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ABSTRACTWe present a pro
ess for validating temporal safety prop-erties of software that uses a well-de�ned interfa
e. Thepro
ess requires only that the user state the property of in-terest. It then automati
ally 
reates abstra
tions of C 
odeusing iterative re�nement, based on the given property. Thepro
ess is realized in the SLAM toolkit, whi
h 
onsists of amodel 
he
ker, predi
ate abstra
tion tool and predi
ate dis-
overy tool. We have applied the SLAM toolkit to a num-ber of Windows NT devi
e drivers to validate 
riti
al safetyproperties su
h as 
orre
t lo
king behavior. We have foundthat the pro
ess 
onverges on a set of predi
ates powerfulenough to validate properties in just a few iterations.
1. INTRODUCTIONLarge-s
ale software has many 
omponents built by manyprogrammers. Integration testing of these 
omponents is im-possible or ine�e
tive at best. Property 
he
king of interfa
eusage provides a way to partially validate su
h software. Inthis approa
h, an interfa
e provides a set of properties thatall 
lients of the interfa
e should respe
t. An automati
analysis of the 
lient 
ode then validates that it meets theproperties, or provides examples of exe
ution paths that vi-olate the properties. The bene�t of su
h an analysis is thaterrors 
an be 
aught very early in the 
oding pro
ess.We are interested in 
he
king that a program respe
ts aset of temporal safety properties of the interfa
es it uses.Safety properties are the 
lass of properties that state that\something bad does not happen". An example is requiringthat a lo
k is never released without �rst being a
quired(see [21℄ for a formal de�nition). Given a program and asafety property, we wish to either validate that the 
oderespe
ts the property, or �nd an exe
ution path that showshow the 
ode violates the property.In this paper, we show that safety properties of systemsoftware 
an be validated and invalidated using model 
he
k-ing, without the need for user-supplied annotations (invari-
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ants) or user-supplied abstra
tions. As no annotations arerequired, we use model 
he
king to 
ompute �xpoints auto-mati
ally over an abstra
tion of the C 
ode. We 
onstru
tan appropriate abstra
tion by (1) obtaining an initial ab-stra
tion from the property that needs to be 
he
ked, and(2) re�ning this abstra
tion using an automati
 re�nementalgorithm.We model abstra
tions of C programs using boolean pro-grams [3℄. Boolean programs are C programs in whi
h allvariables have boolean type. Boolean programs 
ontain allthe 
ontrol-
ow 
onstru
ts of C program, pro
edures, andpro
edure 
alls with 
all-by-value parameter passing. Ea
hboolean variable in a boolean program has an interpreta-tion as a predi
ate over the in�nite state spa
e of the Cprogram. Our experien
e shows that our re�nement algo-rithm �nds boolean program abstra
tions that are pre
iseenough to validate properties. Furthermore, if the propertyis violated, the pro
ess of sear
hing for a suitable booleanprogram abstra
tion leads to a manifestation of the viola-tion.We present the SLAM toolkit for 
he
king safety prop-erties of system software, and report on our experien
e inusing the toolkit to 
he
k properties of Windows NT devi
edrivers. Given a safety property to 
he
k on a C program,the SLAM pro
ess has the following phases: (1) abstra
tion,(2) model 
he
king, and (3) predi
ate dis
overy. We havedeveloped tools to support ea
h of these phases:� C2bp, a tool that transforms a C program P into aboolean program BP(P;E) with respe
t to a set ofpredi
ates E over the state spa
e of P [1, 2℄;� Bebop, a tool for model 
he
king boolean pro-grams [3℄, and� Newton, a tool that dis
overs additional predi
ates tore�ne the boolean program, by analyzing the feasibilityof paths in the C program.The SLAM toolkit provides a fully automati
 way of 
he
k-ing temporal safety properties of system software. Viola-tions are reported by the SLAM toolkit as paths over theprogram P . It never reports spurious error paths. Instead,it dete
ts spurious error paths and uses them to automat-i
ally re�ne the abstra
tion (to eliminate these paths from
onsideration). Sin
e property 
he
king is unde
idable, theSLAM re�nement algorithm may not 
onverge. However,in our experien
e, it usually 
onverges in a few iterations.Furthermore, whenever it 
onverges, it gives a de�nite \yes"or \no" answer.1



The worst-
ase run-time 
omplexity of the SLAM toolsBebop and C2bp is linear in the size of the program's 
on-trol 
ow graph, and exponential in the number of predi
atesused in the abstra
tion. We have implemented several op-timizations to make Bebop and C2bp s
ale gra
efully inpra
ti
e, even with a large number of predi
ates. The New-ton tool s
ales linearly with path length and number ofpredi
ates.We applied the SLAM toolkit to 
he
k the use of the Win-dows NT I/O manager interfa
e by devi
e driver 
lients.There are on the order of a hundred rules that the 
lients ofthe I/O manager interfa
e should satisfy. We have automat-i
ally 
he
ked properties on devi
e drivers taken from theMi
rosoft Driver Development Kit1. While 
he
king for 
or-re
t use of lo
ks, we found that the SLAM pro
ess 
onvergesin one or two iterations to a boolean program that is suÆ-
iently pre
ise to validate/invalidate the property. We also
he
ked a data-dependent property, whi
h requires keepingtra
k of value-
ow and aliasing, using four iterations of theSLAM tools.The remainder of this paper is organized as follows. Se
-tion 2 gives an overview of the SLAM approa
h by applyingthe tools to verify part of an NT devi
e driver. Se
tions 3, 4and 5 give brief des
riptions of the three tools that 
omposethe SLAM toolkit and explain how they work in the 
ontextof the running example. Se
tion 6 des
ribes our experien
eapplying the tools to an NT devi
e driver. Se
tion 7 dis-
usses related work and Se
tion 8 
on
ludes the paper.
2. OVERVIEWThis se
tion introdu
es the SLAM re�nement algorithmand then applies this algorithm to a small 
ode example, ex-tra
ted from a PCI devi
e driver. The SLAM toolkit handlesa signi�
ant subset of the C language, in
luding pointers,stru
tures, and pro
edures (with re
ursion and mutual re-
ursion). A limitation of our tools is that they assume alogi
al model of memory when analyzing C programs. Un-der this model, the expression p + i, where p is a pointerand i is an integer, yields a pointer value that points tothe same obje
t pointed to by p. That is, we treat pointersas referen
es rather than as memory addresses. Note thatthis is the same basi
 assumption underlying most points-toanalysis, in
luding the one that our tools use [10℄.
2.1 Refinement AlgorithmWe wish to 
he
k if a temporal safety property ' is sat-is�ed by a program P . We assume that the program P hasbeen instrumented to result in a program P 0 su
h that Psatis�es ' i� the label ERROR is not rea
hable in P 0. In par-ti
ular, the instrumentation takes the form of 
alls to a �nitestate ma
hine (FSM) transition fun
tion, written in C. Theparameters to the fun
tion en
ode the events/data that de-termine the FSM's next state. The transition fun
tion sim-ply swit
hes on the 
urrent state of the ma
hine (kept inglobal variables) and its formal parameters, to de
ide whi
hstate 
omes next. The label ERROR in this fun
tion re
e
tsthe �nite state ma
hine moving into a reje
t state. Thisis known in the model 
he
king 
ommunity as a \produ
tautomaton 
onstru
tion" and is a fairly standard way to1The 
ode of the devi
e drivers we analyzed is freely avail-able from http://www.mi
rosoft.
om/ddk/W2kDDK.htm

en
ode safety properties.2Let i be a metavariable that re
ords the SLAM iteration
ount. In the �rst iteration (i = 0), we start with a set ofpredi
ates E0 that 
apture the state of the FSM. Let statebe the global variable representing the state of the FSM andlet D(state) be its domain. Without loss of generality, letx be the single formal parameter of the transition fun
tionand D(x) be its domain. Then the set E0 is given as:E0 = f(state = s) j s 2 D(state)g [ f(x = f) j f 2 D(x)gLet Ei be some set of predi
ates over the state of P 0, theinstrumented version of P . Then iteration i+1 of SLAM is
arried out using the following steps:1. Apply C2bp to 
onstru
t the boolean programBP(P 0; Ei), whi
h has the same 
ontrol-
ow graph asP 0.2. Apply Bebop to 
he
k if there is a path pi inBP(P 0; Ei) that rea
hes the ERROR label. If Bebopdetermines that ERROR is not rea
hable, then the prop-erty ' is valid in P , and the algorithm terminates.3. If there is su
h a path pi, then we use Newton to
he
k if pi is feasible in P . There are two out
omes:{ \yes": the property ' has been invalidated in P ,and the algorithm terminates with an error pathpi (a witness to the violation of ').{ \no": Newton �nds a set of predi
ates Fi+1 thatexplain the infeasibility of path pi in P .4. Let Ei+1 = Ei [ Fi+1, and i = i + 1, and pro
eed tothe next iteration.As stated before, this algorithm is potentially non-terminating. However, when it does terminate, it providesa de�nitive answer.
2.2 ExampleFigure 1(a) presents a snippet of C 
ode from a PCI devi
edriver that pro
esses interrupt request pa
kets (irps). Ofinterest here are the 
alls the 
ode makes to a
quire and re-lease spin lo
ks (KeA
quireSpinLo
k, KeReleaseSpinLo
k).Figure 1(b) shows the program, instrumented to 
he
k thatlo
ks are properly a
quired and released using a �nite statema
hine with two states Lo
ked and Unlo
ked. The pro-
edure FSM implements the transition fun
tion of the statema
hine, as des
ribed before.The question we wish to answer is: is the label ERRORrea
hable in the 
ode in Figure 1(b)? The following se
-tions apply the algorithm given above to show that ERROR isunrea
hable.
2.3 Initial Boolean ProgramThe �rst step of the algorithm is to generate a booleanprogram from the C program and the set of predi
ates E0that de�ne the states of the �nite state ma
hine. We repre-sent our abstra
tions as boolean programs. The syntax andsemanti
s of boolean program was de�ned in [3℄. Booleanprograms are C programs in whi
h the only allowed typesare bool (with values 0 and 1) and void. Boolean programs2In the near future, we plan to generate the instrumentedC program from a high level spe
i�
ation automati
ally.2



void example() {do {//get the write lo
kKeA
quireSpinLo
k(&devExt->writeListLo
k);nPa
ketsOld = nPa
kets;request = devExt->WriteListHeadVa;if(request && request->status){devExt->WriteListHeadVa = request->Next;// release the lo
kKeReleaseSpinLo
k(&devExt->writeListLo
k);irp = request->irp;if(request->status > 0){irp->IoStatus.Status = STATUS_SUCCESS;irp->IoStatus.Information = request->Status;} else {irp->IoStatus.Status = STATUS_UNSUCCESSFUL;irp->IoStatus.Information = request->Status;}SmartDevFreeBlo
k(request);IoCompleteRequest(irp, IO_NO_INCREMENT);nPa
kets++;}} while (nPa
kets != nPa
ketsOld);// release the lo
kKeReleaseSpinLo
k(&devExt->writeListLo
k);}

typedef {Lo
ked, Unlo
ked} STATETYPE;typedef {A
q, Rel} MTYPE;stateType state = Unlo
ked;FSM(m : MTYPE){if ((state==Unlo
ked) && (m==A
q))A: state = Lo
ked;else if ((state==Lo
ked) && (m==Rel))B: state = Unlo
ked;elseERROR: ;} void example() {do {C: KeA
quireSpinLo
k(&devExt->writeListLo
k);FSM(A
q);nPa
ketsOld = nPa
kets;request = devExt->WriteListHeadVa;if(request && request->status){D: devExt->WriteListHeadVa = request->Next;KeReleaseSpinLo
k(&devExt->writeListLo
k);FSM(Rel);irp = request->irp;if(request->status > 0){irp->IoStatus.Status = STATUS_SUCCESS;irp->IoStatus.Information = request->Status;} else {irp->IoStatus.Status = STATUS_UNSUCCESSFUL;irp->IoStatus.Information = request->Status;}E: SmartDevFreeBlo
k(request);IoCompleteRequest(irp, IO_NO_INCREMENT);nPa
kets++;}} while (nPa
kets != nPa
ketsOld);F: KeReleaseSpinLo
k(&devExt->writeListLo
k);FSM(Rel);}(a) Program P (b) Instrumented Program P 0Figure 1: (a) A snippet of devi
e driver 
ode P and the (b) instrumented 
ode P 0 that 
he
ks proper use ofspin lo
ks.also allow 
ontrol non-determinism, through the 
onditionalexpression \�", as shown later on.For our example, the set E0 
onsists of four predi
ates:two global predi
ates, (state = Lo
ked) and (state =Unlo
ked), and two lo
al predi
ates over the formal param-eter m to the pro
edure FSM, (m = A
q) and (m = Rel).These four predi
ates and the C program of Figure 1(b)are input to the C2bp (C to Boolean Program) tool to 
re-ate the boolean program BP(P 0; E0), shown in Figure 2(a).This program has two global variables, fstate==Lo
kedgand fstate==Unlo
kedg, and the pro
edure FSM has twoformal parameters, fm==A
qg and fm==Relg.3 For everystatement s in the C program and predi
ate e 2 E0, theC2bp tool determines the e�e
t of statement s on predi
atee. For example, 
onsider the assignment statement \state3Boolean programs permit a variable identi�er to be an ar-bitrary string en
losed between \f" and \g". This is helpfulfor giving boolean variables names to dire
tly represent thepredi
ates in the C program that they represent.

= Lo
ked; " at label A in program P 0 of Figure 1(b). Thisstatement makes the predi
ate (state = Lo
ked) true andthe predi
ate (state = Unlo
ked) false. This is re
e
ted inthe boolean program BP(P 0; E0) by the parallel assignmentstatementfstate==Lo
kedg, fstate==Unlo
kedg := 1,0;The translation of the boolean expressions in the 
ondi-tional statements of the C program results in the obvious
orresponding boolean expressions in the FSM pro
edure inthe boolean program. Control non-determinism is used to
onservatively model the 
onditions in the C program that
annot be abstra
ted pre
isely using the predi
ates in E0.Many of the assignment statements in the C program areabstra
ted to the skip statement (no-op) in the boolean pro-gram. The C2bp tool uses Das's points-to analysis [10℄ todetermine whether or not an assignment statement througha pointer dereferen
e 
an a�e
t a predi
ate e. In our exam-ple, the points-to analysis shows that no variable in the C3



de
l {state==Lo
ked}, {state==Unlo
ked};void FSM({m==A
q},{m==Rel})beginif ({state==Unlo
ked}&{m==A
q})A: {state==Lo
ked}, {state==Unlo
ked} := 1,0;else if ({state==Lo
ked}&{m==Rel})B: {state==Lo
ked}, {state==Unlo
ked} := 0,1;elseERROR: skip;fiendvoid example() // void example() {begin //do // do {skip; // KeA
quireSpinLo
k(&devExt->writeListLo
k);C: FSM(1,0); // FSM(A
q);skip; // nPa
ketsOld = nPa
kets;skip; // request = devExt->WriteListHeadVa;//if (*) then // if(request && request->status){D: skip; // devExt->WriteListHeadVa = request->Next;skip; // KeReleaseSpinLo
k(&devExt->writeListLo
k);FSM(0,1); // FSM(Rel);skip; // irp = request->irp;if (*) then // if(request->status > 0){skip; // irp->IoStatus.Status = STATUS_SUCCESS;skip; // irp->IoStatus.Information = request->Status;else // } else {skip; // irp->IoStatus.Status = STATUS_UNSUCCESSFUL;skip; // irp->IoStatus.Information = request->Status;fi // }E: skip; // SmartDevFreeBlo
k(request);skip; // IoCompleteRequest(irp, IO_NO_INCREMENT);skip; // nPa
kets++;end // }while (*) // } while (nPa
kets != nPa
ketsOld);skip; // KeReleaseSpinLo
k(&devExt->writeListLo
k);F: FSM(0,1); // FSM(Rel);end // }

see 
ode in left pane
void example()begindoC: FSM(1,0);b := 1;skip;skip;if (*) thenD: skip;skip;FSM(0,1);skip;if (*) thenskip;skip;elseskip;skip;fiE: skip;skip;b := 
hoose(0,b);fiwhile (!b)skip;F: FSM(0,1);end(a) Boolean program BP(P 0; E0) (b) Boolean program BP(P 0; E1)Figure 2: The two boolean programs 
reated while 
he
king the 
ode from Figure 1(b). (The se
ond booleanprogram also 
ontains the state ma
hine fun
tion and global state variable, but we omit it to enhan
e the
larity of the �gure). See the program text for the de�nition of the 
hoose fun
tion.program 
an alias the address of the global state variable(or the formal parameter m of pro
edure FSM).4We say that the boolean program BP(P 0; E0) abstra
tsthe program P 0, sin
e every feasible exe
ution path p of theprogram P 0 also is a feasible exe
ution path of BP(P 0; E0).

2.4 Model Checking The Boolean ProgramThe se
ond step of our pro
ess is to determine whetheror not the label ERROR is rea
hable in the boolean programBP(P 0; E0). We use the Bebop model 
he
ker to deter-mine the answer to this query. In this 
ase, the answer is\yes". Like most model 
he
kers, the Bebop tool produ
esa (shortest) path leading to the error state. In this 
ase,the shortest path to the error state is the path that goesaround the loop twi
e, a
quiring the lo
k twi
e without an4The analysis also shows that the pro
e-dures SmartDevFreeBlo
k, and kernel pro
eduresIoCompleteRequest, KeA
quireSpinLo
k, andKeReleaseSpinLo
k 
annot a�e
t these variables sothe 
alls to them are removed.

intermediate release, as given by the following error path pof labels: [C, A, E, C, ERROR℄
2.5 Predicate Discovery over Error PathBe
ause the C program and the boolean program abstra
-tions have identi
al 
ontrol-
ow graphs, the error path p inBP(P 0; E0) produ
ed by Bebop is also a path of program P .The question then is: does p represent a feasible exe
utionpath of P ? That is, is there some exe
ution of program Pthat follows the path p? If so, we have found a real error inP . If not, path p is a spurious error path.The Newton tool takes a C program and a (potential)error path as an input. It then uses veri�
ation 
onditiongeneration (VCGen) to determine if the path is feasible. Theanswer may be \yes" or \no". 55Sin
e underlying de
ision pro
edures in the theorem proverare in
omplete, \don't know" is also a possible answer. Inpra
ti
e, the theorem provers we use have been able to give4



If the answer is \yes", then an error path has been found,and we report it to the user. If the answer is \no" thenNewton uses a new algorithm to identify a small set ofpredi
ates that \explain" why the path is infeasible.In the running example, Newton dete
ts that the pathp is infeasible, and returns a single predi
ate nPa
kets =npa
ketsOld as the explanation for the infeasibility. This isbe
ause the predi
ate nPa
kets = nPa
ketsOld is requiredto be both true and false by path p. The assignment ofnPa
ketsOld to nPa
kets makes the predi
ate true, and theloop test requires it to be false at the end of the do-whileloop for the loop to iterate, as spe
i�ed by the path p.
2.6 The Second Boolean ProgramIn the se
ond iteration of the pro
ess, the predi
atenPa
kets = nPa
ketsOld is added to the set of predi
atesE0 to result in a new set of predi
ates E1. Figure 2(b) showsthe boolean program BP(P 0; E1) that C2bp produ
es. Thisprogram has one additional boolean variable (b) that repre-sents the predi
ate nPa
kets = nPa
ketsOld. The assign-ment statement nPa
kets = nPa
ketsOld; makes this 
on-dition true, so in the boolean program the assignment b:=1;represents this assignment. Using a theorem prover, C2bpdetermines that if the predi
ate is true before the statementnPa
kets++, then it is false afterwards. This is 
aptured bythe assignment statement in the boolean programb := 
hoose(0,b);The 
hoose fun
tion is de�ned as follows:bool 
hoose(pos, neg)beginif (pos) then return 1;elsif (neg) then return 0;elsif (*) then return 0;else return 1; fiendThe pos parameter represents positive information about apredi
ate while the neg parameter represents negative in-formation about a predi
ate. The 
hoose fun
tion is never
alled with both parameters evaluating to true. If both pa-rameters are false then there is not enough information todetermine whether the predi
ate is de�nitely true or de�-nitely false, so 0 or 1 is returned, non-deterministi
ally.Applying Bebop to the new boolean program shows thatthe label ERROR is not rea
hable. In performing its �xpoint
omputation, Bebop dis
overs that the following loop in-variant holds at the end of the do-while loop:(state = Lo
ked ^ nPa
kets = nPa
ketsOld)_ (state = Unlo
ked ^ nPa
kets 6= nPa
ketsOld)That is, either the lo
k is held and the loop will terminate(and thus the lo
k needs to be released after the loop), orthe lo
k is free and the loop will iterate. The 
ombination ofpredi
ate abstra
tion of C2bp and the �xpoint 
omputationof Bebop has found this loop-invariant over the predi
atesin E1. This loop-invariant is strong enough to show that thelabel ERROR is not rea
hable.a \yes" or \no" answer in every example we have seen sofar.

3. C2BP: A PREDICATE ABSTRACTOR
FOR CC2bp takes a C program P and a set E = fe1; e2; : : : ; engof predi
ates on the variables of P , and automati
ally 
on-stru
ts a boolean program BP(P;E).6 The set of predi
atesE are pure C boolean expressions with no fun
tion 
alls.The boolean program BP(P;E) 
ontains n boolean vari-ables V = fb1; b2; : : : ; bng, where ea
h boolean variable birepresents a predi
ate ei. Ea
h variable in V has a three-valued domain: false, true, and �.7 The program BP(P;E)is a sound abstra
tion of P be
ause every possible exe
utiontra
e t of P has a 
orresponding exe
ution tra
e t0 in B.Furthermore, BP(P;E0) is a pre
ise abstra
tion of P withrespe
t to the set of predi
ates E0, in a sense stated andshown elsewhere [2℄. Sin
e BP(P;E) is an abstra
tion of P ,it is guaranteed that an invariant I dis
overed (by Bebop)in BP(P;E), as boolean 
ombinations of the bi variables, isalso an invariant in the C 
ode, where ea
h bi is repla
ed byits 
orresponding predi
ate ei.C2bp determines, for every statement s in P and everypredi
ate ei 2 E, how the exe
ution of s 
an a�e
t the truthvalue of ei. This is 
aptured in the boolean program by astatement sB that 
onservatively updates ea
h bi to re
e
tthe 
hange. C2bp 
omputes sB by (1) �rst 
omputing theweakest pre
ondition of ei, and its negation with respe
t tos, and (2) strengthening the weakest pre
ondition in termsof predi
ates from E, using a theorem prover.We highlight the te
hni
al issues in building a tool likeC2bp:� Pointers: We use an alias analysis of the C pro-gram to determine whether or not an update througha pointer dereferen
e 
an potentially a�e
t an expres-sion. This greatly in
reases the pre
ision of the C2bptool. Without alias analysis, we would have to makevery 
onservative assumptions about aliasing, whi
hwould lead to invalidating many predi
ates.� Pro
edure 
alls: Sin
e boolean programs supportpro
edure 
alls, we are able to abstra
t pro
eduresmodularly. The abstra
tion pro
ess for pro
edure 
allsis 
hallenging, parti
ularly in the presen
e of pointers.After a 
all, the 
aller must 
onservatively update lo-
al state that may have been modi�ed by the 
allee.We provide a sound and pre
ise approa
h to abstra
t-ing pro
edure 
alls that takes su
h side-e�e
ts into a
-
ount.� Pre
ision-eÆ
ien
y tradeo�. C2bp uses a theoremprover to strengthen weakest pre-
onditions in termsof the given predi
ate set E. Doing this strengtheningpre
isely requires O(2jEj) 
alls to the theorem prover.We have explored a number of optimization te
hniquesto redu
e the number of 
alls made to the theoremprover. Some of these te
hniques result in an equiva-lent boolean program, while others trade o� pre
ision6A separate paper on the C2bp tool has been submitted tothis 
onferen
e. That paper 
ontains the te
hni
al detailsand algorithms that the tool uses. This paper presents aparti
ular appli
ation of the C2bp tool, in 
onjun
tion withthe two other tools in the SLAM toolkit.7The use of the third value �, is en
oded using 
ontrol-nondeterminism as shown in the 
hoose fun
tion of Se
-tion 2. That is, \�" is equivalent to \
hoose(0,0)".5



for 
omputation speed. We are also investigating us-ing other de
ision pro
edures, su
h as those embodiedin the Omega test [25℄ and PVS [23℄.Complexity. The runtime of C2bp is dominated by 
allsto the theorem prover. In the worst-
ase, the number of
alls made to the theorem prover for 
omputing BP(P;E)is linear in the size of P and exponential in the size of E. Inpra
ti
e, we �nd that the 
omplexity is 
ubi
 in the size ofE.
4. BEBOP: A MODEL CHECKER FOR

BOOLEAN PROGRAMSThe Bebop tool [3℄ 
omputes the set of rea
hable statesfor ea
h statement of a boolean program using an in-terpro
edural data
ow analysis algorithm in the spirit ofSharir/Pnueli and Reps/Horwitz/Sagiv [29, 26℄. A state ofa boolean program at a statement s is simply a valuationto the boolean variables that are in s
ope at statement s(in other words, a bit ve
tor, with one bit for ea
h variablein s
ope). The set of rea
hable states (or invariant) of aboolean program at s is thus a set of bit ve
tors (equiva-lently, a boolean fun
tion over the set of variables in s
opeat s).Bebop di�ers from typi
al implementations of data
owalgorithms in two 
ru
ial ways. First, it 
omputes over setsof bit ve
tors at ea
h statement rather than single bit ve
-tors. This is ne
essary to 
apture 
orrelation between vari-ables. Se
ond, it uses binary de
ision diagrams [4℄ (BDDs)to impli
itly represent the set of rea
hable states of a pro-gram, as well as the transfer fun
tions for ea
h statement ina boolean program. Bebop also di�ers from previous model
he
king algorithms for �nite state ma
hines, in that it doesnot inline pro
edure 
alls, and exploits lo
ality of variables
opes for better s
aling. Unlike most model 
he
kers for �-nite state ma
hines, Bebop naturally generalizes to handlere
ursive and mutually re
ursive pro
edures. Bebop usesan expli
it 
ontrol-
ow graph representation, as in a 
om-piler, rather than en
oding the 
ontrol-
ow with BDDs, asdone in most symboli
 model 
he
kers. It 
omputes a �x-point by iterating over the set of fa
ts asso
iated with ea
hstatement, whi
h are represented with BDDs.Complexity. The worst-
ase 
omplexity of Bebop is linearin the size of the programs 
ontrol-
ow graph, and exponen-tial in the maximum number of boolean variables in s
opeat any program-point. We have implemented a number ofoptimizations to redu
e the number of variables needed insupport of BDDs. For example, we use live variable analysisto �nd program points where a variable be
omes dead andthen eliminate the variable from the BDD representation.We also use a global MOD/REF analysis of the booleanprogram in order to perform similar variable eliminations.
5. NEWTON: A PREDICATE DISCOV-

ERERNewton takes a C program P and an error path p from aboolean program B as inputs. It is assumed that the booleanprogram B was produ
ed by running C2bp on P with someset of predi
ates. For the purposes of des
ribing Newton,we 
an identify the path p as a sequen
e of assignments andassume statements (every 
onditional is translated into anassume statement).

Input: A sequen
e of statements p = s1; s2; :::; sm.store := null map;history := null set;
onditions := null set;/* start of Phase 1 */fori = 1 tom do fswit
h( si ) f\e1 := e2" :let lval = LEval (store; e1) andlet rval = REval(store; e2) inif(store[lval ℄ is de�ned)history := history [ f(lval ; store[lval ℄)gstore[lval ℄ := rval\assume(e)" :let rval = REval(store; e) in
onditions := 
onditions [ frvalgif(
onditions is in
onsistent)f/*Phase 2 */Minimize size of 
onditionswhile maintaining in
onsisten
y/*Phase 3 */predi
ates := all dependen
ies of 
onditionsSay \Path p is infeasible"return(predi
ates)gg gSay \Path p is feasible"returnFigure 4: The high-level algorithm used by NewtonThe internal state of Newton has three 
omponents: (1)store , whi
h is a mapping from lo
ations to symboli
 expres-sions, (2) 
onditions , whi
h is a set of predi
ates, and (3)a history whi
h is a set of past asso
iations between lo
a-tions and symboli
 expressions. The high-level des
riptionof Newton is given in Figure 4. The fun
tions LEval andREval evaluate the l-value and r-value of a given expressionrespe
tively. Newton maintains an internal dependen
y ofea
h element in the state with the elements in store , to beused in Phase 3. It also uses symboli
 
onstants for unknownvalues. We illustrate these using an example. Consider apath with the following four statements:s1: nPa
ketsOld = nPa
kets;s2: request = devExt->WriteListHeadVa;s3: assume(!request);s4: assume(nPa
kets != nPa
ketsOld);This path is a proje
tion of the error path from Bebopin Se
tion 2. Figure 3 shows four states of Newton, oneafter pro
essing ea
h statement in the path. The assign-ment nPa
ketsOld = nPa
kets is pro
essed by �rst intro-du
ing a symboli
 
onstant � for the variable nPa
kets,and then assigning it to nPa
ketsOld. The assignmentrequest = devExt->WriteListHeadVa is pro
essed by �rstintrodu
ing a symboli
 
onstant � for the value of devExt,then introdu
ing a se
ond symboli
 
onstant 
 for thevalue of �->WriteListHeadVa, and �nally assigning 
 torequest. The 
onditional assume(!request) is pro
essedby adding the predi
ate !(
) to the 
ondition-set. Thedependen
y list for this predi
ate is (5) sin
e its evaluationdepended on entry 5 in the store. Finally, the 
onditionalassume(nPa
kets != nPa
ketsOld) is pro
essed by addingthe (in
onsistent) predi
ate (� != �) to the 
ondition-set,with a dependen
y list (1,2). At this point, the theoremprover determines that the 
ondition-set is in
onsistent, and6



s1: nPa
ketsOld = nPa
kets;s2: request = devExt->WriteListHeadVa;s3: assume(!request);s4: assume(nPa
kets != nPa
ketsOld);lo
. value dep. 
ondition-set dep.1. nPa
kets: � ()2. nPa
ketsOld: � (1) lo
. value dep. 
ondition-set dep.1. nPa
kets: � ()2. nPa
ketsOld: � (1)3. devExt: � ()4. � !WriteListHeadV a: 
 (3)5. request: 
 (3,4)after s1 after s2lo
. value dep. 
ondition-set dep.1. nPa
kets: � () !(
) (5)2. nPa
ketsOld: � (1)3. devExt: � ()4. � !WriteListHeadV a: 
 (3)5. request: 
 (3,4) lo
. value dep. 
ondition-set dep.1. nPa
kets: � () !(
) (5)2. nPa
ketsOld: � (1) (�!= �) (1,2)3. devExt: � ()4. � !WriteListHeadV a: 
 (3)5. request: 
 (3,4)after s3 after s4Figure 3: A path of four statements and four tables showing the state of Newton after simulating ea
h ofthe four statements.Newton pro
eeds to the Phase 2.Phase-2 removes the predi
ate !(
) from the 
onditionstore, sin
e the remaining predi
ate (�!= �) is in
onsis-tent by itself. Phase-3 traverses store entries 1 and 2 fromthe dependen
y list. A post pro
essing step then deter-mines that the symboli
 
onstant � 
an be uni�ed withthe variable nPa
kets, and Newton produ
es two predi-
ates: (nPa
ketsOld = nPa
kets) and (nPa
ketsOld 6=nPa
kets). Sin
e one is a negation of the other, only one ofthe two predi
ates needs to be added in order for the pathto be ruled out in the boolean program. Though no sym-boli
 
onstants are present in the �nal set of predi
ates inour example, there are other examples where the �nal listof predi
ates have symboli
 
onstants. C2bp is able to han-dle predi
ates with symboli
 
onstants. We do not dis
ussthese details here due to want of spa
e. The history is usedwhen a lo
ation is overwritten with a new value. Sin
e nolo
ation was written more than on
e in our example, we didnot see the use of history . Newton also handles error pathswhere ea
h element of the path is also provided with valuesto the boolean variables from Bebop, and 
he
ks for their
onsisten
y with the 
on
rete states along the path.Complexity. The number of theorem-prover 
alls made byNewton on a path p is O(jpj �n), where jpj is the length ofthe path, and n is the number of predi
ates in the booleanprogram B.
6. NT DEVICE DRIVERS: CASE STUDYThis se
tion des
ribes our experien
e applying the SLAMtoolkit to 
he
k properties of Windows NT devi
e drivers.We 
he
ked two kinds of properties: (1) Lo
king-unlo
kingsequen
es for lo
ks should 
onform to allowable sequen
es(2) Dispat
h fun
tions should either 
omplete a request, ormake a request pending for later pro
essing. In either 
ase,a parti
ular sequen
e of Windows NT spe
i�
 a
tions shouldbe taken.The two properties have di�erent 
hara
teristi
s from aproperty-
he
king perspe
tive.

VOIDSerialDebugLogEntry(IN ULONG Mask, IN ULONG Sig,IN ULONG_PTR Info1, IN ULONG_PTR Info2, IN ULONG_PTR Info3){ KIRQL irql;irql = KeGetCurrentIrql();if (irql < DISPATCH_LEVEL) {KeA
quireSpinLo
k(&LogSpinLo
k, &irql);} else {KeA
quireSpinLo
kAtDp
Level(&LogSpinLo
k);}// other 
ode (deleted)if (irql < DISPATCH_LEVEL) {KeReleaseSpinLo
k(&LogSpinLo
k, irql);} else {KeReleaseSpinLo
kFromDp
Level(&LogSpinLo
k);}return;} Figure 5: Code snippet from serial-port driver.� The �rst property depends mainly on the program's
ontrol 
ow. We 
he
ked this property for a parti
ularlo
k (
alled the \Can
el" spin lo
k) on three kernelmode drivers in the Windows NT devi
e driver toolkit. We found two kinds situations where spuriouserror paths led our pro
ess to iterate. With its inter-pro
edural analysis and dete
tion of simple variable
orrelations, the SLAM tools were able to eliminateall the spurious error paths with at most one iterationof the pro
ess. In all the drivers, we started with 5predi
ates from the property spe
i�
ation FSM andadded at most one predi
ate to rule out spurious errorpaths.� The se
ond property is data-dependent, requiring thetra
king of value 
ow and alias relationships. We
he
ked this property on a serial port devi
e driver.It took 4 iterations through the SLAM tools and a7



total of 30 predi
ates to validate the property.The drivers we analyzed were on the order of a thousandlines of C 
ode ea
h. In ea
h of the drivers we 
he
ked forthe �rst property, the SLAM tools ran in under a minute onan 800MHz Pentium PC with 512MB RAM. For the se
ondproperty on the serial driver, the total run time for all theSLAM tools was about 3 minutes to 
omplete all the fouriterations.
6.1 Property 1We 
he
ked for 
orre
t lo
k a
quisition/release sequen
eson 3 kernel mode drivers: MCA-bus, serial-port and parallel-port. The SLAM tools validated the property on MCA-busand parallel-port drivers without iteration. However, in-terpro
edural analysis was required for 
he
king the prop-erty, as 
alls to the a
quire and release routines were spreada
ross multiple pro
edures in the drivers. Furthermore, inthe serial-port driver, the SLAM tools found one false errorpath in the �rst iteration, whi
h resulted in the addition ofa single predi
ate. Then the property was validated in these
ond iteration. The 
ode-snippet that required the ad-dition of the predi
ate is shown in Figure 5. The snippetshows that the 
ode has a dependen
e on the interrupt re-quest level variable (irql) that must be tra
ked in order toeliminate the false error paths.
6.2 Property 2A dispat
h routine to a Windows NT devi
e driver is aroutine that the I/O manager 
alls when it wants the driverto perform a spe
i�
 operation (e.g, read, write et
.) Thedispat
h routine is \registered" by the driver during `whenit is initialized. A dispat
h routine has the following proto-type:NTSTATUS Dispat
hX(IN PDEVICE_OBJECT Devi
eObje
t,IN PIRP irp)The �rst parameter is a pointer to a so 
alled \devi
eobje
t" that represents the devi
e, and the se
ond parameteris a pointer to a so 
alled \I/O request pa
ket", or \irp" that
ontains information about the 
urrent request.Property P1. All dispat
h routines must either pro
essthe irp immediately (
all this option A, or queue the irp forpro
essing later (
all this option B). Every irp has to pro-
essed under one of these two options. If the driver 
hoosesoption A, then it has to do the following a
tions in sequen
e:1. Set irp->Iostatus.status to STATUS PENDING2. Call the kernel fun
tion IoMarkIrpPending(irp)3. Queue the irp into the driver's internal queue usingthe kernel fun
tion IoStartPa
ket(irp)4. Return STATUS PENDINGIf the driver 
hooses option B, then it has do the followinga
tions in sequen
e:1. Set the irp->Iostatus.status to some return 
odeother than STATUS PENDING (su
h as STATUS SUCCESS,STATUS CANCELLED et
.)2. Call IoCompleteRequest(irp)3. Return the same status 
ode as in step 1.

Note that this is a partial spe
i�
ation for a dispat
h rou-tine |just one of several properties that the dispat
h rou-tine must obey. We �rst 
oded up the above property asa �nite state ma
hine with a transition fun
tion namedEMIT FSM that takes two parameters: an a
tion (su
h asCALL IOCOMPLETE, CALL QUEUEIRP, et
.) and a status (su
has STATUS PENDING, et
).Instrumenting the driver 
ode. In order to 
he
kif the driver 
ode satis�es the property we added instru-mentation 
ode to the driver. At the entry point to thedriver, we store the value of the irp in a new global, gIrp.Every time a kernel fun
tion IoCompleteRequest(irp),IoMarkIrpPending(irp), or IoStartIrp(irp) is 
alled, we
he
k if the irp parameter is the same as gIrp, and if so weadd a 
all to EMIT FSM with the appropriate message as these
ond parameter. Every time a variable of type PIRP hasthe status �eld assigned, we 
he
k if the irp parameter isthe same as gIrp, and if so we add a 
all to EMIT FSM withthe status as the �rst parameter, and ASSIGN as the se
ondparameter. Figure 6 shows a sample 
ode snipped from adriver and the instrumentation we add.8Che
king the instrumented driver. The initial set ofpredi
ates des
ribed the FSM in
ludes 17 predi
ates: (1) 5predi
ates to keep tra
k of the global variable fsmState (2)4 predi
ates to keep tra
k of the global variable fsmStatus(3) 3 predi
ates to keep tra
k of the formal parameter m ofEMIT FSM, and (4) 5 predi
ates to keep tra
k of the formalparameter s of fun
tion EMIT FSM.C2bp generated a boolean program B1 using these 17predi
ates, and Bebop found an error tra
e that led to thelabel ERROR. Newton analyzed this error tra
e, and 
ameup with 3 more predi
ates. These predi
ates kept tra
k ofthe value of a lo
al variable where a status value was storedbefore being assigned into the irp->status. After iteratingthrough C2bp with these predi
ates added, Bebop found ase
ond error tra
e, whi
h passed through 2 fun
tion 
alls,and Newton 
ame up with 4 more predi
ates to be added.These predi
ates kept tra
k of the 
ow of the irp pointerthrough the fun
tion 
all, and a lo
al variable of the 
alledfun
tion where the status value was stored temporarily.After one more iteration through C2bp with the addi-tional predi
ates, Bebop found a third error tra
e, whi
hpassed through 3 levels of fun
tion 
alls. This error tra
ewas fairly 
ompli
ated, and it involved the driver storing theirp pointer in a global stru
ture, passing a pointer to thestru
ture, and then retrieving the pointer two levels of fun
-tion 
alls later. When fed with this error tra
e, Newton
ame up with 9 more predi
ates to be added that tra
kedthis value 
ow.In the fourth iteration Bebop was able to validate theproperty on the boolean program produ
ed by C2bp withall the predi
ates dis
overed thus far. It took 4 iterationsthrough the tools and a total of 30 predi
ates to dis
overthe right abstra
tion to validate this property. We foundone bug in the fourth iteration, but it turned out to be a
ut-and-paste error in our instrumentation pro
ess. After�xing it, the property passed.8We remind the reader that in the future, we plan to havetool that will generate su
h instrumentation automati
allyfrom a high-level spe
i�
ation of the property. For now, ourability to analyze properties is limited mainly by the needto hand instrument the property into the 
ode of interest.8



if (status != STATUS_PENDING) {Irp->Status = status;IoCompleteRequest(Irp, 0);} if (status != STATUS_PENDING) {Irp->Status = status;if(Irp==i) {EMIT_FSM(ASSIGN, status);}IoCompleteRequest(Irp, 0);if(Irp==i) {EMIT_FSM(CALL_IOCOMPLETE, status);}}Figure 6: Code snippet from a driver (left) and the instrumentation added (right).
7. RELATED WORKSLAM seeks a sweet spot between VCGen-based tools [16,22, 5℄ that operate dire
tly on the 
on
rete semanti
s andmodel 
he
king or data 
ow-analysis based tools [7, 18, 13,11℄ that operate on abstra
tions of the program. We useVCGen-based approa
h on �nite (potentially interpro
edu-ral) paths of the program, and use the knowledge gained to
onstru
t abstra
t models of the program. Newton usesVCGen on the 
on
rete program, but as it operates on asingle �nite interpro
edural path at a time, it does not re-quire loop-invariants, or pre-
onditions and post-
onditionsfor pro
edures. C2bp also reasons about the statements ofthe C program using de
ision pro
edures, but does so onlylo
ally, one statement at a time. Global analysis is doneonly on the boolean program abstra
tions, using the model
he
ker Bebop. Thus, our hope is to s
ale without losingpre
ision, as long as the property of interest allows us to doso, by inherently requiring a small abstra
tion for its vali-dation or invalidation.SLAM generalizes Engler et al.'s approa
h in three ways:(1) it is sound (modulo the assumptions about memorysafety); (2) it permits interpro
edural analysis; (3) it avoidsspurious examples through iterative re�nement (in some ofthe 
ode Engler et al. report on, their te
hniques generatedthree times as many spurious error paths as true error paths,a miss rate of 300 per
ent.9) In fa
t, with a suitable de�ni-tion of abstra
tion, and 
hoi
e of initial predi
ates, the �rstiteration of the SLAM pro
ess is equivalent to performingEngler et al.'s approa
h interpro
edurally.Constru
ting abstra
t models of programs has been stud-ied in several 
ontexts. Abstra
tions 
onstru
ted by [13℄and [19℄ are based on spe
ifying transitions in the abstra
tsystem using a pattern language, or as a table of rules. Auto-mati
 abstra
tion support has been built into the Banderatool set [12℄. They require the user to provides �nite do-main abstra
tions of data types. Predi
ate abstra
tion, asimplemented in C2bp is more general, and 
an 
apture re-lationships between variables. The predi
ate abstra
tion inSLAM was inspired by the work of Graf and Saidi [17℄ in themodel 
he
king 
ommunity. E�orts have been made to inte-grate predi
ate abstra
tion with theorem proving and model
he
king [27℄. Though our use of predi
ate abstra
tion is re-lated to these e�orts, our goal is to analyze software writtenin 
ommon programming languages. A predi
ate abstra
-tion tool for Java has re
ently been reported in [31℄.9Jon Pin
us, who led the development of an industrial-strength error dete
tion tool for C 
alled PRE�x [5℄, ob-serves that users of PRE�x will tolerate a false alarm ratein the range 25-50% depending on the appli
ation [24℄.

The SLAM tools C2bp and Bebop 
an be used in 
om-bination to �nd loop-invariants expressible as boolean fun
-tions over a given set of predi
ates. The loop-invariant is
omputed by the model 
he
ker Bebop using a �xpoint 
om-putation on the abstra
tion 
omputed by C2bp. Prior workfor generating loop invariants has used symboli
 exe
utionon the 
on
rete semanti
s, augmented with widening heuris-ti
s [30, 32℄. The Houdini tool guesses a 
andidate set ofannotations (invariants) and uses the ESC/Java 
he
ker torefute in
onsistent annotations until 
onvergen
e [15℄.Boolean programs 
an be viewed as abstra
t interpreta-tions of the underlying program [8℄. The 
onne
tions be-tween model 
he
king, data
ow analysis and abstra
t in-terpretation have been explored before [28℄ [9℄. The model
he
ker Bebop is based on earlier work on interpro
eduraldata
ow analysis [29, 26℄. Automati
 iterative re�nementbased on error paths �rst appeared in [20℄, and more re-
ently in [6℄. Both e�orts deal with �nite state systems.An alternative approa
h to stati
 validation of safetyproperties, is to provide a ri
h type system that allows usersto en
ode both safety properties and program annotations astypes, and redu
e property validation to type 
he
king [14℄.
8. CONCLUSIONSWe 
on
lude by summarizing the main 
ontributions ofour work:� For the �rst time, we provide a fully automatedmethodology to validate/invalidate temporal safetyproperties of software interfa
es. Our pro
ess does notrequire user supplied annotations, or user supplied ab-stra
tions. When our pro
ess 
onverges, it always givea de�nitive \yes" or \no" answer.� The ideas behind the SLAM tools are novel. Theuse of boolean programs to represent program abstra
-tions is new. To the best of our knowledge, C2bp isthe �rst automati
 predi
ate abstra
tion tools to han-dle a full-s
ale programming language, and performa sound and pre
ise abstra
tion. Bebop is the �rstmodel 
he
ker to handle pro
edure 
alls using an in-terpro
edural data
ow analysis algorithm, augmentedwith representation tri
ks from the symboli
 model
he
king 
ommunity. Newton uses a path simula-tion algorithm in a novel way, to generate predi
atesfor re�nement.� We have demonstrated that the SLAM tools 
onvergein a few iterations on devi
e drivers from the Mi
rosoftDDK.9



The SLAM toolkit has a number of limitations that weplan to address. The logi
al model of memory is a limitation,sin
e it is not the a
tual model used by C programs. We planto investigate using a physi
al model of memory. We areworking on a property spe
i�
ation language, and automati
instrumentation of the sour
e 
ode from the spe
i�
ationlanguage. We are exploring theoreti
al guarantees we 
angive about the termination of our iterative re�nement. Weplan to evolve the SLAM tools by applying them to more
ode bases, both inside and outside Mi
rosoft.
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