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Abstract

The Stratified Foundations are a restriction of naive set theory
where the comprehension scheme is restricted to stratifiable propo-
sitions. It is known that this theory is consistent and that proofs
strongly normalize in this theory.

Deduction modulo is a formulation of first-order logic with a general
notion of cut. It is known that proofs normalize in a theory modulo if
it has some kind of many-valued model called a pre-model.

We show in this note that the Stratified Foundations can be pre-
sented in deduction modulo and that the method used in the original
normalization proof can be adapted to construct a pre-model for this
theory.

The Stratified Foundations are a restriction of naive set theory where the
comprehension scheme is restricted to stratifiable propositions. This theory
is consistent [8] and proofs in this theory strongly normalize [2], while naive
set theory is contradictory and the consistency of the Stratified Foundations
together with the extensionality axiom - the so-called New Foundations - is
open.

The Stratified Foundations extend simple type theory and the normal-
ization proof for the Stratified Foundations, like that of type theory uses
Girard’s reducibility candidates. These two proofs, like all proofs following
the line of Tait and Girard, have some parts in common. This motivates
the investigation of general normalization theorems that have normalization
theorems for specific theories as consequences. The normalization theorem
for deduction modulo [7] is an example of such a general theorem. It con-
cerns theories expressed in deduction modulo [5] that are first-order theories
with a general notion of cut. According to this theorem, proofs normalize in
a theory in deduction modulo if this theory has some kind of many-valued
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model called a pre-model. For instance, simple type theory can be expressed
in deduction modulo [5, 6] and it has a pre-model [7, 6] and hence it has
the normalization property. The normalization proof obtained this way is
modular: all the lemmas specific to type theory are concentrated in the
pre-model construction while the theorem that the existence of a pre-model
implies normalization is generic and can be used for any other theory in
deduction modulo.

The goal of this note is to show that the Stratified Foundations also
can be presented in deduction modulo and that the method used in the
original normalization proof can be adapted to construct a pre-model for
this theory. The normalization proof obtained this way is simpler than the
original one because it simply uses the fact that proofs normalize in the
Stratified Foundations if this theory has a pre-model, while a variant of this
proposition needs to be proved in the original proof.

It is worth noticing that the original normalization proof for the Strati-
fied Foundations is already in two steps, where the first is the construction
of a so-called normalization model and the second is a proof that proofs nor-
malize in the Stratified Foundations if there is such a normalization model.
Normalization models are more or less pre-models of the Stratified Founda-
tions. So, we show that this notion of normalization model, that is specific to
the Stratified Foundations, is an instance of a more general notion that can
be defined for all theories modulo, and that the lemma that the existence of
a normalization model implies normalization for the Stratified Foundations
is an instance of a more general theorem that holds for all theories modulo.

The normalization proof obtained this way differs also from the original
one in other respects. First, to remain in first-order logic, we do not use a
presentation of the Stratified Foundations with a binder, but one with com-
binators. To express the Stratified Foundations with a binder in first-order
logic, we could use de Bruijn indices and explicit substitutions along the
lines of [6]. The pre-model construction below should generalize easily to
such a presentation. Second, our cuts are cuts modulo, while the original
proof uses Prawitz’ folding-unfolding cut. It is shown in [4] that the nor-
malization theorems are equivalent for the two notions of cuts, but that the
notion of cut modulo is more general that the notion of folding-unfolding
cut. Third, we use untyped reducibility candidates and not typed ones as
in the original proof. This quite simplifies the technical details.

A last benefit of expressing the Stratified Foundations in deduction mod-
ulo is that we can use the method developed in [5] to organize proof search.
The method obtained this way, that is an analog of higher-order resolution
for the Stratified Foundations, is much more efficient than usual first-order



proof search methods with the comprehension axiom, although it remains
complete as the Stratified Foundations have the normalization property.

1 Deduction modulo

1.1 Identifying propositions

In deduction modulo, the notions of language, term and proposition are that
of first-order logic. But, a theory is formed with a set of axioms I' and a
congruence = defined on propositions. Such a congruence may be defined
by a rewrite systems on terms and on propositions (as propositions contain
binders (quantifiers), these rewrite systems are in fact combinatory reduction
systems [9]). Then, the deduction rules take this congruence into account.
For instance, the modus ponens is not stated as usual

A=B A
B

as the first premise need not be exactly A = B but may be only congruent
to this proposition, hence it is stated

c A
B

ifC=A=1B

All the rules of intuitionistic natural deduction may be stated in a simi-
lar way (figure 1). Classical deduction modulo is obtained by adding the
excluded middle rule (figure 2).
For example, in arithmetic, we can define a congruence with the following
rewrite system
O+y—vy

S(z)+y— Sz +y)
Oxy—0
Sx)xy—=>zxy+y
In the theory formed with a set of axioms I' containing the axiom Vz © = z

and this congruence, we can prove in natural deduction modulo, that the
number 4 is even:

axiom

(x,z = x,4) V-elim

(2,2 x © = 4,2) J-intro

'=Vez==z
'-=2x2=4
I'F=3dx2xx=4




axiomif AeT"and A=B

I'F=B
% =-intro if C = (A = B)

r I—EFCF:FB"E A elimif C = (4 = B)

r FEFAI—:FCFE B A-intro if C = (A A B)
E E i A-elim it C = (A A B)
g E g A-elim if C = (A A B)
E E é V-intro if C = (AV B)
% V-intro if C = (AV B)

[F=D F,z;lt g LBP=C\ limif D= (A v B)
reep
T 4 l-elimif B= L
L Fi g (w, A) V-intro if B = (Vo A) and = ¢ FV/(T)
? E g (2, A, 1) V-elim if B = (Vo A) and C = [t/2]A
g E g (x,A,t) Fintro if B = (3z A) and C = [t/2]A
Tk Cr FS;‘ "= B (4, 4) 3elim if C = (3z A) and = ¢ FV(I'B)

Figure 1: Natural deduction modulo

m B Excluded middle if A = BV —-B

Figure 2: Excluded middle



Substituting the variable = by the term 2 in the proposition 2 x z = 4 yields
the proposition 2 x 2 = 4, that is congruent to 4 = 4. The transformation
of one proposition into the other, that requires several proof steps in usual
natural deduction, is dropped from the proof in deduction modulo.

In this example, all the rewrite rules apply to terms. Deduction modulo
permits also to consider rules rewriting atomic propositions to arbitrary
ones. For instance, in the theory of integral domains, we have the rule

zxXxy=0—=2z=0VvVy=0

that rewrites an atomic proposition to a disjunction.

Notice that, in the proof above, we do not need the axioms of addition
and multiplication. Indeed, these axioms are now redundant: since the
terms 0+ y and y are congruent, the axiom Vy 0+ y = y is congruent to the
axiom of equality Yy y = y. Hence, it can be dropped. Thus rewrite rules
replace axioms.

This equivalence between rewrite rules and axioms is expressed in the
the equivalence lemma that for every congruence =, we can find a theory T
such that I' F= P is provable in deduction modulo if and only if 7T'F P is
provable in ordinary first-order logic [5]. Hence, deduction modulo is not a
true extension of first-order logic, but rather an alternative formulation of
first-order logic. Of course, the provable propositions are the same in both
cases, but the proofs are very different.

1.2 Model of a theory modulo

A model of a congruence = is a model such that if P = ) then for all
assignments, P and () have the same denotation. A model of a theory modulo
I', = is a model of the theory I' and of the congruence =. Unsurprisingly,
the completeness theorem extends to classical deduction modulo [3] and a
proposition P is provable in the theory I', = if and only if it is valid in all
the models of I', =.

1.3 Normalization in deduction modulo

Replacing axioms by rewrite rules in a theory changes the structure of proofs
and in particular some theories may have the normalization property when
expressed with axioms and not when expressed with rewrite rules. For in-
stance, from the normalization theorem for first-order logic, we get that any
proposition that is provable with the axiom A < (B A —A) has a normal



proof. But if we transform this axiom into the rule A — B A = A (Crabbé’s
rule [1]) the proposition =B has a proof, but no normal proof.

We have proved a normalization theorem: proofs normalize in a theory
modulo if this theory has a pre-model [7]. A pre-model is a many-valued
model whose truth values are reducibility candidates, i.e. sets of proof-
terms. Hence we first define proof-terms, then reducibility candidates and
at last pre-models.

Definition 1.1 (Proof-term) Proof-terms are inductively defined as fol-
lows.

(

Each proof-term construction corresponds to a natural deduction rule:
terms of the form « express proofs built with the axiom rule, terms of
the form Aa 7 and (7 #') express proofs built with the introduction and
elimination rules of the implication, terms of the form (m,7') and fst(x),
snd(m) express proofs built with the introduction and elimination rules of
the conjunction, terms of the form i(w),j(7) and (§ m amy Bms) express
proofs built with the introduction and elimination rules of the disjunction,
terms of the form (botelim 7) express proofs built with the elimination rule
of the contradiction, terms of the form Az 7 and (7 t) express proofs built
with the introduction and elimination rules of the universal quantifier and
terms of the form (¢, ) and (ezelim m zarn') express proofs built with the
introduction and elimination rules of the existential quantifier.

Definition 1.2 (Reduction) Reduction on proof-terms is defined by the
following rules that eliminate cuts step by step.

(A m o) D> [ma/a)m

fst({my,ma)) > m
snd({my,ma)) > o

(6 i(m) amy Brs) > [m /amy



(0 j(m) amy Brz) > [m1/B]n3
Az w t) > [t/z]r

(exelim (t,m) azma) > [t/x, T /a]ms

Definition 1.3 (Reducibility candidates) A proof-term is said to be neu-
tral if it is a proof variable or an elimination (i.e. of the form (w «'), fst(mw),
snd(m), (0 m amy Brs), (botelim «), (7 t), (exelim 7 zax')), but not an
introduction. A set R of proof-terms is a reducibility candidate if

e if m € R, then m is strongly normalizable,
e ifmt € R and w > 7' then 7’ € R,

e if w is neutral and if for every ©' such that n>'7', 7' € R then € R.
We write C for the set of all reducibility candidates.

Definition 1.4 (Pre-model) A pre-model for a language L is given by:
e o set M,
e for each function symbol f of arity n a function f from M™ to M,

e for each predicate symbol Q) a function Q from M™ to C.

Definition 1.5 (Denotation in a pre-model) Let P be a pre-model, t be
a term and @ an assignment mapping all the free variables of t to elements
of M. We define the object [[t]]?; by induction over the structure of t.

o [z 7:; = ¢(z),

o [f(ti,-- - t)]Z = f([]7,- - [taD)-

Let P be a proposition and @ an assignment mapping all the free vari-
ables of P to elements of M. We define the reducibility candidate [[P]]Z; by
induction over the structure of P.

e If P is an atomic proposition Q(t1,...,t,) then [[P]]E = Q([[tl]]g, R [[tn]]g)

e I[f P=(Q = R then [[P]]E is the set of proofs m such that 7 is strongly
normalizable and whenever it reduces to \am, then for every ©' in

[QIF, [ /almy is in [R]L.



o If P=QAR then [[P]]g s the set of proofs w such that w is strongly
normalizable and whenever it reduces to (mwy,m) then 7 is in [[Q]]Z;
and my is in [R]?.

e I[fP=GQV R then [[P]]?; is the set of proofs w such that w is strongly
normalizable and whenever it reduces to i(m1) (resp. j(mg)) then m

(resp. m3) is in [[P]]Z; (resp. [[Q]]Z;)
o If P= 1 then [[P]]z is the set of strongly normalizable proofs.

o If P=VYxz Q then [[P]]Z; s the set of proofs w such that w is strongly
normalizable and whenever it reduces to Ax w1 then for every term t

and every element a of M [t/x]|m is in [[Q]]Z;_a/m.

o If P =3z ( then [[P]]E is the set of proofs ™ such that m is strongly
normalizable and whenever it reduces to (t,m) then there exists an
element a in M such that m is in [[Q]]?;+a/$.

Definition 1.6 A pre-model is said to be a pre-model of a congruence = if

when A = B then for every assignment o, [[A]]Z; = [[B]]Z;.

Theorem 1.1 (Normalization) /7] If a congruence = has a pre-model all
proofs modulo = strongly normalize.

2 The Stratified Foundations

2.1 The Stratified Foundations as a first-order theory

Definition 2.1 (Stratifiable proposition)
A proposition P in the language € is said to be stratifiable if there exists
a function S mapping every variable (bound or free) of P to a natural number

in such a way that every atomic proposition of P, x € y is such that S(y) =
S(z)+ 1.

For instance, the proposition
Vo(wez e vey) =V (zew=y € w)

is stratifiable (take, for instance, S(v) =4, S(x) = S(y) = 5, S(w) = 6) but
not the proposition

Vo(veEr oS vEy) =T EY



Definition 2.2 (The stratified comprehension scheme)
For every stratifiable proposition P whose free variables are among 1, ..., Ty, Tyl
we take the aziom

Vay ... Vo, 3z Ve, (241 € 2 P)

Definition 2.3 (The skolemized stratified comprehension scheme)

When we skolemize this aziom we introduce for each stratifiable propo-
sition P in the language € and sequence of variables xy,. .., Ty, Ty such
that the free variables of P are among x1,...,Tn, Tny1, o function symbol
Jar,anansr,P and the aziom

Vo oo Vo, Veppr (Zng1 € farenensn, P(@15 -2, 2n) & P)

2.2 The Stratified Foundations as a theory modulo

Now we want to replace the axiom scheme above by a rewrite rule, defining
a congruence on propositions, so that the Stratified Foundations are defined
as an axiom free theory modulo.

Definition 2.4 (The rewrite system R)
tnt1 € forrananis,P(Eseoostn) = [t /21,0ty /T, byt [T ga | P
Proposition 2.1 The rewrite system R is confluent.
Proof. 1t is an orthogonal combinatory reduction system [9]. O
Proposition 2.2 The rewrite system R is terminating.

Proof. If A is an atomic proposition we write ||A|| for the number
of function symbols in A. If A is a proposition, containing the atomic
propositions Aj,..., A, we write A° for the multiset of natural numbers
{IJA1ll,. .., lAp|l}. We show that if a proposition A reduces in one step to a
proposition B then B° < A° for the multiset ordering.

If the proposition A reduces in one step to B, there is an atomic propo-
sition of A, say Ay, that has the form ¢,1 € fu, . 4, enir,P(t1,---,t,) and
reduces to By = [t1/21,...,tn/%n, tnt1/Tns1]P. Every atomic proposition
b of By has the form [t;/z1,...,t, /%0, tht1/Tns1]a where @ is an atomic
proposition of P. The proposition a has the form z; € z; for distinct ¢ and
j (since P is stratifiable). Hence b has the form t; € ¢; and ||b]| < ||A1]].
Therefore B° < A°. O

Proposition 2.3 A proposition P is provable from the skolemized compre-
hension scheme if and only if it is provable modulo the rewrite system R.



2.3 Consistency
2.3.1 Automorphisms of models of set theory

If M is a model of set theory we write M for the set of elements of the
model, €4 for the denotation of the symbol € in this model, g, for the
powerset in this model, etc. We write also [[P]]QA for the denotation of a
proposition P for the assignment .

The proof of the consistency of the Stratified Foundations rests on the
existence of a model of Zermelo’s set theory, such that there is a bijection o
from M to M and a family v; of elements of M, i € Z such that

a €z b if and only if oa €xq ob
OUV; = Vi1
Vi CM Vit
pm(vi) Cm vipa
The existence of such a model is proved in [8].

Using the fact that M is a model of the axiom of extensionality, we prove
that a Caq b if and only if oa Cyq b, o{a, b}y = {oa,ob}rq, o{a, by =
(oca,ob)pm, opla) = p(oa), etc.

For the normalization proof, we will further need that M is an w-model.
We define 0 = 0pq, n+1 =7nUpr {R}aq. A w-model is a model such that
a € p Ny if and only if there exists n in N such that ¢ = 7. The existence
of such a model is also proved in [8] (see also [2]).

Using the fact that M is a model of the axiom of extensionality, we prove
that o ,r = D¢ and then, by induction on n that om = 7.

Notice that since paq(v;) Cap viv1, O Eamq v; and for all n, T Exq v;.
Hence as the model is an w-model Nas Caq v;.

In an w-model, we can identify the set N of natural numbers with the
set of objects a in M such that ¢ €y Npyg. To each proof-term we can
associate a natural number n (its Godel number) and then the element 7 of

M. Proof-terms, their Godel number and the encoding of this number in
M will be identified in the following.

2.3.2 A model

Let U be the set of elements a of M such that a €4 vg.

Definition 2.5 Let P be a proposition in the language € and ¢ be an as-
signment. We define the value [P], as follows.
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o If P =ux; € zj then [P, = 1 if (z;) €Em op(zj) and [Pl, = 0
otherwise.

e If P=Q = R then [Pl, =1 if [Ql, =0 or [R], =1 and [P], = 0
otherwise.

o If P=QAR then [P], =1 if [Ql, =1 and [R], =1 and [P], =0
otherwise.

e If P=QVR then [Pl, =1if [Q], =1 or [R], =1 and [P], =0
otherwise.

e if P=_1 then [P], = 0.

o If P =Yz Q then [Pl, =1 ifforalla inU, [Ql,1q/» =1 and [P], =0
otherwise.

o If P =3z Q then [P], = 1 if there exists a in U such that [Q],4q/z = 1
and [P], = 0 otherwise.

Proposition 2.4 For every stratifiable proposition P whose free variables
are among Ti,...,Tn,Tpt1 and for all ay,... ay in U, there exists an el-

ement b in U such that for every anqq1 in U, apy1 €aq ob if and only if
[P] =1

a1/T1, 00 [T 1/ Trt1
Proof.  Let |P| be the proposition defined as follows.

e |P| = P if P is atomic,

o IP = Q=PI = |QL, IPAQ| = [PIAIQl, [PVQ| = [PIVIQ, L] = L,
o |V P| =V (s € Eg) = P)),

e 32 P| = 3z ((z € Eg() A |P)).

Notice that the free variables of | P| are among Fy, ..., Ey, 1, ..., Ty, Tyl
We let
Y = al/$1, cee 7an/xn7an+1/xn+1
k k k
Y =wo/Fo,...,vn/Epn,0" a1/z1,...,0"" an )Ty, 0" g1 [T

where k1 = S(x1),...,knr1 = S(zny1). We check, by induction over the
structure of P, that if P is a stratifiable proposition, then

[IPI" =[Pl

11



e If P is an atomic proposition z; € z;, then k; = k; + 1, [[|P|]]$’l =1
if and only if o*ia; € g o*i a; if and only if a; €Exq 0aj, if and only if
[P, = 1.

o if P=Q = Rthen[|P[[}! = lifand only if [|Q[]}* = O or [|R[J} =1
if and only if [Q], = 0 or [R], = 1 if and only if [P], = 1.

o if P = QAR then [|P|]* = 1if and only if [|Q[[}* = 1 and [|R[] = 1
if and only if [Q], = 1 and [R], = 1 if and only if [P], = 1.

e if P = QVR then [|P|])" = 1if and only if [|Q[[* = 1 or [| R[]} =1
if and only if [Q], = 1 and [R], = 1 if and only if [P], = 1.

o [0y =0=[L].

e if P =Vz (Q then [[|P|MA = 1 if and only if for every ¢ in M such that
¢ EM Uk, [[|Q\]]mc/m =1, if and only if for every e in U, [HQH]m—rrke/z =
1 if and only if for all e in U, [Q]y4/, = 1 if and only if [P], = 1.

e if P =3z Q then [|P[]}" = 1 if and only if there exists ¢ in M such
that ¢ €xq v and [HQH]Q{LC/I = 1, if and only if there exists e in U
such that [HQH]Q’LT,CE/I = 1 if and only if there exists e in U such that
[Q]ypte/e = 1 if and only if [P], = 1.

Then, the model M is a model of the comprehension scheme. Hence, it
is a model of the proposition

VEy ... VE, Vz1 ... Vo, Yy 32 V2p11 (Zny1 € 2 S (Tpe1 € Yy A|P)))
i.e.
IVEo ... VE, V1 ... Vo, Yy 32V, (Tny € 2 (241 € yAP))M =1

Hence, there exists an object by such that
M
[(zn41 € 2 (241 €Y A |P|))H¢+ukn+l/y+bg/z =1

We have o¥n+1a,, 1 € by ifand only if 0%+ a,, 1 € rq vy, and [HP\M" =1
thus a,41 €xq o Frt1by if and only if a,,; is in U and [P], = 1. We take
b = o Fnt1tDpg For all an4q in U, we have a,41 €xq ob if and only if
[Ply, = 1.

Notice finally that by € g a1 (vk,,, ), thus by €aq vg, 41, b Eaq vo and
hence b is in U. O

12



Definition 2.6 (Jensen’s model) The model U = (U, Eu,th___,wm%]?) is
defined as follows. The base set is U. The relation €y is defined by a €y b
if and only if a €xpq ob. The function fwl,...,wn,wn+1,P maps (ai,-..,ay)
to an object b such that for all any1 in U, any1 €pm ob if and only if
P

al/xl,...,an/ajn,an+1/In+1 :

Proposition 2.5 The model U is a model of the Stratified Foundations.

Proof. By induction over the structure of P, if P is a proposition in the
language €, its denotation in U for the assignment ¢ is [P],. Then

[[tn+1 € fx1,---,$n,xn+1,P(t1= ce ,tn)]]l;f =1

if and only if

[[tn+1]]g Em Ufm,---,lin,In+1,P([[t1]]ga R [[tn]]g)

if and only if
[Pl foralta T fon It 1 i = L
if and only if
LPTgbs 1t 1ot T s B =
if and only if
[t /21, - - tn/@n, g1 /s |PIYS =1

Hence, if A = B then A and B have the same denotation. O

2.4 Normalization

We now want to construct a pre-model for the Stratified Foundations.

Let u; = v3; and 7 = ¢3. The function 7 is an automorphism of M,
Tu; = i1, i Sy uirr and pag (P (P (wi))) S wigr

Notice that as M is an w-model, for each recursively enumerable relation
R on natural numbers, there is an object r in M such that R(ay,...,ay) if
and only if (aq,...,a,)m Em 7. In particular there is

e an object Proof such that m € Proof if and only if 7 is (the encod-
ing in M of the Gidel number of) a proof,

e an object T'erm such that t €, Term if and only if ¢ is (the encoding
of the Gédel number of) a term,

13



an object Subst such that (7, a, w1, m2) pm Epq Subst if and only if 7, m;
and g are (encodings of Godel numbers of) proofs, « is (the encoding
of the Godel number of) a proof variable and 7 = [my/a]my,

an object Subst’ such that (7, z,m1,t) s Epq Subst’ if and only if T and
71 are (encodings of the Godel numbers of) proofs, z is (the encoding
of the Godel number of) a term variable and ¢ (the encoding of the
Godel number of) a term and 7 = [t/z]|m,

an object Red such that (m, 7)1 € Red if and only if 7 and 7’ are
(encodings of Godel numbers of) proofs and 7 >* 7y,

an object Sn such that m € Sn if and only if 7 is (the encoding of
the Godel number of ) a strongly normalizable proof,

an object AndI such that (m, m, )\ Epmq Andl if and only if m, m
and 7y are (encodings of Godel numbers of) proofs and 7 = (71, m3),

an object OrIl (resp. OrlI2) such that (m,m1)p €am OrIl (resp.
(m,m)m Epm OrI2) if and only if # and m (resp. m and my) are
(encodings of Godel numbers of) proofs and © = i(my) (resp. n =

j(m2)),

an object Foralll such that (m, a, 1) p €Epq Foralll if and only m and
71 are (encodings of Gédel numbers of) proofs, « is (the encoding of
the Godel number of) a proof variable, and m = Aamy,

an object Existsl such that (7, t,m ) Epm Eaistsl if and only if 7
and 7 are (encodings of Godel numbers of) proofs, ¢ is (the encoding
of the Godel number of) a term and 7 = (¢, m).

Notice also that, since M is a model of the comprehension scheme, there
is an object C'r such that a € 54 Cr if and only if « is a reducibility candidate
(i.e. the set of objects 3 such that 8 € « is a reducibility candidate).

Definition 2.7 (Admissible) An element o of M is said to admissible at
level i if « is a set of pairs (7, B)p where w is a proof and [ an element
of u; and and for each (B in u; the set of m such that (w,B)pm Em @ is a
reducibility candidate.

Notice that if R is a reducibility candidate (for instance the set of all

strongly normalizable proofs) then the set R X rq u; is admissible at level i.
Hence, for each integer i, there are elements of M admissible at level 1.

14



Proposition 2.6 There is an element A; in M such that o € A; if and
only if a is admissible at level 1.

Proof. An element a of M admissible at level ¢ if and only if

@ €Em pm(Proof x a ug)
AVS (,3 Em u; = IAC (C SV CT/\((?T,ﬁ)M EM QS T Epg C)))

Hence, as M is a model of the comprehension scheme, there is an element
A; in M such that a €4 A; if and only if « is admissible at level . O
Notice that « € T7A; if and only if & € A;;1. Hence as M is a model of
the extensionality axiom, 7A4; = A;41.
Notice, at last, that A; Caq par(Proof X i ui) Cag o (i X aq i) S
prm (m (P (1i))) S g

Proposition 2.7 If 8 €xr A; and o €Epq Ajy1 then the set of m such that
(m,B8) Epm @ is a reducibility candidate.

Proof. As a €x Aj1 and B €aq A; Caq iy, the set of m such that
(m, B) Epm @ is a reducibility candidate. O
Let N be the set of elements of M that are admissible at level 0.

Definition 2.8 Let P be a proposition in the language €, ¢ be an assign-
ment, we define the set [P], of elements of M as follows.

o If P = w; € xj then [P], is the set of proofs m such that (7, p(x;)) m Em
Tp(z5).
o If P=Q = R then [P], is the set of proofs ™ such that m is strongly

normalizable and 7 reduces to Aamy then for every n' in [A],, [7'/a]m
is in [B],.

o If P = QAR then [P, is the set of m such that 7 is strongly normal-
izable and whenever m reduces to (mwy, ) then my is in [Q], and my is

in [R],.

e If P = QV R then [P, is the set of m such that 7 is strongly nor-
malizable and whenever © reduces to i(m) (resp. j(mwa)) then m (resp.

my) is in [Al, (resp. [Bly).
o If P = 1 then [P], is the set of strongly normalizable proofs.

o If P =V Q then [P], is the set of proofs m such that m is strongly
normalizable and whenever w reduces to Az ' then for every element
a in N and every term t, ©'[t/x] is in [P, i q/s-
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o If P =3z Q then [P], is the set of proofs m such that m is strongly
normalizable and whenever © reduces to (t,m ) then there exists an
element a in N such that 71 is in [A],qa)e-

Proposition 2.8 For every stratifiable proposition P whose free variables
are among Ti,...,Tn,Tnr1 and for all ay,...,an in N, there exists an ele-
ment b in N such that for every a,41 in N, (7, an4+1)pm Epm T if and only
if T is in [P]a1/zl,...,an+1/zn+1'

Proof. Let |P| be the proposition (read p realizes P) defined as follows.

o |z; € x;| = (p,x;) € xj,

|IP = Q| =p € sn AVq Yw Vr ({p,q) € red A {q,w,r) € impl) =
Vs [s/p]|P| = Vt (t,r,w,s) € subst = [t/p]|Q]),

e |[PANQ| =p € snAVqgVrVs (({p,q) € red A {q,r,s) € andl) =
[r/pPIIPI A [s/pl|Q),
e |[PVQ|=peEsnAVqVr (((p.q) € red A(q,r) € oril) = [r/p]|P|) A

Vg Vr (((p,q) € red A {q,r) € orl2) = [r/p]|Q]),

|L| =p € sn,

Vz P| = p € sn AVq Yw Vr ((p,q) € red A ({(q,w,r) € foralll) =
Vo Vy (z € EgyAy € Term) = Vs ((s,w,y,r) € subst’ = [r/p,z/x]|P])),

|3z P| =p € snAVqVtVr ((p,q) € redA({q,t,r) € exists]) = x = €
Eg(g) = [r/p,x/x]|P])).

Notice that the free variables of | P| are among term, subst, subst’, red, sn,
impl,andl,orll,orl2, foralll existsl, p, Eo, ..., Ep,1,..., Ty, Tnil-
We let
Y = Cll/fI?l, cee 7an/$naan+1/xn+1

Y = Term/term, Subst/subst, Subst'/subst', Red/red, Sn/sn,
Impl Jimpl, AndI Jandl,OrI1/orIl,Ori2/or12, Foralll]foralll, Exists] [exists],
Ao/ Eo, ..., Am/En, Tklal/xl, ... ,Tk”an/xn, Tk”“anﬂ/xn“
We check, by induction over the structure of P, that if P is a stratifiable

proposition, then the set of proofs m such that [[\P\]]ﬁﬂ/p =1is [P],.
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If P is an atomic proposition z; € xj, then k; = k; + 1, we have
= 1 if and only if (7,7 a;)pm €m 7% a; if and only i

P4, , = 1 if and only if i %iq; if and only if
k k k

(thim, m8ia;) g € TFaj if and only if 75 (7, a;)pm € i@ if and

only if (m,a;) m €Em 7a; if and only if 7 is in [P],.

it P = (@ = R then we have [[\P\]]Q’:_ﬂ/p = 1 if and only if 7 is strongly
normalizable and whenever 7 reduces to Aa m; then for all ©' such
that [[|Q\]]wM+7r,/p = 1 we have [[|R\]]wM+[ﬂ,/aWp = 1 if and only if 7 is
strongly normalizable and whenever 7 reduces to Az m; then for all 7’/
in [Qly, [7'/a]m is in [R], if and only if 7 is in [P],,.

If P =Q A R then we have [[P]]ﬁ_ﬂ/p = 1 if and only if 7 is strongly
normalizable and whenever m reduces to (my,me) then [[Q]]{p\im/p =

1 and [[R]]{D\im/p = 1 if and only if 7 is strongly normalizable and
whenever 7 reduces to (m,m2) then m is in [Q], and 7y is in [R], if
and only if 7 is in [P],.

If P=QV R then we have [[PM/}HT/IJ = 1 if and only if 7 is strongly
normalizable and whenever 7 reduces to i(m) (resp. j(me)) then
[[P]]wM+7r1/p = 1 (resp. [[Q]]ﬁm/p = 1) if and only if 7 is strongly
normalizable and whenever m reduces to i(m;) (resp. j(ms)) then 7y is
in [P], (resp. [Q],) if and only if 7 is in [P],.

If P =1 then [[P]]{p\iﬂ/p =1 if and only if 7 is strongly normalizable
if and only if 7 is in [P],.

it P =Vz Q, then [[|P|]]$17r/p = 1 if and only if 7 is strongly normal-
izable and whenever 7 reduces to Az m, for all term ¢ and for all ¢
in M such that.c eEm Ag, [HQH]Qic/L[t/ﬂm/p = 1 if and only if 7 is
strongly normalizable and whenever 7 reduces to Az w1, for all ¢ and

: M _
for all e in NV [[‘Q|]]1/;+Tke/m+[t/z}m/p =
normalizable and whenever m reduces to Az 71, for all ¢ and for all e
in N, [t/z|m € [Q]yyep if and only if 7 is in [P],.

1 if and only if 7 is strongly

if P =3z @, then [[|P|]]$’j_7r/p = 1 if and only if 7 is strongly normal-
izable and whenever 7 reduces to (t,7), there exists a ¢ in M such
that ¢ epq Ap and H‘Q|M/~lkc/m,[t/m}7r1/p = 1 if and only if 7 is strongly
normalizable and whenever m reduces to (t,m), there exists a e in N
M

such that [[|Qmw+’rke/m+[t/r}7r1/p
malizable and whenever 7 reduces to (¢, m), there exists a e in N,
[t/z]m1 € [Qlptess if and only if 7 is in [Py,

= 1 if and only if 7 is strongly nor-
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Then, the model M is a model of the comprehension scheme. Hence, it
is a model of the proposition

VEy ... VE, Vz1 ... Yo, 32V Ve, 11 (p, 2pt1) € 2 < (P, 2pi1) € NXUA|P|
ie.
IVEy ... VE, V1 ... Y&, 32V¥p Vi1 (D, Tnp1) € 2 < (p,2n41) € NXUA|P|JM =1

Thus there exists a by such that
M
[[(puxn+1> €z (p,$n+1> € NM x U A |P|]]1/)—|—b0/z,ukn+1+1/U,7r/p =1

We have <7r,7k”+1an+1>M Em bg if and only if Tk"+1(ln+1 EM Uk, 141
and [[|P|]]ﬁ_ﬂ/p = 1. Thus (7, any1)m Epm TF+1bg if and only if a1 Epq
and 7 is in [P],.

We take b = T’(k”““)bo and for all a,,11 in N we have (7, an4+1) M Em
7b if and only if 7 is in [P],.

Finally, notice that by is a set of pairs (m, f),q where 7 is a proof and
B an element of w1 and for each 8 in wug, 1 the set of m such that
(m, BYm Enm bo is [[|P|M1ﬁ/$kn+lm/p = 1, hence it is a reducibility candidate.
Hence by €apq A, 41 and bisin N. O

Definition 2.9 (Crabbé’s pre-model) The pre-model N = (N, €xr, fuy..onu.p)
is defined as follows. The base set is N. If a and B are elements of N we

take €x (o, B) = {m | (m a)p Exm 7}
The function fz,.. cpanir,P Maps (a1,...,a,) to the object b such that
forallapsq in N, (m,ani1)m Em 7 if and only if 7 is in [P]

1 /%1y [T Oy 1/ Ty g1 *

Proposition 2.9 The pre-model N is a pre-model of the Stratified Founda-
tions.

Proof. By induction over the structure of P, if P is a proposition in the
language €, its denotation in A for the assignment ¢ is [P],. Then 7 is in

[[tn+1 E fIl,...,In,In+1,P(t17 st 7tn)]]$[ lf and Only lf

<7T7 [WH]W)M Em Tfm,---,lin,lin+1,P([[t1]]gu IR [[tn]]g)
if and only if 7 is in [P][[tl]]{;f/m,---,[tn]]ﬁf/zn,[tn+1]]éf/a:n+1 if and only if 7 is in

HP]]%]]{;//M,---,[[tn]]éf/zn,[[tn+1]]$f/zn+1 ifand only if wisin [[t1/z1,. .., tn/%n, tn+1/r1;n+ﬂP]]{2/.
Hence, if A = B then A and B have the same denotation. O

Corollary 2.1 All proofs in the Stratified Foundations strongly normalize.
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Conclusion

In this note, we have have shown that the Stratified Foundations can be
expressed in deduction modulo and that the normalization proof for this
theory be decomposed into two lemmas: one expressing that it has a pre-
model and the other that proof normalize in this theory if it has a pre-model.
This second lemma is not specific to the Stratified Foundations, but holds
for all theories modulo.

The first lemma does not seem to be specific either. Indeed, as noticed
by Crabbé, the model M could be replaced by a weakly extensional w-model
of the Stratified Foundations. The idea of this normalization proof is hence
to construct a pre-model within an w-model of some theory with the help of
formal realizability. The generality of this idea reamains to be investigated.
Thus, this example contributes to explore of the border between the theories
modulo that have the normalization property and those that do not.
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