, WA 98052

tball@microsoft.com

Sriram K. Rajamani
Microsoft Research
One Microsoft Way

Redmond, WA 98052

sriram@microsoft.com

ABSTRACTWe present a proess for validating temporal safety prop-erties of software that uses a well-de�ned interfae. Theproess requires only that the user state the property of in-terest. It then automatially reates abstrations of C odeusing iterative re�nement, based on the given property. Theproess is realized in the SLAM toolkit, whih onsists of amodel heker, prediate abstration tool and prediate dis-overy tool. We have applied the SLAM toolkit to a num-ber of Windows NT devie drivers to validate ritial safetyproperties suh as orret loking behavior. We have foundthat the proess onverges on a set of prediates powerfulenough to validate properties in just a few iterations.
1. INTRODUCTIONLarge-sale software has many omponents built by manyprogrammers. Integration testing of these omponents is im-possible or ine�etive at best. Property heking of interfaeusage provides a way to partially validate suh software. Inthis approah, an interfae provides a set of properties thatall lients of the interfae should respet. An automatianalysis of the lient ode then validates that it meets theproperties, or provides examples of exeution paths that vi-olate the properties. The bene�t of suh an analysis is thaterrors an be aught very early in the oding proess.We are interested in heking that a program respets aset of temporal safety properties of the interfaes it uses.Safety properties are the lass of properties that state that\something bad does not happen". An example is requiringthat a lok is never released without �rst being aquired(see [21℄ for a formal de�nition). Given a program and asafety property, we wish to either validate that the oderespets the property, or �nd an exeution path that showshow the ode violates the property.In this paper, we show that safety properties of systemsoftware an be validated and invalidated using model hek-ing, without the need for user-supplied annotations (invari-
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ants) or user-supplied abstrations. As no annotations arerequired, we use model heking to ompute �xpoints auto-matially over an abstration of the C ode. We onstrutan appropriate abstration by (1) obtaining an initial ab-stration from the property that needs to be heked, and(2) re�ning this abstration using an automati re�nementalgorithm.We model abstrations of C programs using boolean pro-grams [3℄. Boolean programs are C programs in whih allvariables have boolean type. Boolean programs ontain allthe ontrol-ow onstruts of C program, proedures, andproedure alls with all-by-value parameter passing. Eahboolean variable in a boolean program has an interpreta-tion as a prediate over the in�nite state spae of the Cprogram. Our experiene shows that our re�nement algo-rithm �nds boolean program abstrations that are preiseenough to validate properties. Furthermore, if the propertyis violated, the proess of searhing for a suitable booleanprogram abstration leads to a manifestation of the viola-tion.We present the SLAM toolkit for heking safety prop-erties of system software, and report on our experiene inusing the toolkit to hek properties of Windows NT deviedrivers. Given a safety property to hek on a C program,the SLAM proess has the following phases: (1) abstration,(2) model heking, and (3) prediate disovery. We havedeveloped tools to support eah of these phases:� C2bp, a tool that transforms a C program P into aboolean program BP(P;E) with respet to a set ofprediates E over the state spae of P [1, 2℄;� Bebop, a tool for model heking boolean pro-grams [3℄, and� Newton, a tool that disovers additional prediates tore�ne the boolean program, by analyzing the feasibilityof paths in the C program.The SLAM toolkit provides a fully automati way of hek-ing temporal safety properties of system software. Viola-tions are reported by the SLAM toolkit as paths over theprogram P . It never reports spurious error paths. Instead,it detets spurious error paths and uses them to automat-ially re�ne the abstration (to eliminate these paths fromonsideration). Sine property heking is undeidable, theSLAM re�nement algorithm may not onverge. However,in our experiene, it usually onverges in a few iterations.Furthermore, whenever it onverges, it gives a de�nite \yes"or \no" answer.1



The worst-ase run-time omplexity of the SLAM toolsBebop and C2bp is linear in the size of the program's on-trol ow graph, and exponential in the number of prediatesused in the abstration. We have implemented several op-timizations to make Bebop and C2bp sale graefully inpratie, even with a large number of prediates. The New-ton tool sales linearly with path length and number ofprediates.We applied the SLAM toolkit to hek the use of the Win-dows NT I/O manager interfae by devie driver lients.There are on the order of a hundred rules that the lients ofthe I/O manager interfae should satisfy. We have automat-ially heked properties on devie drivers taken from theMirosoft Driver Development Kit1. While heking for or-ret use of loks, we found that the SLAM proess onvergesin one or two iterations to a boolean program that is suÆ-iently preise to validate/invalidate the property. We alsoheked a data-dependent property, whih requires keepingtrak of value-ow and aliasing, using four iterations of theSLAM tools.The remainder of this paper is organized as follows. Se-tion 2 gives an overview of the SLAM approah by applyingthe tools to verify part of an NT devie driver. Setions 3, 4and 5 give brief desriptions of the three tools that omposethe SLAM toolkit and explain how they work in the ontextof the running example. Setion 6 desribes our experieneapplying the tools to an NT devie driver. Setion 7 dis-usses related work and Setion 8 onludes the paper.
2. OVERVIEWThis setion introdues the SLAM re�nement algorithmand then applies this algorithm to a small ode example, ex-trated from a PCI devie driver. The SLAM toolkit handlesa signi�ant subset of the C language, inluding pointers,strutures, and proedures (with reursion and mutual re-ursion). A limitation of our tools is that they assume alogial model of memory when analyzing C programs. Un-der this model, the expression p + i, where p is a pointerand i is an integer, yields a pointer value that points tothe same objet pointed to by p. That is, we treat pointersas referenes rather than as memory addresses. Note thatthis is the same basi assumption underlying most points-toanalysis, inluding the one that our tools use [10℄.
2.1 Refinement AlgorithmWe wish to hek if a temporal safety property ' is sat-is�ed by a program P . We assume that the program P hasbeen instrumented to result in a program P 0 suh that Psatis�es ' i� the label ERROR is not reahable in P 0. In par-tiular, the instrumentation takes the form of alls to a �nitestate mahine (FSM) transition funtion, written in C. Theparameters to the funtion enode the events/data that de-termine the FSM's next state. The transition funtion sim-ply swithes on the urrent state of the mahine (kept inglobal variables) and its formal parameters, to deide whihstate omes next. The label ERROR in this funtion reetsthe �nite state mahine moving into a rejet state. Thisis known in the model heking ommunity as a \produtautomaton onstrution" and is a fairly standard way to1The ode of the devie drivers we analyzed is freely avail-able from http://www.mirosoft.om/ddk/W2kDDK.htm

enode safety properties.2Let i be a metavariable that reords the SLAM iterationount. In the �rst iteration (i = 0), we start with a set ofprediates E0 that apture the state of the FSM. Let statebe the global variable representing the state of the FSM andlet D(state) be its domain. Without loss of generality, letx be the single formal parameter of the transition funtionand D(x) be its domain. Then the set E0 is given as:E0 = f(state = s) j s 2 D(state)g [ f(x = f) j f 2 D(x)gLet Ei be some set of prediates over the state of P 0, theinstrumented version of P . Then iteration i+1 of SLAM isarried out using the following steps:1. Apply C2bp to onstrut the boolean programBP(P 0; Ei), whih has the same ontrol-ow graph asP 0.2. Apply Bebop to hek if there is a path pi inBP(P 0; Ei) that reahes the ERROR label. If Bebopdetermines that ERROR is not reahable, then the prop-erty ' is valid in P , and the algorithm terminates.3. If there is suh a path pi, then we use Newton tohek if pi is feasible in P . There are two outomes:{ \yes": the property ' has been invalidated in P ,and the algorithm terminates with an error pathpi (a witness to the violation of ').{ \no": Newton �nds a set of prediates Fi+1 thatexplain the infeasibility of path pi in P .4. Let Ei+1 = Ei [ Fi+1, and i = i + 1, and proeed tothe next iteration.As stated before, this algorithm is potentially non-terminating. However, when it does terminate, it providesa de�nitive answer.
2.2 ExampleFigure 1(a) presents a snippet of C ode from a PCI deviedriver that proesses interrupt request pakets (irps). Ofinterest here are the alls the ode makes to aquire and re-lease spin loks (KeAquireSpinLok, KeReleaseSpinLok).Figure 1(b) shows the program, instrumented to hek thatloks are properly aquired and released using a �nite statemahine with two states Loked and Unloked. The pro-edure FSM implements the transition funtion of the statemahine, as desribed before.The question we wish to answer is: is the label ERRORreahable in the ode in Figure 1(b)? The following se-tions apply the algorithm given above to show that ERROR isunreahable.
2.3 Initial Boolean ProgramThe �rst step of the algorithm is to generate a booleanprogram from the C program and the set of prediates E0that de�ne the states of the �nite state mahine. We repre-sent our abstrations as boolean programs. The syntax andsemantis of boolean program was de�ned in [3℄. Booleanprograms are C programs in whih the only allowed typesare bool (with values 0 and 1) and void. Boolean programs2In the near future, we plan to generate the instrumentedC program from a high level spei�ation automatially.2



void example() {do {//get the write lokKeAquireSpinLok(&devExt->writeListLok);nPaketsOld = nPakets;request = devExt->WriteListHeadVa;if(request && request->status){devExt->WriteListHeadVa = request->Next;// release the lokKeReleaseSpinLok(&devExt->writeListLok);irp = request->irp;if(request->status > 0){irp->IoStatus.Status = STATUS_SUCCESS;irp->IoStatus.Information = request->Status;} else {irp->IoStatus.Status = STATUS_UNSUCCESSFUL;irp->IoStatus.Information = request->Status;}SmartDevFreeBlok(request);IoCompleteRequest(irp, IO_NO_INCREMENT);nPakets++;}} while (nPakets != nPaketsOld);// release the lokKeReleaseSpinLok(&devExt->writeListLok);}

typedef {Loked, Unloked} STATETYPE;typedef {Aq, Rel} MTYPE;stateType state = Unloked;FSM(m : MTYPE){if ((state==Unloked) && (m==Aq))A: state = Loked;else if ((state==Loked) && (m==Rel))B: state = Unloked;elseERROR: ;} void example() {do {C: KeAquireSpinLok(&devExt->writeListLok);FSM(Aq);nPaketsOld = nPakets;request = devExt->WriteListHeadVa;if(request && request->status){D: devExt->WriteListHeadVa = request->Next;KeReleaseSpinLok(&devExt->writeListLok);FSM(Rel);irp = request->irp;if(request->status > 0){irp->IoStatus.Status = STATUS_SUCCESS;irp->IoStatus.Information = request->Status;} else {irp->IoStatus.Status = STATUS_UNSUCCESSFUL;irp->IoStatus.Information = request->Status;}E: SmartDevFreeBlok(request);IoCompleteRequest(irp, IO_NO_INCREMENT);nPakets++;}} while (nPakets != nPaketsOld);F: KeReleaseSpinLok(&devExt->writeListLok);FSM(Rel);}(a) Program P (b) Instrumented Program P 0Figure 1: (a) A snippet of devie driver ode P and the (b) instrumented ode P 0 that heks proper use ofspin loks.also allow ontrol non-determinism, through the onditionalexpression \�", as shown later on.For our example, the set E0 onsists of four prediates:two global prediates, (state = Loked) and (state =Unloked), and two loal prediates over the formal param-eter m to the proedure FSM, (m = Aq) and (m = Rel).These four prediates and the C program of Figure 1(b)are input to the C2bp (C to Boolean Program) tool to re-ate the boolean program BP(P 0; E0), shown in Figure 2(a).This program has two global variables, fstate==Lokedgand fstate==Unlokedg, and the proedure FSM has twoformal parameters, fm==Aqg and fm==Relg.3 For everystatement s in the C program and prediate e 2 E0, theC2bp tool determines the e�et of statement s on prediatee. For example, onsider the assignment statement \state3Boolean programs permit a variable identi�er to be an ar-bitrary string enlosed between \f" and \g". This is helpfulfor giving boolean variables names to diretly represent theprediates in the C program that they represent.

= Loked; " at label A in program P 0 of Figure 1(b). Thisstatement makes the prediate (state = Loked) true andthe prediate (state = Unloked) false. This is reeted inthe boolean program BP(P 0; E0) by the parallel assignmentstatementfstate==Lokedg, fstate==Unlokedg := 1,0;The translation of the boolean expressions in the ondi-tional statements of the C program results in the obviousorresponding boolean expressions in the FSM proedure inthe boolean program. Control non-determinism is used toonservatively model the onditions in the C program thatannot be abstrated preisely using the prediates in E0.Many of the assignment statements in the C program areabstrated to the skip statement (no-op) in the boolean pro-gram. The C2bp tool uses Das's points-to analysis [10℄ todetermine whether or not an assignment statement througha pointer dereferene an a�et a prediate e. In our exam-ple, the points-to analysis shows that no variable in the C3



del {state==Loked}, {state==Unloked};void FSM({m==Aq},{m==Rel})beginif ({state==Unloked}&{m==Aq})A: {state==Loked}, {state==Unloked} := 1,0;else if ({state==Loked}&{m==Rel})B: {state==Loked}, {state==Unloked} := 0,1;elseERROR: skip;fiendvoid example() // void example() {begin //do // do {skip; // KeAquireSpinLok(&devExt->writeListLok);C: FSM(1,0); // FSM(Aq);skip; // nPaketsOld = nPakets;skip; // request = devExt->WriteListHeadVa;//if (*) then // if(request && request->status){D: skip; // devExt->WriteListHeadVa = request->Next;skip; // KeReleaseSpinLok(&devExt->writeListLok);FSM(0,1); // FSM(Rel);skip; // irp = request->irp;if (*) then // if(request->status > 0){skip; // irp->IoStatus.Status = STATUS_SUCCESS;skip; // irp->IoStatus.Information = request->Status;else // } else {skip; // irp->IoStatus.Status = STATUS_UNSUCCESSFUL;skip; // irp->IoStatus.Information = request->Status;fi // }E: skip; // SmartDevFreeBlok(request);skip; // IoCompleteRequest(irp, IO_NO_INCREMENT);skip; // nPakets++;end // }while (*) // } while (nPakets != nPaketsOld);skip; // KeReleaseSpinLok(&devExt->writeListLok);F: FSM(0,1); // FSM(Rel);end // }

see ode in left pane
void example()begindoC: FSM(1,0);b := 1;skip;skip;if (*) thenD: skip;skip;FSM(0,1);skip;if (*) thenskip;skip;elseskip;skip;fiE: skip;skip;b := hoose(0,b);fiwhile (!b)skip;F: FSM(0,1);end(a) Boolean program BP(P 0; E0) (b) Boolean program BP(P 0; E1)Figure 2: The two boolean programs reated while heking the ode from Figure 1(b). (The seond booleanprogram also ontains the state mahine funtion and global state variable, but we omit it to enhane thelarity of the �gure). See the program text for the de�nition of the hoose funtion.program an alias the address of the global state variable(or the formal parameter m of proedure FSM).4We say that the boolean program BP(P 0; E0) abstratsthe program P 0, sine every feasible exeution path p of theprogram P 0 also is a feasible exeution path of BP(P 0; E0).

2.4 Model Checking The Boolean ProgramThe seond step of our proess is to determine whetheror not the label ERROR is reahable in the boolean programBP(P 0; E0). We use the Bebop model heker to deter-mine the answer to this query. In this ase, the answer is\yes". Like most model hekers, the Bebop tool produesa (shortest) path leading to the error state. In this ase,the shortest path to the error state is the path that goesaround the loop twie, aquiring the lok twie without an4The analysis also shows that the proe-dures SmartDevFreeBlok, and kernel proeduresIoCompleteRequest, KeAquireSpinLok, andKeReleaseSpinLok annot a�et these variables sothe alls to them are removed.

intermediate release, as given by the following error path pof labels: [C, A, E, C, ERROR℄
2.5 Predicate Discovery over Error PathBeause the C program and the boolean program abstra-tions have idential ontrol-ow graphs, the error path p inBP(P 0; E0) produed by Bebop is also a path of program P .The question then is: does p represent a feasible exeutionpath of P ? That is, is there some exeution of program Pthat follows the path p? If so, we have found a real error inP . If not, path p is a spurious error path.The Newton tool takes a C program and a (potential)error path as an input. It then uses veri�ation onditiongeneration (VCGen) to determine if the path is feasible. Theanswer may be \yes" or \no". 55Sine underlying deision proedures in the theorem proverare inomplete, \don't know" is also a possible answer. Inpratie, the theorem provers we use have been able to give4



If the answer is \yes", then an error path has been found,and we report it to the user. If the answer is \no" thenNewton uses a new algorithm to identify a small set ofprediates that \explain" why the path is infeasible.In the running example, Newton detets that the pathp is infeasible, and returns a single prediate nPakets =npaketsOld as the explanation for the infeasibility. This isbeause the prediate nPakets = nPaketsOld is requiredto be both true and false by path p. The assignment ofnPaketsOld to nPakets makes the prediate true, and theloop test requires it to be false at the end of the do-whileloop for the loop to iterate, as spei�ed by the path p.
2.6 The Second Boolean ProgramIn the seond iteration of the proess, the prediatenPakets = nPaketsOld is added to the set of prediatesE0 to result in a new set of prediates E1. Figure 2(b) showsthe boolean program BP(P 0; E1) that C2bp produes. Thisprogram has one additional boolean variable (b) that repre-sents the prediate nPakets = nPaketsOld. The assign-ment statement nPakets = nPaketsOld; makes this on-dition true, so in the boolean program the assignment b:=1;represents this assignment. Using a theorem prover, C2bpdetermines that if the prediate is true before the statementnPakets++, then it is false afterwards. This is aptured bythe assignment statement in the boolean programb := hoose(0,b);The hoose funtion is de�ned as follows:bool hoose(pos, neg)beginif (pos) then return 1;elsif (neg) then return 0;elsif (*) then return 0;else return 1; fiendThe pos parameter represents positive information about aprediate while the neg parameter represents negative in-formation about a prediate. The hoose funtion is neveralled with both parameters evaluating to true. If both pa-rameters are false then there is not enough information todetermine whether the prediate is de�nitely true or de�-nitely false, so 0 or 1 is returned, non-deterministially.Applying Bebop to the new boolean program shows thatthe label ERROR is not reahable. In performing its �xpointomputation, Bebop disovers that the following loop in-variant holds at the end of the do-while loop:(state = Loked ^ nPakets = nPaketsOld)_ (state = Unloked ^ nPakets 6= nPaketsOld)That is, either the lok is held and the loop will terminate(and thus the lok needs to be released after the loop), orthe lok is free and the loop will iterate. The ombination ofprediate abstration of C2bp and the �xpoint omputationof Bebop has found this loop-invariant over the prediatesin E1. This loop-invariant is strong enough to show that thelabel ERROR is not reahable.a \yes" or \no" answer in every example we have seen sofar.

3. C2BP: A PREDICATE ABSTRACTOR
FOR CC2bp takes a C program P and a set E = fe1; e2; : : : ; engof prediates on the variables of P , and automatially on-struts a boolean program BP(P;E).6 The set of prediatesE are pure C boolean expressions with no funtion alls.The boolean program BP(P;E) ontains n boolean vari-ables V = fb1; b2; : : : ; bng, where eah boolean variable birepresents a prediate ei. Eah variable in V has a three-valued domain: false, true, and �.7 The program BP(P;E)is a sound abstration of P beause every possible exeutiontrae t of P has a orresponding exeution trae t0 in B.Furthermore, BP(P;E0) is a preise abstration of P withrespet to the set of prediates E0, in a sense stated andshown elsewhere [2℄. Sine BP(P;E) is an abstration of P ,it is guaranteed that an invariant I disovered (by Bebop)in BP(P;E), as boolean ombinations of the bi variables, isalso an invariant in the C ode, where eah bi is replaed byits orresponding prediate ei.C2bp determines, for every statement s in P and everyprediate ei 2 E, how the exeution of s an a�et the truthvalue of ei. This is aptured in the boolean program by astatement sB that onservatively updates eah bi to reetthe hange. C2bp omputes sB by (1) �rst omputing theweakest preondition of ei, and its negation with respet tos, and (2) strengthening the weakest preondition in termsof prediates from E, using a theorem prover.We highlight the tehnial issues in building a tool likeC2bp:� Pointers: We use an alias analysis of the C pro-gram to determine whether or not an update througha pointer dereferene an potentially a�et an expres-sion. This greatly inreases the preision of the C2bptool. Without alias analysis, we would have to makevery onservative assumptions about aliasing, whihwould lead to invalidating many prediates.� Proedure alls: Sine boolean programs supportproedure alls, we are able to abstrat proeduresmodularly. The abstration proess for proedure allsis hallenging, partiularly in the presene of pointers.After a all, the aller must onservatively update lo-al state that may have been modi�ed by the allee.We provide a sound and preise approah to abstrat-ing proedure alls that takes suh side-e�ets into a-ount.� Preision-eÆieny tradeo�. C2bp uses a theoremprover to strengthen weakest pre-onditions in termsof the given prediate set E. Doing this strengtheningpreisely requires O(2jEj) alls to the theorem prover.We have explored a number of optimization tehniquesto redue the number of alls made to the theoremprover. Some of these tehniques result in an equiva-lent boolean program, while others trade o� preision6A separate paper on the C2bp tool has been submitted tothis onferene. That paper ontains the tehnial detailsand algorithms that the tool uses. This paper presents apartiular appliation of the C2bp tool, in onjuntion withthe two other tools in the SLAM toolkit.7The use of the third value �, is enoded using ontrol-nondeterminism as shown in the hoose funtion of Se-tion 2. That is, \�" is equivalent to \hoose(0,0)".5



for omputation speed. We are also investigating us-ing other deision proedures, suh as those embodiedin the Omega test [25℄ and PVS [23℄.Complexity. The runtime of C2bp is dominated by allsto the theorem prover. In the worst-ase, the number ofalls made to the theorem prover for omputing BP(P;E)is linear in the size of P and exponential in the size of E. Inpratie, we �nd that the omplexity is ubi in the size ofE.
4. BEBOP: A MODEL CHECKER FOR

BOOLEAN PROGRAMSThe Bebop tool [3℄ omputes the set of reahable statesfor eah statement of a boolean program using an in-terproedural dataow analysis algorithm in the spirit ofSharir/Pnueli and Reps/Horwitz/Sagiv [29, 26℄. A state ofa boolean program at a statement s is simply a valuationto the boolean variables that are in sope at statement s(in other words, a bit vetor, with one bit for eah variablein sope). The set of reahable states (or invariant) of aboolean program at s is thus a set of bit vetors (equiva-lently, a boolean funtion over the set of variables in sopeat s).Bebop di�ers from typial implementations of dataowalgorithms in two ruial ways. First, it omputes over setsof bit vetors at eah statement rather than single bit ve-tors. This is neessary to apture orrelation between vari-ables. Seond, it uses binary deision diagrams [4℄ (BDDs)to impliitly represent the set of reahable states of a pro-gram, as well as the transfer funtions for eah statement ina boolean program. Bebop also di�ers from previous modelheking algorithms for �nite state mahines, in that it doesnot inline proedure alls, and exploits loality of variablesopes for better saling. Unlike most model hekers for �-nite state mahines, Bebop naturally generalizes to handlereursive and mutually reursive proedures. Bebop usesan expliit ontrol-ow graph representation, as in a om-piler, rather than enoding the ontrol-ow with BDDs, asdone in most symboli model hekers. It omputes a �x-point by iterating over the set of fats assoiated with eahstatement, whih are represented with BDDs.Complexity. The worst-ase omplexity of Bebop is linearin the size of the programs ontrol-ow graph, and exponen-tial in the maximum number of boolean variables in sopeat any program-point. We have implemented a number ofoptimizations to redue the number of variables needed insupport of BDDs. For example, we use live variable analysisto �nd program points where a variable beomes dead andthen eliminate the variable from the BDD representation.We also use a global MOD/REF analysis of the booleanprogram in order to perform similar variable eliminations.
5. NEWTON: A PREDICATE DISCOV-

ERERNewton takes a C program P and an error path p from aboolean program B as inputs. It is assumed that the booleanprogram B was produed by running C2bp on P with someset of prediates. For the purposes of desribing Newton,we an identify the path p as a sequene of assignments andassume statements (every onditional is translated into anassume statement).

Input: A sequene of statements p = s1; s2; :::; sm.store := null map;history := null set;onditions := null set;/* start of Phase 1 */fori = 1 tom do fswith( si ) f\e1 := e2" :let lval = LEval (store; e1) andlet rval = REval(store; e2) inif(store[lval ℄ is de�ned)history := history [ f(lval ; store[lval ℄)gstore[lval ℄ := rval\assume(e)" :let rval = REval(store; e) inonditions := onditions [ frvalgif(onditions is inonsistent)f/*Phase 2 */Minimize size of onditionswhile maintaining inonsisteny/*Phase 3 */prediates := all dependenies of onditionsSay \Path p is infeasible"return(prediates)gg gSay \Path p is feasible"returnFigure 4: The high-level algorithm used by NewtonThe internal state of Newton has three omponents: (1)store , whih is a mapping from loations to symboli expres-sions, (2) onditions , whih is a set of prediates, and (3)a history whih is a set of past assoiations between loa-tions and symboli expressions. The high-level desriptionof Newton is given in Figure 4. The funtions LEval andREval evaluate the l-value and r-value of a given expressionrespetively. Newton maintains an internal dependeny ofeah element in the state with the elements in store , to beused in Phase 3. It also uses symboli onstants for unknownvalues. We illustrate these using an example. Consider apath with the following four statements:s1: nPaketsOld = nPakets;s2: request = devExt->WriteListHeadVa;s3: assume(!request);s4: assume(nPakets != nPaketsOld);This path is a projetion of the error path from Bebopin Setion 2. Figure 3 shows four states of Newton, oneafter proessing eah statement in the path. The assign-ment nPaketsOld = nPakets is proessed by �rst intro-duing a symboli onstant � for the variable nPakets,and then assigning it to nPaketsOld. The assignmentrequest = devExt->WriteListHeadVa is proessed by �rstintroduing a symboli onstant � for the value of devExt,then introduing a seond symboli onstant  for thevalue of �->WriteListHeadVa, and �nally assigning  torequest. The onditional assume(!request) is proessedby adding the prediate !() to the ondition-set. Thedependeny list for this prediate is (5) sine its evaluationdepended on entry 5 in the store. Finally, the onditionalassume(nPakets != nPaketsOld) is proessed by addingthe (inonsistent) prediate (� != �) to the ondition-set,with a dependeny list (1,2). At this point, the theoremprover determines that the ondition-set is inonsistent, and6



s1: nPaketsOld = nPakets;s2: request = devExt->WriteListHeadVa;s3: assume(!request);s4: assume(nPakets != nPaketsOld);lo. value dep. ondition-set dep.1. nPakets: � ()2. nPaketsOld: � (1) lo. value dep. ondition-set dep.1. nPakets: � ()2. nPaketsOld: � (1)3. devExt: � ()4. � !WriteListHeadV a:  (3)5. request:  (3,4)after s1 after s2lo. value dep. ondition-set dep.1. nPakets: � () !() (5)2. nPaketsOld: � (1)3. devExt: � ()4. � !WriteListHeadV a:  (3)5. request:  (3,4) lo. value dep. ondition-set dep.1. nPakets: � () !() (5)2. nPaketsOld: � (1) (�!= �) (1,2)3. devExt: � ()4. � !WriteListHeadV a:  (3)5. request:  (3,4)after s3 after s4Figure 3: A path of four statements and four tables showing the state of Newton after simulating eah ofthe four statements.Newton proeeds to the Phase 2.Phase-2 removes the prediate !() from the onditionstore, sine the remaining prediate (�!= �) is inonsis-tent by itself. Phase-3 traverses store entries 1 and 2 fromthe dependeny list. A post proessing step then deter-mines that the symboli onstant � an be uni�ed withthe variable nPakets, and Newton produes two predi-ates: (nPaketsOld = nPakets) and (nPaketsOld 6=nPakets). Sine one is a negation of the other, only one ofthe two prediates needs to be added in order for the pathto be ruled out in the boolean program. Though no sym-boli onstants are present in the �nal set of prediates inour example, there are other examples where the �nal listof prediates have symboli onstants. C2bp is able to han-dle prediates with symboli onstants. We do not disussthese details here due to want of spae. The history is usedwhen a loation is overwritten with a new value. Sine noloation was written more than one in our example, we didnot see the use of history . Newton also handles error pathswhere eah element of the path is also provided with valuesto the boolean variables from Bebop, and heks for theironsisteny with the onrete states along the path.Complexity. The number of theorem-prover alls made byNewton on a path p is O(jpj �n), where jpj is the length ofthe path, and n is the number of prediates in the booleanprogram B.
6. NT DEVICE DRIVERS: CASE STUDYThis setion desribes our experiene applying the SLAMtoolkit to hek properties of Windows NT devie drivers.We heked two kinds of properties: (1) Loking-unlokingsequenes for loks should onform to allowable sequenes(2) Dispath funtions should either omplete a request, ormake a request pending for later proessing. In either ase,a partiular sequene of Windows NT spei� ations shouldbe taken.The two properties have di�erent harateristis from aproperty-heking perspetive.

VOIDSerialDebugLogEntry(IN ULONG Mask, IN ULONG Sig,IN ULONG_PTR Info1, IN ULONG_PTR Info2, IN ULONG_PTR Info3){ KIRQL irql;irql = KeGetCurrentIrql();if (irql < DISPATCH_LEVEL) {KeAquireSpinLok(&LogSpinLok, &irql);} else {KeAquireSpinLokAtDpLevel(&LogSpinLok);}// other ode (deleted)if (irql < DISPATCH_LEVEL) {KeReleaseSpinLok(&LogSpinLok, irql);} else {KeReleaseSpinLokFromDpLevel(&LogSpinLok);}return;} Figure 5: Code snippet from serial-port driver.� The �rst property depends mainly on the program'sontrol ow. We heked this property for a partiularlok (alled the \Canel" spin lok) on three kernelmode drivers in the Windows NT devie driver toolkit. We found two kinds situations where spuriouserror paths led our proess to iterate. With its inter-proedural analysis and detetion of simple variableorrelations, the SLAM tools were able to eliminateall the spurious error paths with at most one iterationof the proess. In all the drivers, we started with 5prediates from the property spei�ation FSM andadded at most one prediate to rule out spurious errorpaths.� The seond property is data-dependent, requiring thetraking of value ow and alias relationships. Weheked this property on a serial port devie driver.It took 4 iterations through the SLAM tools and a7



total of 30 prediates to validate the property.The drivers we analyzed were on the order of a thousandlines of C ode eah. In eah of the drivers we heked forthe �rst property, the SLAM tools ran in under a minute onan 800MHz Pentium PC with 512MB RAM. For the seondproperty on the serial driver, the total run time for all theSLAM tools was about 3 minutes to omplete all the fouriterations.
6.1 Property 1We heked for orret lok aquisition/release sequeneson 3 kernel mode drivers: MCA-bus, serial-port and parallel-port. The SLAM tools validated the property on MCA-busand parallel-port drivers without iteration. However, in-terproedural analysis was required for heking the prop-erty, as alls to the aquire and release routines were spreadaross multiple proedures in the drivers. Furthermore, inthe serial-port driver, the SLAM tools found one false errorpath in the �rst iteration, whih resulted in the addition ofa single prediate. Then the property was validated in theseond iteration. The ode-snippet that required the ad-dition of the prediate is shown in Figure 5. The snippetshows that the ode has a dependene on the interrupt re-quest level variable (irql) that must be traked in order toeliminate the false error paths.
6.2 Property 2A dispath routine to a Windows NT devie driver is aroutine that the I/O manager alls when it wants the driverto perform a spei� operation (e.g, read, write et.) Thedispath routine is \registered" by the driver during `whenit is initialized. A dispath routine has the following proto-type:NTSTATUS DispathX(IN PDEVICE_OBJECT DevieObjet,IN PIRP irp)The �rst parameter is a pointer to a so alled \devieobjet" that represents the devie, and the seond parameteris a pointer to a so alled \I/O request paket", or \irp" thatontains information about the urrent request.Property P1. All dispath routines must either proessthe irp immediately (all this option A, or queue the irp forproessing later (all this option B). Every irp has to pro-essed under one of these two options. If the driver hoosesoption A, then it has to do the following ations in sequene:1. Set irp->Iostatus.status to STATUS PENDING2. Call the kernel funtion IoMarkIrpPending(irp)3. Queue the irp into the driver's internal queue usingthe kernel funtion IoStartPaket(irp)4. Return STATUS PENDINGIf the driver hooses option B, then it has do the followingations in sequene:1. Set the irp->Iostatus.status to some return odeother than STATUS PENDING (suh as STATUS SUCCESS,STATUS CANCELLED et.)2. Call IoCompleteRequest(irp)3. Return the same status ode as in step 1.

Note that this is a partial spei�ation for a dispath rou-tine |just one of several properties that the dispath rou-tine must obey. We �rst oded up the above property asa �nite state mahine with a transition funtion namedEMIT FSM that takes two parameters: an ation (suh asCALL IOCOMPLETE, CALL QUEUEIRP, et.) and a status (suhas STATUS PENDING, et).Instrumenting the driver ode. In order to hekif the driver ode satis�es the property we added instru-mentation ode to the driver. At the entry point to thedriver, we store the value of the irp in a new global, gIrp.Every time a kernel funtion IoCompleteRequest(irp),IoMarkIrpPending(irp), or IoStartIrp(irp) is alled, wehek if the irp parameter is the same as gIrp, and if so weadd a all to EMIT FSM with the appropriate message as theseond parameter. Every time a variable of type PIRP hasthe status �eld assigned, we hek if the irp parameter isthe same as gIrp, and if so we add a all to EMIT FSM withthe status as the �rst parameter, and ASSIGN as the seondparameter. Figure 6 shows a sample ode snipped from adriver and the instrumentation we add.8Cheking the instrumented driver. The initial set ofprediates desribed the FSM inludes 17 prediates: (1) 5prediates to keep trak of the global variable fsmState (2)4 prediates to keep trak of the global variable fsmStatus(3) 3 prediates to keep trak of the formal parameter m ofEMIT FSM, and (4) 5 prediates to keep trak of the formalparameter s of funtion EMIT FSM.C2bp generated a boolean program B1 using these 17prediates, and Bebop found an error trae that led to thelabel ERROR. Newton analyzed this error trae, and ameup with 3 more prediates. These prediates kept trak ofthe value of a loal variable where a status value was storedbefore being assigned into the irp->status. After iteratingthrough C2bp with these prediates added, Bebop found aseond error trae, whih passed through 2 funtion alls,and Newton ame up with 4 more prediates to be added.These prediates kept trak of the ow of the irp pointerthrough the funtion all, and a loal variable of the alledfuntion where the status value was stored temporarily.After one more iteration through C2bp with the addi-tional prediates, Bebop found a third error trae, whihpassed through 3 levels of funtion alls. This error traewas fairly ompliated, and it involved the driver storing theirp pointer in a global struture, passing a pointer to thestruture, and then retrieving the pointer two levels of fun-tion alls later. When fed with this error trae, Newtoname up with 9 more prediates to be added that trakedthis value ow.In the fourth iteration Bebop was able to validate theproperty on the boolean program produed by C2bp withall the prediates disovered thus far. It took 4 iterationsthrough the tools and a total of 30 prediates to disoverthe right abstration to validate this property. We foundone bug in the fourth iteration, but it turned out to be aut-and-paste error in our instrumentation proess. After�xing it, the property passed.8We remind the reader that in the future, we plan to havetool that will generate suh instrumentation automatiallyfrom a high-level spei�ation of the property. For now, ourability to analyze properties is limited mainly by the needto hand instrument the property into the ode of interest.8



if (status != STATUS_PENDING) {Irp->Status = status;IoCompleteRequest(Irp, 0);} if (status != STATUS_PENDING) {Irp->Status = status;if(Irp==i) {EMIT_FSM(ASSIGN, status);}IoCompleteRequest(Irp, 0);if(Irp==i) {EMIT_FSM(CALL_IOCOMPLETE, status);}}Figure 6: Code snippet from a driver (left) and the instrumentation added (right).
7. RELATED WORKSLAM seeks a sweet spot between VCGen-based tools [16,22, 5℄ that operate diretly on the onrete semantis andmodel heking or data ow-analysis based tools [7, 18, 13,11℄ that operate on abstrations of the program. We useVCGen-based approah on �nite (potentially interproedu-ral) paths of the program, and use the knowledge gained toonstrut abstrat models of the program. Newton usesVCGen on the onrete program, but as it operates on asingle �nite interproedural path at a time, it does not re-quire loop-invariants, or pre-onditions and post-onditionsfor proedures. C2bp also reasons about the statements ofthe C program using deision proedures, but does so onlyloally, one statement at a time. Global analysis is doneonly on the boolean program abstrations, using the modelheker Bebop. Thus, our hope is to sale without losingpreision, as long as the property of interest allows us to doso, by inherently requiring a small abstration for its vali-dation or invalidation.SLAM generalizes Engler et al.'s approah in three ways:(1) it is sound (modulo the assumptions about memorysafety); (2) it permits interproedural analysis; (3) it avoidsspurious examples through iterative re�nement (in some ofthe ode Engler et al. report on, their tehniques generatedthree times as many spurious error paths as true error paths,a miss rate of 300 perent.9) In fat, with a suitable de�ni-tion of abstration, and hoie of initial prediates, the �rstiteration of the SLAM proess is equivalent to performingEngler et al.'s approah interproedurally.Construting abstrat models of programs has been stud-ied in several ontexts. Abstrations onstruted by [13℄and [19℄ are based on speifying transitions in the abstratsystem using a pattern language, or as a table of rules. Auto-mati abstration support has been built into the Banderatool set [12℄. They require the user to provides �nite do-main abstrations of data types. Prediate abstration, asimplemented in C2bp is more general, and an apture re-lationships between variables. The prediate abstration inSLAM was inspired by the work of Graf and Saidi [17℄ in themodel heking ommunity. E�orts have been made to inte-grate prediate abstration with theorem proving and modelheking [27℄. Though our use of prediate abstration is re-lated to these e�orts, our goal is to analyze software writtenin ommon programming languages. A prediate abstra-tion tool for Java has reently been reported in [31℄.9Jon Pinus, who led the development of an industrial-strength error detetion tool for C alled PRE�x [5℄, ob-serves that users of PRE�x will tolerate a false alarm ratein the range 25-50% depending on the appliation [24℄.

The SLAM tools C2bp and Bebop an be used in om-bination to �nd loop-invariants expressible as boolean fun-tions over a given set of prediates. The loop-invariant isomputed by the model heker Bebop using a �xpoint om-putation on the abstration omputed by C2bp. Prior workfor generating loop invariants has used symboli exeutionon the onrete semantis, augmented with widening heuris-tis [30, 32℄. The Houdini tool guesses a andidate set ofannotations (invariants) and uses the ESC/Java heker torefute inonsistent annotations until onvergene [15℄.Boolean programs an be viewed as abstrat interpreta-tions of the underlying program [8℄. The onnetions be-tween model heking, dataow analysis and abstrat in-terpretation have been explored before [28℄ [9℄. The modelheker Bebop is based on earlier work on interproeduraldataow analysis [29, 26℄. Automati iterative re�nementbased on error paths �rst appeared in [20℄, and more re-ently in [6℄. Both e�orts deal with �nite state systems.An alternative approah to stati validation of safetyproperties, is to provide a rih type system that allows usersto enode both safety properties and program annotations astypes, and redue property validation to type heking [14℄.
8. CONCLUSIONSWe onlude by summarizing the main ontributions ofour work:� For the �rst time, we provide a fully automatedmethodology to validate/invalidate temporal safetyproperties of software interfaes. Our proess does notrequire user supplied annotations, or user supplied ab-strations. When our proess onverges, it always givea de�nitive \yes" or \no" answer.� The ideas behind the SLAM tools are novel. Theuse of boolean programs to represent program abstra-tions is new. To the best of our knowledge, C2bp isthe �rst automati prediate abstration tools to han-dle a full-sale programming language, and performa sound and preise abstration. Bebop is the �rstmodel heker to handle proedure alls using an in-terproedural dataow analysis algorithm, augmentedwith representation triks from the symboli modelheking ommunity. Newton uses a path simula-tion algorithm in a novel way, to generate prediatesfor re�nement.� We have demonstrated that the SLAM tools onvergein a few iterations on devie drivers from the MirosoftDDK.9



The SLAM toolkit has a number of limitations that weplan to address. The logial model of memory is a limitation,sine it is not the atual model used by C programs. We planto investigate using a physial model of memory. We areworking on a property spei�ation language, and automatiinstrumentation of the soure ode from the spei�ationlanguage. We are exploring theoretial guarantees we angive about the termination of our iterative re�nement. Weplan to evolve the SLAM tools by applying them to moreode bases, both inside and outside Mirosoft.
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