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21 IntroductionTrapezoid graphs were introduced by Dagan, Golumbic, and Pinter [DGP]. Con-sider a channel, i.e., a pair of two horizontal lines. A trapezoid between these linesis de�ned by two points on the top and two points on the bottom line. A graph isa trapezoid graph if there exists a set of trapezoids corresponding to the vertices ofthe graph such that two vertices are joined by an edge i� the corresponding trape-zoids intersect (see Figure 1). Dagan, Golumbic, and Pinter propose an algorithmcomputing the minimum number of colors in a proper coloring of such a graph intime O(n2) and less e�cient backtracking algorithm �nding a maximum clique insuch graph (throughout the paper we assume that n is the number of vertices of thegraph or order in question).The problem of �nding maximal cliques or minimal colorings for trapezoid graphsarises in connection with channel routing problems in VLSI design. Given somelabeled terminals on the upper and lower side of a two sided channel, terminals withthe same label will be connected in a common net. Such a net may be modeled bya trapezoid connecting the rightmost resp. leftmost terminals with the same label.Nets then may be routed without intersection i� the corresponding trapezoids donot intersect, i.e., i� they are independent. The number of colors needed to color thetrapezoid graph is the number of layers needed to rout the nets without intersection.G 1 324 56 7PG 1 234567 1 2 34 567box representation
41 2 3576trapezoidrepresentationFigure 1. A trapezoid graph G, the order P and two representations.



Trapezoid Graphs and Generalizations 3For our algorithms we will make use of another equivalent characterization oftrapezoid graphs. To give this alternative characterization it is convenient to �x someterminology. If x = (x1; : : : ; xk) and y = (y1; : : : ; yk) are points in IRk, then x is saidto be dominated by y, denoted x < y, if xi is less than yi for all i = 1; : : : ; k. The orderthus given between points in IRk is also called dominance order. This order can beextended to boxes, i.e., sets of the form f(x1; : : : ; xk) 2 IRk : li � xi � ui; 1 � i � kgwhere (l1; : : : ; lk) is the lower corner and (u1; : : : ; uk) is the upper corner of the box.A box b dominates a box b0 if the lower corner of b dominates the upper cornerof b0. Note that points may be understood as boxes where the lower and uppercorner coincides. If one of the two boxes dominates the other we say that they arecomparable. Otherwise they are incomparable. Now the vertices of trapezoid graphmay be represented by boxes with two boxes incomparable i� the correspondingvertices are joined by an edge.The connection between the box representation and the trapezoid representationof a trapezoid graph is the following. Interpret the points on the lower of the twolines of the channel as lying on the x-axis and that of the upper line as lying on they-axis of the euclidean plane. Each trapezoid then corresponds to an axis-parallelbox in the plane whose projection on the x- and y-axis coincides with the lower andupper side of the trapezoid (see Figure 1). It is easily seen that two trapezoids aredisjoint exactly if the corresponding boxes are comparable.What makes the box representation useful is the additional dominance order onboxes that may be exploited by sweep line algorithms. All computation is done in asingle sweep leading to O(n log n) algorithms for clique, independent set and coverproblems on trapezoid graphs. Hence, these graphs are another class of graphs wherevery e�cient algorithms for such problems can be given. There exists a lower boundfor the number of comparisons needed to computemaximumincreasing subsequencesin permutations, Fredman [Fre]. Permutations correspond to permutation graphsin such a way that increasing sequences correspond to either cliques or independentsets. As permutation graphs are trapezoid graphs Fredman's bound shows that ouralgorithms are optimal in the same sense.Algorithms for trapezoid graphs should be compared with algorithms for gen-eral cocomparability graphs. For these graphs the maximum independent set andthe minimum clique cover problem can be solved in O(n2 log n), see [MCSp]. Thebottleneck of the computation is the complexity of transitive orientation. The max-imum clique and chromatic number problems on cocomparability graphs seem tobe harder. To the best of our knowledge the complexity is dominated by �nding amaximum matching in a bipartite graph. The time needed to solve this problem isalmost O(n2:5) (see [ABMP]), and O(n3) in the weighted case (see [PaSt]).In Section 2 we give some de�nitions and replace graph terminology by order ter-minology that proves to be more convenient in designing our algorithms. We assumethe vertices of the trapezoid graph to have some weights. To compute maximumweighted cliques or independent sets turns out to impose no additional di�culty. InSection 3 we present an algorithm computing maximum weighted independent setand a minimum clique cover at the same time (or in order terminology, a maximum



4weighted chain and a minimum antichain partition). We also show how to extendthis algorithm from boxes in the plane to boxes in IRk. Section 4 shows how tocompute a minimum coloring (or a minimum chain partition). Unfortunately, thisalgorithm cannot be turned into an e�cient one �nding a maximumweighted clique(maximumweighted antichain). Hence, a di�erent approach is proposed in Section 5giving an e�cient algorithm for the last problem.In Section 6 we discuss a new class of graphs, called circle trapezoid graphs. Acircle trapezoid is the region between two non-crossing chords of a circle. Alterna-tively, it is the convex hull of two disjoint arcs on the circle. Circle trapezoid graphs,CT-graphs for short, are the intersection graphs of families of circle trapezoids on a�xed circle. It is easily seen, that CT-graphs are a common generalization of trape-zoid graphs, circle graphs and circular-arc graphs. We show, that in this large classof graphs the maximum clique and maximum independent set problems can still besolved in polynomial time.2 Trapezoid graphs and trapezoid ordersThe k-dimensional box representation (V; l; u) of a graph G = (V;E) consists ofmappings l:V ! IRk and u:V ! IRk such that l(v) is the lower and u(v) the uppercorner of a box box(v) where two vertices of the graph are joined by an edge i� theircorresponding boxes are incomparable. If a graph has a such a representation it is ak-trapezoid graph. If we additionally have a weight w:V ! IR on the vertices of Gthen the k-trapezoid graph is weighted. The weight of a clique, i.e., a set of mutuallyjoined vertices in the graph, is the sum of the weights of its elements. Similarly, theweight of an independent set, i.e., a set of vertices with no two of them joined byan edge, is the sum of the weights of its elements. We are mainly interested in thecase k = 2 where we simply deal with trapezoid graphs.As already mentioned in Section 1, we switch to the richer structure given bythe dominance order on the boxes of a box representation. Let the boxes of abox representation of a trapezoid graph together with the dominance order be thecorresponding trapezoid order. A set of mutually comparable elements of an orderis a chain as a set of mutually incomparable elements is an antichain. Recall thattwo boxes are incomparable i� the corresponding vertices of the trapezoid graphare joined. Let G be a trapezoid graph and P be a corresponding trapezoid order.Then it is easily veri�ed that� A minimum clique cover of G is a minimum antichain partition of P.� A maximum weighted independent set in G is a maximum weighted chain inP.� A minimum coloring of G is a minimum chain partition of P.� A maximum weighted clique in G is a maximum weighted antichain in P.A maximal element of a dominance order is one with no element dominating it.Each chain has exactly one maximal element. In contrast to the weight w(v) of a



Trapezoid Graphs and Generalizations 5box v in a trapezoid order we will often attribute a chain weight W (v) to v whichis the maximum weight of a chain with v as its maximal element.Note that in the limiting case the box representation (V; l; u) of a trapezoidgraph (V;E) may consist of points, i.e., l(v) = u(v), for all v 2 V . Such graphs areknown as permutation graphs and the points with the dominance order in the planeas 2-dimensional order (see, e.g., [Gol]). We denote such an order by (V; p) withp(v) = l(v) = u(v). Before giving the actual algorithms for the trapezoid orderswe will sometimes recall algorithms for 2-dimensional orders since they are easier tograsp while showing important features extendible to the general case.We will often have to maintain a �nite set of real numbers such that values maybe inserted or deleted from it and the predecessor or successor of a given queryvalue can be found. Using balanced trees (e.g., red-black trees described in Cormen,Leiserson, Rivest [CLR]) all these operations can be done in O(log n) time and linearspace. If we further assume the bene�ts of a random access machine and assumethat the values are taken from a �nite range U then the above operations take onlyO(log log n) time and linear space when implemented on a data structure of vanEmde Boas [vEB]. Hence, under these assumptions, the log n factor in the runningtime of the algorithms for 2-dimensional trapezoid orders may be replaced by alog log n factor.Throughout the paper we assume that the points l(v) and u(v) of a box repre-sentation have mutually di�erent x- and y-coordinates. Otherwise, we may obtaina box representation of the same order ful�lling this requirement by perturbing thecorner points with two line sweeps in the following way. Points with the same x-coordinates are perturbed slightly such that points which are lower corners havesmaller x-coordinates than such which are upper corners. A similar perturbationis done for the y-coordinate. The x- and y-coordinate of a point p 2 IR2 will bedenoted by px and py , resp. We will always use a vertical sweep line L going fromright to left, i.e., from lower to higher x-coordinates.3 Minimum antichain partition and maximum chain fork-trapezoidal ordersWe �rst give a brief description of an algorithm solving the maximum chain problemfor a 2-dimensional order (V; p) in the weighted case. Let the weights be given byw:V ! IR+. First, the points are sorted, so that we can access them by increasingx-coordinate, i.e., from left to right. Secondly, we compute a function W :V ! IR,where W (v) is the chain weight of v, i.e., the weight of a maximum weighted chainhaving v as its maximal element.W (v) is computed with the aid of a sweep line L moving from left to rightand halting at every point p(v). We maintain a set M of weighted markers on Lso that the weight W (m) for m 2 M is just the weight of a maximum weightedchain on the set of points dominated by m, i.e., on fv 2 V : p(v) < mg. Foreach m 2 M origin(m) is the maximal element of the maximum weighted chain



6dominated by m. When reaching a point p(v) we �nd the �rst marker m belowp(v) on L, set W (v) = W (m) + w(v) and establish a link from v to origin(m). Toupdate L we position a new marker m0 with W (m0) = W (v) and origin(m0) = v atthe y-coordinate of p(v). Then we remove those markers above m0 that have smallerweight. Note that also the number of markers removed in one step may be large,the overall number of insertions and removals of markers on L cannot exceed 2n.Finally, starting from a point v with maximum chain weight W (v) we backtrackalong the links to construct a heaviest chain.Now we mimic this algorithm for the case where the box representation (V; l; u)of a trapezoid order P is given. Essentially, the idea is to separate the action takenby the algorithms for 2-dimensional orders whenever the sweep line reaches a newelement into two parts. The �rst part of the action, located at l(v), is to computethe chain weight W of the new element v. This is done by �nding the elementv0 of maximum chain weight among the elements with u(v0) < l(v) and link v tov0. Note that the maximum weight of v0 implies that v0 was the maximum elementof its chain. The second part of the action, located at u(v), is to make the chainweight of v available for further elements. The main di�erence to the permutationgraph algorithm is that before inserting the information corresponding to v into thestructureM we have to check whether the information is still relevant when released.The reason is that there might be an element v0 with W (v0) > W (v) whose box iscompletely dominated by the upper corner of v's box. Again, the weight of markerm 2 M will be equal to the weight of a maximum weighted chain on the boxesdominated by m, i.e., on the elements v 2 V with u(v) < m, in particular theweights on M are increasing with increasing y-coordinate.The algorithm for computing a maximumweighted chain in a box representationis given next. For convenience, we initialize the sweep line with a dummy point dwith W (d) = 0 and origin(d) = nil, such that d is below all points that will ever beinserted into L.



Trapezoid Graphs and Generalizations 7MAXCHAIN(V; l; u;w)for each p from left to right dom �rst marker below p on Lif p = l(v) for some v 2 V thenW (v) W (m) + w(v)link(v)  origin(m)if p = u(v) for some v 2 V thenif W (v) > W (m) theninsert a new mv at py in LW (mv) W (v)origin(mv) vremove all m0 that are higher and lighter than mv from Lv  origin(uppermost(L))C  fvgwhile link(v) 6= nil dov  link(v)C  C [ fvgreturn CLemma 1 At the end of the main loop in MAXCHAIN the following invariant holdstrue. If y is an arbitrary point on L and m the next marker below y, then a maximumweighted chain dominated by point y has weight W (m).Proof: If L has stopped at some point p = l(v) no new box has become availableto increase any maximum weighted chain and no weight of any marker has beenchanged. But note that the weight of a maximum chain with maximal element vhas weightW (m)+w(v), form the marker below l(v), by the invariance assumption.On the other hand, suppose L has stopped at p = u(v). If y < uy(v) or ifno new marker is inserted in the sweep line, there can neither be a new maximumweighted chain nor a new marker below y. Hence we assume y � uy(v) and thata new marker mv has been inserted at height uy(v), i.e., there is a new chain withweight W (v) = W (mv) available for points above uy(v). Let m0 and m be themarker immediately below y before and after the insertion of mv. If m0 = m thenW (m0) > W (mv) (otherwise, m0 would have been removed) and W (m) = W (m0)remains optimal among all chain weights. If m0 6= m then m can only be mv andW (mv) > W (m0) either by the condition for removing markers or by the conditionfor the insertion of mv. Since W (m0) was optimal among all chain weights save thenew one ending in v, W (mv) surely is an optimal weight for y now.Of course, Lemma 1 implies that Algorithm MAXCHAIN computes a maximumweighted chain, since all boxes are dominated by the uppermost point on L afterthe sweep has completed.As already noted the sweep line can be implemented so that �nd, insert anddelete operations require O(log n) time. It is easily seen, that 3n is an upper boundfor the number of these operations. This proves a O(n log n) time bound.



8 The unweighted case can be simulated by unit weights. As the weights of allmarkers are di�erent the number of markers on L in the unweighted case cannotexceed the length of a maximum chain in P. If ! is the size of a longest chain inP then all steps can be carried out in O(n log !). If each element of P has unitweight, then no two elements with the same chain weight are comparable. Hence,collecting the elements of chain weight i in a set Ai yields a partition A1; : : : ; A! ofP into antichains. It is easily seen that the maximum weighted chain must containone element of Ai, i = 1; : : : ; !. This proves this antichain partition to be minimalsince a partition into fewer antichains would force at least two elements of the chaininto one antichain, which is impossible. Hence, a minimal antichain partition is abyproduct of algorithm MAXCHAIN. We summarize these remarks inTheorem 2 A maximum weighted chain and a minimum antichain partition ofa trapezoid order on n points, given its box representation, can be computed inO(n log n) time and linear space.Now assume, that a box representation of P in some higher dimension k > 2 isgiven. We use dynamic range trees (see, e.g., Smid [Smi]) for the construction ofa maximum chain for a point set in k dimensions. We need a data structure for apoint set P in k � 1 dimensional space that, for a given query point q, allows to�nd some p 2 P with maximum chain weight W (p) among all points of P that aredominated by q. We also want to insert new points with some given chain weight.Given such a data structure, it is easy to compute a maximum weighted chain fora point set P in k dimensions. A sweep line visits all points ordered by increasinglast coordinate. For each point q on the sweep line a point p is found in the rangetree that has maximum chain weight W (p) among all points dominated by q in the�rst k � 1 coordinates. But since all points with smaller values than q in their lastcoordinate have been swept and have already been inserted in the range tree, p alsohas maximum weight among points dominated by q in all k dimensions. Hence, wemay insert q in the range tree with chain weight W (q) = W (p) + w(q). Along withW (q) we may also store a link to point p. After insertion of all points a maximumweighted chain is easily found. At �rst, a point pm with the highest weight evercomputed during the sweep is searched. Then, beginning with pm, the chain isextracted by following the corresponding chain of links. Again, if all points haveunit weight, W (p) is the height of p and hence a minimum antichain partition isfound as byproduct.With the following changes the above approach is easily adapted to compute amaximum weighted chain for a trapezoid order with a box representation. If pointq on the sweep line corresponds to a lower point l(v) of some box v we calculateW (v) = W (p) + w(v) as above but do not yet insert q in the tree. If q = u(v) forsome box v we insert q in the range tree with chain weight W (q) = W (v) that hasalready been calculated before.For convenience, let us brie
y recall how such a d = k�1 dimensional range treeT works. Let the d coordinates be denoted by x1; : : : ; xd. Points P are represented



Trapezoid Graphs and Generalizations 9by the leaves of a binary tree T ordered according to their xd-coordinate. If d = 1each node t of T points to the leaf of some point p with chain weight W (p) maximalamong all weights in the leaves below t, i.e., leaves of the subtree rooted at t. Ifd > 1 node t points to a d� 1 dimensional range tree with respect to the �rst d� 1coordinates for the points in the subtree of t. For a query point q the point of Pwith smallest xd-coordinate greater than that of q is searched. Let the search pathbe Sq. Let Lq be the set of left children of nodes in Sq that are not itself in Sq. It iseasily seen that each point with xd-coordinate smaller than or equal to that of q hasa leaf below some node in Lq. Hence, to �nd a point p with W (p) maximal amongall points dominated by q we proceed as follows. If d = 1 we check all leaves pointedto by the nodes in Lq and return the leaf with maximum weight. If d > 2 the rangetrees in nodes t 2 Lq allow to �nd points pt with maximum weight among leavesbelow t and dominated by q in the �rst d � 1 coordinates. In this case the pointsearched for is that with maximumweight among points pt, for t 2 Lq. On the otherhand, if we want to insert point q into tree T this may be done by �rst inserting itin the main tree and then inserting it in all secondary range trees at nodes alongthe insertion path, if d > 1. If d = 1, pointers along the insertion path are set to theleaf belonging to q if its weight is the new maximum in the corresponding subtree.It is easily seen that a query takes time O(logd n) if all trees are balanced. Ifsome trees become unbalanced during an insertion they must be rebalanced and itcan be shown that this takes amortized time O(logd n). For d = 1 we need linearspace. And since a point is contained in at most log n secondary trees if d > 1, thetotal amount of space is O(n logd�1 n), by induction. We leave it to the reader tosupplement the omitted details that give a complete proof of the following statement.Theorem 3 If an order P = (V; P ) is given by a box representation in IRk, thena minimum antichain partition and a maximum chain of P can both be obtained inO(n logk�1 n) time and O(n logk�2 n) space.4 Chain partitions of trapezoid ordersIn this section we show how to partition a trapezoid order P into chains such thatthe number of chains used is minimal. Of course, this only makes sense if we assumeunit weights on the elements of P. Again, we begin with a short description of asimilar algorithm for 2-dimensional orders which we then adapt for the case of agiven box representation of P.An optimal chain partition for a point set can be obtained by a sweep of a lineL from left to right in the following way. Assume the set of points to the left ofthe current position of L to be already optimally partitioned into chains. On Lthe maximal elements of the chains of this partition are maintained ordered by y-coordinates. When reaching a new point p we search for the point q on L which hasmaximal y-coordinate among all points on L that are below p. If q exists then p isappended as new maximal element to the chain of q, otherwise, p does not dominate



10any chain of the actual partition and we initialize a new chain consisting of p only.Finally, L is updated by inserting p and removing q.Now suppose, that P is given by a box representation (V; l; u). We have toseparate the action that has to be taken when the sweep line reaches a new elementinto two parts. The �rst part of the action, located at l(v), is to �nd the chain ofthe already existing partition that will be extended by v. The second part, locatedat u(v), is to make the chain with maximum v available for further elements. Achain C with maximum element v will be called closed as long as u(v) has not beenvisited by L, otherwise C is open.The algorithm for computing a minimum chain partition in a box representationis given as follows. We initialize the sweep line with a dummy point d such that dis below all points that will ever be inserted into L.MINCHAINPARTITION(V; l; u)for each p from left to right doq �rst element below p on Lif p = l(v) for some v 2 V thenif q = u(w) for some w 2 V thenchain(v) chain(w) [ fvgremove q from Lelse (q = d)chain(v) fvgif p = u(v) for some v 2 V theninsert p at py in Lreturn f chain(v) : u(v) 2 LgThe time consuming operations in this algorithm are the search, insert and re-move operations for points on the sweep line L. With the use of a balanced searchtree the running time of the algorithm is in O(n log n). If we assume the points tobe presorted, the running time is in O(n log �) where � is the number of chains inthe partition.To prove that the chain partition found by this algorithm is minimum we showhow to extract an antichain from P that contains an element from each chain inthe partition. Let C = fC1; : : : ; C�g be the chain partition found. Let v be the lastelement that opened a new chain, say C�. Note that lx(v) is larger then lx(v0) ifv0 is the minimal element of a chain Ci with i 6= �. Let C1 be the set of chainscontaining an element v0 with l(v0) < l(v) and lx(v) < ux(v0). All the chains in C1were closed while l(v) was processed. Let U be the set consisting of such an elementv0 from every chain in C1. From the de�nition of U it is clear that U [ fvg is anantichain. De�ne C2 as the remaining set of chains, i.e., C2 = C n (C1 [ fC�g). LetX(v) be the set of elements v0 2 V , such that either l(v0) or u(v0) is contained in thequarter-plane f(x; y) : x � lx(v) and y � ly(v)g. It is easily seen that every chainC 2 C2 contains elements of X(v). Let C� be the subchain of C induced by theelements in X(v) and C�2 be the set of these subchains. The next lemma states the



Trapezoid Graphs and Generalizations 11crucial property of C�2.Lemma 4 The chain partition C�2 of the order induced by X(v) is exactly the chainpartition generated by MINCHAINPARTITION, when the input consists of the boxesof elements in X(v) only.Proof: Let L be the sweep line for input (V; l; u) and L� be the sweep line for therestricted input, i.e, X(v) replaces V . The lemma is an easy consequence of thefollowing invariant: Considered at the same x-coordinate, x � lx(v), the restrictionof L to the half line above ly(v) and L� are identical. This is certainly true at thebeginning when both lines are empty. Now suppose they are equal and L meetspoint p. We distinguish four cases.First consider the situation p = l(v0) and v0 62 X(v). Since v0 62 X(v) we havely(v0) < ly(v). There may be a removal below ly(v0) in L, but it cannot a�ect thehalf line above ly(v). Now let p = l(v0) and v0 2 X(v). Suppose, that there is anelement q 6= d below p in L� and let w be the element with u(w) = q. In this case v0joins the chain of the w and q is removed from L�. Obviously, the same action takesplace on L. If there is only the dummy element below p on L�, then v0 opens a newchain for the restricted input. On L there may be an element below p. Nevertheless,the y-coordinate of this element has to be smaller than ly(v) and the changes on Lwill not a�ect the half line above ly(v).If p = u(v0) and v0 62 X(v), then ux(v0) < lx(v) and v0 62 X(v) imply thatuy(v0) < ly(v). Therefore p is inserted in the half line of L below ly(v). Finally, letp = u(v0) and v0 2 X(v). We then have uy(v0) > ly(v) and p is inserted in both, L�and L.By induction on the number of boxes in the input we may now assume thatthe chain partition C�2 is optimal for X(v). Choose an antichain B of the orderinduced on X(v), such that B contains an element from each chain C� 2 C�2. Sinceevery element in the antichain U [ fvg is incomparable to every element in X(v),we conclude, that A = B [ U [ fvg is an antichain. The antichain A consists ofa member of every chain of the chain partition C, i.e., jAj = jCj. Since jAj � jCjfor every antichain A and every chain partition C, equality can only hold if A ismaximum and Cminimum. This provesTheorem 5 A minimum chain partition of a trapezoid order on n points, given itsbox representation can be computed in time O(n log n) and linear space.5 Maximum antichain for trapezoid ordersWe �rst describe the geometry of antichains in a box representation. Our algorithmfor maximumweighted antichains of trapezoid orders will be based on this geometricstructure rather than on duality as the algorithms presented so far. First, we needsome de�nitions.



12 De�ne the shadow of a point p as the set of points in the plain dominating p, i.e.,shadow(p) = fq : q > pg. The shadow of a set of points is the union of the shadowsof the elements. A downwards staircase is a sequence of horizontal and vertical linesegments that may be obtained as the topological boundary of the shadow of a setof points. Note that any two di�erent points on a staircase are incomparable. If Sis a staircase and l; u:V ! IR2 a set of boxes we denote the set of elements whosebox intersect S by A(S), i.e., A(S) = fv 2 V : box(v) \ S 6= ;g.Lemma 6 Let P be an order given by a box representation. If S is a staircasethen A(S) is an antichain. Moreover, if A is an antichain of P then there exists astaircase S such that A � A(S).Proof: Assume that A(S) is not an antichain. Then there are v; v0 2 A(S) withv < v0. Consequently, for two di�erent points p 2 box(v) \ S and p0 2 box(v0) \ Son the staircase we have p < p0. But this is impossible, as noted above.If A is an antichain of P, let u(A) = fu(v) : v 2 Ag. Let staircase S be theboundary of the shadow of u(A). Now suppose that there is an element v 2 A, suchthat box(v) \ S = ;. Since u(v) must lie in the shadow of u(A), it follows that l(v)is contained in the shadow of u(a), for some a 2 A. By de�nition, u(a) < l(v) andhence a < v in P, a contradiction.Given a weighted order P with a box representation we de�ne the weight of astaircase S as the sum of weights of all boxes intersecting S. If S is a staircase andp 2 S, then we refer to the part of S that is above and to the left of p as staircaseending in p and again its weight is the sum of weights of intersecting boxes.The following algorithm computes an antichain of maximum weight. It uses twodi�erent data structures. The sweep line L halts at every point l(v) and u(v), forv 2 V . Roughly, it contains a list of weighted markers, so that the weight of markerm is the weight of a heaviest staircase ending in m. Moreover, a heaviest staircaseending in an arbitrary point y on L can be composed by joining the vertical linesegment from y to the next marker m above y with a heaviest staircase ending inm. Structure L is initialized with a dummy point d of weight 0, such that d is aboveall points that will ever be inserted into L. The second structure � contains a listof all open boxes, i.e., boxes which have their left sides already swept but not theirright ones. The total weight of all open boxes the upper sides of which lie betweenpoints y1 and y2 on L with y1 � y2 is denoted by �(y1; y2).



Trapezoid Graphs and Generalizations 13MAXANTICHAIN(P; l; u; w)for each p from left to right dom �rst marker above p on Lif p = l(v) for some v 2 V thenadd w(v) to all markers in interval [ly(v); uy(v)]insert a new item in � at height uy(v) with weight w(v)m�  next marker below p on Lwhile W (m) + �(m;m�) > W (m�) doremove m� from Lm� next marker below p on Lif p = u(v) for some v 2 V theninsert a new marker mv at py in LW (mv) W (m) + �(m;mv)list(mv) list(m) [ fpgremove item at uy(v) from �T  staircase of points in list(lowest(L))for each v 2 V doif v intersects T then A A [ fvgreturn ALemma 7 At the end of the main loop in Algorithm MAXANTICHAIN we have thefollowing invariant. If y is an arbitrary point on L and m the next marker above y,then a maximum weighted staircase that ends in y on L has weight W (m)+�(m; y).Proof: LetW 0 denote the sweep line structure and �0 denote the open box structurebefore a halt of the sweep line L and letW and � be the pair of structures after thehalt. Let m be the �rst marker above y on L. The shadow of list(m) [ fyg de�nesa staircase S and Sy may denote that part of S that ends in point y. We show thatSy has maximal weight W (m) + �(m; y).At �rst, suppose the sweep line L halts at some point l(v) for v 2 V . If y > uy(v)nothing has changed. If m > uy(v) and y < uy(v) then Sy intersects the new boxv and has weight W (m) + �(m; y) = W 0(m) + (�0(m; y) + w(v)). This weightis maximal among all staircases ending in y by the invariance assumption. If mlies between ly(v) and uy(v) then Sy has weight W (m) + �(m; y) = (W 0(m) +w(v)) + �0(m; y) which again is maximal. If m < ly(v) then the weight of Sy isW (m) + �(m; y) = W 0(m) + �0(m; y) which is the maximum weight of a staircasethat avoids v. On the other hand, if a staircase S 0y ending in y intersects v thenthere is a y0 > ly(v), such that S 0y is composed of a staircase to y0 and a verticalsegment from y to y0. Let m0 be the �rst marker above y0. Since the case y0 > ly(v)was already considered and by the de�nition of �, the weight of S 0y is at mostW (m0) + �(m0; y0) + �(y0;m) + �(m; y) = W (m0) + �(m0;m) + �(m; y):Hence, by the condition on the removal of markers in the algorithm, the weight ofS0y is at most W (m) + �(m; y), the weight of Sy.



14 Now suppose L halts at some point u(v). Since v is no longer open we have toremove uy(v) from �0. On the other hand, we have to maintain the invariant. Thus,a new marker mv is inserted in L with weight W (mv) = W 0(m) +�0(m;mv), wherem is the next marker above uy(v). Let y be so that mv is the next marker above y,then the weight of Sy isW (mv) + �(mv; y) = W 0(m) + �0(m;mv) + �0(mv; y) =W 0(m) + �(m; y):This weight is maximal by the invariance assumption, since no new box has to beconsidered.Theorem 8 Let P = (V; P ) be a trapezoid graph given by a box representation andw:V ! IR be a weighting of P. MAXANTICHAIN computes a maximally weightedantichain of P.Proof: After all boxes have been swept, structure � is empty (i.e., there is no boxleft open). Hence, the theorem follows from the invariant of Lemma 7.L may be implemented by a balanced binary tree. One has to be careful onlyabout adding some weight w to a whole interval [l; u]. Let each node of the treehave some extra �eld holding the increment in the weight for all nodes in its subtree.During a rebalancing rotation this �elds must be corrected accordingly. But it iseasily seen that only a constant number of such �elds is a�ected. Consequently, theaddition of some weight to an interval as well as insertion, deletion, predecessor andsuccessor queries, and the computation of the weight of some element can all stillbe done in time O(log n).� may be implemented by any one dimensional range tree where insertion, dele-tion, and query again takes O(log n) time. The main loop is executed n times andeach step therein takes logarithmic time save the while loop. But in total the whileloop is executed at most n times since each removed point must have been insertedbefore. Of course, the test for intersection of a box v with staircase T can be donein time O(log n). In summary, we obtainTheorem 9 A maximum weighted antichain of a trapezoid order on n points, givenits box representation, can be computed in time O(n log n) and linear space.Note that one can do without the � structure if one uses subtraction in the Wstructure. But the above algorithm is easier to understand and it can be adaptedto the case where no subtraction is allowed (e.g., in semigroups).We conclude this section with an open problem. We have given optimal algo-rithms for the classical chain and antichain problems for trapezoid orders. Also, fork-trapezoidal orders k � 3 we have obtained a fast algorithm for maximumweightedchain. Is there an algorithm for maximum antichain for k-trapezoidal orders k � 3whose running time improves over the complexity of bipartite matching and hencethe complexity of the algorithm for general orders?



Trapezoid Graphs and Generalizations 156 Algorithms for circle trapezoid graphsA circle trapezoid is the region in a circle that lies between two non-crossing chordsand CT-graphs are the intersection graphs of families of circle trapezoids on a com-mon circle. Figure 2 gives an example. In this section we develop polynomialalgorithms for the maximumweighted clique and a maximumweighted independentset problems on CT-graphs.6.1 Crossing graphs and independent sets of CT-graphsLetG = (V;E) be a CT-graph, of course, we will assume that a representation ofGis given. Let p be an arbitrary point on the circle and let Cp be the set of vertices ofG whose circle trapezoid contains p. Note that Cp induces a clique of G, therefore,an independent set of G can contain at most one element from Cp. Using p as the`origin' of the circle and �xing an orientation (clockwise) of the circle we can de�nea unique representation for circle trapezoids. The representation consists of 5-tuple(t1; t2; t3; t4; �). The �rst four components are the corners of the circle trapezoid inclockwise order starting from p. The �fth component � is a sign, + or �, where +indicates that p is contained in one of the arcs of the circle trapezoid.1 2 345 6 7845 1 8 2 36 7
Figure 2. A circle trapezoid graph G with a representationDe�ne a double interval as a pair (I1; I2) of intervals on the real line, where I2 isa subinterval of I1, i.e., I2 � I1. Let I = (I1; I2) and J = (J1; J2) be double intervals.We say I contains J if J1 � I2 and call them disjoint if I1 \ J1 = ;. Two doubleintervals are called crossing if they are not disjoint and non of them is contained inthe other. Call a graph G = (V;E) a crossing graph if its vertices can be put in oneto one correspondence to a collection of double intervals such that two vertices of G



16are adjacent if and only if their corresponding double intervals cross. It is not hardto see that the class of crossing graphs contains both, trapezoid graphs and overlapgraphs (recall that a graph is an overlap graph if and only if it is a circle graph).Our next lemma relates CT-graphs and crossing graphs.Lemma 10 Let G = (V;E) be a CT-graph given by a representation and Cp bethe set of all vertices of G whose circular trapezoid share a speci�ed point p on thecircle.For a subset W of V n Cp the subgraph of G induced by W is a crossing graph.Proof: Given the circular trapezoid representation we associate to a vertex v 2 Wwith circular trapezoid (t1; t2; t3; t4;�) two arcs along the circle. A1 is the arc fromt1 to t4 and A2 is the arc from t2 to t3, in both cases we choose the arc which doesnot contain p. Obviously, A2 � A1. Cutting the circle at p we obtain a line with acollection of double intervals representing the subgraph of G induced by W .For v 2 V let N [v] denote the set of neighbors of v together with v itself andlet G(v) be the subgraph of G induced by V n N [v]. Also, let Gp denote thesubgraph induced by V n Cp. We have remarked earlier that the vertices of Cpform a clique in G. Therefore a maximum independent set I of G is either amaximum independent set in Gp or there is a v 2 Cp, such that I = I 0 [ fvg whereI 0 is a maximum independent set of G(v). Since Cp � N [v] for all v 2 Cp thelemma shows that each of the above graphs G(v), as well as Gp are crossing graphs.This reduces the detection of a maximum independent set of a CT-graph to atmost n maximum independent set problems on crossing graphs. We therefore turnthe attention to the maximum independent set problem for crossing graphs. Ouralgorithm for this problem is very much alike the algorithm given by Gavril [Gav](see also Golumbic [Gol]) for the case of overlap graphs.For a pair of double intervals we have de�ned the relations containment, dis-jointness and crossing and by de�nition every pair of double intervals is in exactlyone of these relations. The containment is a antisymmetric and transitive relation,i.e., an order relation. For the disjointness we only need the �rst interval of eachdouble interval, therefore, we can transitively orient disjoint pairs by the relation`lies entirely to the left', this gives an interval order.To compute the maximum independent set of a crossing graph G = (V;E) givenby a family I of double intervals we proceed as follows. First, the containment orderP = (V; P ) and the interval order Q = (V;Q) corresponding to I are extracted anda linear extension L = v1; : : : ; vn of P is computed. We arti�cially extend P andL by an element vn+1 of weight 0, such that vn+1 > vi for all i = 1; : : : ; n. Thispreprocessing can be accomplished in time O(n2). Next, the following algorithm iscalled.



Trapezoid Graphs and Generalizations 17MAXINDEPENDENTSET(P;Q; L)for i = 1 to n+ 1 doUi  fvj : vj > vi in PgC  maximumW -weighted Q-chain of elements of UiW (vi) w(vi) +Pv2C W (v)I(vi) fvig [Sv2C I(v)return I(vn+1)It is important to note, that Ui only contains elements vj with j > i, hence,the weights W (vj) of all elements in Ui have already been computed before the ithround. The following invariance of the algorithm is easily proved. At the end of theith round for all j � i the weight W (vj) is the weight of a maximum independentset I(vj) containing only elements v 2 Uj [ fvjg, i.e., elements with v � vj in P.From this invariant I(vn+1) is a maximum independent set for G.Clearly, every but the second instruction in the loop can be executed in O(n)time. The second instruction itselve is a maximum chain computation in an intervalorder. This problem can be solved in linear time when the endpoints of the intervalsare available in increasing order. For completeness we sketch an algorithm for thisproblem. Visit the endpoints from left to right and maintain the weight � of thelongest chain among intervals whose right endpoint has already been seen. Whenreaching the left endpoint of an interval, say the interval of v, we know that themaximumweighted chain having v as maximal element has weightW (v) = �+w(v).At the right endpoint of v's interval we update � by the rule � = maxf�;W (v)g.Note that this algorithm can be seen as an one dimensional version of algorithmMAXCHAIN in Section 2, i.e., instead of a sweep line we use a sweep point and canthus save the search for the relevant marker.Lemma 11 Algorithm MAXINDEPENDENTSET solves the maximum weightedindependent set problem for crossing graphs in O(n2).Recall that the solution for the maximumindependent set problem for CT-graphsis a either a maximum independent set in Gp or one of the sets I = I 0 [ fvg wherev 2 Cp and I 0 is a maximum independent set in G(v). We show next that havingapplied algorithm MAXINDEPENDENTSET to Gp the problem for a each of thegraphs G(v), v 2 Cp, can be solved by a single maximum chain computation in aninterval order, i.e., in O(n) time.Let v 2 Cp and let the circular trapezoid of v be given by (s1; s2; s3; s4;+). Thedouble intervals corresponding to vertices ofG(v) are exactly those with I1 � (s1; s2)or I1 � (s3; s4). Let vi be an element of G(v) and recall that the set Ui is the set ofelements whose double interval is contained in the double interval of vi. It followsthat Ui is contained in G(v) and hence that sets I(vi) and weights w(vi) computedby MAXINDEPENDENTSET with input Gp and with input G(v) are equal. Tosolve the problem for G(v) it thus su�ces to select the intervals contained in (s1; s2)or (s3; s4) and compute a maximum weighted chain of this set of intervals.



18Theorem 12 The maximum weighted independent set problem for CT-graphs canbe solved in O(n2).6.2 Cliques of CT-graphsLet G = (V;E) be a CT-graph, given by a circular trapezoid representation. Aclique C of G is called a Helly-clique with respect to the representation, if there isa point p in the interior of the circle, such that the circle trapezoid of every vertexv 2 C contains p. Our algorithm for the maximum clique problem on CT-graphsproceeds in two stages. In the �rst stage it determines a maximumHelly-clique ofG,in the second stage a maximum non-Helly-clique, NH-clique for short, is computed.The larger of the two cliques is a maximum clique for G.The determination of a maximum Helly-clique is a purely geometrical problem.Consider the set of 2n chords of the circular trapezoids. These chords cut theinterior of the circle into regions. We de�ne the weight of a region as the numberof circular trapezoids that contain it. Impose an orientation on each chord, suchthat the interior of the trapezoid it bounds is to the left of the chord when lookingin positive direction. Assuming that the chords are in general position we �nd fourregions in the neighborhood of every crossing of chords. Given the weight of one ofthese regions and the orientation of the chords, we can easily determine the weightsof the other three regions. Simultaneously we can compute the actual set of verticeswhose circular trapezoids contain a region. It follows, that a sweep line that haltsat every intersection of chords can maintain the weights (and the corresponding setsof vertices) of the regions it intersects. The update at every crossing can be donein constant time and there are less than 4n2 crossings. Hence, the complexity ofthe algorithm is dominated by the sorting of the crossings. We summarize: themaximum Helly-clique can be found in O(n2 log n).We now turn to the case of NH-cliques. A NH-triangle T in G is a three elementclique, such that the circular trapezoids of the three vertices have no point in thecircle in common. Let T = fx; y; zg be a NH-triangle of G and for v 2 V let B(v)be the circular trapezoid of v. Let c be one of the chords bounding B(x), we callc the inner chord of x if B(x) is on one side of c and B(y) \ B(z) is on the otherside of c. The side of c not containing B(x) is the outer side of x. The intersectionof the outer sides of the elements of a NH-triangle T is the enclosed area of T , ofcourse, the enclosed area is a triangle in the interior of the circle. The de�nitionsare illustrated in Figure 2, the set f6; 7; 8g is a NH-triangle, the outer sides of theircircular trapezoids are bold.A family F of subsets of a set X has Helly number k if for every subfamily S ofF the property that any k members of S have non-empty intersection implies thatthe intersection over all members of S is non-empty. It is well known, that the Hellynumber of convex objects in the plane is 3, see [Gol]. As a consequence we obtain.Lemma 13 Every NH-clique in a CT-graph contains a NH-triangle.



Trapezoid Graphs and Generalizations 19Based on this lemma an algorithm to compute a maximum NH-clique in a CT-graph G can proceed as follows. Enumerate all NH-triangles in G and for eachNH-triangle T compute a maximum clique among the cliques containing T . Ourapproach is only slightly more sophisticated. A NH-triangle T is called a maximaltriangle for a clique C, if the enclosed area of T is maximal among the enclosed areasof NH-subtriangles of C, i.e., there is no NH-subtriangle T 0 of C, whose enclosed areacontains the enclosed area of T .In what follows we show how a maximum clique among the cliques containing agiven NH-triangle T as maximal triangle can be computed.Lemma 14 If C is a clique in G containing a NH-triangle T as a maximal triangle,then every v 2 C has the property that the intersection of B(v) with each of the innerchords cx for x 2 T is non-empty.Proof: Suppose B(v) \ cx = ;, then B(v) is completely on one side of cx. SinceB(v)\B(x) 6= ; we conclude that B(v) cannot be on the outer side of cx. It followsthat T 0 = T [ fvg n fxg is a NH-triangle contained in C and the enclosed area ofT 0 contains the enclosed area of T . This contradicts the assumption that T is amaximal triangle for C.For a NH-triangle T let V (T ) be the set of vertices v 2 V such that the inter-section of B(v) with each of the inner chords cx for x 2 T is non-empty. As theprevious lemma shows, a clique of G containing T as a maximal triangle is a subsetof V (T ).The six endpoints of the inner chords of the elements of T partition the circleinto six disjoint arcs A1; : : : ; A6. The numbering of these arcs is assumed to beconsecutive. We call the arcs Ai and Ai+3 for i = 1; 2; 3 a pair of opposite arcs. Aneasy case analysis proves the next lemma.Lemma 15 If v 2 V (T ), then there is at least one i 2 f1; 2; 3g, such that theintersection of B(v) with both of Ai and Ai+3 is non-empty.Let f : V (T ) ! f1; 2; 3g be a function such that B(v) \ Af(v) 6= ; and B(v) \Af(v)+3 6= ; for every v 2 V (T ). Also let Vi(T ) = fv 2 V (T ) : f(v) = ig fori = 1; 2; 3.Lemma 16 If i; j 2 f1; 2; 3g with i 6= j then for all vi 2 Vi(T ) and vj 2 Vj(T ) thecircular trapezoids B(vi) and B(vj) intersect, i.e., vi and vj are adjacent in G.As a consequence we obtain that, if Ci is a clique in the subgraph Gi(T ) of Ginduced by Vi(T ) for i = 1; 2; 3, then T [ C1 [ C2 [ C3 is a clique in G. Moreover,and more important.Lemma 17 C is a maximum clique containing T as a maximal triangle, exactly ifCi = C \ Vi(T ) is a maximum clique in Gi(T ) for each i = 1; 2; 3.



20 We next show that the problem of �nding a maximum clique in Gi(T ) for i =1; 2; 3 is a maximum clique problem in a trapezoid graph. By symmetry we mayrestrict our attention to G1(T ). When speaking of an arc a; b on the circle wehenceforth mean that a and b are points on the circle and the arc emanates from aturning clockwise to b.Let A1 be the arc a1; a2 and A4 be the arc a3; a4. We �rst consider two easycases.Case 1. If v 2 V1(T ) is such that B(v) contains either A1 or A4, then v is adjacentto every element in V1(T ) n fvg and hence contained in every maximal clique ofG1(T ). 4Case 2. If v 2 V1(T ) is such that B(v) contains a1 and a3 or a2 and a4, then vis adjacent to every element in V1(T ) n fvg and hence contained in every maximalclique of G1(T ). 4If v 2 V1(T ) is such that either Case 1 or Case 2 applies, then de�ne B�(v) asthe circular trapezoid spanned by the arcs A1 and A4.We now suppose that v 2 V1(T ) is an element, such that neither Case 1 norCase 2 applies to v.Lemma 18 One of the two chords at the border of B(v) joins a point in A1 with apoint in A4.Let B(v) be the convex hull of the arcs t1; t2 and t3; t4. We may assume that atleast one of t1 and t2 is in A1.First suppose, that t2 2 A1 and t3 2 A4, i.e., the chord t2; t3 joins a point inA1 with a point in A4. Let t04 be the �rst of a4 and t4, when looking from t3 inclockwise direction, also let t01 be the �rst of a1 and t1, when looking from t2 incounterclockwise direction. De�ne B�(v) as the circular trapezoid spanned by thearcs t01; t2 and t3; t04.If t1 2 A1 and t4 2 A4, then we de�ne t02 as the �rst of a2 and t2 in clockwisedirection from t1 and t03 as the �rst of a3 and t3 in counterclockwise direction fromt4. De�ne B�(v) as the circular trapezoid spanned by the arcs t1; t02 and t03; t4.Lemma 19 G1(T ) is the intersection graph of the family of circular trapezoidsB�(v) for v 2 V1(T ).The circular trapezoid B�(v) is spanned by one arc contained in A1 and one arcin A4 for every v 2 V1(T ). This obviously implies that the graph G1(T ) a trapezoidgraph. We remark that a box representation of G1(T ) can be produced in O(n).Hence the maximum clique problem for G1(T ) can be solved by the algorithm ofSection 4 (as remarked earlier the of equal coordinates in the set fl(v); u(v) : v 2 V gcan be made di�erent easily).Let us review the main steps of the a polynomial algorithm for the maximumclique problem of CT-graphs. First, the algorithm searches for a maximum Helly-clique in G. Then, for every NH-triangle T in G a maximum clique C with theproperty that T is a maximal triangle in C is found by solving three maximum clique



Trapezoid Graphs and Generalizations 21instances for trapezoid graphs. A largest among the cliques found in the secondstep and the clique of step one is the solution for the maximum clique problemon G. In the analysis of the time complexity of the algorithm we have to countO(n log n) for the computation of a maximum clique containing a NH-triangle T asa maximal triangle. Unfortunately there can be as much as O(n3) NH-triangles ina representation of G. We summarize the results of this subsection.Theorem 20 The maximum weighted clique problem for CT-graphs can be solvedin O(n4 log n).7 ConclusionWe have shown how the box representation, the sweep line paradigm and the anal-ogy with 2-dimensional orders may help design algorithms for trapezoid orders. Inparticular we have obtained optimal O(n log n) algorithms for the four problemsconsidered. It remains to investigate other problems, e.g, domination problems, onthe class of trapezoid graphs.The new class of circular trapezoid graphs has been introduced. The maximumclique and maximum independent set problems on this large class have been shownto be polinomially solvable. Trapezoid graph algorithms are important subroutinesfor these algorithms. Similarly, they may serve as subroutines for algorithms tocompute parameters of tolerance graphs.References[ABMP] H. Alt, N. Blum, K. Mehlhorn and M. Paul, Computing a maximumcardinality matching in a bipartite graph in timeO(n1:5(m= log n)0:5) Inf.Proc. Letters 37 (1991), 237{240.[CLR] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algo-rithms, The MIT Press, (1989).[DGP] I. Dagan, M.C. Golumbic and R.Y. Pinter, Trapezoid Graphs and theirColoring, Discr. Appl. Math. 21 (1988) 35{46.[Fre] M.L. Fredman, On Computing the Length of Longest Increasing Subse-quences, Discr. Math. 11 (1975), 29{35.[Gav] F. Gavril, Algorithms for a Maximum Clique and a Maximum Indepen-dent Set of a Circle Graph, Networks 3 (1973), 361{273.[Gol] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Acad-emic Press, New York, 1980.[Gol] E. Helly, �Uber die Menge konvexer K�orper mit gemeinsamen Punkten,Jahresb. d. Dt. Mathem. Ver. 32 (1923).
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