Tn Proceedings of TACAS’96 (B. Steffen Ed.), Springer-Verlag TLNCS 1055

Automatic Compositional
Verification of Some Security
Properties

R. Focardi*
R. Gorriert*

ABSTRACT ' The Compositional Security Checker (CSC for short) is a
semantic tool for the automatic verification of some compositional inform-
ation flow properties. The specifications given as inputs to CSC are terms
of the Security Process Algebra, a language suited for the specification of
systems where actions belong to two different levels of confidentiality. The
information flow security properties which can be verified by CSC are some
of those classified in [4]. They are derivations of some classic notions, e.g.
Non Tnterference [6]. The tool is based on the same architecture of the
Concurrency Workbench [2], from which some modules have been integ-
rally imported. The usefulness of the tool is tested with the significative
case-study of an access-monitor.

1 Introduction

Security is a crucial property of system behaviour, requiring a strict control
over the information flow among parts of the system. The main problem
is to limit, and possibly to avoid, the damages produced by malicious pro-
grams, called Trojan Horses, which try to broadcast secret information.
There are several approaches to solve this problem.

Tn the Discretionary Access Control security (DAC for short), every sub-
ject decides the access properties of its objects. An example of DAC 1s the
file management in Unix where a user can decide the access possibilities of
her /his files. So, if a user executes a Trojan Horse program, this can modify
the security properties of user’s objects.

A solution to this problem is the Mandatory Access Control (MAC for
short), where access rules are imposed by the system. An example of MAC
is Multilevel Security [1]: every object is bounded to a security level, and
so every subject is; information can flow from a certain object to a certain

*Dipartimento di Scienze dell’ITnformazione, Universita di Bologna, Piazza di Porta
San Donato 5, T 40127 Bologna (Ttaly). e_mail:{focardi,gorrieri}@cs.unibo.it
"Research supported in part by CNR and MURST.

111

112 R. Focardi, R. Gorrieri

VVrne
Level n+k
Read

Read-down Write-up

Write
% Level n
<~

Read

FIGURE 1. Information flows in multilevel security.

Covert
Channel

subject only if the level of the subject 18 greater than the level of the
object. So a Trojan Horse, which operates at a certain level, has no way
to downgrade information, and its action is restricted inside such a level.
There are two access rules: No Read Up (a subject cannot read data from
an upper level object) and No Write Down (a subject cannot write data
to a lower level object).

However, these access rules are not enough. Tt could be possible to in-
directly transmit information using some system side effect. For example,
if two levels ‘high’ and ‘low’ share some finite storage resource, it is
possible to transmit data from level ‘high’ to level ‘low’ by using the ‘re-
source full” error message. For a high level transmitter, 1t 1s sufficient to
alternatively fill or empty the resource in order to transmit a ‘1’ or a ‘0’
datum. Simultaneously, the low level receiver tries to write on the resource,
decoding every error message as a ‘1’ and every successful write as a ‘0.
Tt is clear that such indirect ways of transmission, called covert channels,
do not violate the two multilevel access rules (see Figure 1). Therefore it
18 necessary to integrate a MAC discipline with a covert channel analysis
(see e.g. [10]).

An alternative, more general approach to security requires to control
directly the whole flow of information, rather than the accesses of subjects
to objects. To make this, it is necessary to choose a formal model of system
behaviour and to define the information flow on such a model. By imposing
some information flow rule, we can control any kind of transmission, be it
direct or indirect.

In the literature, there are many different definitions of this kind based on
several system models (see e.g. [6, 11]). Tn [4] we have rephrased them in the
uniform setting of Security Process Algebra (SPA | for short), then compared
and classified. SPA is an extension of CCS [9] which permits to describe
systems where actions belong to two different levels of confidentiality.

For some of the investigated information flow properties, we provided
useful algebraic characterizations. They are all of the following form. Tet
F be an SPA process term, let X be a security property, let & be a semantic

Automatic Compositional Verification of Some Security Properties 113

equivalence among process terms and let Cx and Dx be two SPA contexts
for property X. Then, we can say:

E is X-secure if and only if Cx[F] ~ Dx[F].

Hence, checking the X-security of F 1s reduced to the “standard” prob-
lem of checking semantic equivalence between two terms having I as a
subterm. In recent years a certain number of tools for checking semantic
equivalence have been presented; among them, the Concurrency Workbench
(CW for short) [2] is one of the most famous.

The aim of this work 1s to present a tool called Compositional Secur-
ity Checker which can be used to check automatically (finite state) SPA
specifications against some information flow security properties. The tool
has the same modular architecture of CW (Version 6.1), from which some
modules have been integrally imported and some others only modified.

The tool 1s equipped with a parser, which transforms an SPA specification
into a parse-tree; then, for the parsed specification CSC builds the labelled
transition system following the operational rules defined in Plotkin® SOS
style. When a user wants to check if an SPA process F 18 X-secure, CSC
first provides operational semantic descriptions to the terms Cx[F] and
Dx[F] in the form of two lts’s; then verifies the semantic equivalence of
Cx[F] and Dx[F] using their lts representations.

An interesting feature of CSC is the exploitation of the compositionality
of some security property. The main problem in the verification of security
properties is the exponential state explosion due to parallel composition.
As an example consider two agents /4 and Fs; the number of states of
their parallel composition Fy

F5 is equal to the product of the states of F
and F5. Now if we have a compositional security property X, i.e. such that
F1|Fy is X-secure whenever F; and F, are X-secure, then we can apply
the following strategy: check the X-security of Fy and Fy; if it is satisfied
conclude that F,
whole agent Iy

Fo is X-secure, otherwise check the X-security of the

F5. Using this strategy for compositional security proper-
ties, OSC 1s able to avoid, in some cases, the exponential state explosion
due to parallel composition operator.

The paper is organized as follows. In Section 2 we present SPA. In Sec-
tion 3 we recall from [4] some of the security properties which are verified by
CSC giving some examples. Section 4.1 reports the input-output behavior
of CSC, while in Section 4.2 we describe the architecture of the tool. The
implementation of the security predicates i1s the subject of Section 5. Then,
a sample session with the interactive tool is described in Section 6.1 and
Section 6.2 is devoted to a case-study (access-monitor). Finally, Section 7
is about the state explosion problem and the compositional algorithm.

114 R. Focardi, R. Gorrieri

2 SPA and Semantic Equivalences

In the following, systems will be specified using the Security Process Algebra
(SPA for short), a slight extension of Milner’s CCS [9]. SPA includes two
more operators, namely the hiding operator F /L of CSP [7] and the (new)
input restriction operator K \y I, which are useful in characterizing some
security properties in an algebraic style. Intuitively £ \; I, can execute all
the actions process F is able to do, provided that they are not inputs in
.. Moreover the set of visible actions 1s partitioned into high level actions
and low level ones in order to specify multilevel systems. ?

SPA syntax is based on the following elements: a set, T = {a,b,...} of
input actions, a sett O = {a,b,...} of output actions, a sett L=TUO of
visible actions, (ranged over by «) and the usual function - : £ — £ such
that a € T = a € O and a € O — a = a € T, two sets Acty and

Acty, of high and low level actions such that Acty = Acty, Acty, = Acty,,

Actg U Act;, = £ and Actg N Actr = 0 where T, def {a :a € L}; a set

Act = L U {7} of actions (7 is the internal, invisible action), ranged over
by p; a set K of constants, ranged over by 7. The syntax of SPA agents is
defined as follows:

E:=0|pkFE E|F

F+ K

E\T.

E\; T

E/L

BT Z

where I C L and f : Act — Act is such that f(a) = f(a), f(r) = 7.

Moreover, for every constant 7 there must be the corresponding definition:

7 B The meaning of 0, u.E, B+ E, E|E, E\ L, B[f] and 7 < £ is
as for CCS [9].

Tet & be the set of closed and guarded [9] SPA agents, ranged over
by E, F. Let L(F) denote the sort of F, i.e., the set of the (possibly
executable) actions occurring syntactically in F. The sets of high level

agents and low level ones are defined as £g ef {E €& | L(E) C Actygu{r}}

and &, & {E € £ | L(F) C Acty, U{r}}, respectively. The operational

semantics of SPA is given (as usual) associating to each agent a particular
state of the labelled transition system (£, Act, =) where -C &£ x Act x &

and, intuitively, £ 5 B’ means that agent, F can execute p moving to F’.

We recall here the definition of weak bisimulation [9] over SPA agents.
Tn the following the expression 7 == F’ is a shorthand for E(5)*F 5
Fo(5)* B!, where (5)* denotes a (possibly empty) sequence of 7 labelled
transitions. Moreover 1/ == F’ stands for FI == F' if u € L, and for
E (D) B if u = 1 (note that (5)* means “zero or more 7 labelled

transitions” while == requires at least one 7 labelled transition).

2 Actually, only two-level systems can be specified; note that this is not a real lim-
itation because it is always possible to deal with the multilevel case by grouping in
several ways the various levels in two clusters.

Automatic Compositional Verification of Some Security Properties 115

Definition 2.1 A relation R C £ x £ is a weak bisimulation if (F, F) € R
wmplies, for all p € Act,

o whenever F 25 F' then there erists F' € £ such that F :“> F' and
(E',F') € R;

e conversely, whenever F 25 F’ then there erists E' € & such that
E =5 F' and (E',F') € R.

Two SPA agents F, F € £ are observational equivalent, notation F =g F,
if there exists a weak bisimulation containing the pair (E, F). Note thal ~g
15 an equivalence relation. [|

Now we present, a value-passing extension of SPA (VSPA, for short). All
the examples contained in this paper will be done using such value passing
calculus, because 1t originates more readable specifications than those writ-
ten in pure SPA. As in [9], the semantics of the value-passing calculus can
be given via translation into the pure calculus [3].

The syntax of VSPA agents is defined as follows:

E == 0la(er,...,2,).Elaler,...,en).F|T.E
ENLL BN L BJL | EL) A, e
| if b then F |if b then F else F

I

F+ K

where the variables xq,... x, and the value expressions ey,... e, and
€l,...,e, must be consistent with the arity of the action a and constant
A respectively (the arity specifies the sorts of the parameters) and b is a

boolean expression. An example of VSPA agent specification follows.

Example 2.2 Consider the following system specified using VSPA:

Access Monitor_1 = (Monitor|Object(1,0)|Object(0,0))\ T

Monitor = accessr(l,).(if & <1 then r(z,y).val(l, y). Monitor
else W(l, err).Monitor) +
+ accessw(l, z).write(l, z).(if & > 1 then

w(x, z).Monitor else Monitor)

Object(r,y) = T(=,y).0bject(z,y) + w(x,2).Object(x, z)

where z,y,z,1 € {0,1}, L. = {r, w} and Vi € {0, 1} we have r(1,4), w(1,1),
access_r(1,4), val(1,1), val(1,err), access_w(1,i), write(1,i) € Acty and
all the others actions are low level ones. The process Access_Monitor_1
(Figure 2) handles read and write requests from high and low level users
on two binary variables: a high level and a low level one. Tt achieves no
read up and no write down access control rules allowing a high level user
to read from both objects and write only on the high one; conversely, a low
level user is allowed to write on both objects and read only from the low

116 R. Focardi, R. Gorrieri

access r(1,X)
() oA
- write(1,2)
Object(L,y) W(1.2) W e
Monitor
o access r(0,X)
Object(©, | omwn o Low
ject0Y) | oy write(0,2) Level
e————— Users
val(0,y)

FIGURE 2. The Access Monitor for Example 2.2.

one. Users interact with the monitor through the following access actions:
access_r(l, x), access_w(l, x), write(l, z) where [is the user level (I = 0 low,
I = 1 high), 2 is the object (z = 0 low, 2 = 1 high) and z is the binary value
to be written. As an example, consider access_r(0,1) which represents a
low level user (I = 0) read request from the high level object (z = 1), and
access_w(1,0) followed by write(1,0) which represents a high level user
(I = 1) write request of value 0 (z = 0) on the low object (2 = 0). Read
results are returned to users through the output actions val(l, y). [|

3 Some Information Flow Properties

Tn this section we present some of the security properties (see [3, 4] for
more details) which can be verified using CSC.

Bisimulation Non-deterministic Non Interference (BNNI, for short) is a
generalization of Non Interference [6]. Intuitively, the high level does noft
interfere with the low level if and only if a low level user cannot distinguish
between processes F and F \; Acty. In other words a system is BNNT if
what a low level user sees of the system cannot be modified by any high
level input.

Definition 3.1 F € BNNI & (F\; Acig)/Acty ~g E/Acty [|

Example 3.2 Consider the following modified monitor 3 which does not
control write accesses:
Access_Monitor2 ' (Monitor|Object(1,0)|Object(0,0))\ T

Monitor accessr(l, x).(if x <1 then r(z,y).val(l, y). Monitor
else W(l, err).Monitor) +

+ accessaw(l, x).write(l, z).w(x, z). Monitor

3Tn the following, if an agent is not specified (e.g. Object(w,y)) we mean that it has
not been modified with respect to previous examples.

Automatic Compositional Verification of Some Security Properties 17

Now it is possible for a high level user to write down (actions access_w/(1,0)
and access_w(1,1)) so the system is not secure. Tn fact, Access_Monitor_2
is not BNNT as it can execute the following trace:

v = access_w(1,0).write(1,1).access_r(0,0).val (0, 1)

In v we have 2 accesses to the monitor: first a high level user modifies the
value of the low object writing-down value 1 and then the low user reads
value 1 from the object. If we purge 4 of high level actions we obtain the
sequence

v = access_r(0,0).val (0, 1)

that, clearly, can not be a trace for Access_Monitor_2. In fact, in v/, we
have that a low level user reads 1 from the low level object without other
interactions between the monitor and the environment (note that the initial
values of the objects is (). Moreover it is not possible to obtain a trace for
Access_Monitor_2 adding to 4" only high level outputs, because all the
high level outputs in Access_Monitor_2 are prefixed by high level inputs.
Hence 4" is not a trace for (Access_Monitor_2\; Acti)/Act g too. Tn other
words, it is not, possible to find a trace v/ with the same low level actions
of v and without high level inputs.

Since v is a trace for agent Access_Monitor_2/Actg but not for agent
(Access_Monitor 2\1 Actg)/Act g, we conclude that Access_Monitor_2 is
not BNNT.

Hence, BNNT is able to detect if high level inputs interfere with low level
executions, 1.e. if a low level user can deduce something about high level
inputs by observing only low level actions. [|

In [4] we proposed a more intuitive notion of information flow security:
Bisimulation Non Deducibility on Compositions (BNDC'|, for short). A sys-
tem I 18 BNDC if for every high level process TT a low level user cannot
)\ Actg. Tn other words, a sys-
tem F is BNDC if what a low level user sees of the system is not modified

distinguish between processes F and (F

by composing any high level process 1T to F.

Definition 3.3 F € BNDC & VI € £y, F/Acty ~p (E

Tl)\Am‘,H. | |

A static characterization of BNDC which does not involve composition
with every processes TT is not. immediate. As a matter of fact, this problem
is still open. Tn [5] we proposed the SBSNNT property which is static, com-
positional (i.e. if two systems are SBSNNT their composition is SBSNNT,
too) and strictly stronger than BNDC'. We first define Bisimulation Strong
Non-deterministic Non Interference (BSNNI, for short), a property which
differs from BNNT only because 1t restricts system F over all the high level
actions rather than only over high level inputs.

Definition 3.4 F € BSNNI < F/Actg ~p F\ Acty. [|

118 R. Focardi, R. Gorrieri

BNDC

FIGURE 3. The inclusion diagram for bisimulation-based properties

Now we can define Strong BSNNI (SBSNNT, for short).

Definition 3.5 A system I € SBSNNTI if and only if for all F’ reachable
from E we have ' € BSNNI. []

The following holds [5]:
Proposition 3.6 SBSNNI C BNDC [|

In the automatic verification of security properties it can be very useful to
work on a reduced system, i.e. a system equivalent to the original one, but
with a minimum number of states. The Concurrency Workbench provides
a procedure to this aim and we imported it in CSC. This is very useful
because we can prove that if a system F is BNDC, then any other obser-
vational equivalent system F'is BND(C. This also holds for all the other
security properties.

Theorem 3.7 If F ~g F, then F € X & F € X, where X can be BNNI,
BSNNI, BNDC, SBSNNI.]

Figure 3 summarizes the relations among the security properties defined
above.

The following example shows that BSNNI and BNNT are not able to
detect some deadlocks due to high level activities which, on the contrary,
are revealed by BNDC' (this because they do not check the system against,
all the possible high level interactions, as BNDC' does).

Example 3.8 Consider the first version of the monitor Access_Monitor_1.
Using CSC we can verify that such system is BSNNT and BNNJ, but it is
not BND(C'. This happens because a high level user can make a read request
without accepting the corresponding output from the monitor (remember
that communications in SPA are synchronous). Tn particular, consider TT =
access_r(1,1).0. System (Access_Monitor_1|TT) \ Acty will be deadlocked
immediately after the execution of the read request by TI, blocking in the
following state

(val(1,0).Monitor | Object(0,0) | Object(1,0))\ .| 0) \ Acty

Automatic Compositional Verification of Some Security Properties 119

This happens because Tl executes a read request and does not wait for
the corresponding return value (action wal). We conclude that TT can in-
terfere with low level users. Since there are no possible deadlocks 1n pro-
cess Access_Monitor_1 [Acty, we find out that (Access_Monitor_1|TT) \
Actyg #r Access_Monitor_1/Acty, so Access_Monitor_1 is not. BNDC.

Moreover, there 18 another possible deadlock due to high level activity;
this happens if a high level user makes a write request and do not send
the value to be written. In particular, if we consider the high level user
T = access_w(1,0).0, it will deadlock system (Access_Monitor_1|TT") \
Act g immediately after the execution of the write request by TI’, block-
ing in the following state:

(((write(1,0). Monitor 4+ write(1,1).Monitor) | Object(0,0) |
| Object(1,0))\ L | 0)\ Aciy

This happens because TI' executes a write request and does not send the
corresponding value through action write(1,0) or write(1,1). Again, we
have that (Access_Monitor_1|[TI') \ Acty #5 Access_Monitor_1/Actg. Tn
order to obtain a BNDC' system, we modify the monitor by adding an
output buffer for each level (this makes communications asynchronous) and
using an atomic action for write request and value sending. The resulting
system follows:

Access_Monitor.3 < (Monitor|Object(1,0)|Object(0,0)| Buf(1, empty)|
| Buf(0,empty))\ I
Monitor & accessr(l, x).(if x <1 then r(z,y).val(l, y). Monitor
else W(l, err).Monitor) +
+ accessaw(l,z, z).(T = > 1 then w(=x, z). Monitor

else Monitor)

Buf(r,7) = Tes(x,7).Buf(r,empty) + val(z, k). Buf(z, k)

where k € {0, 1,err} and j € {0, 1, err empiy}; . = {r, w, val}. Moreover
output actions res(x, j) of buffer substitute output actions val(z, k) in the
interactions with users, with res(1,7) € Acty,Vi € {0,1, err, empty}.
Using CSC it 1s possible to automatically verify that Access_Monitor_3
18 SBSNNT and so BNDC.]

4 What is the Compositional Security Checker

4.1 Input-Output

The inputs of CSC are concurrent systems expressed as SPA agents. The
outputs are answers to questions like: “does this system satisfy that specific

120 R. Focardi, R. Gorrieri

SECURITY CHECKER

INPUT OUTPUT
P E
A r Q L
R | u E
Concurrent system S t ! c Value of security
expressed in SPA i S X E predicate on agents

FIGURE 4. Structure of the CSC

security property 77. The structure of CSC is described in Figure 4. In
detail, the tool is able:

e to parse SPA agents, saving them in suitable environments as parse
trees;

e to give a semantic to these parse trees, building the corresponding
rooted labelled transition systems (rlts for short);

e to check if an agent satisfies a certain security property; the imple-
mented routine for this purpose verifies the equivalence of two par-
ticular agents modeled as rlts. In this way, future changes of the
language will not compromise the validity of the core of the tool.

4.2 Architecture

The CSC has the same general architecture of the CW. In its implementa-
tion we have decided to exploit the characteristic of versatility and extens-
ibility of CW. In particular CSC maintains the strongly modular charac-
teristic of CW. The modules of the system are partitioned in three main
layers: interface layer, semantic layer, analysis layer.

In the interface layer we have the command interpreter. Tt allows us to
define the agents and the set of high level actions; it also allows to invoke
the security predicates and the utility functions on the behaviour of an
agent. Then we have a parser which recognizes the SPA syntax of agents
and stores them as parse trees in appropriate environments. The partition
of the set of visible actions in the sets of high and low level actions has
been obtained by defining the set of high level actions; by default, all the
other possible actions are considered at low level. Then we have defined
a transition function that, according to the operational semantic rule of
SPA, provides all possible transitions for an agent. This function allows
the construction of the transition graph associated to an agent.

In the semantic layer, CSC uses a transformation routine to translate
transition graphs into observational graphs [2]. Since it refers fo processes
modeled as transition graphs, it has been imported from CW in CSC
without any modification.

Automatic Compositional Verification of Some Security Properties 121

In the analysis layer, CSC uses a routine of equivalence and one of min-
imization that belong to the analysis layer of CW. These are a slight modi-
fication of the algorithm by Kanellakis and Smolka [8] which finds a bisim-
ulation between the roots of two graphs by partitioning their nodes.

5 Security Predicates

Now, we want to explain briefly how the system works in evaluating secur-
ity predicates BNNI, BSNNI, SBSNNI, discussing, at the same time, about
their computational complexity. CSC computes the value of these predic-
ates over finile state agents (i.e. agents possessing a finite state transition
graph), based on the definitions given in Section 2 that we report below in
CSC syntax: 4

F € BNNI & FElActyg ~p (F]?ACT,H)!A(#,H
F € BSNNI & Fl'Actyg ~p E\A(fff_[
F € SBSNNI & F' € BSNNI, YFE' reachable from E

As for CW, the inner computation of the CSC follows three main phases.

Phase a) CSC builds the transition graphs of the two agents of which it
wants to compute the equivalence. For example in the case of BNNT,
CSC computes the transition graph for (E7? Actg)!Acty and ElAcigy.
In this phase we do not have any particular problem with complexity,
except for the intrinsic exponential explosion in the number of nodes
of the graphs due to parallel composition.

Phase b) The two transition graphs obtained in Phase a) are transformed
into observational graphs using the classic algorithms for the product
of two relations and the reflexive transitive closure of a relation. This
transformation has a O(n?) complexity, in which n is the number of
nodes in the original graph.

Phase ¢) The general equivalence algorithm [8] is applied to the graphs
obtained in Phase b). Time and space complexities of this algorithm
are O(k x 1) and O(k +1) respectively, where [is the number of nodes
and k is the number of edges in the two graphs. This 1s not a limiting
factor in the computation of the observational equivalence. In partic-
ular we have that in most cases 80% of computation time is due to
the routine for reflexive transitive closure of Phase b).

4Tn the CSC the hiding and input restriction operators are respectively represented
by ! and 7, for easy of parsing.

122 R. Focardi, R. Gorrieri

Since SBSNNT is verified by testing BSNNT over all the n states of the
original graph, the resulting complexity will be n times the BSNNT com-
plexity.

Tt 1s interesting to observe that the exponential explosion of the number
of nodes of the transition graphs (Phase a), due to the operator of parallel
composition, influences negatively the following phases, but it can not be
avoided because of its intrinsic nature. A solution to this problem for the
predicate SBSNNI could be based on the exploitation of compositional
properties proved in [4] and recalled in Section 7.

6 Using CSC

6.1 Sample session

The style used in specifying SPA agents in CSC is the same used for CCS

agents in CW. For example the command line ?

Command: bi A Ah/I'h. A+ h'l.A

defines the agent A YO hIh A+ hiA. Asin CW the first letter of agents
must be a capital letter and output actions have to be prefixed by ’.

We assumed that the set of visible actions £ is partitioned in two sub-
sets Actg and Acty, of high and low level actions respectively. With the
command

Command: acth A

we specify that Acty = {h,/h}. Tn this way we obtain that h,/h are con-
sidered as high level actions and any other action as low level one.
Now, we can check whether agent A i1s BNNT secure:

Command: bnni A
true

CSC tells us that A is BNNT secure. Now we can check if agent A 1s BSNNT
secure foo:

Command: bsnni A
false

So A is BNNT secure but is not BSNNT secure. Finally the command quit
causes an exit to the shell.

5Here we use the typewriter style for CSC messages (such as the prompt “Command :”);
the bold style for CSC commands and the italic style for the remaining text (such as

agents, sets) inserted by users.

Automatic Compositional Verification of Some Security Properties 123

bi Access_Monitor_1
(Monitor | O0Object_10 | O0Object_hO)\ L

bi Monitor
access_r_hh. (rh0.’val_hO.Monitor + rhl.’val_h1l.Monitor) + \
access_r_lh.’val_1_err.Monitor + \
access_r_hl.(rl10.’val_hO.Monitor + rll.’val_hl.Monitor) + \
access_r_11.(r10.’val_10.Monitor + rl1l.’val_11.Monitor) + \
access_w_hh. (write_hO.’whO.Monitor + write_h1l.’whl.Monitor) + \
access_w_lh. (write_10.’whO.Monitor + write_11.’whl.Monitor) + \
access_w_hl. (write_hO.Monitor + write_h1l.Monitor) + \
access_w_11.(write_10.’wl10.Monitor + write_11.’wll.Monitor)

bi 0Object_hO
’rh0.0bject_h0 + wh0.0Object_hO + whl.0bject_hil

bi Object_hil
’rh1.0bject_hl + wh0.0Object_hO + whl.0bject_hil

bi Object_10
Object_h0[r10/rh0,r11/rh1,wl0/wh0,wl1/whi]

basi L
rh0 rhl 110 rl1 wh0 whl wl0 wl1l

acth
rh0 rh1l whO whl access_r_hh access_r_hl val_hO val_h1l val_h_err \
access_w_hh access_w_hl write_hO write_hil

TABLE .1. Translation of Access_Monitor_1 into CSC syntax.

6.2 Checking the Access Monitor

In this Section we use CSC to analyze the systems of Example 3.8. Since
CSC works on SPA agents we have to translate all the VSPA specifica-
tions into SPA. Consider system Access_Monitor_1. Table.1 reports the
translation of Access_Monitor_1 specification into the CSC syntax. ¢ The
new command basi has been used to bind a set of actions to an identi-
fier. Moreover, the \ character at the end of a line does not, represent the
restriction operator, but is the special character that permits to break in
more lines the description of long agents and long action lists.

We can write to a file the contents of Table.1 and load it, in CSC, with
command if < filename>. Now we can check that Access_Monitor_1 satis-
fies all the security properties except SBSNNT using the following command
lines:

Command: bnni Access_Monitor_1
true
Command: bsnni Access_Monitor_l

6Tn the translation, we use {I, A} in place of {0,1} for the levels of users and objects
in order to make the SPA specification more clear. Formally we make the translation
considering variables | and x ranging in {I,h}. As an example access_r(1,0) becomes
access._r_hl

124 R. Focardi, R. Gorrieri

true
Command: shsnni Access_Monitor_1
false: (‘val_hi.Monitor |Object 11 |0Object h1)\ L~

Note that when SBSNNT fails for a process F, CSC gives as output an agent
E’ which is reachable from F and is not BSNNT. In the following we will
show that this can be useful to decide if Fis BNDC. So we have found that
Access_Monitor_1 € BSNNI, BNNI and Access_Monitor_1 ¢ SBSNNI
Since SBSNNI ¢ BNDC C BSNNI, BNNT (see Proposition 3.6), we can-
not conclude whether Access_Monitor_1 18 BNDC or not. However using
the output of SBSNNT it is easy to find a high level process TT which
can deadlock the monitor. In fact, in the state given as output by SB-
SNNT, the monitor is waiting for the high level action 'val_hi; so, if we
find a process TT which leads the system to such a state and does not
execute the val_hi action, we will have a high level process able to dead-
lock the monitor. Tt is sufficient to consider TT = ‘access_r_hh.(). System
(Access_Monitor _1|TT)\ Act g will be deadlocked immediately after the ex-
ecution of the read request by TI, blocking in the following state

(('val h0o.Monitor | Object 10 | Object h0) \ L | 0) \ Acty

(this state differs from the one given as output by SBSNNT only for the
values stored in objects). We verify that Access_Monitor_1 is not BNDC by
checking that (Access_Monitor_1|TT) \ Acty %5 Access_Monitor_1[/Acty
using the following commands:

Command: bi Pi ’access_r_hh.0
Command: eq

Agent: (Access_Monitor_1 | Pi)\ acth
Agent: Access_Monitor_1 ! acth
false

As we said in Example 3.8, such a deadlock is caused by synchronous
communications in SPA. Moreover, using the CSC output again, we can
find out that also the high level process TI' = ‘access_w_hl.0 can dead-
lock Access_Monitor_1, this because it executes a write request and does
not send the corresponding value. Hence, in Example 3.8 we proposed the
modified system Access_Monitor_3 with an output buffer for each level
and atomic actions for write request and value sending. We finally check
that this version of the monitor is SBSNNT, hence BNDC' too:

Command: shsnni Access_Monitor_3
true

"We write Object 11 instead of Object h1[r10/rh0,r11/rh1,910/wh0,w11/wh1]

Automatic Compositional Verification of Some Security Properties 125

agent B D B|D|B | B|D|D|B
state number 3 3 27 81
time spent || <1 sec. | <1 sec. | ~11 sec. | ~270 sec.

TABLE .2. Number of states and time spent on a SPARC station 5.
7 State Explosion and Compositionality

We now want to plain out how the parallel composition operator can in-
crease exponentially the number of states of the system, and then how it
can slow down the execution speed of security predicate verification. Let us
define in CSC the two agents B, 1) and the set Acty of high level actions:

Command: bi B wy.a.b.B+a.b.B
Command: bi D ‘a’/b.(x.D+ D)
Command: acth =» y

Let us check now 1T B and) are SBSNNT secure:

Command: shsnni B
true
Command: shsnni D
true

As we will see that SBSNNT 1s preserved by system composition, the two
agents B|D|B and B|D|D|B must also be SBSNNT secure. Hence the veri-
fication of these two agents can be reduced to the verification of their two
basic components B and 1) only. The time spent in verifying SBSNNT
directly on B|D|B and B|D|D|B is very long. Using the size command
of CSC, which computes the number of states of an agent, we can fill in
Table.2, which points out the exponential increase of the number of states
and the consequent increase of the computation time for verification of

SBSNNIT .
Theorem 7.1 [5] The following hold:

(i) F,F e SBSNNI = (F

F) € SBSNNI
(i7) 2 € SBSNNI,I.C £ = E\ I € SBSNNT m

In the following Epg C £ will denote the set of closed and guarded SPA
agents with a finite lts. CSC 1s able to exploit the compositionality of
security properties through the following algorithm:

Definition 7.2 (Compositional Algorithm) Let P C £ be a sel of SPA
agents such that

e BE,H'cP— E|F'€P

e FePLCL—=FK\TLeP

126 R. Focardi, R. Gorrieri

and Ap be an algorithm which checks if a certain agent F € Epg belongs to
P; in other words Ap(E) =true if E € P and Ap(F) = false otherwise.
Then we can define a compositional algorithm A',(F) in the following way:

1) of E is in the form E'\ L (recursively) calculate AW (E"); if Ap(E') =
true then return true else return the resull of Ap(F);

2) if F is in the form Fy|FEy (recursively) calculate A% (Fr) and A'p(Fl);
if A'(Fh) = Ab(F2) = true then return true else return the result

of Ap(F);

3) otherwise return Ap(F). [|

Note that the algorithm requires that property P is closed with respect
to restriction and uses this in step 1. This could seem useless; however,
the parallel composition is often in the following form: (A|B) \ I (in order
to force some synchronization) and so if we want to check P over A and
B separately, we must be granted that P is preserved by both parallel
and restriction operators. We have the following correctness result for the
compositionality algorithm:

Theorem 7.3 et I € Epg be a finite state SPA agent. If, every time the
algorithm erecutes step 1, E' belongs to Epg, then AL(F) terminates and
Ap(F) = Ap(F).

ProOOF. First, note that in step 1 of A itis B’ € Eps (by hypothesis) and
instep 21f K € Epg then Fy, Ky € Eps. As F € Epg, then we recursively
obtain that every F, F/ and Fy, F5 of steps 1, 2 and 3 belong to £rg. So,
when the algorithm executes Ap(F) in steps 1,2 or 3, it terminates because
Fe&rs.

We still have to prove that, in steps 1 and 2, AL (E') and A (Eq), A (F2)
terminate. In particular we must prove that for every F’' € £pg the evalu-
ation of A%, (F') never needs to evaluate A’ (F”) itself (going into an infinite
loop). This holds because agents in Epg are guarded; so the evaluation of
A% (F') could at most need to evaluate AL (u.F') where p is the guard for
F'. Hence A%L(F) terminates.

When the algorithm calculates Ap(F) in steps 1, 2 and 3 it is always
E€&pg,s0 Ap(E) =irueif F € P and Ap(F) = false if E ¢ P. Hence,
by (partial) structural induction and using compositionality properties, we

obtain that Ap(F) = A%L(F). [|

The theorem above requires that, every time the algorithm executes step
1, E' belongs to Epg;i.e.in AL(F), if Fisin the form E'\ I then E' must
be finite state. As an example, consider a finite state system F \ I such
that F ¢ Eps; then Ap(F\ L) terminates while AL (F'\) possibly do not,
because it tries to calculate Ap(F) and FE is not finite state.

Note that such a condition trivially holds if we specify systems as com-
position and restriction of finite state subsystems. In particular we can use

Automatic Compositional Verification of Some Security Properties 127

access_r(1,1)
access_w(1,1.2)
access_r(1,0)
access_w(1,0.2)

a_r(d.x)

Oy V/—.—~°‘“'V) Buf(Ly) =X x| High |

Object(0.y) Monitor(0) | vqi,y) res(O.y) Interface(1) W: Level i
Y) | Users

res(1,y) w‘ Low

ofw(O,x,z); i

Object(1,y) Monitor(1) Interface(0) =————" Level ,
res.y) putOy) | U I

t A . Users

access_r(0,1)
access_w(0,1.2)
access_r(0,0)
access_w(0,0.2)

FIGURE 5. The compositional Access_Monitor

the following syntax which defines the so called nets of automata:

Olpplp+p| 7
E|E\T

p
E = p|F

an

E\; T

E/L

where for every constant 7 there must be the corresponding definition

7 p.

Tt not necessary to use such a syntax in order to satisfy theorem hypo-

theses. As an example consider the following agent B ef a.0+ D\ {7} with

D i.(0.0] D) which is finite state but it is not a net of automata. Since

the top operator is a + then A%L(B) behaves just like Ap(B) and so it
terminates (theorem hypotheses trivially hold in this case).

Example 7.4 Consider again Access_Monitor_3. The verification of the
SBSNNT property on such a system requires a lot of time (more than 1
hour on a SUNbH workstation) because of the above mentioned exponential
state explosion due to parallel composition. We can try to verify SBSNNT
using the compositional algorithm. Unfortunately we have that Monitor is
not SBSNNT and so, in this case, the compositional technique cannot help
us to reduce the execution time. This happens because the BND(C-security
of Access_Monitor_3 depends on both monitor and objects; 1.e. process
Monitor is not able to guarantee multilevel security for every possible
object connected to it. As an example, consider the following modified
objects:

Object(x,y) ef (x,y).0Object(x,0) 4+ w(x, z).Object(x, z)

which reset (to zero) their value every time they are read. Using these
objects, we obtain a system which is not BSNNT and so is not BND(C'. In
such a system, a high level user can change (to zero) the value of the low

128 R. Focardi, R. Gorrieri

level variable by simply reading it. This is generally called “half-bit” covert
channel because the high level user can set the low level variable only to
one of the two possible values (in this case 0) and so can transmit only a
half-bit information to low level. Tn [3] we show how to construct a 1-bit
channel using some half-bit ones.

Finally we present a version of the Access Monitor (Figure 5) which can
be verified very efficiently by exploiting the compositionality of SBSNNT.
Here every object has a “private” monitor which implements the access
functions for such (single) object. To make this, we have decomposed pro-
cess Monitor (which is nott BNDC) into two different processes, one for
each object; then we have composed such processes to respective objects
together with a high level buffer obtaining the BND(-secure Modh and
Modl agents. Tn particular, Monitor(z) handles the accesses to object
(2 = 0low, 2 = 1 high). We also have an interface which guarantees the ex-
clusive use of the monitor within the same level. Moreover the new interface
actions a_r(l,), a_w(l, 2, z) and put(l,y) substitute actions access_r(l, z),
access_w(l, 2, z) and res(l, y) in the interaction between the users and the
monitor.

Access_Monitor-A = (Modh|Modl|Inter)\ T.
Modh < ((Monitor(1)|Object(1,0)| Buf (1, empty)) \ Lh)
[res(0, y)/val(0, y)]
Modl = ((Monitor(0)|Object(0,0)| Buf(1, empty)) \ I.1)
[res(0, y)/val(0, y)]
Tnterf “ Interf(0)|Interf(1)
Interf(I) Y ar(l,z).accessz(l, v).res(l,y).put(l, y). Inter f(1) +
+ a_w(l,x, z).aceessan(l, x, z). Inter f (1)
Monitor(z) = accessor(l,x).(if » <1 then r(x,y).val(l, y).
Monitor(z) else val(l, err). Monitor(z)) +
+ accessaw(l,x, z).(if » > 1 then W(z, z). Monitor(z)
else Monitor(x))
Object(z,y) = F(x,y).Object(x,y) + w(x, z).0bject(x, z)
Buf(r,j) = es(x,5). Buf(r,empty) + val(z, k). Buf(r,k)
where L = {res,access_r access_w}, Lh = {r,w,val(1,y)} and LI =

{r,w,val(1,y)}. Table.3 reports the output of the (successful) verifica-
tion of SBSNNI on Access_Monitor_4. This task requires about 1 minute
on a SUNDH workstation. We can also check that Access_Monitor 4 ~p
(Access_Monitor_3
Access Monitor version is equivalent to the Access_Monitor_3 with the in-

Imter fY\ L with I = {res, access_r, access_w}; i.e. this

terface. Such equivalence verification requires about 10 minutes. Note that,
by Theorem 3.7, we can conclude that also (Access_Monitor_3|Interf)\ L
is BNDC', even if a direct (non compositional) check would take about

Automatic Compositional Verification of Some Security Properties 129

Verifying Modh | Modl | Interf
Verifying Modh
Verifying Modl
Verifying Interf
Verifying Interf_h
Verifying Interf_1
true

TABILE .3. Verification of SBSNNT on Access_Monitor_4 exploiting composi-
tionality.

20 minutes (about 20 times longer than checking the equivalent process
Access_Monitor 4). Note that checking (Access_Monitor 3|Inter f)\ L re-
quires less time than checking Access_Monitor_3 alone. So for this agent

the compositional algorithm takes more time with respect to direct check-
ing. This happens because (Access_Monitor_3|Interf)\ L has less states
than Access_Monitor_3;in fact, the interface reduces the internal parallel-

ism in system Access_Monitor_3 (in particular the parallelism given by the
action of the buffers). Hence it is useful to adopt the compositional tech-
nique when building complex systems as parallel composition of simpler
ones, i.e. when the number of states increases (e.g. asin Access_Monitor_4).

|

& RFEFERENCES

[1] D. E. Bell and I.. J. La Padula. “Secure Computer Systems: Uni-
fied Exposition and Multics Interpretation”. FSD-TR-75-306, MITRE
MTR-2997, March 1976.

[2] R. Cleaveland, J. Parrow, and B. Steffen. “The Concurrency Work-
bench: a Semantics Based Tool for the Verification of Concurrent Sys-
tems”. ACM Transactions on Programming Languages and Systems,

Vol. 15 No. 1:36 72, January 1993.

[3] R. Focardi and R. Gorrieri. “The Compositional Security Checker: A
Tool for the Automatic Compositional Verification of Security Prop-
erties”. Forthcoming.

[4] R. Focardi and R. Gorrieri. “A Classification of Security Proper-
ties for Process Algebras”. Journal of Computer Security, 3(1):5 33,
1994/1995.

[5] R. Focardi, R. Gorrieri, and V. Panini. “The Security Checker: a
Semantics-based Tool for the Verification of Security Properties”. In
Proceedings Fight TEFEE Computer Security Foundation Workshop,
(CSFW’95) (Li Gong Ed.), pages 60 69, Kenmare (Treland), June
1995. TEEFE Press.

130

[6]

R. Focardi, R. Gorrieri

J. A. Goguen and .J. Meseguer. “Security Policy and Security Models”.
In Proceedings of the 1982 Symposium on Security and Privacy, pages
11 20. TEEE Computer Society Press, April 1982.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,

1985.

P. Kanellakis and S.A. Smolka. “CCS FExpression, Finite State Pro-
cesses, and Three Problems of Equivalence”. Information €& Compu-
tation 86, pages 43 68, May 1990.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

C. R. Tsai, V. D. Gligor, and C. S. Chandersekaran. “On the Tdenti-
fication of Covert Storage Channels in Secure Systems”. TEEFE Trans-
actions on Software Engineering, pages H69 580, June 1990.

J. T. Wittbold and D. M. Johnson. “Information Flow in Non-
deterministic Systems”. In Proceedings of the 1990 TEEF Symposium
on Research in Security and Privacy, pages 144 161. TEEE Computer
Society Press, 1990.

