
In Proceedings of TACAS'96 (B. Ste�en Ed.), Springer-Verlag LNCS 1055Automatic CompositionalVeri�cation of Some SecurityPropertiesR. Focardi�R. Gorrieri�ABSTRACT 1 The Compositional Security Checker (CSC for short) is asemantic tool for the automatic veri�cation of some compositional inform-ation
ow properties. The speci�cations given as inputs to CSC are termsof the Security Process Algebra, a language suited for the speci�cation ofsystems where actions belong to two di�erent levels of con�dentiality. Theinformation
ow security properties which can be veri�ed by CSC are someof those classi�ed in [4]. They are derivations of some classic notions, e.g.Non Interference [6]. The tool is based on the same architecture of theConcurrency Workbench [2], from which some modules have been integ-rally imported. The usefulness of the tool is tested with the signi�cativecase-study of an access-monitor.1 IntroductionSecurity is a crucial property of system behaviour, requiring a strict controlover the information
ow among parts of the system. The main problemis to limit, and possibly to avoid, the damages produced by malicious pro-grams, called Trojan Horses, which try to broadcast secret information.There are several approaches to solve this problem.In the Discretionary Access Control security (DAC for short), every sub-ject decides the access properties of its objects. An example of DAC is the�le management in Unix where a user can decide the access possibilities ofher/his �les. So, if a user executes a Trojan Horse program, this can modifythe security properties of user's objects.A solution to this problem is the Mandatory Access Control (MAC forshort), where access rules are imposed by the system. An example of MACis Multilevel Security [1]: every object is bounded to a security level, andso every subject is; information can
ow from a certain object to a certain�Dipartimento di Scienze dell'Informazione, Universit�a di Bologna, Piazza di PortaSan Donato 5, I { 40127 Bologna (Italy). e mail:ffocardi,gorrierig@cs.unibo.it1Research supported in part by CNR and MURST.111

112 R. Focardi, R. Gorrieri
Write

Read

Write

Read

Covert
Channel

Write-up

S1 O1

S2 O2

Read-down

Level n

Level n+kFIGURE 1. Information
ows in multilevel security.subject only if the level of the subject is greater than the level of theobject. So a Trojan Horse, which operates at a certain level, has no wayto downgrade information, and its action is restricted inside such a level.There are two access rules: No Read Up (a subject cannot read data froman upper level object) and No Write Down (a subject cannot write datato a lower level object).However, these access rules are not enough. It could be possible to in-directly transmit information using some system side e�ect . For example,if two levels { `high' and `low' { share some �nite storage resource, it ispossible to transmit data from level `high' to level `low' by using the `re-source full' error message. For a high level transmitter, it is su�cient toalternatively �ll or empty the resource in order to transmit a `1' or a `0'datum. Simultaneously, the low level receiver tries to write on the resource,decoding every error message as a `1' and every successful write as a `0'.It is clear that such indirect ways of transmission, called covert channels,do not violate the two multilevel access rules (see Figure 1). Therefore itis necessary to integrate a MAC discipline with a covert channel analysis(see e.g. [10]).An alternative, more general approach to security requires to controldirectly the whole
ow of information, rather than the accesses of subjectsto objects. To make this, it is necessary to choose a formal model of systembehaviour and to de�ne the information
ow on such a model. By imposingsome information
ow rule, we can control any kind of transmission, be itdirect or indirect.In the literature, there are many di�erent de�nitions of this kind based onseveral system models (see e.g. [6, 11]). In [4] we have rephrased them in theuniform setting of Security Process Algebra (SPA, for short), then comparedand classi�ed. SPA is an extension of CCS [9] which permits to describesystems where actions belong to two di�erent levels of con�dentiality.For some of the investigated information
ow properties, we provideduseful algebraic characterizations. They are all of the following form. LetE be an SPA process term, let X be a security property, let � be a semantic

Automatic Compositional Veri�cation of Some Security Properties 113equivalence among process terms and let CX and DX be two SPA contextsfor property X. Then, we can say:E is X-secure if and only if CX [E] � DX [E].Hence, checking the X-security of E is reduced to the \standard" prob-lem of checking semantic equivalence between two terms having E as asubterm. In recent years a certain number of tools for checking semanticequivalence have been presented; among them, the Concurrency Workbench(CW for short) [2] is one of the most famous.The aim of this work is to present a tool called Compositional Secur-ity Checker which can be used to check automatically (�nite state) SPAspeci�cations against some information
ow security properties. The toolhas the same modular architecture of CW (Version 6.1), from which somemodules have been integrally imported and some others only modi�ed.The tool is equipped with a parser, which transforms an SPA speci�cationinto a parse-tree; then, for the parsed speci�cation CSC builds the labelledtransition system following the operational rules de�ned in Plotkin' SOSstyle. When a user wants to check if an SPA process E is X-secure, CSC�rst provides operational semantic descriptions to the terms CX [E] andDX [E] in the form of two lts's; then veri�es the semantic equivalence ofCX [E] and DX [E] using their lts representations.An interesting feature of CSC is the exploitation of the compositionalityof some security property. The main problem in the veri�cation of securityproperties is the exponential state explosion due to parallel composition.As an example consider two agents E1 and E2; the number of states oftheir parallel composition E1jE2 is equal to the product of the states of E1and E2. Now if we have a compositional security property X, i.e. such thatF1jF2 is X-secure whenever F1 and F2 are X-secure, then we can applythe following strategy: check the X-security of E1 and E2; if it is satis�edconclude that E1jE2 is X-secure, otherwise check the X-security of thewhole agent E1jE2. Using this strategy for compositional security proper-ties, CSC is able to avoid, in some cases, the exponential state explosiondue to parallel composition operator.The paper is organized as follows. In Section 2 we present SPA. In Sec-tion 3 we recall from [4] some of the security properties which are veri�ed byCSC giving some examples. Section 4.1 reports the input-output behaviorof CSC, while in Section 4.2 we describe the architecture of the tool. Theimplementation of the security predicates is the subject of Section 5. Then,a sample session with the interactive tool is described in Section 6.1 andSection 6.2 is devoted to a case-study (access-monitor). Finally, Section 7is about the state explosion problem and the compositional algorithm.

114 R. Focardi, R. Gorrieri2 SPA and Semantic EquivalencesIn the following, systems will be speci�ed using the Security Process Algebra(SPA for short), a slight extension of Milner's CCS [9]. SPA includes twomore operators, namely the hiding operator E=L of CSP [7] and the (new)input restriction operator E nI L, which are useful in characterizing somesecurity properties in an algebraic style. Intuitively E nI L can execute allthe actions process E is able to do, provided that they are not inputs inL. Moreover the set of visible actions is partitioned into high level actionsand low level ones in order to specify multilevel systems. 2SPA syntax is based on the following elements: a set I = fa; b; : : :g ofinput actions, a set O = f�a;�b; : : :g of output actions, a set L = I [O ofvisible actions, (ranged over by �) and the usual function �� : L ! L suchthat a 2 I =) �a 2 O and �a 2 O =) ��a = a 2 I; two sets ActH andActL of high and low level actions such that ActH = ActH , ActL = ActL,ActH [ActL = L and ActH \ ActL = ; where �L def= f�a : a 2 Lg; a setAct = L [f�g of actions (� is the internal, invisible action), ranged overby �; a set K of constants, ranged over by Z. The syntax of SPA agents isde�ned as follows:E ::= 0 j �:E j E + E j EjE j E n L j E nI L j E=L j E[f] j Zwhere L � L and f : Act ! Act is such that f(��) = f(�); f(�) = � .Moreover, for every constant Z there must be the corresponding de�nition:Z def= E. The meaning of 0, �:E, E + E, EjE, E n L, E[f] and Z def= E isas for CCS [9].Let E be the set of closed and guarded [9] SPA agents, ranged overby E, F . Let L(E) denote the sort of E, i.e., the set of the (possiblyexecutable) actions occurring syntactically in E. The sets of high levelagents and low level ones are de�ned as EH def= fE 2 E j L(E) � ActH[f�ggand EL def= fE 2 E j L(E) � ActL [f�gg, respectively. The operationalsemantics of SPA is given (as usual) associating to each agent a particularstate of the labelled transition system (E ; Act;!) where !� E � Act � Eand, intuitively, E �! E0 means that agent E can execute � moving to E0.We recall here the de�nition of weak bisimulation [9] over SPA agents.In the following the expression E �=) E0 is a shorthand for E(�!)�E1 �!E2(�!)�E0, where (�!)� denotes a (possibly empty) sequence of � labelledtransitions. Moreover E �̂=) E0 stands for E �=) E0 if � 2 L, and forE (�!)� E0 if � = � (note that (�!)� means \zero or more � labelledtransitions" while �=) requires at least one � labelled transition).2Actually, only two-level systems can be speci�ed; note that this is not a real lim-itation because it is always possible to deal with the multilevel case by grouping { inseveral ways { the various levels in two clusters.

Automatic Compositional Veri�cation of Some Security Properties 115De�nition 2.1 A relation R � E �E is a weak bisimulation if (E;F) 2 Rimplies, for all � 2 Act,� whenever E ��! E0 then there exists F 0 2 E such that F �̂=) F 0 and(E0; F 0) 2 R;� conversely, whenever F ��! F 0 then there exists E0 2 E such thatE �̂=) E0 and (E0; F 0) 2 R.Two SPA agents E;F 2 E are observational equivalent, notation E �B F ,if there exists a weak bisimulation containing the pair (E;F). Note that �Bis an equivalence relation.Now we present a value-passing extension of SPA (VSPA, for short). Allthe examples contained in this paper will be done using such value passingcalculus, because it originates more readable speci�cations than those writ-ten in pure SPA. As in [9], the semantics of the value-passing calculus canbe given via translation into the pure calculus [3].The syntax of VSPA agents is de�ned as follows:E ::= 0 j a(x1; : : : ; xn):E j �a(e1; : : : ; en):E j �:E j E + E j EjE jj E n L j E nI L j E=L j E[f] j A(e01; : : : ; e0n) jj if b then E j if b then E else Ewhere the variables x1; : : : ; xn and the value expressions e1; : : : ; en ande01; : : : ; e0n must be consistent with the arity of the action a and constantA respectively (the arity speci�es the sorts of the parameters) and b is aboolean expression. An example of VSPA agent speci�cation follows.Example 2.2 Consider the following system speci�ed using VSPA:Access Monitor 1 def= (MonitorjObject(1; 0)jObject(0; 0)) n LMonitor def= access r(l; x):(if x � l then r(x; y):val(l; y):Monitorelse val(l; err):Monitor) ++ access w(l; x):write(l; z):(if x � l thenw(x; z):Monitor else Monitor)Object(x; y) def= r(x;y):Object(x; y) +w(x;z):Object(x;z)where x; y; z; l 2 f0; 1g, L = fr; wg and 8i 2 f0; 1g we have r(1; i); w(1; i);access r(1; i); val(1; i); val(1; err); access w(1; i); write(1; i) 2 ActH andall the others actions are low level ones. The process Access Monitor 1(Figure 2) handles read and write requests from high and low level userson two binary variables: a high level and a low level one. It achieves noread up and no write down access control rules allowing a high level userto read from both objects and write only on the high one; conversely, a lowlevel user is allowed to write on both objects and read only from the low

116 R. Focardi, R. Gorrieri
val(1,y)

write(1,z)

val(0,y)

Low

Level

Users

Monitor

w(0,z)

r(0,y)

w(1,z)

r(1,y)

Object(0,y)

Object(1,y)

access_r(0,x)

access_r(1,x)

write(0,z)

access_w(0,x)

access_w(1,x) High

Users

LevelFIGURE 2. The Access Monitor for Example 2.2.one. Users interact with the monitor through the following access actions:access r(l; x); access w(l; x); write(l; z) where l is the user level (l = 0 low,l = 1 high), x is the object (x = 0 low, x = 1 high) and z is the binary valueto be written. As an example, consider access r(0; 1) which represents alow level user (l = 0) read request from the high level object (x = 1), andaccess w(1; 0) followed by write(1; 0) which represents a high level user(l = 1) write request of value 0 (z = 0) on the low object (x = 0). Readresults are returned to users through the output actions val(l; y).3 Some Information Flow PropertiesIn this section we present some of the security properties (see [3, 4] formore details) which can be veri�ed using CSC.Bisimulation Non-deterministic Non Interference (BNNI , for short) is ageneralization of Non Interference [6]. Intuitively, the high level does notinterfere with the low level if and only if a low level user cannot distinguishbetween processes E and E nI ActH . In other words a system is BNNI ifwhat a low level user sees of the system cannot be modi�ed by any highlevel input.De�nition 3.1 E 2 BNNI , (E nI ActH)=ActH �B E=ActHExample 3.2 Consider the following modi�ed monitor 3 which does notcontrol write accesses:Access Monitor 2 def= (MonitorjObject(1; 0)jObject(0; 0)) n LMonitor def= access r(l; x):(if x � l then r(x; y):val(l; y):Monitorelse val(l; err):Monitor) ++ access w(l; x):write(l; z):w(x;z):Monitor3In the following, if an agent is not speci�ed (e.g. Object(x; y)) we mean that it hasnot been modi�ed with respect to previous examples.

Automatic Compositional Veri�cation of Some Security Properties 117Now it is possible for a high level user to write down (actions access w(1; 0)and access w(1; 1)) so the system is not secure. In fact, Access Monitor 2is not BNNI as it can execute the following trace:
 = access w(1; 0):write(1; 1):access r(0; 0):val(0; 1)In
 we have 2 accesses to the monitor: �rst a high level user modi�es thevalue of the low object writing-down value 1 and then the low user readsvalue 1 from the object. If we purge
 of high level actions we obtain thesequence
0 = access r(0; 0):val(0; 1)that, clearly, can not be a trace for Access Monitor 2. In fact, in
0, wehave that a low level user reads 1 from the low level object without otherinteractions between the monitor and the environment (note that the initialvalues of the objects is 0). Moreover it is not possible to obtain a trace forAccess Monitor 2 adding to
0 only high level outputs, because all thehigh level outputs in Access Monitor 2 are pre�xed by high level inputs.Hence
0 is not a trace for (Access Monitor 2nIActH)=ActH too. In otherwords, it is not possible to �nd a trace
00 with the same low level actionsof
 and without high level inputs.Since
0 is a trace for agent Access Monitor 2=ActH but not for agent(Access Monitor 2nI ActH)=ActH , we conclude that Access Monitor 2 isnot BNNI .Hence, BNNI is able to detect if high level inputs interfere with low levelexecutions, i.e. if a low level user can deduce something about high levelinputs by observing only low level actions.In [4] we proposed a more intuitive notion of information
ow security:Bisimulation Non Deducibility on Compositions (BNDC , for short). A sys-tem E is BNDC if for every high level process � a low level user cannotdistinguish between processes E and (Ej�) nActH . In other words, a sys-tem E is BNDC if what a low level user sees of the system is not modi�edby composing any high level process � to E.De�nition 3.3 E 2 BNDC , 8� 2 EH , E=ActH �B (E j �) nActH .A static characterization of BNDC { which does not involve compositionwith every processes � { is not immediate. As a matter of fact, this problemis still open. In [5] we proposed the SBSNNI property which is static, com-positional (i.e. if two systems are SBSNNI their composition is SBSNNI ,too) and strictly stronger than BNDC . We �rst de�ne Bisimulation StrongNon-deterministic Non Interference (BSNNI, for short), a property whichdi�ers from BNNI only because it restricts system E over all the high levelactions rather than only over high level inputs.De�nition 3.4 E 2 BSNNI , E=ActH �B E nActH .

118 R. Focardi, R. Gorrieri
BNDC

BNNI

SBSNNI

BSNNIFIGURE 3. The inclusion diagram for bisimulation-based propertiesNow we can de�ne Strong BSNNI (SBSNNI, for short).De�nition 3.5 A system E 2 SBSNNI if and only if for all E0 reachablefrom E we have E0 2 BSNNI .The following holds [5]:Proposition 3.6 SBSNNI � BNDCIn the automatic veri�cation of security properties it can be very useful towork on a reduced system, i.e. a system equivalent to the original one, butwith a minimum number of states. The Concurrency Workbench providesa procedure to this aim and we imported it in CSC. This is very usefulbecause we can prove that if a system E is BNDC, then any other obser-vational equivalent system F is BNDC. This also holds for all the othersecurity properties.Theorem 3.7 If E �B F , then E 2 X , F 2 X, where X can be BNNI,BSNNI, BNDC, SBSNNI.Figure 3 summarizes the relations among the security properties de�nedabove.The following example shows that BSNNI and BNNI are not able todetect some deadlocks due to high level activities which, on the contrary,are revealed by BNDC (this because they do not check the system againstall the possible high level interactions, as BNDC does).Example 3.8 Consider the �rst version of the monitorAccess Monitor 1.Using CSC we can verify that such system is BSNNI and BNNI , but it isnot BNDC . This happens because a high level user can make a read requestwithout accepting the corresponding output from the monitor (rememberthat communications in SPA are synchronous). In particular, consider � =access r(1; 1):0. System (Access Monitor 1j�) n ActH will be deadlockedimmediately after the execution of the read request by �, blocking in thefollowing state(val(1; 0):Monitor j Object(0; 0) j Object(1; 0)) n L j 0) nActH

Automatic Compositional Veri�cation of Some Security Properties 119This happens because � executes a read request and does not wait forthe corresponding return value (action val). We conclude that � can in-terfere with low level users. Since there are no possible deadlocks in pro-cess Access Monitor 1=ActH , we �nd out that (Access Monitor 1j�) nActH 6�B Access Monitor 1=ActH , so Access Monitor 1 is not BNDC .Moreover, there is another possible deadlock due to high level activity;this happens if a high level user makes a write request and do not sendthe value to be written. In particular, if we consider the high level user�0 = access w(1; 0):0, it will deadlock system (Access Monitor 1j�0) nActH immediately after the execution of the write request by �0, block-ing in the following state:(((write(1; 0):Monitor +write(1; 1):Monitor) j Object(0; 0) jj Object(1; 0)) n L j 0) nActHThis happens because �0 executes a write request and does not send thecorresponding value through action write(1; 0) or write(1; 1). Again, wehave that (Access Monitor 1j�0) n ActH 6�B Access Monitor 1=ActH . Inorder to obtain a BNDC system, we modify the monitor by adding anoutput bu�er for each level (this makes communications asynchronous) andusing an atomic action for write request and value sending. The resultingsystem follows:Access Monitor 3 def= (MonitorjObject(1; 0)jObject(0; 0)jBuf(1; empty)jjBuf(0; empty)) n LMonitor def= access r(l; x):(if x � l then r(x; y):val(l; y):Monitorelse val(l; err):Monitor) ++ access w(l; x; z):(f x � l then w(x; z):Monitorelse Monitor)Buf(x; j) def= res(x; j):Buf(x;empty) + val(x; k):Buf(x;k)where k 2 f0; 1; errg and j 2 f0; 1; err; emptyg; L = fr; w, valg. Moreoveroutput actions res(x; j) of bu�er substitute output actions val(x; k) in theinteractions with users, with res(1; i) 2 ActH ; 8i 2 f0; 1; err; emptyg.Using CSC it is possible to automatically verify that Access Monitor 3is SBSNNI and so BNDC .4 What is the Compositional Security Checker4.1 Input-OutputThe inputs of CSC are concurrent systems expressed as SPA agents. Theoutputs are answers to questions like: \does this system satisfy that speci�c

120 R. Focardi, R. Gorrieri
P

A

R

S

E

R

INPUT OUTPUT
E

Q

U

I

V

A

SECURITY CHECKER

r

l

t

s

L

E

N

E

C Value of security

predicate on agents

Concurrent system

expressed in SPAFIGURE 4. Structure of the CSCsecurity property ?". The structure of CSC is described in Figure 4. Indetail, the tool is able:� to parse SPA agents, saving them in suitable environments as parsetrees;� to give a semantic to these parse trees, building the correspondingrooted labelled transition systems (rlts for short);� to check if an agent satis�es a certain security property; the imple-mented routine for this purpose veri�es the equivalence of two par-ticular agents modeled as rlts. In this way, future changes of thelanguage will not compromise the validity of the core of the tool.4.2 ArchitectureThe CSC has the same general architecture of the CW. In its implementa-tion we have decided to exploit the characteristic of versatility and extens-ibility of CW. In particular CSC maintains the strongly modular charac-teristic of CW. The modules of the system are partitioned in three mainlayers: interface layer, semantic layer, analysis layer.In the interface layer we have the command interpreter. It allows us tode�ne the agents and the set of high level actions; it also allows to invokethe security predicates and the utility functions on the behaviour of anagent. Then we have a parser which recognizes the SPA syntax of agentsand stores them as parse trees in appropriate environments. The partitionof the set of visible actions in the sets of high and low level actions hasbeen obtained by de�ning the set of high level actions; by default, all theother possible actions are considered at low level. Then we have de�neda transition function that, according to the operational semantic rule ofSPA, provides all possible transitions for an agent. This function allowsthe construction of the transition graph associated to an agent.In the semantic layer, CSC uses a transformation routine to translatetransition graphs into observational graphs [2]. Since it refers to processesmodeled as transition graphs, it has been imported from CW in CSCwithout any modi�cation.

Automatic Compositional Veri�cation of Some Security Properties 121In the analysis layer, CSC uses a routine of equivalence and one of min-imization that belong to the analysis layer of CW. These are a slight modi-�cation of the algorithm by Kanellakis and Smolka [8] which �nds a bisim-ulation between the roots of two graphs by partitioning their nodes.5 Security PredicatesNow, we want to explain brie
y how the system works in evaluating secur-ity predicates BNNI, BSNNI, SBSNNI, discussing, at the same time, abouttheir computational complexity. CSC computes the value of these predic-ates over �nite state agents (i.e. agents possessing a �nite state transitiongraph), based on the de�nitions given in Section 2 that we report below inCSC syntax: 4E 2 BNNI , E!ActH �B (E?ActH)!ActHE 2 BSNNI , E!ActH �B E nActHE 2 SBSNNI , E0 2 BSNNI ; 8E0 reachable from EAs for CW, the inner computation of the CSC follows three main phases.Phase a) CSC builds the transition graphs of the two agents of which itwants to compute the equivalence. For example in the case of BNNI ,CSC computes the transition graph for (E?ActH)!ActH and E!ActH .In this phase we do not have any particular problem with complexity,except for the intrinsic exponential explosion in the number of nodesof the graphs due to parallel composition.Phase b)The two transition graphs obtained in Phase a) are transformedinto observational graphs using the classic algorithms for the productof two relations and the re
exive transitive closure of a relation. Thistransformation has a O(n3) complexity, in which n is the number ofnodes in the original graph.Phase c) The general equivalence algorithm [8] is applied to the graphsobtained in Phase b). Time and space complexities of this algorithmare O(k � l) and O(k+ l) respectively, where l is the number of nodesand k is the number of edges in the two graphs. This is not a limitingfactor in the computation of the observational equivalence. In partic-ular we have that in most cases 80% of computation time is due tothe routine for re
exive transitive closure of Phase b).4In the CSC the hiding and input restriction operators are respectively representedby ! and ?, for easy of parsing.

122 R. Focardi, R. GorrieriSince SBSNNI is veri�ed by testing BSNNI over all the n states of theoriginal graph, the resulting complexity will be n times the BSNNI com-plexity.It is interesting to observe that the exponential explosion of the numberof nodes of the transition graphs (Phase a), due to the operator of parallelcomposition, in
uences negatively the following phases, but it can not beavoided because of its intrinsic nature. A solution to this problem for thepredicate SBSNNI could be based on the exploitation of compositionalproperties proved in [4] and recalled in Section 7.6 Using CSC6.1 Sample sessionThe style used in specifying SPA agents in CSC is the same used for CCSagents in CW. For example the command line 5Command: bi A h:0l:0h:A+0 h:0l:Ade�nes the agent A def= h:�l:�h:A+ �h:�l:A. As in CW the �rst letter of agentsmust be a capital letter and output actions have to be pre�xed by 0.We assumed that the set of visible actions L is partitioned in two sub-sets ActH and ActL of high and low level actions respectively. With thecommandCommand: acth hwe specify that ActH = fh;0 hg. In this way we obtain that h;0 h are con-sidered as high level actions and any other action as low level one.Now, we can check whether agent A is BNNI secure:Command: bnni AtrueCSC tells us that A is BNNI secure. Now we can check if agent A is BSNNIsecure too:Command: bsnni AfalseSo A is BNNI secure but is not BSNNI secure. Finally the command quitcauses an exit to the shell.5Here we use the typewriter style for CSC messages (such as the prompt \Command:");the bold style for CSC commands and the italic style for the remaining text (such asagents, sets) inserted by users.

Automatic Compositional Veri�cation of Some Security Properties 123bi Access_Monitor_1(Monitor | Object_l0 | Object_h0)\ Lbi Monitoraccess_r_hh.(rh0.'val_h0.Monitor + rh1.'val_h1.Monitor) + \access_r_lh.'val_l_err.Monitor + \access_r_hl.(rl0.'val_h0.Monitor + rl1.'val_h1.Monitor) + \access_r_ll.(rl0.'val_l0.Monitor + rl1.'val_l1.Monitor) + \access_w_hh.(write_h0.'wh0.Monitor + write_h1.'wh1.Monitor) + \access_w_lh.(write_l0.'wh0.Monitor + write_l1.'wh1.Monitor) + \access_w_hl.(write_h0.Monitor + write_h1.Monitor) + \access_w_ll.(write_l0.'wl0.Monitor + write_l1.'wl1.Monitor)bi Object_h0'rh0.Object_h0 + wh0.Object_h0 + wh1.Object_h1bi Object_h1'rh1.Object_h1 + wh0.Object_h0 + wh1.Object_h1bi Object_l0Object_h0[rl0/rh0,rl1/rh1,wl0/wh0,wl1/wh1]basi Lrh0 rh1 rl0 rl1 wh0 wh1 wl0 wl1acthrh0 rh1 wh0 wh1 access_r_hh access_r_hl val_h0 val_h1 val_h_err \access_w_hh access_w_hl write_h0 write_h1TABLE .1. Translation of Access Monitor 1 into CSC syntax.6.2 Checking the Access MonitorIn this Section we use CSC to analyze the systems of Example 3.8. SinceCSC works on SPA agents we have to translate all the VSPA speci�ca-tions into SPA. Consider system Access Monitor 1. Table.1 reports thetranslation of Access Monitor 1 speci�cation into the CSC syntax. 6 Thenew command basi has been used to bind a set of actions to an identi-�er. Moreover, the n character at the end of a line does not represent therestriction operator, but is the special character that permits to break inmore lines the description of long agents and long action lists.We can write to a �le the contents of Table.1 and load it, in CSC, withcommand if <�lename>. Now we can check that Access Monitor 1 satis-�es all the security properties except SBSNNI using the following commandlines: Command: bnni Access Monitor 1trueCommand: bsnni Access Monitor 16In the translation, we use fl; hg in place of f0;1g for the levels of users and objectsin order to make the SPA speci�cation more clear. Formally we make the translationconsidering variables l and x ranging in fl; hg. As an example access r(1;0) becomesaccess r hl

124 R. Focardi, R. GorrieritrueCommand: sbsnni Access Monitor 1false: (0val h1:Monitor j Object l1 j Object h1) n L 7Note that when SBSNNI fails for a process E, CSC gives as output an agentE0 which is reachable from E and is not BSNNI . In the following we willshow that this can be useful to decide if E is BNDC. So we have found thatAccess Monitor 1 2 BSNNI ;BNNI and Access Monitor 1 =2 SBSNNISince SBSNNI � BNDC � BSNNI ;BNNI (see Proposition 3.6), we can-not conclude whether Access Monitor 1 is BNDC or not. However usingthe output of SBSNNI it is easy to �nd a high level process � whichcan deadlock the monitor. In fact, in the state given as output by SB-SNNI , the monitor is waiting for the high level action 0val h1; so, if we�nd a process � which leads the system to such a state and does notexecute the val h1 action, we will have a high level process able to dead-lock the monitor. It is su�cient to consider � = 0access r hh:0. System(Access Monitor 1j�)nActH will be deadlocked immediately after the ex-ecution of the read request by �, blocking in the following state((0val h0:Monitor j Object l0 j Object h0) n L j 0) n ActH(this state di�ers from the one given as output by SBSNNI only for thevalues stored in objects). We verify thatAccess Monitor 1 is not BNDC bychecking that (Access Monitor 1j�) n ActH 6�B Access Monitor 1=ActHusing the following commands:Command: bi Pi 0access r hh:0Command: eqAgent: (Access Monitor 1 j Pi) n acthAgent: Access Monitor 1 ! acthfalseAs we said in Example 3.8, such a deadlock is caused by synchronouscommunications in SPA. Moreover, using the CSC output again, we can�nd out that also the high level process �0 = 0access w hl:0 can dead-lock Access Monitor 1, this because it executes a write request and doesnot send the corresponding value. Hence, in Example 3.8 we proposed themodi�ed system Access Monitor 3 with an output bu�er for each leveland atomic actions for write request and value sending. We �nally checkthat this version of the monitor is SBSNNI , hence BNDC too:Command: sbsnni Access Monitor 3true7We write Object l1 instead of Object h1[rl0=rh0;rl1=rh1;wl0=wh0;wl1=wh1]

Automatic Compositional Veri�cation of Some Security Properties 125agent B D BjDjB BjDjDjBstate number 3 3 27 81time spent <1 sec. <1 sec. �11 sec. �270 sec.TABLE .2. Number of states and time spent on a SPARC station 5.7 State Explosion and CompositionalityWe now want to plain out how the parallel composition operator can in-crease exponentially the number of states of the system, and then how itcan slow down the execution speed of security predicate veri�cation. Let usde�ne in CSC the two agents B, D and the set ActH of high level actions:Command: bi B y:a:b:B + a:b:BCommand: bi D 0a:0b:(x:D +D)Command: acth x yLet us check now if B and D are SBSNNI secure:Command: sbsnni BtrueCommand: sbsnni DtrueAs we will see that SBSNNI is preserved by system composition, the twoagents BjDjB and BjDjDjB must also be SBSNNI secure. Hence the veri-�cation of these two agents can be reduced to the veri�cation of their twobasic components B and D only. The time spent in verifying SBSNNIdirectly on BjDjB and BjDjDjB is very long. Using the size commandof CSC, which computes the number of states of an agent, we can �ll inTable.2, which points out the exponential increase of the number of statesand the consequent increase of the computation time for veri�cation ofSBSNNI .Theorem 7.1 [5] The following hold:(i) E;F 2 SBSNNI =) (EjF) 2 SBSNNI(ii) E 2 SBSNNI ; L � L =) E n L 2 SBSNNIIn the following EFS � E will denote the set of closed and guarded SPAagents with a �nite lts. CSC is able to exploit the compositionality ofsecurity properties through the following algorithm:De�nition 7.2 (Compositional Algorithm) Let P � E be a set of SPAagents such that� E;E0 2 P =) EjE0 2 P� E 2 P;L � L =) E n L 2 P

126 R. Focardi, R. Gorrieriand AP be an algorithm which checks if a certain agent E 2 EFS belongs toP ; in other words AP (E) = true if E 2 P and AP (E) = false otherwise.Then we can de�ne a compositional algorithm A0P (E) in the following way:1) if E is in the form E0 nL (recursively) calculate A0P (E0); if A0P (E0) =true then return true else return the result of AP (E);2) if E is in the form E1jE2 (recursively) calculate A0P (E1) and A0P (E2);if A0P (E1) = A0P (E2) = true then return true else return the resultof AP (E);3) otherwise return AP (E).Note that the algorithm requires that property P is closed with respectto restriction and uses this in step 1. This could seem useless; however,the parallel composition is often in the following form: (AjB) nL (in orderto force some synchronization) and so if we want to check P over A andB separately, we must be granted that P is preserved by both paralleland restriction operators. We have the following correctness result for thecompositionality algorithm:Theorem 7.3 Let F 2 EFS be a �nite state SPA agent. If, every time thealgorithm executes step 1, E0 belongs to EFS , then A0P (F) terminates andAP (F) = A0P (F).Proof. First, note that in step 1 of A0P it is E0 2 EFS (by hypothesis) andin step 2 if E 2 EFS then E1; E2 2 EFS . As F 2 EFS , then we recursivelyobtain that every E, E0 and E1; E2 of steps 1, 2 and 3 belong to EFS . So,when the algorithm executes AP (E) in steps 1,2 or 3, it terminates becauseE 2 EFS .We still have to prove that, in steps 1 and 2,A0P (E0) and A0P (E1); A0P (E2)terminate. In particular we must prove that for every F 0 2 EFS the evalu-ation of A0P (F 0) never needs to evaluate A0P (F 0) itself (going into an in�niteloop). This holds because agents in EFS are guarded; so the evaluation ofA0P (F 0) could at most need to evaluate A0P (�:F 0) where � is the guard forF 0. Hence A0P (F) terminates.When the algorithm calculates AP (E) in steps 1, 2 and 3 it is alwaysE 2 EFS , so AP (E) = true if E 2 P and AP (E) = false if E 62 P . Hence,by (partial) structural induction and using compositionality properties, weobtain that AP (F) = A0P (F).The theorem above requires that, every time the algorithm executes step1, E0 belongs to EFS ; i.e. in A0P (E), if E is in the form E0 nL then E0 mustbe �nite state. As an example, consider a �nite state system E n L suchthat E =2 EFS ; then AP (E nL) terminates while A0P (E nL) possibly do not,because it tries to calculate AP (E) and E is not �nite state.Note that such a condition trivially holds if we specify systems as com-position and restriction of �nite state subsystems. In particular we can use

Automatic Compositional Veri�cation of Some Security Properties 127
High

Level

Users

Level

Users

Low

Object(1,y)

Object(0,y) Monitor(0)

Monitor(1) Interface(0)

Interface(1)
Buf(1,y)

Buf(1,y)r(1,y)

w(1,z)

w(0,z)

r(0,y) val(1,y)

val(0,y)

a_r(0,x)

put(0,y)

a_r(1,x)

put(1,y)
res(0,y)

res(1,y)

res(1,y)

res(0,y)

val(1,y)

val(0,y)

a_w(0,x,z)

a_w(1,x,z)

access_r(0,1)

access_w(0,1,z)

access_r(0,0)

access_w(0,0,z)

access_w(1,0,z)

access_r(1,0)

access_w(1,1,z)

access_r(1,1)

FIGURE 5. The compositional Access Monitorthe following syntax which de�nes the so called nets of automata:p ::= 0 j �:p j p+ p j ZE ::= p j EjE j E n L j E nI L j E=L j E[f]where for every constant Z there must be the corresponding de�nitionZ def= p.It not necessary to use such a syntax in order to satisfy theorem hypo-theses. As an example consider the following agent B def= a:0+D nfig withD def= i:(o:0jD) which is �nite state but it is not a net of automata. Sincethe top operator is a + then A0P (B) behaves just like AP (B) and so itterminates (theorem hypotheses trivially hold in this case).Example 7.4 Consider again Access Monitor 3. The veri�cation of theSBSNNI property on such a system requires a lot of time (more than 1hour on a SUN5 workstation) because of the above mentioned exponentialstate explosion due to parallel composition. We can try to verify SBSNNIusing the compositional algorithm. Unfortunately we have that Monitor isnot SBSNNI and so, in this case, the compositional technique cannot helpus to reduce the execution time. This happens because the BNDC -securityof Access Monitor 3 depends on both monitor and objects; i.e. processMonitor is not able to guarantee multilevel security for every possibleobject connected to it. As an example, consider the following modi�edobjects:Object(x; y) def= r(x; y):Object(x; 0) + w(x; z):Object(x; z)which reset (to zero) their value every time they are read. Using theseobjects, we obtain a system which is not BSNNI and so is not BNDC . Insuch a system, a high level user can change (to zero) the value of the low

128 R. Focardi, R. Gorrierilevel variable by simply reading it. This is generally called \half-bit" covertchannel because the high level user can set the low level variable only toone of the two possible values (in this case 0) and so can transmit only ahalf-bit information to low level. In [3] we show how to construct a 1-bitchannel using some half-bit ones.Finally we present a version of the Access Monitor (Figure 5) which canbe veri�ed very e�ciently by exploiting the compositionality of SBSNNI .Here every object has a \private" monitor which implements the accessfunctions for such (single) object. To make this, we have decomposed pro-cess Monitor (which is not BNDC) into two di�erent processes, one foreach object; then we have composed such processes to respective objectstogether with a high level bu�er obtaining the BNDC -secure Modh andModl agents. In particular, Monitor(x) handles the accesses to object x(x = 0 low, x = 1 high). We also have an interface which guarantees the ex-clusive use of the monitor within the same level. Moreover the new interfaceactions a r(l; x), a w(l; x; z) and put(l; y) substitute actions access r(l; x),access w(l; x; z) and res(l; y) in the interaction between the users and themonitor.Access Monitor 4 def= (ModhjModljInterf) n LModh def= ((Monitor(1)jObject(1;0)jBuf(1; empty)) n Lh)[res(0; y)=val(0; y)]Modl def= ((Monitor(0)jObject(0;0)jBuf(1; empty)) n Ll)[res(0; y)=val(0; y)]Interf def= Interf(0)jInterf(1)Interf(l) def= a r(l; x):access r(l; x):res(l; y):put(l; y):Interf(l) ++ a w(l; x; z):access w(l; x; z):Interf(l)Monitor(x) def= access r(l; x):(if x � l then r(x; y):val(l; y):Monitor(x) else val(l; err):Monitor(x)) ++ access w(l; x; z):(if x � l then w(x; z):Monitor(x)else Monitor(x))Object(x; y) def= r(x; y):Object(x;y) + w(x;z):Object(x;z)Buf(x; j) def= res(x; j):Buf(x;empty) + val(x; k):Buf(x;k)where L = fres; access r; access wg, Lh = fr; w; val(1; y)g and Ll =fr; w; val(1; y)g. Table.3 reports the output of the (successful) veri�ca-tion of SBSNNI on Access Monitor 4. This task requires about 1 minuteon a SUN5 workstation. We can also check that Access Monitor 4 �B(Access Monitor 3jInterf)nL with L = fres; access r; access wg; i.e. thisAccess Monitor version is equivalent to the Access Monitor 3 with the in-terface. Such equivalence veri�cation requires about 10 minutes. Note that,by Theorem 3.7, we can conclude that also (Access Monitor 3jInterf)nLis BNDC , even if a direct (non compositional) check would take about

Automatic Compositional Veri�cation of Some Security Properties 129Verifying Modh | Modl | InterfVerifying ModhVerifying ModlVerifying InterfVerifying Interf_hVerifying Interf_ltrueTABLE .3. Veri�cation of SBSNNI on Access Monitor 4 exploiting composi-tionality.20 minutes (about 20 times longer than checking the equivalent processAccess Monitor 4). Note that checking (Access Monitor 3jInterf)nL re-quires less time than checking Access Monitor 3 alone. So for this agentthe compositional algorithm takes more time with respect to direct check-ing. This happens because (Access Monitor 3jInterf) n L has less statesthan Access Monitor 3; in fact, the interface reduces the internal parallel-ism in system Access Monitor 3 (in particular the parallelism given by theaction of the bu�ers). Hence it is useful to adopt the compositional tech-nique when building complex systems as parallel composition of simplerones, i.e. when the number of states increases (e.g. as inAccess Monitor 4).8 References[1] D. E. Bell and L. J. La Padula. \Secure Computer Systems: Uni-�ed Exposition and Multics Interpretation". ESD-TR-75-306, MITREMTR-2997, March 1976.[2] R. Cleaveland, J. Parrow, and B. Ste�en. \The Concurrency Work-bench: a Semantics Based Tool for the Veri�cation of Concurrent Sys-tems". ACM Transactions on Programming Languages and Systems,Vol. 15 No. 1:36{72, January 1993.[3] R. Focardi and R. Gorrieri. \The Compositional Security Checker: ATool for the Automatic Compositional Veri�cation of Security Prop-erties". Forthcoming.[4] R. Focardi and R. Gorrieri. \A Classi�cation of Security Proper-ties for Process Algebras". Journal of Computer Security, 3(1):5{33,1994/1995.[5] R. Focardi, R. Gorrieri, and V. Panini. \The Security Checker: aSemantics-based Tool for the Veri�cation of Security Properties". InProceedings Eight IEEE Computer Security Foundation Workshop,(CSFW'95) (Li Gong Ed.), pages 60{69, Kenmare (Ireland), June1995. IEEE Press.

130 R. Focardi, R. Gorrieri[6] J. A. Goguen and J. Meseguer. \Security Policy and Security Models".In Proceedings of the 1982 Symposium on Security and Privacy, pages11{20. IEEE Computer Society Press, April 1982.[7] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,1985.[8] P. Kanellakis and S.A. Smolka. \CCS Expression, Finite State Pro-cesses, and Three Problems of Equivalence". Information & Compu-tation 86, pages 43{68, May 1990.[9] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.[10] C. R. Tsai, V. D. Gligor, and C. S. Chandersekaran. \On the Identi-�cation of Covert Storage Channels in Secure Systems". IEEE Trans-actions on Software Engineering, pages 569{580, June 1990.[11] J. T. Wittbold and D. M. Johnson. \Information Flow in Non-deterministic Systems". In Proceedings of the 1990 IEEE Symposiumon Research in Security and Privacy, pages 144{161. IEEE ComputerSociety Press, 1990.

