
Automatically Validating
Temporal Safety Properties of Interfaces

Thomas Ball
Microsoft Research
One Microsoft Way

Redmond, WA 98052

tball@microsoft.com

Sriram K. Rajamani
Microsoft Research
One Microsoft Way

Redmond, WA 98052

sriram@microsoft.com

ABSTRACTWe present a pro
ess for validating temporal safety prop-erties of software that uses a well-de�ned interfa
e. Thepro
ess requires only that the user state the property of in-terest. It then automati
ally
reates abstra
tions of C
odeusing iterative re�nement, based on the given property. Thepro
ess is realized in the SLAM toolkit, whi
h
onsists of amodel
he
ker, predi
ate abstra
tion tool and predi
ate dis-
overy tool. We have applied the SLAM toolkit to a num-ber of Windows NT devi
e drivers to validate
riti
al safetyproperties su
h as
orre
t lo
king behavior. We have foundthat the pro
ess
onverges on a set of predi
ates powerfulenough to validate properties in just a few iterations.
1. INTRODUCTIONLarge-s
ale software has many
omponents built by manyprogrammers. Integration testing of these
omponents is im-possible or ine�e
tive at best. Property
he
king of interfa
eusage provides a way to partially validate su
h software. Inthis approa
h, an interfa
e provides a set of properties thatall
lients of the interfa
e should respe
t. An automati
analysis of the
lient
ode then validates that it meets theproperties, or provides examples of exe
ution paths that vi-olate the properties. The bene�t of su
h an analysis is thaterrors
an be
aught very early in the
oding pro
ess.We are interested in
he
king that a program respe
ts aset of temporal safety properties of the interfa
es it uses.Safety properties are the
lass of properties that state that\something bad does not happen". An example is requiringthat a lo
k is never released without �rst being a
quired(see [21℄ for a formal de�nition). Given a program and asafety property, we wish to either validate that the
oderespe
ts the property, or �nd an exe
ution path that showshow the
ode violates the property.In this paper, we show that safety properties of systemsoftware
an be validated and invalidated using model
he
k-ing, without the need for user-supplied annotations (invari-
Submitted to PLDI 2001

ants) or user-supplied abstra
tions. As no annotations arerequired, we use model
he
king to
ompute �xpoints auto-mati
ally over an abstra
tion of the C
ode. We
onstru
tan appropriate abstra
tion by (1) obtaining an initial ab-stra
tion from the property that needs to be
he
ked, and(2) re�ning this abstra
tion using an automati
 re�nementalgorithm.We model abstra
tions of C programs using boolean pro-grams [3℄. Boolean programs are C programs in whi
h allvariables have boolean type. Boolean programs
ontain allthe
ontrol-
ow
onstru
ts of C program, pro
edures, andpro
edure
alls with
all-by-value parameter passing. Ea
hboolean variable in a boolean program has an interpreta-tion as a predi
ate over the in�nite state spa
e of the Cprogram. Our experien
e shows that our re�nement algo-rithm �nds boolean program abstra
tions that are pre
iseenough to validate properties. Furthermore, if the propertyis violated, the pro
ess of sear
hing for a suitable booleanprogram abstra
tion leads to a manifestation of the viola-tion.We present the SLAM toolkit for
he
king safety prop-erties of system software, and report on our experien
e inusing the toolkit to
he
k properties of Windows NT devi
edrivers. Given a safety property to
he
k on a C program,the SLAM pro
ess has the following phases: (1) abstra
tion,(2) model
he
king, and (3) predi
ate dis
overy. We havedeveloped tools to support ea
h of these phases:� C2bp, a tool that transforms a C program P into aboolean program BP(P;E) with respe
t to a set ofpredi
ates E over the state spa
e of P [1, 2℄;� Bebop, a tool for model
he
king boolean pro-grams [3℄, and� Newton, a tool that dis
overs additional predi
ates tore�ne the boolean program, by analyzing the feasibilityof paths in the C program.The SLAM toolkit provides a fully automati
 way of
he
k-ing temporal safety properties of system software. Viola-tions are reported by the SLAM toolkit as paths over theprogram P . It never reports spurious error paths. Instead,it dete
ts spurious error paths and uses them to automat-i
ally re�ne the abstra
tion (to eliminate these paths from
onsideration). Sin
e property
he
king is unde
idable, theSLAM re�nement algorithm may not
onverge. However,in our experien
e, it usually
onverges in a few iterations.Furthermore, whenever it
onverges, it gives a de�nite \yes"or \no" answer.1

The worst-
ase run-time
omplexity of the SLAM toolsBebop and C2bp is linear in the size of the program's
on-trol
ow graph, and exponential in the number of predi
atesused in the abstra
tion. We have implemented several op-timizations to make Bebop and C2bp s
ale gra
efully inpra
ti
e, even with a large number of predi
ates. The New-ton tool s
ales linearly with path length and number ofpredi
ates.We applied the SLAM toolkit to
he
k the use of the Win-dows NT I/O manager interfa
e by devi
e driver
lients.There are on the order of a hundred rules that the
lients ofthe I/O manager interfa
e should satisfy. We have automat-i
ally
he
ked properties on devi
e drivers taken from theMi
rosoft Driver Development Kit1. While
he
king for
or-re
t use of lo
ks, we found that the SLAM pro
ess
onvergesin one or two iterations to a boolean program that is suÆ-
iently pre
ise to validate/invalidate the property. We also
he
ked a data-dependent property, whi
h requires keepingtra
k of value-
ow and aliasing, using four iterations of theSLAM tools.The remainder of this paper is organized as follows. Se
-tion 2 gives an overview of the SLAM approa
h by applyingthe tools to verify part of an NT devi
e driver. Se
tions 3, 4and 5 give brief des
riptions of the three tools that
omposethe SLAM toolkit and explain how they work in the
ontextof the running example. Se
tion 6 des
ribes our experien
eapplying the tools to an NT devi
e driver. Se
tion 7 dis-
usses related work and Se
tion 8
on
ludes the paper.
2. OVERVIEWThis se
tion introdu
es the SLAM re�nement algorithmand then applies this algorithm to a small
ode example, ex-tra
ted from a PCI devi
e driver. The SLAM toolkit handlesa signi�
ant subset of the C language, in
luding pointers,stru
tures, and pro
edures (with re
ursion and mutual re-
ursion). A limitation of our tools is that they assume alogi
al model of memory when analyzing C programs. Un-der this model, the expression p + i, where p is a pointerand i is an integer, yields a pointer value that points tothe same obje
t pointed to by p. That is, we treat pointersas referen
es rather than as memory addresses. Note thatthis is the same basi
 assumption underlying most points-toanalysis, in
luding the one that our tools use [10℄.
2.1 Refinement AlgorithmWe wish to
he
k if a temporal safety property ' is sat-is�ed by a program P . We assume that the program P hasbeen instrumented to result in a program P 0 su
h that Psatis�es ' i� the label ERROR is not rea
hable in P 0. In par-ti
ular, the instrumentation takes the form of
alls to a �nitestate ma
hine (FSM) transition fun
tion, written in C. Theparameters to the fun
tion en
ode the events/data that de-termine the FSM's next state. The transition fun
tion sim-ply swit
hes on the
urrent state of the ma
hine (kept inglobal variables) and its formal parameters, to de
ide whi
hstate
omes next. The label ERROR in this fun
tion re
e
tsthe �nite state ma
hine moving into a reje
t state. Thisis known in the model
he
king
ommunity as a \produ
tautomaton
onstru
tion" and is a fairly standard way to1The
ode of the devi
e drivers we analyzed is freely avail-able from http://www.mi
rosoft.
om/ddk/W2kDDK.htm

en
ode safety properties.2Let i be a metavariable that re
ords the SLAM iteration
ount. In the �rst iteration (i = 0), we start with a set ofpredi
ates E0 that
apture the state of the FSM. Let statebe the global variable representing the state of the FSM andlet D(state) be its domain. Without loss of generality, letx be the single formal parameter of the transition fun
tionand D(x) be its domain. Then the set E0 is given as:E0 = f(state = s) j s 2 D(state)g [f(x = f) j f 2 D(x)gLet Ei be some set of predi
ates over the state of P 0, theinstrumented version of P . Then iteration i+1 of SLAM is
arried out using the following steps:1. Apply C2bp to
onstru
t the boolean programBP(P 0; Ei), whi
h has the same
ontrol-
ow graph asP 0.2. Apply Bebop to
he
k if there is a path pi inBP(P 0; Ei) that rea
hes the ERROR label. If Bebopdetermines that ERROR is not rea
hable, then the prop-erty ' is valid in P , and the algorithm terminates.3. If there is su
h a path pi, then we use Newton to
he
k if pi is feasible in P . There are two out
omes:{ \yes": the property ' has been invalidated in P ,and the algorithm terminates with an error pathpi (a witness to the violation of ').{ \no": Newton �nds a set of predi
ates Fi+1 thatexplain the infeasibility of path pi in P .4. Let Ei+1 = Ei [Fi+1, and i = i + 1, and pro
eed tothe next iteration.As stated before, this algorithm is potentially non-terminating. However, when it does terminate, it providesa de�nitive answer.
2.2 ExampleFigure 1(a) presents a snippet of C
ode from a PCI devi
edriver that pro
esses interrupt request pa
kets (irps). Ofinterest here are the
alls the
ode makes to a
quire and re-lease spin lo
ks (KeA
quireSpinLo
k, KeReleaseSpinLo
k).Figure 1(b) shows the program, instrumented to
he
k thatlo
ks are properly a
quired and released using a �nite statema
hine with two states Lo
ked and Unlo
ked. The pro-
edure FSM implements the transition fun
tion of the statema
hine, as des
ribed before.The question we wish to answer is: is the label ERRORrea
hable in the
ode in Figure 1(b)? The following se
-tions apply the algorithm given above to show that ERROR isunrea
hable.
2.3 Initial Boolean ProgramThe �rst step of the algorithm is to generate a booleanprogram from the C program and the set of predi
ates E0that de�ne the states of the �nite state ma
hine. We repre-sent our abstra
tions as boolean programs. The syntax andsemanti
s of boolean program was de�ned in [3℄. Booleanprograms are C programs in whi
h the only allowed typesare bool (with values 0 and 1) and void. Boolean programs2In the near future, we plan to generate the instrumentedC program from a high level spe
i�
ation automati
ally.2

void example() {do {//get the write lo
kKeA
quireSpinLo
k(&devExt->writeListLo
k);nPa
ketsOld = nPa
kets;request = devExt->WriteListHeadVa;if(request && request->status){devExt->WriteListHeadVa = request->Next;// release the lo
kKeReleaseSpinLo
k(&devExt->writeListLo
k);irp = request->irp;if(request->status > 0){irp->IoStatus.Status = STATUS_SUCCESS;irp->IoStatus.Information = request->Status;} else {irp->IoStatus.Status = STATUS_UNSUCCESSFUL;irp->IoStatus.Information = request->Status;}SmartDevFreeBlo
k(request);IoCompleteRequest(irp, IO_NO_INCREMENT);nPa
kets++;}} while (nPa
kets != nPa
ketsOld);// release the lo
kKeReleaseSpinLo
k(&devExt->writeListLo
k);}

typedef {Lo
ked, Unlo
ked} STATETYPE;typedef {A
q, Rel} MTYPE;stateType state = Unlo
ked;FSM(m : MTYPE){if ((state==Unlo
ked) && (m==A
q))A: state = Lo
ked;else if ((state==Lo
ked) && (m==Rel))B: state = Unlo
ked;elseERROR: ;} void example() {do {C: KeA
quireSpinLo
k(&devExt->writeListLo
k);FSM(A
q);nPa
ketsOld = nPa
kets;request = devExt->WriteListHeadVa;if(request && request->status){D: devExt->WriteListHeadVa = request->Next;KeReleaseSpinLo
k(&devExt->writeListLo
k);FSM(Rel);irp = request->irp;if(request->status > 0){irp->IoStatus.Status = STATUS_SUCCESS;irp->IoStatus.Information = request->Status;} else {irp->IoStatus.Status = STATUS_UNSUCCESSFUL;irp->IoStatus.Information = request->Status;}E: SmartDevFreeBlo
k(request);IoCompleteRequest(irp, IO_NO_INCREMENT);nPa
kets++;}} while (nPa
kets != nPa
ketsOld);F: KeReleaseSpinLo
k(&devExt->writeListLo
k);FSM(Rel);}(a) Program P (b) Instrumented Program P 0Figure 1: (a) A snippet of devi
e driver
ode P and the (b) instrumented
ode P 0 that
he
ks proper use ofspin lo
ks.also allow
ontrol non-determinism, through the
onditionalexpression \�", as shown later on.For our example, the set E0
onsists of four predi
ates:two global predi
ates, (state = Lo
ked) and (state =Unlo
ked), and two lo
al predi
ates over the formal param-eter m to the pro
edure FSM, (m = A
q) and (m = Rel).These four predi
ates and the C program of Figure 1(b)are input to the C2bp (C to Boolean Program) tool to
re-ate the boolean program BP(P 0; E0), shown in Figure 2(a).This program has two global variables, fstate==Lo
kedgand fstate==Unlo
kedg, and the pro
edure FSM has twoformal parameters, fm==A
qg and fm==Relg.3 For everystatement s in the C program and predi
ate e 2 E0, theC2bp tool determines the e�e
t of statement s on predi
atee. For example,
onsider the assignment statement \state3Boolean programs permit a variable identi�er to be an ar-bitrary string en
losed between \f" and \g". This is helpfulfor giving boolean variables names to dire
tly represent thepredi
ates in the C program that they represent.

= Lo
ked; " at label A in program P 0 of Figure 1(b). Thisstatement makes the predi
ate (state = Lo
ked) true andthe predi
ate (state = Unlo
ked) false. This is re
e
ted inthe boolean program BP(P 0; E0) by the parallel assignmentstatementfstate==Lo
kedg, fstate==Unlo
kedg := 1,0;The translation of the boolean expressions in the
ondi-tional statements of the C program results in the obvious
orresponding boolean expressions in the FSM pro
edure inthe boolean program. Control non-determinism is used to
onservatively model the
onditions in the C program that
annot be abstra
ted pre
isely using the predi
ates in E0.Many of the assignment statements in the C program areabstra
ted to the skip statement (no-op) in the boolean pro-gram. The C2bp tool uses Das's points-to analysis [10℄ todetermine whether or not an assignment statement througha pointer dereferen
e
an a�e
t a predi
ate e. In our exam-ple, the points-to analysis shows that no variable in the C3

de
l {state==Lo
ked}, {state==Unlo
ked};void FSM({m==A
q},{m==Rel})beginif ({state==Unlo
ked}&{m==A
q})A: {state==Lo
ked}, {state==Unlo
ked} := 1,0;else if ({state==Lo
ked}&{m==Rel})B: {state==Lo
ked}, {state==Unlo
ked} := 0,1;elseERROR: skip;fiendvoid example() // void example() {begin //do // do {skip; // KeA
quireSpinLo
k(&devExt->writeListLo
k);C: FSM(1,0); // FSM(A
q);skip; // nPa
ketsOld = nPa
kets;skip; // request = devExt->WriteListHeadVa;//if (*) then // if(request && request->status){D: skip; // devExt->WriteListHeadVa = request->Next;skip; // KeReleaseSpinLo
k(&devExt->writeListLo
k);FSM(0,1); // FSM(Rel);skip; // irp = request->irp;if (*) then // if(request->status > 0){skip; // irp->IoStatus.Status = STATUS_SUCCESS;skip; // irp->IoStatus.Information = request->Status;else // } else {skip; // irp->IoStatus.Status = STATUS_UNSUCCESSFUL;skip; // irp->IoStatus.Information = request->Status;fi // }E: skip; // SmartDevFreeBlo
k(request);skip; // IoCompleteRequest(irp, IO_NO_INCREMENT);skip; // nPa
kets++;end // }while (*) // } while (nPa
kets != nPa
ketsOld);skip; // KeReleaseSpinLo
k(&devExt->writeListLo
k);F: FSM(0,1); // FSM(Rel);end // }

see
ode in left pane
void example()begindoC: FSM(1,0);b := 1;skip;skip;if (*) thenD: skip;skip;FSM(0,1);skip;if (*) thenskip;skip;elseskip;skip;fiE: skip;skip;b :=
hoose(0,b);fiwhile (!b)skip;F: FSM(0,1);end(a) Boolean program BP(P 0; E0) (b) Boolean program BP(P 0; E1)Figure 2: The two boolean programs
reated while
he
king the
ode from Figure 1(b). (The se
ond booleanprogram also
ontains the state ma
hine fun
tion and global state variable, but we omit it to enhan
e the
larity of the �gure). See the program text for the de�nition of the
hoose fun
tion.program
an alias the address of the global state variable(or the formal parameter m of pro
edure FSM).4We say that the boolean program BP(P 0; E0) abstra
tsthe program P 0, sin
e every feasible exe
ution path p of theprogram P 0 also is a feasible exe
ution path of BP(P 0; E0).

2.4 Model Checking The Boolean ProgramThe se
ond step of our pro
ess is to determine whetheror not the label ERROR is rea
hable in the boolean programBP(P 0; E0). We use the Bebop model
he
ker to deter-mine the answer to this query. In this
ase, the answer is\yes". Like most model
he
kers, the Bebop tool produ
esa (shortest) path leading to the error state. In this
ase,the shortest path to the error state is the path that goesaround the loop twi
e, a
quiring the lo
k twi
e without an4The analysis also shows that the pro
e-dures SmartDevFreeBlo
k, and kernel pro
eduresIoCompleteRequest, KeA
quireSpinLo
k, andKeReleaseSpinLo
k
annot a�e
t these variables sothe
alls to them are removed.

intermediate release, as given by the following error path pof labels: [C, A, E, C, ERROR℄
2.5 Predicate Discovery over Error PathBe
ause the C program and the boolean program abstra
-tions have identi
al
ontrol-
ow graphs, the error path p inBP(P 0; E0) produ
ed by Bebop is also a path of program P .The question then is: does p represent a feasible exe
utionpath of P ? That is, is there some exe
ution of program Pthat follows the path p? If so, we have found a real error inP . If not, path p is a spurious error path.The Newton tool takes a C program and a (potential)error path as an input. It then uses veri�
ation
onditiongeneration (VCGen) to determine if the path is feasible. Theanswer may be \yes" or \no". 55Sin
e underlying de
ision pro
edures in the theorem proverare in
omplete, \don't know" is also a possible answer. Inpra
ti
e, the theorem provers we use have been able to give4

If the answer is \yes", then an error path has been found,and we report it to the user. If the answer is \no" thenNewton uses a new algorithm to identify a small set ofpredi
ates that \explain" why the path is infeasible.In the running example, Newton dete
ts that the pathp is infeasible, and returns a single predi
ate nPa
kets =npa
ketsOld as the explanation for the infeasibility. This isbe
ause the predi
ate nPa
kets = nPa
ketsOld is requiredto be both true and false by path p. The assignment ofnPa
ketsOld to nPa
kets makes the predi
ate true, and theloop test requires it to be false at the end of the do-whileloop for the loop to iterate, as spe
i�ed by the path p.
2.6 The Second Boolean ProgramIn the se
ond iteration of the pro
ess, the predi
atenPa
kets = nPa
ketsOld is added to the set of predi
atesE0 to result in a new set of predi
ates E1. Figure 2(b) showsthe boolean program BP(P 0; E1) that C2bp produ
es. Thisprogram has one additional boolean variable (b) that repre-sents the predi
ate nPa
kets = nPa
ketsOld. The assign-ment statement nPa
kets = nPa
ketsOld; makes this
on-dition true, so in the boolean program the assignment b:=1;represents this assignment. Using a theorem prover, C2bpdetermines that if the predi
ate is true before the statementnPa
kets++, then it is false afterwards. This is
aptured bythe assignment statement in the boolean programb :=
hoose(0,b);The
hoose fun
tion is de�ned as follows:bool
hoose(pos, neg)beginif (pos) then return 1;elsif (neg) then return 0;elsif (*) then return 0;else return 1; fiendThe pos parameter represents positive information about apredi
ate while the neg parameter represents negative in-formation about a predi
ate. The
hoose fun
tion is never
alled with both parameters evaluating to true. If both pa-rameters are false then there is not enough information todetermine whether the predi
ate is de�nitely true or de�-nitely false, so 0 or 1 is returned, non-deterministi
ally.Applying Bebop to the new boolean program shows thatthe label ERROR is not rea
hable. In performing its �xpoint
omputation, Bebop dis
overs that the following loop in-variant holds at the end of the do-while loop:(state = Lo
ked ^ nPa
kets = nPa
ketsOld)_ (state = Unlo
ked ^ nPa
kets 6= nPa
ketsOld)That is, either the lo
k is held and the loop will terminate(and thus the lo
k needs to be released after the loop), orthe lo
k is free and the loop will iterate. The
ombination ofpredi
ate abstra
tion of C2bp and the �xpoint
omputationof Bebop has found this loop-invariant over the predi
atesin E1. This loop-invariant is strong enough to show that thelabel ERROR is not rea
hable.a \yes" or \no" answer in every example we have seen sofar.

3. C2BP: A PREDICATE ABSTRACTOR
FOR CC2bp takes a C program P and a set E = fe1; e2; : : : ; engof predi
ates on the variables of P , and automati
ally
on-stru
ts a boolean program BP(P;E).6 The set of predi
atesE are pure C boolean expressions with no fun
tion
alls.The boolean program BP(P;E)
ontains n boolean vari-ables V = fb1; b2; : : : ; bng, where ea
h boolean variable birepresents a predi
ate ei. Ea
h variable in V has a three-valued domain: false, true, and �.7 The program BP(P;E)is a sound abstra
tion of P be
ause every possible exe
utiontra
e t of P has a
orresponding exe
ution tra
e t0 in B.Furthermore, BP(P;E0) is a pre
ise abstra
tion of P withrespe
t to the set of predi
ates E0, in a sense stated andshown elsewhere [2℄. Sin
e BP(P;E) is an abstra
tion of P ,it is guaranteed that an invariant I dis
overed (by Bebop)in BP(P;E), as boolean
ombinations of the bi variables, isalso an invariant in the C
ode, where ea
h bi is repla
ed byits
orresponding predi
ate ei.C2bp determines, for every statement s in P and everypredi
ate ei 2 E, how the exe
ution of s
an a�e
t the truthvalue of ei. This is
aptured in the boolean program by astatement sB that
onservatively updates ea
h bi to re
e
tthe
hange. C2bp
omputes sB by (1) �rst
omputing theweakest pre
ondition of ei, and its negation with respe
t tos, and (2) strengthening the weakest pre
ondition in termsof predi
ates from E, using a theorem prover.We highlight the te
hni
al issues in building a tool likeC2bp:� Pointers: We use an alias analysis of the C pro-gram to determine whether or not an update througha pointer dereferen
e
an potentially a�e
t an expres-sion. This greatly in
reases the pre
ision of the C2bptool. Without alias analysis, we would have to makevery
onservative assumptions about aliasing, whi
hwould lead to invalidating many predi
ates.� Pro
edure
alls: Sin
e boolean programs supportpro
edure
alls, we are able to abstra
t pro
eduresmodularly. The abstra
tion pro
ess for pro
edure
allsis
hallenging, parti
ularly in the presen
e of pointers.After a
all, the
aller must
onservatively update lo-
al state that may have been modi�ed by the
allee.We provide a sound and pre
ise approa
h to abstra
t-ing pro
edure
alls that takes su
h side-e�e
ts into a
-
ount.� Pre
ision-eÆ
ien
y tradeo�. C2bp uses a theoremprover to strengthen weakest pre-
onditions in termsof the given predi
ate set E. Doing this strengtheningpre
isely requires O(2jEj)
alls to the theorem prover.We have explored a number of optimization te
hniquesto redu
e the number of
alls made to the theoremprover. Some of these te
hniques result in an equiva-lent boolean program, while others trade o� pre
ision6A separate paper on the C2bp tool has been submitted tothis
onferen
e. That paper
ontains the te
hni
al detailsand algorithms that the tool uses. This paper presents aparti
ular appli
ation of the C2bp tool, in
onjun
tion withthe two other tools in the SLAM toolkit.7The use of the third value �, is en
oded using
ontrol-nondeterminism as shown in the
hoose fun
tion of Se
-tion 2. That is, \�" is equivalent to \
hoose(0,0)".5

for
omputation speed. We are also investigating us-ing other de
ision pro
edures, su
h as those embodiedin the Omega test [25℄ and PVS [23℄.Complexity. The runtime of C2bp is dominated by
allsto the theorem prover. In the worst-
ase, the number of
alls made to the theorem prover for
omputing BP(P;E)is linear in the size of P and exponential in the size of E. Inpra
ti
e, we �nd that the
omplexity is
ubi
 in the size ofE.
4. BEBOP: A MODEL CHECKER FOR

BOOLEAN PROGRAMSThe Bebop tool [3℄
omputes the set of rea
hable statesfor ea
h statement of a boolean program using an in-terpro
edural data
ow analysis algorithm in the spirit ofSharir/Pnueli and Reps/Horwitz/Sagiv [29, 26℄. A state ofa boolean program at a statement s is simply a valuationto the boolean variables that are in s
ope at statement s(in other words, a bit ve
tor, with one bit for ea
h variablein s
ope). The set of rea
hable states (or invariant) of aboolean program at s is thus a set of bit ve
tors (equiva-lently, a boolean fun
tion over the set of variables in s
opeat s).Bebop di�ers from typi
al implementations of data
owalgorithms in two
ru
ial ways. First, it
omputes over setsof bit ve
tors at ea
h statement rather than single bit ve
-tors. This is ne
essary to
apture
orrelation between vari-ables. Se
ond, it uses binary de
ision diagrams [4℄ (BDDs)to impli
itly represent the set of rea
hable states of a pro-gram, as well as the transfer fun
tions for ea
h statement ina boolean program. Bebop also di�ers from previous model
he
king algorithms for �nite state ma
hines, in that it doesnot inline pro
edure
alls, and exploits lo
ality of variables
opes for better s
aling. Unlike most model
he
kers for �-nite state ma
hines, Bebop naturally generalizes to handlere
ursive and mutually re
ursive pro
edures. Bebop usesan expli
it
ontrol-
ow graph representation, as in a
om-piler, rather than en
oding the
ontrol-
ow with BDDs, asdone in most symboli
 model
he
kers. It
omputes a �x-point by iterating over the set of fa
ts asso
iated with ea
hstatement, whi
h are represented with BDDs.Complexity. The worst-
ase
omplexity of Bebop is linearin the size of the programs
ontrol-
ow graph, and exponen-tial in the maximum number of boolean variables in s
opeat any program-point. We have implemented a number ofoptimizations to redu
e the number of variables needed insupport of BDDs. For example, we use live variable analysisto �nd program points where a variable be
omes dead andthen eliminate the variable from the BDD representation.We also use a global MOD/REF analysis of the booleanprogram in order to perform similar variable eliminations.
5. NEWTON: A PREDICATE DISCOV-

ERERNewton takes a C program P and an error path p from aboolean program B as inputs. It is assumed that the booleanprogram B was produ
ed by running C2bp on P with someset of predi
ates. For the purposes of des
ribing Newton,we
an identify the path p as a sequen
e of assignments andassume statements (every
onditional is translated into anassume statement).

Input: A sequen
e of statements p = s1; s2; :::; sm.store := null map;history := null set;
onditions := null set;/* start of Phase 1 */fori = 1 tom do fswit
h(si) f\e1 := e2" :let lval = LEval (store; e1) andlet rval = REval(store; e2) inif(store[lval ℄ is de�ned)history := history [f(lval ; store[lval ℄)gstore[lval ℄ := rval\assume(e)" :let rval = REval(store; e) in
onditions :=
onditions [frvalgif(
onditions is in
onsistent)f/*Phase 2 */Minimize size of
onditionswhile maintaining in
onsisten
y/*Phase 3 */predi
ates := all dependen
ies of
onditionsSay \Path p is infeasible"return(predi
ates)gg gSay \Path p is feasible"returnFigure 4: The high-level algorithm used by NewtonThe internal state of Newton has three
omponents: (1)store , whi
h is a mapping from lo
ations to symboli
 expres-sions, (2)
onditions , whi
h is a set of predi
ates, and (3)a history whi
h is a set of past asso
iations between lo
a-tions and symboli
 expressions. The high-level des
riptionof Newton is given in Figure 4. The fun
tions LEval andREval evaluate the l-value and r-value of a given expressionrespe
tively. Newton maintains an internal dependen
y ofea
h element in the state with the elements in store , to beused in Phase 3. It also uses symboli

onstants for unknownvalues. We illustrate these using an example. Consider apath with the following four statements:s1: nPa
ketsOld = nPa
kets;s2: request = devExt->WriteListHeadVa;s3: assume(!request);s4: assume(nPa
kets != nPa
ketsOld);This path is a proje
tion of the error path from Bebopin Se
tion 2. Figure 3 shows four states of Newton, oneafter pro
essing ea
h statement in the path. The assign-ment nPa
ketsOld = nPa
kets is pro
essed by �rst intro-du
ing a symboli

onstant � for the variable nPa
kets,and then assigning it to nPa
ketsOld. The assignmentrequest = devExt->WriteListHeadVa is pro
essed by �rstintrodu
ing a symboli

onstant � for the value of devExt,then introdu
ing a se
ond symboli

onstant
 for thevalue of �->WriteListHeadVa, and �nally assigning
 torequest. The
onditional assume(!request) is pro
essedby adding the predi
ate !(
) to the
ondition-set. Thedependen
y list for this predi
ate is (5) sin
e its evaluationdepended on entry 5 in the store. Finally, the
onditionalassume(nPa
kets != nPa
ketsOld) is pro
essed by addingthe (in
onsistent) predi
ate (� != �) to the
ondition-set,with a dependen
y list (1,2). At this point, the theoremprover determines that the
ondition-set is in
onsistent, and6

s1: nPa
ketsOld = nPa
kets;s2: request = devExt->WriteListHeadVa;s3: assume(!request);s4: assume(nPa
kets != nPa
ketsOld);lo
. value dep.
ondition-set dep.1. nPa
kets: � ()2. nPa
ketsOld: � (1) lo
. value dep.
ondition-set dep.1. nPa
kets: � ()2. nPa
ketsOld: � (1)3. devExt: � ()4. � !WriteListHeadV a:
 (3)5. request:
 (3,4)after s1 after s2lo
. value dep.
ondition-set dep.1. nPa
kets: � () !(
) (5)2. nPa
ketsOld: � (1)3. devExt: � ()4. � !WriteListHeadV a:
 (3)5. request:
 (3,4) lo
. value dep.
ondition-set dep.1. nPa
kets: � () !(
) (5)2. nPa
ketsOld: � (1) (�!= �) (1,2)3. devExt: � ()4. � !WriteListHeadV a:
 (3)5. request:
 (3,4)after s3 after s4Figure 3: A path of four statements and four tables showing the state of Newton after simulating ea
h ofthe four statements.Newton pro
eeds to the Phase 2.Phase-2 removes the predi
ate !(
) from the
onditionstore, sin
e the remaining predi
ate (�!= �) is in
onsis-tent by itself. Phase-3 traverses store entries 1 and 2 fromthe dependen
y list. A post pro
essing step then deter-mines that the symboli

onstant �
an be uni�ed withthe variable nPa
kets, and Newton produ
es two predi-
ates: (nPa
ketsOld = nPa
kets) and (nPa
ketsOld 6=nPa
kets). Sin
e one is a negation of the other, only one ofthe two predi
ates needs to be added in order for the pathto be ruled out in the boolean program. Though no sym-boli

onstants are present in the �nal set of predi
ates inour example, there are other examples where the �nal listof predi
ates have symboli

onstants. C2bp is able to han-dle predi
ates with symboli

onstants. We do not dis
ussthese details here due to want of spa
e. The history is usedwhen a lo
ation is overwritten with a new value. Sin
e nolo
ation was written more than on
e in our example, we didnot see the use of history . Newton also handles error pathswhere ea
h element of the path is also provided with valuesto the boolean variables from Bebop, and
he
ks for their
onsisten
y with the
on
rete states along the path.Complexity. The number of theorem-prover
alls made byNewton on a path p is O(jpj �n), where jpj is the length ofthe path, and n is the number of predi
ates in the booleanprogram B.
6. NT DEVICE DRIVERS: CASE STUDYThis se
tion des
ribes our experien
e applying the SLAMtoolkit to
he
k properties of Windows NT devi
e drivers.We
he
ked two kinds of properties: (1) Lo
king-unlo
kingsequen
es for lo
ks should
onform to allowable sequen
es(2) Dispat
h fun
tions should either
omplete a request, ormake a request pending for later pro
essing. In either
ase,a parti
ular sequen
e of Windows NT spe
i�
 a
tions shouldbe taken.The two properties have di�erent
hara
teristi
s from aproperty-
he
king perspe
tive.

VOIDSerialDebugLogEntry(IN ULONG Mask, IN ULONG Sig,IN ULONG_PTR Info1, IN ULONG_PTR Info2, IN ULONG_PTR Info3){ KIRQL irql;irql = KeGetCurrentIrql();if (irql < DISPATCH_LEVEL) {KeA
quireSpinLo
k(&LogSpinLo
k, &irql);} else {KeA
quireSpinLo
kAtDp
Level(&LogSpinLo
k);}// other
ode (deleted)if (irql < DISPATCH_LEVEL) {KeReleaseSpinLo
k(&LogSpinLo
k, irql);} else {KeReleaseSpinLo
kFromDp
Level(&LogSpinLo
k);}return;} Figure 5: Code snippet from serial-port driver.� The �rst property depends mainly on the program's
ontrol
ow. We
he
ked this property for a parti
ularlo
k (
alled the \Can
el" spin lo
k) on three kernelmode drivers in the Windows NT devi
e driver toolkit. We found two kinds situations where spuriouserror paths led our pro
ess to iterate. With its inter-pro
edural analysis and dete
tion of simple variable
orrelations, the SLAM tools were able to eliminateall the spurious error paths with at most one iterationof the pro
ess. In all the drivers, we started with 5predi
ates from the property spe
i�
ation FSM andadded at most one predi
ate to rule out spurious errorpaths.� The se
ond property is data-dependent, requiring thetra
king of value
ow and alias relationships. We
he
ked this property on a serial port devi
e driver.It took 4 iterations through the SLAM tools and a7

total of 30 predi
ates to validate the property.The drivers we analyzed were on the order of a thousandlines of C
ode ea
h. In ea
h of the drivers we
he
ked forthe �rst property, the SLAM tools ran in under a minute onan 800MHz Pentium PC with 512MB RAM. For the se
ondproperty on the serial driver, the total run time for all theSLAM tools was about 3 minutes to
omplete all the fouriterations.
6.1 Property 1We
he
ked for
orre
t lo
k a
quisition/release sequen
eson 3 kernel mode drivers: MCA-bus, serial-port and parallel-port. The SLAM tools validated the property on MCA-busand parallel-port drivers without iteration. However, in-terpro
edural analysis was required for
he
king the prop-erty, as
alls to the a
quire and release routines were spreada
ross multiple pro
edures in the drivers. Furthermore, inthe serial-port driver, the SLAM tools found one false errorpath in the �rst iteration, whi
h resulted in the addition ofa single predi
ate. Then the property was validated in these
ond iteration. The
ode-snippet that required the ad-dition of the predi
ate is shown in Figure 5. The snippetshows that the
ode has a dependen
e on the interrupt re-quest level variable (irql) that must be tra
ked in order toeliminate the false error paths.
6.2 Property 2A dispat
h routine to a Windows NT devi
e driver is aroutine that the I/O manager
alls when it wants the driverto perform a spe
i�
 operation (e.g, read, write et
.) Thedispat
h routine is \registered" by the driver during `whenit is initialized. A dispat
h routine has the following proto-type:NTSTATUS Dispat
hX(IN PDEVICE_OBJECT Devi
eObje
t,IN PIRP irp)The �rst parameter is a pointer to a so
alled \devi
eobje
t" that represents the devi
e, and the se
ond parameteris a pointer to a so
alled \I/O request pa
ket", or \irp" that
ontains information about the
urrent request.Property P1. All dispat
h routines must either pro
essthe irp immediately (
all this option A, or queue the irp forpro
essing later (
all this option B). Every irp has to pro-
essed under one of these two options. If the driver
hoosesoption A, then it has to do the following a
tions in sequen
e:1. Set irp->Iostatus.status to STATUS PENDING2. Call the kernel fun
tion IoMarkIrpPending(irp)3. Queue the irp into the driver's internal queue usingthe kernel fun
tion IoStartPa
ket(irp)4. Return STATUS PENDINGIf the driver
hooses option B, then it has do the followinga
tions in sequen
e:1. Set the irp->Iostatus.status to some return
odeother than STATUS PENDING (su
h as STATUS SUCCESS,STATUS CANCELLED et
.)2. Call IoCompleteRequest(irp)3. Return the same status
ode as in step 1.

Note that this is a partial spe
i�
ation for a dispat
h rou-tine |just one of several properties that the dispat
h rou-tine must obey. We �rst
oded up the above property asa �nite state ma
hine with a transition fun
tion namedEMIT FSM that takes two parameters: an a
tion (su
h asCALL IOCOMPLETE, CALL QUEUEIRP, et
.) and a status (su
has STATUS PENDING, et
).Instrumenting the driver
ode. In order to
he
kif the driver
ode satis�es the property we added instru-mentation
ode to the driver. At the entry point to thedriver, we store the value of the irp in a new global, gIrp.Every time a kernel fun
tion IoCompleteRequest(irp),IoMarkIrpPending(irp), or IoStartIrp(irp) is
alled, we
he
k if the irp parameter is the same as gIrp, and if so weadd a
all to EMIT FSM with the appropriate message as these
ond parameter. Every time a variable of type PIRP hasthe status �eld assigned, we
he
k if the irp parameter isthe same as gIrp, and if so we add a
all to EMIT FSM withthe status as the �rst parameter, and ASSIGN as the se
ondparameter. Figure 6 shows a sample
ode snipped from adriver and the instrumentation we add.8Che
king the instrumented driver. The initial set ofpredi
ates des
ribed the FSM in
ludes 17 predi
ates: (1) 5predi
ates to keep tra
k of the global variable fsmState (2)4 predi
ates to keep tra
k of the global variable fsmStatus(3) 3 predi
ates to keep tra
k of the formal parameter m ofEMIT FSM, and (4) 5 predi
ates to keep tra
k of the formalparameter s of fun
tion EMIT FSM.C2bp generated a boolean program B1 using these 17predi
ates, and Bebop found an error tra
e that led to thelabel ERROR. Newton analyzed this error tra
e, and
ameup with 3 more predi
ates. These predi
ates kept tra
k ofthe value of a lo
al variable where a status value was storedbefore being assigned into the irp->status. After iteratingthrough C2bp with these predi
ates added, Bebop found ase
ond error tra
e, whi
h passed through 2 fun
tion
alls,and Newton
ame up with 4 more predi
ates to be added.These predi
ates kept tra
k of the
ow of the irp pointerthrough the fun
tion
all, and a lo
al variable of the
alledfun
tion where the status value was stored temporarily.After one more iteration through C2bp with the addi-tional predi
ates, Bebop found a third error tra
e, whi
hpassed through 3 levels of fun
tion
alls. This error tra
ewas fairly
ompli
ated, and it involved the driver storing theirp pointer in a global stru
ture, passing a pointer to thestru
ture, and then retrieving the pointer two levels of fun
-tion
alls later. When fed with this error tra
e, Newton
ame up with 9 more predi
ates to be added that tra
kedthis value
ow.In the fourth iteration Bebop was able to validate theproperty on the boolean program produ
ed by C2bp withall the predi
ates dis
overed thus far. It took 4 iterationsthrough the tools and a total of 30 predi
ates to dis
overthe right abstra
tion to validate this property. We foundone bug in the fourth iteration, but it turned out to be a
ut-and-paste error in our instrumentation pro
ess. After�xing it, the property passed.8We remind the reader that in the future, we plan to havetool that will generate su
h instrumentation automati
allyfrom a high-level spe
i�
ation of the property. For now, ourability to analyze properties is limited mainly by the needto hand instrument the property into the
ode of interest.8

if (status != STATUS_PENDING) {Irp->Status = status;IoCompleteRequest(Irp, 0);} if (status != STATUS_PENDING) {Irp->Status = status;if(Irp==i) {EMIT_FSM(ASSIGN, status);}IoCompleteRequest(Irp, 0);if(Irp==i) {EMIT_FSM(CALL_IOCOMPLETE, status);}}Figure 6: Code snippet from a driver (left) and the instrumentation added (right).
7. RELATED WORKSLAM seeks a sweet spot between VCGen-based tools [16,22, 5℄ that operate dire
tly on the
on
rete semanti
s andmodel
he
king or data
ow-analysis based tools [7, 18, 13,11℄ that operate on abstra
tions of the program. We useVCGen-based approa
h on �nite (potentially interpro
edu-ral) paths of the program, and use the knowledge gained to
onstru
t abstra
t models of the program. Newton usesVCGen on the
on
rete program, but as it operates on asingle �nite interpro
edural path at a time, it does not re-quire loop-invariants, or pre-
onditions and post-
onditionsfor pro
edures. C2bp also reasons about the statements ofthe C program using de
ision pro
edures, but does so onlylo
ally, one statement at a time. Global analysis is doneonly on the boolean program abstra
tions, using the model
he
ker Bebop. Thus, our hope is to s
ale without losingpre
ision, as long as the property of interest allows us to doso, by inherently requiring a small abstra
tion for its vali-dation or invalidation.SLAM generalizes Engler et al.'s approa
h in three ways:(1) it is sound (modulo the assumptions about memorysafety); (2) it permits interpro
edural analysis; (3) it avoidsspurious examples through iterative re�nement (in some ofthe
ode Engler et al. report on, their te
hniques generatedthree times as many spurious error paths as true error paths,a miss rate of 300 per
ent.9) In fa
t, with a suitable de�ni-tion of abstra
tion, and
hoi
e of initial predi
ates, the �rstiteration of the SLAM pro
ess is equivalent to performingEngler et al.'s approa
h interpro
edurally.Constru
ting abstra
t models of programs has been stud-ied in several
ontexts. Abstra
tions
onstru
ted by [13℄and [19℄ are based on spe
ifying transitions in the abstra
tsystem using a pattern language, or as a table of rules. Auto-mati
 abstra
tion support has been built into the Banderatool set [12℄. They require the user to provides �nite do-main abstra
tions of data types. Predi
ate abstra
tion, asimplemented in C2bp is more general, and
an
apture re-lationships between variables. The predi
ate abstra
tion inSLAM was inspired by the work of Graf and Saidi [17℄ in themodel
he
king
ommunity. E�orts have been made to inte-grate predi
ate abstra
tion with theorem proving and model
he
king [27℄. Though our use of predi
ate abstra
tion is re-lated to these e�orts, our goal is to analyze software writtenin
ommon programming languages. A predi
ate abstra
-tion tool for Java has re
ently been reported in [31℄.9Jon Pin
us, who led the development of an industrial-strength error dete
tion tool for C
alled PRE�x [5℄, ob-serves that users of PRE�x will tolerate a false alarm ratein the range 25-50% depending on the appli
ation [24℄.

The SLAM tools C2bp and Bebop
an be used in
om-bination to �nd loop-invariants expressible as boolean fun
-tions over a given set of predi
ates. The loop-invariant is
omputed by the model
he
ker Bebop using a �xpoint
om-putation on the abstra
tion
omputed by C2bp. Prior workfor generating loop invariants has used symboli
 exe
utionon the
on
rete semanti
s, augmented with widening heuris-ti
s [30, 32℄. The Houdini tool guesses a
andidate set ofannotations (invariants) and uses the ESC/Java
he
ker torefute in
onsistent annotations until
onvergen
e [15℄.Boolean programs
an be viewed as abstra
t interpreta-tions of the underlying program [8℄. The
onne
tions be-tween model
he
king, data
ow analysis and abstra
t in-terpretation have been explored before [28℄ [9℄. The model
he
ker Bebop is based on earlier work on interpro
eduraldata
ow analysis [29, 26℄. Automati
 iterative re�nementbased on error paths �rst appeared in [20℄, and more re-
ently in [6℄. Both e�orts deal with �nite state systems.An alternative approa
h to stati
 validation of safetyproperties, is to provide a ri
h type system that allows usersto en
ode both safety properties and program annotations astypes, and redu
e property validation to type
he
king [14℄.
8. CONCLUSIONSWe
on
lude by summarizing the main
ontributions ofour work:� For the �rst time, we provide a fully automatedmethodology to validate/invalidate temporal safetyproperties of software interfa
es. Our pro
ess does notrequire user supplied annotations, or user supplied ab-stra
tions. When our pro
ess
onverges, it always givea de�nitive \yes" or \no" answer.� The ideas behind the SLAM tools are novel. Theuse of boolean programs to represent program abstra
-tions is new. To the best of our knowledge, C2bp isthe �rst automati
 predi
ate abstra
tion tools to han-dle a full-s
ale programming language, and performa sound and pre
ise abstra
tion. Bebop is the �rstmodel
he
ker to handle pro
edure
alls using an in-terpro
edural data
ow analysis algorithm, augmentedwith representation tri
ks from the symboli
 model
he
king
ommunity. Newton uses a path simula-tion algorithm in a novel way, to generate predi
atesfor re�nement.� We have demonstrated that the SLAM tools
onvergein a few iterations on devi
e drivers from the Mi
rosoftDDK.9

The SLAM toolkit has a number of limitations that weplan to address. The logi
al model of memory is a limitation,sin
e it is not the a
tual model used by C programs. We planto investigate using a physi
al model of memory. We areworking on a property spe
i�
ation language, and automati
instrumentation of the sour
e
ode from the spe
i�
ationlanguage. We are exploring theoreti
al guarantees we
angive about the termination of our iterative re�nement. Weplan to evolve the SLAM tools by applying them to more
ode bases, both inside and outside Mi
rosoft.
AcknowledgementsWe thank Rupak Majumdar and Todd Millstein for theirhard work in making the C2bp tool
ome to life. Thanksto Andreas Podelski for helping us des
ribe the C2bp toolin terms of abstra
t interpretation. Thanks also to themembers of the Software Produ
tivity Tools resear
h groupat Mi
rosoft Resear
h for many enlightening dis
ussions onprogram analysis, programming language and devi
e drivers,as well as their numerous
ontributions to the SLAM toolkit.
9. REFERENCES[1℄ T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani.Automati
 predi
ate abstra
tion of
 programs. In PLDI2001 (submitted).[2℄ T. Ball, A. Podelski, and S. K. Rajamani. Boolean and
artesian abstra
tion for model
he
king C programs. InTACAS 2001 (submitted).[3℄ T. Ball and S. K. Rajamani. Bebop: A symboli
 model
he
ker for boolean programs. In Pro
eedings of the 7thInternational SPIN Workshop (Le
ture Notes in ComputerS
ien
e No. 1885), pages 113{130, Zuri
h, Switzerland,September 2000. Springer-Verlag.[4℄ R. Bryant. Graph-based algorithms for boolean fun
tionmanipulation. IEEE Transa
tions on Computers,C-35(8):677{691, 1986.[5℄ W. R. Bush, J. D. Pin
us, and D. J. Siela�. A stati
analyzer for �nding dynami
 programming errors.Software{Pra
ti
e and Experien
e, 30(7):775{802, June2000.[6℄ E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.Counterexample-guided abstra
tion re�nement. InPro
eedings of the 12th International Conferen
e onComputer Aided Veri�
ation (LNCS No. 1855), pages154{169. Springer, July 2000.[7℄ J. Corbett, M. Dwyer, J. Hat
li�, C. Pasareanu, Robby,S. Lauba
h, and H. Zheng. Bandera : Extra
ting�nite-state models from Java sour
e
ode. In Pro
eedings ofthe 22nd International Conferen
e on SoftwareEngineering, June 2000.[8℄ P. Cousot and R. Cousot. Abstra
t interpretation: a uni�edlatti
e model for the stati
 analysis of programs by
onstru
tion or approximation of �xpoints. In Pro
eedingsof the Fourth Annual Symposium on Prin
iples ofProgramming Languages. ACM Press, 1977.[9℄ P. Cousot and R. Cousot. Temporal abstra
t interpretation.In Pro
eedings of the Twenty Seventh Annual Symposiumon Prin
iples of Programming Languages. ACM Press,2000.[10℄ M. Das. Uni�
ation-based pointer analysis with dire
tionalassignments. In PLDI '00: Pro
eedings of the ACMSIGPLAN 2000 Conferen
e on Programming LanguageDesign and Implementation, June 2000.[11℄ M. Dwyer and L. Clarke. Data
ow analysis for verifyingproperties of
on
urrent programs. In Pro
eedings of theSe
ond ACM SIGSOFT symposium on Foundations ofSoftware Engineering, pages 62{75, De
ember 1994.[12℄ M. Dwyer, J. Hat
li�, R. Joehanes, S. Lauba
h,C. Pasareanu, Robby, W. Visser, and H. Zheng.

Tool-supported program abstra
tion for �nite-stateveri�
ation. In Pro
eedings of the 22nd InternationalConferen
e on Software Engineering (to appear), June2001.[13℄ D. Engler, B. Chelf, A. Chou, and S. Hallem. Che
kingsystem rules using system-spe
i�
, programmer-written
ompiler extensions. In Pro
eedings of 4th Symposium onOperating System Design and Implementation. UsenixAsso
iation, O
tober 2000.[14℄ M. F�ahndri
h and R. DeLine. Enfor
ing high-levelproto
ols in low-level software. In PLDI 2001 (submitted).[15℄ C. Flanagan, R. Joshi, and K. R. M. Leino. Annotationinferen
e for modular
he
kers. Information Pro
essingLetters, 2000. To appear.[16℄ C. Flanagan and J. B. Saxe. Generating
ompa
tveri�
ation
onditions. In POPL'2001 (to appear).[17℄ S. Graf and H. Sa�di. Constru
tion of abstra
t state graphswith PVS. In CAV 97: Computer-aided Veri�
ation,Le
ture Notes in Computer S
ien
e 1254, pages 72{83.Springer-Verlag, 1997.[18℄ G. Holzmann. The Spin model
he
ker. IEEE Trans. onSoftware Engineering, 23(5):279{295, May 1997.[19℄ G. Holzmann. Logi
 veri�
ation of ANSI-C
ode with Spin.In Pro
eedings of the SPIN 2000 Workshop, pages 131{147.Springer Verlag / LNCS 1885, Sep. 2000.[20℄ R. Kurshan. Computer-aided Veri�
ation of CoordinatingPro
esses. Prin
eton University Press, 1994.[21℄ L. Lamport. Proving the
orre
tness of multipro
essprograms. IEEE Transa
tions on Software Engineering,SE-3(2):125{143, 1977.[22℄ G. Ne
ula. Proof
arrying
ode. In Pro
eedings of the 24thAnnual Symposium on Prin
iples of ProgrammingLanguages, pages 106{119. ACM Press, 1997.[23℄ S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas.PVS: Combining spe
i�
ation, proof
he
king, and model
he
king. In R. Alur and T. A. Henzinger, editors,Computer-Aided Veri�
ation, CAV '96, volume 1102 ofLe
ture Notes in Computer S
ien
e, pages 411{414, NewBrunswi
k, NJ, July/August 1996. Springer-Verlag.[24℄ J. Pin
us. personal
ommuni
ation, O
tober 2000.[25℄ W. Pugh. A pra
ti
al algorithm for exa
t array dependen
eanalysis. Commun. ACM, 35(8):102{114, August 1992.[26℄ T. Reps, S. Horwitz, and M. Sagiv. Pre
ise interpro
eduraldata
ow analysis via graph rea
hability. In Pro
eedings ofthe 22nd ACM Symposium on Prin
iples of ProgrammingLanguages, pages 49{61, January 1995.[27℄ H. Sa�idi and N. Shankar. Abstra
t and model
he
k whileyou prove. In CAV 99: Computer-aided Veri�
ation,Le
ture Notes in Computer S
ien
e 1633, pages 443{454.Springer-Verlag, 1999.[28℄ D. S
hmidt. Data
ow analysis is model
he
king ofabstra
t interpretation. In Pro
eedings of the Twenty FifthAnnual Symposium on Prin
iples of ProgrammingLanguages, pages 38{48. ACM Press, 1998.[29℄ M. Sharir and A. Pnueli. Two approa
hes tointerpro
edural data dalow analysis. In S. Mu
hni
k andN. Jones, editors, Program Flow Analysis: Theory andAppli
ations, pages 189{233. Prenti
e-Hall, 1981.[30℄ N. Suzuki and K. Ishihata. Implementation of an arraybound
he
ker. In Pro
eedings of the ACM Symposium onPrin
iples of Programming Languages. ACM, January1977.[31℄ W. Visser, S. Park, and J. Penix. Using predi
ateabstra
tion to redu
e obje
t-oriented programs for model
he
king. In The Third Workshop on Formal Methods inSoftware Pra
ti
e, pages 3{12. ACM, August 2000.[32℄ Z. Xu, B. P. Miller, and T. Reps. Safety
he
king ofma
hine
ode. In Pro
eedings of the ACM SIGPLAN '00Conferen
e on Programming Language Design andImplementation, pages 70{82. ACM, June 2000.10

