
The Strati�ed Foundations as a theory moduloGilles DowekAbstractThe Strati�ed Foundations are a restriction of naive set theorywhere the comprehension scheme is restricted to strati�able propo-sitions. It is known that this theory is consistent and that proofsstrongly normalize in this theory.Deduction modulo is a formulation of �rst-order logic with a generalnotion of cut. It is known that proofs normalize in a theory modulo ifit has some kind of many-valued model called a pre-model.We show in this note that the Strati�ed Foundations can be pre-sented in deduction modulo and that the method used in the originalnormalization proof can be adapted to construct a pre-model for thistheory.The Strati�ed Foundations are a restriction of naive set theory where thecomprehension scheme is restricted to strati�able propositions. This theoryis consistent [8] and proofs in this theory strongly normalize [2], while naiveset theory is contradictory and the consistency of the Strati�ed Foundationstogether with the extensionality axiom - the so-called New Foundations - isopen.The Strati�ed Foundations extend simple type theory and the normal-ization proof for the Strati�ed Foundations, like that of type theory usesGirard's reducibility candidates. These two proofs, like all proofs followingthe line of Tait and Girard, have some parts in common. This motivatesthe investigation of general normalization theorems that have normalizationtheorems for speci�c theories as consequences. The normalization theoremfor deduction modulo [7] is an example of such a general theorem. It con-cerns theories expressed in deduction modulo [5] that are �rst-order theorieswith a general notion of cut. According to this theorem, proofs normalize ina theory in deduction modulo if this theory has some kind of many-valuedINRIA-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France.Gilles.Dowek@inria.fr, http://logical.inria.fr/~dowek



model called a pre-model. For instance, simple type theory can be expressedin deduction modulo [5, 6] and it has a pre-model [7, 6] and hence it hasthe normalization property. The normalization proof obtained this way ismodular: all the lemmas speci�c to type theory are concentrated in thepre-model construction while the theorem that the existence of a pre-modelimplies normalization is generic and can be used for any other theory indeduction modulo.The goal of this note is to show that the Strati�ed Foundations alsocan be presented in deduction modulo and that the method used in theoriginal normalization proof can be adapted to construct a pre-model forthis theory. The normalization proof obtained this way is simpler than theoriginal one because it simply uses the fact that proofs normalize in theStrati�ed Foundations if this theory has a pre-model, while a variant of thisproposition needs to be proved in the original proof.It is worth noticing that the original normalization proof for the Strati-�ed Foundations is already in two steps, where the �rst is the constructionof a so-called normalization model and the second is a proof that proofs nor-malize in the Strati�ed Foundations if there is such a normalization model.Normalization models are more or less pre-models of the Strati�ed Founda-tions. So, we show that this notion of normalization model, that is speci�c tothe Strati�ed Foundations, is an instance of a more general notion that canbe de�ned for all theories modulo, and that the lemma that the existence ofa normalization model implies normalization for the Strati�ed Foundationsis an instance of a more general theorem that holds for all theories modulo.The normalization proof obtained this way di�ers also from the originalone in other respects. First, to remain in �rst-order logic, we do not use apresentation of the Strati�ed Foundations with a binder, but one with com-binators. To express the Strati�ed Foundations with a binder in �rst-orderlogic, we could use de Bruijn indices and explicit substitutions along thelines of [6]. The pre-model construction below should generalize easily tosuch a presentation. Second, our cuts are cuts modulo, while the originalproof uses Prawitz' folding-unfolding cut. It is shown in [4] that the nor-malization theorems are equivalent for the two notions of cuts, but that thenotion of cut modulo is more general that the notion of folding-unfoldingcut. Third, we use untyped reducibility candidates and not typed ones asin the original proof. This quite simpli�es the technical details.A last bene�t of expressing the Strati�ed Foundations in deduction mod-ulo is that we can use the method developed in [5] to organize proof search.The method obtained this way, that is an analog of higher-order resolutionfor the Strati�ed Foundations, is much more e�cient than usual �rst-order2



proof search methods with the comprehension axiom, although it remainscomplete as the Strati�ed Foundations have the normalization property.1 Deduction modulo1.1 Identifying propositionsIn deduction modulo, the notions of language, term and proposition are thatof �rst-order logic. But, a theory is formed with a set of axioms � and acongruence � de�ned on propositions. Such a congruence may be de�nedby a rewrite systems on terms and on propositions (as propositions containbinders (quanti�ers), these rewrite systems are in fact combinatory reductionsystems [9]). Then, the deduction rules take this congruence into account.For instance, the modus ponens is not stated as usualA) B ABas the �rst premise need not be exactly A) B but may be only congruentto this proposition, hence it is statedC A if C � A) BBAll the rules of intuitionistic natural deduction may be stated in a simi-lar way (�gure 1). Classical deduction modulo is obtained by adding theexcluded middle rule (�gure 2).For example, in arithmetic, we can de�ne a congruence with the followingrewrite system 0 + y ! yS(x) + y ! S(x+ y)0� y ! 0S(x)� y ! x� y + yIn the theory formed with a set of axioms � containing the axiom 8x x = xand this congruence, we can prove in natural deduction modulo, that thenumber 4 is even: axiom� `� 8x x = x (x; x = x; 4) 8-elim� `� 2� 2 = 4 (x; 2� x = 4; 2) 9-intro� `� 9x 2� x = 43



axiom if A 2 � and A � B� `� B�; A `� B )-intro if C � (A) B)� `� C� `� C � `� A)-elim if C � (A) B)� `� B� `� A � `� B ^-intro if C � (A ^ B)� `� C� `� C ^-elim if C � (A ^ B)� `� A� `� C ^-elim if C � (A ^ B)� `� B� `� A _-intro if C � (A _ B)� `� C� `� B _-intro if C � (A _ B)� `� C� `� D �; A `� C �; B `� C _-elim if D � (A _ B)� `� C� `� B ?-elim if B � ?� `� A� `� A (x;A) 8-intro if B � (8x A) and x 62 FV (�)� `� B� `� B (x;A; t) 8-elim if B � (8x A) and C � [t=x]A� `� C� `� C (x;A; t) 9-intro if B � (9x A) and C � [t=x]A� `� B� `� C �; A `� B (x;A) 9-elim if C � (9x A) and x 62 FV (�B)� `� BFigure 1: Natural deduction moduloB Excluded middle if A � B _ :B� `� AFigure 2: Excluded middle4



Substituting the variable x by the term 2 in the proposition 2�x = 4 yieldsthe proposition 2 � 2 = 4, that is congruent to 4 = 4. The transformationof one proposition into the other, that requires several proof steps in usualnatural deduction, is dropped from the proof in deduction modulo.In this example, all the rewrite rules apply to terms. Deduction modulopermits also to consider rules rewriting atomic propositions to arbitraryones. For instance, in the theory of integral domains, we have the rulex� y = 0! x = 0 _ y = 0that rewrites an atomic proposition to a disjunction.Notice that, in the proof above, we do not need the axioms of additionand multiplication. Indeed, these axioms are now redundant: since theterms 0+ y and y are congruent, the axiom 8y 0+ y = y is congruent to theaxiom of equality 8y y = y. Hence, it can be dropped. Thus rewrite rulesreplace axioms.This equivalence between rewrite rules and axioms is expressed in thethe equivalence lemma that for every congruence �, we can �nd a theory Tsuch that � `� P is provable in deduction modulo if and only if T � ` P isprovable in ordinary �rst-order logic [5]. Hence, deduction modulo is not atrue extension of �rst-order logic, but rather an alternative formulation of�rst-order logic. Of course, the provable propositions are the same in bothcases, but the proofs are very di�erent.1.2 Model of a theory moduloA model of a congruence � is a model such that if P � Q then for allassignments, P andQ have the same denotation. Amodel of a theory modulo�;� is a model of the theory � and of the congruence �. Unsurprisingly,the completeness theorem extends to classical deduction modulo [3] and aproposition P is provable in the theory �;� if and only if it is valid in allthe models of �;�.1.3 Normalization in deduction moduloReplacing axioms by rewrite rules in a theory changes the structure of proofsand in particular some theories may have the normalization property whenexpressed with axioms and not when expressed with rewrite rules. For in-stance, from the normalization theorem for �rst-order logic, we get that anyproposition that is provable with the axiom A , (B ^ :A) has a normal5



proof. But if we transform this axiom into the rule A! B ^ :A (Crabb�e'srule [1]) the proposition :B has a proof, but no normal proof.We have proved a normalization theorem: proofs normalize in a theorymodulo if this theory has a pre-model [7]. A pre-model is a many-valuedmodel whose truth values are reducibility candidates, i.e. sets of proof-terms. Hence we �rst de�ne proof-terms, then reducibility candidates andat last pre-models.De�nition 1.1 (Proof-term) Proof-terms are inductively de�ned as fol-lows.� ::= �j �� � j (� �0)j h�; �0i j fst(�) j snd(�)j i(�) j j(�) j (� �1 ��2 ��3)j (botelim �)j �x � j (� t)j ht; �i j (exelim � x��0)Each proof-term construction corresponds to a natural deduction rule:terms of the form � express proofs built with the axiom rule, terms ofthe form �� � and (� �0) express proofs built with the introduction andelimination rules of the implication, terms of the form h�; �0i and fst(�),snd(�) express proofs built with the introduction and elimination rules ofthe conjunction, terms of the form i(�); j(�) and (� �1 ��2 ��3) expressproofs built with the introduction and elimination rules of the disjunction,terms of the form (botelim �) express proofs built with the elimination ruleof the contradiction, terms of the form �x � and (� t) express proofs builtwith the introduction and elimination rules of the universal quanti�er andterms of the form ht; �i and (exelim � x��0) express proofs built with theintroduction and elimination rules of the existential quanti�er.De�nition 1.2 (Reduction) Reduction on proof-terms is de�ned by thefollowing rules that eliminate cuts step by step.(�� �1 �2)� [�2=�]�1fst(h�1; �2i)� �1snd(h�1; �2i)� �2(� i(�1) ��2 ��3)� [�1=�]�26



(� j(�1) ��2 ��3)� [�1=�]�3(�x � t)� [t=x]�(exelim ht; �1i �x�2)� [t=x; �1=�]�2De�nition 1.3 (Reducibility candidates) A proof-term is said to be neu-tral if it is a proof variable or an elimination (i.e. of the form (� �0), fst(�),snd(�), (� �1 ��2 ��3), (botelim �), (� t), (exelim � x��0)), but not anintroduction. A set R of proof-terms is a reducibility candidate if� if � 2 R, then � is strongly normalizable,� if � 2 R and � � �0 then �0 2 R,� if � is neutral and if for every �0 such that ��1�0, �0 2 R then � 2 R.We write C for the set of all reducibility candidates.De�nition 1.4 (Pre-model) A pre-model for a language L is given by:� a set M ,� for each function symbol f of arity n a function f̂ from Mn to M ,� for each predicate symbol Q a function Q̂ from Mn to C.De�nition 1.5 (Denotation in a pre-model) Let P be a pre-model, t bea term and ' an assignment mapping all the free variables of t to elementsof M . We de�ne the object JtKP' by induction over the structure of t.� JxKP' = '(x),� Jf(t1; : : : ; tn)KP' = f̂(Jt1KP' ; : : : ; JtnKP' ).Let P be a proposition and ' an assignment mapping all the free vari-ables of P to elements of M . We de�ne the reducibility candidate JP KP' byinduction over the structure of P .� If P is an atomic proposition Q(t1; : : : ; tn) then JP KP' = Q̂(Jt1KP' ; : : : ; JtnKP' ).� If P = Q) R then JP KP' is the set of proofs � such that � is stronglynormalizable and whenever it reduces to ���1 then for every �0 inJQKP' , [�0=�]�1 is in JRKP' . 7



� If P = Q ^ R then JP KP' is the set of proofs � such that � is stronglynormalizable and whenever it reduces to h�1; �2i then �1 is in JQKP'and �2 is in JRKP' .� If P = Q _ R then JP KP' is the set of proofs � such that � is stronglynormalizable and whenever it reduces to i(�1) (resp. j(�2)) then �1(resp. �2) is in JP KP' (resp. JQKP' ).� If P = ? then JP KP' is the set of strongly normalizable proofs.� If P = 8x Q then JP KP' is the set of proofs � such that � is stronglynormalizable and whenever it reduces to �x �1 then for every term tand every element a of M [t=x]�1 is in JQKP'+a=x.� If P = 9x Q then JP KP' is the set of proofs � such that � is stronglynormalizable and whenever it reduces to ht; �1i then there exists anelement a in M such that �1 is in JQKP'+a=x.De�nition 1.6 A pre-model is said to be a pre-model of a congruence � ifwhen A � B then for every assignment ', JAKP' = JBKP' .Theorem 1.1 (Normalization) [7] If a congruence � has a pre-model allproofs modulo � strongly normalize.2 The Strati�ed Foundations2.1 The Strati�ed Foundations as a �rst-order theoryDe�nition 2.1 (Strati�able proposition)A proposition P in the language 2 is said to be strati�able if there existsa function S mapping every variable (bound or free) of P to a natural numberin such a way that every atomic proposition of P , x 2 y is such that S(y) =S(x) + 1.For instance, the proposition8v (v 2 x, v 2 y)) 8w (x 2 w ) y 2 w)is strati�able (take, for instance, S(v) = 4, S(x) = S(y) = 5, S(w) = 6) butnot the proposition 8v (v 2 x, v 2 y)) x 2 y8



De�nition 2.2 (The strati�ed comprehension scheme)For every strati�able proposition P whose free variables are among x1; : : : ; xn; xn+1we take the axiom8x1 : : : 8xn 9z 8xn+1 (xn+1 2 z , P )De�nition 2.3 (The skolemized strati�ed comprehension scheme)When we skolemize this axiom we introduce for each strati�able propo-sition P in the language 2 and sequence of variables x1; : : : ; xn; xn+1 suchthat the free variables of P are among x1; : : : ; xn; xn+1, a function symbolfx1;:::;xn;xn+1;P and the axiom8x1 : : : 8xn 8xn+1 (xn+1 2 fx1;:::;xn;xn+1;P (x1; : : : ; xn), P )2.2 The Strati�ed Foundations as a theory moduloNow we want to replace the axiom scheme above by a rewrite rule, de�ninga congruence on propositions, so that the Strati�ed Foundations are de�nedas an axiom free theory modulo.De�nition 2.4 (The rewrite system R)tn+1 2 fx1;:::;xn;xn+1;P (t1; : : : ; tn)! [t1=x1; : : : ; tn=xn; tn+1=xn+1]PProposition 2.1 The rewrite system R is conuent.Proof. It is an orthogonal combinatory reduction system [9]. 2Proposition 2.2 The rewrite system R is terminating.Proof. If A is an atomic proposition we write kAk for the numberof function symbols in A. If A is a proposition, containing the atomicpropositions A1; : : : ; Ap we write A� for the multiset of natural numbersfkA1k; : : : ; kApkg. We show that if a proposition A reduces in one step to aproposition B then B� < A� for the multiset ordering.If the proposition A reduces in one step to B, there is an atomic propo-sition of A, say A1, that has the form tn+1 2 fx1;:::;xn;xn+1;P (t1; : : : ; tn) andreduces to B1 = [t1=x1; : : : ; tn=xn; tn+1=xn+1]P . Every atomic propositionb of B1 has the form [t1=x1; : : : ; tn=xn; tn+1=xn+1]a where a is an atomicproposition of P . The proposition a has the form xi 2 xj for distinct i andj (since P is strati�able). Hence b has the form ti 2 tj and kbk < kA1k.Therefore B� < A�. 2Proposition 2.3 A proposition P is provable from the skolemized compre-hension scheme if and only if it is provable modulo the rewrite system R.9



2.3 Consistency2.3.1 Automorphisms of models of set theoryIf M is a model of set theory we write M for the set of elements of themodel, 2M for the denotation of the symbol 2 in this model, }M for thepowerset in this model, etc. We write also JP KM' for the denotation of aproposition P for the assignment '.The proof of the consistency of the Strati�ed Foundations rests on theexistence of a model of Zermelo's set theory, such that there is a bijection �from M to M and a family vi of elements of M , i 2 Z such thata 2M b if and only if �a 2M �b�vi = vi+1vi �M vi+1}M(vi) �M vi+1The existence of such a model is proved in [8].Using the fact thatM is a model of the axiom of extensionality, we provethat a �M b if and only if �a �M �b, �fa; bgM = f�a; �bgM, �ha; biM =h�a; �biM, �}(a) = }(�a), etc.For the normalization proof, we will further need thatM is an !-model.We de�ne 0 = ;M, n+ 1 = n [M fngM. A !-model is a model such thata 2M NM if and only if there exists n in N such that a = n. The existenceof such a model is also proved in [8] (see also [2]).Using the fact thatM is a model of the axiom of extensionality, we provethat �;M = ;M and then, by induction on n that �n = n.Notice that since }M(vi) �M vi+1, ;M 2M vi and for all n, n 2M vi.Hence as the model is an !-model NM �M vi.In an !-model, we can identify the set N of natural numbers with theset of objects a in M such that a 2M NM . To each proof-term we canassociate a natural number n (its G�odel number) and then the element n ofM. Proof-terms, their G�odel number and the encoding of this number inM will be identi�ed in the following.2.3.2 A modelLet U be the set of elements a of M such that a 2M v0.De�nition 2.5 Let P be a proposition in the language 2 and ' be an as-signment. We de�ne the value [P ]' as follows.10



� If P = xi 2 xj then [P ]' = 1 if '(xi) 2M �'(xj) and [P ]' = 0otherwise.� If P = Q ) R then [P ]' = 1 if [Q]' = 0 or [R]' = 1 and [P ]' = 0otherwise.� If P = Q ^ R then [P ]' = 1 if [Q]' = 1 and [R]' = 1 and [P ]' = 0otherwise.� If P = Q _ R then [P ]' = 1 if [Q]' = 1 or [R]' = 1 and [P ]' = 0otherwise.� if P = ? then [P ]' = 0.� If P = 8x Q then [P ]' = 1 if for all a in U , [Q]'+a=x = 1 and [P ]' = 0otherwise.� If P = 9x Q then [P ]' = 1 if there exists a in U such that [Q]'+a=x = 1and [P ]' = 0 otherwise.Proposition 2.4 For every strati�able proposition P whose free variablesare among x1; : : : ; xn; xn+1 and for all a1; : : : ; an in U , there exists an el-ement b in U such that for every an+1 in U , an+1 2M �b if and only if[P ]a1=x1;:::;an=xn;an+1=xn+1 = 1Proof. Let jP j be the proposition de�ned as follows.� jP j = P if P is atomic,� jP ) Qj = jP j ) jQj, jP ^Qj = jP j^jQj, jP _Qj = jP j_jQj, j?j = ?,� j8x P j = 8x ((x 2 ES(x))) jP j),� j9x P j = 9x ((x 2 ES(x)) ^ jP j).Notice that the free variables of jP j are among E0; : : : ; Em; x1; : : : ; xn; xn+1.We let ' = a1=x1; : : : ; an=xn; an+1=xn+1 = v0=E0; : : : ; vm=Em; �k1a1=x1; : : : ; �knan=xn; �kn+1an+1=xn+1where k1 = S(x1); : : : ; kn+1 = S(xn+1). We check, by induction over thestructure of P , that if P is a strati�able proposition, thenJjP jKM = [P ]'11



� If P is an atomic proposition xi 2 xj, then kj = ki + 1, JjP jKM = 1if and only if �kiai 2M �kjaj if and only if ai 2M �aj , if and only if[P ]' = 1.� if P = Q) R then JjP jKM = 1 if and only if JjQjKM = 0 or JjRjKM = 1if and only if [Q]' = 0 or [R]' = 1 if and only if [P ]' = 1.� if P = Q^R then JjP jKM = 1 if and only if JjQjKM = 1 and JjRjKM = 1if and only if [Q]' = 1 and [R]' = 1 if and only if [P ]' = 1.� if P = Q_R then JjP jKM = 1 if and only if JjQjKM = 1 or JjRjKM = 1if and only if [Q]' = 1 and [R]' = 1 if and only if [P ]' = 1.� Jj?jKM = 0 = [?]'.� if P = 8x Q then JjP jKM = 1 if and only if for every c inM such thatc 2M vk, JjQjKM +c=x = 1, if and only if for every e in U , JjQjKM +�ke=x =1 if and only if for all e in U , [Q]'+e=x = 1 if and only if [P ]' = 1.� if P = 9x Q then JjP jKM = 1 if and only if there exists c in M suchthat c 2M vk and JjQjKM +c=x = 1, if and only if there exists e in Usuch that JjQjKM +�ke=x = 1 if and only if there exists e in U such that[Q]'+e=x = 1 if and only if [P ]' = 1.Then, the model M is a model of the comprehension scheme. Hence, itis a model of the proposition8E0 : : : 8Em 8x1 : : : 8xn 8y 9z 8xn+1 (xn+1 2 z , (xn+1 2 y ^ jP j))i.e.J8E0 : : : 8Em 8x1 : : : 8xn 8y 9z 8xn+1 (xn+1 2 z , (xn+1 2 y^jP j))KM = 1Hence, there exists an object b0 such thatJ(xn+1 2 z , (xn+1 2 y ^ jP j))KM +vkn+1=y+b0=z = 1We have �kn+1an+1 2M b0 if and only if �kn+1an+1 2M vkn+1 and JjP jKM = 1thus an+1 2M ��kn+1b0 if and only if an+1 is in U and [P ]' = 1. We takeb = ��(kn+1+1)b0. For all an+1 in U , we have an+1 2M �b if and only if[P ]' = 1.Notice �nally that b0 2M }M(vkn+1), thus b0 2M vkn+1+1, b 2M v0 andhence b is in U . 2 12



De�nition 2.6 (Jensen's model) The model U = hU;2U ; f̂x1;:::;xn;y;P i isde�ned as follows. The base set is U . The relation 2U is de�ned by a 2U bif and only if a 2M �b. The function f̂x1;:::;xn;xn+1;P maps (a1; : : : ; an)to an object b such that for all an+1 in U , an+1 2M �b if and only if[P ]a1=x1;:::;an=xn;an+1=xn+1.Proposition 2.5 The model U is a model of the Strati�ed Foundations.Proof. By induction over the structure of P , if P is a proposition in thelanguage 2, its denotation in U for the assignment ' is [P ]'. ThenJtn+1 2 fx1;:::;xn;xn+1;P (t1; : : : ; tn)KU' = 1if and only if Jtn+1KU' 2M �f̂x1;:::;xn;xn+1;P (Jt1KU' ; : : : ; JtnKU')if and only if [P ]Jt1KU'=x1;:::;JtnKU'=xn;Jtn+1KU'=xn+1 = 1if and only if JP KUJt1KU'=x1;:::;JtnKU'=xn;Jtn+1KU'=xn+1 = 1if and only if J[t1=x1; : : : ; tn=xn; tn+1=xn+1]P KU' = 1Hence, if A � B then A and B have the same denotation. 22.4 NormalizationWe now want to construct a pre-model for the Strati�ed Foundations.Let ui = v3i and � = �3. The function � is an automorphism of M,�ui = ui+1, ui �M ui+1 and }M (}M (}M (ui))) �M ui+1.Notice that asM is an !-model, for each recursively enumerable relationR on natural numbers, there is an object r in M such that R(a1; : : : ; an) ifand only if ha1; : : : ; aniM 2M r. In particular there is� an object Proof such that � 2M Proof if and only if � is (the encod-ing in M of the G�odel number of) a proof,� an object Term such that t 2M Term if and only if t is (the encodingof the G�odel number of) a term,13



� an object Subst such that h�; �; �1; �2iM 2M Subst if and only if �; �1and �2 are (encodings of G�odel numbers of) proofs, � is (the encodingof the G�odel number of) a proof variable and � = [�2=�]�1,� an object Subst0 such that h�; x; �1; tiM 2M Subst0 if and only if � and�1 are (encodings of the G�odel numbers of) proofs, x is (the encodingof the G�odel number of) a term variable and t (the encoding of theG�odel number of) a term and � = [t=x]�1,� an object Red such that h�; �1iM 2M Red if and only if � and �0 are(encodings of G�odel numbers of) proofs and � �� �1,� an object Sn such that � 2M Sn if and only if � is (the encoding ofthe G�odel number of ) a strongly normalizable proof,� an object AndI such that h�; �1; �2iM 2M AndI if and only if �; �1and �2 are (encodings of G�odel numbers of) proofs and � = h�1; �2i,� an object OrI1 (resp. OrI2) such that h�; �1iM 2M OrI1 (resp.h�; �2iM 2M OrI2) if and only if � and �1 (resp. � and �2) are(encodings of G�odel numbers of) proofs and � = i(�1) (resp. � =j(�2)),� an object ForallI such that h�; �; �1iM 2M ForallI if and only � and�1 are (encodings of G�odel numbers of) proofs, � is (the encoding ofthe G�odel number of) a proof variable, and � = ���1,� an object ExistsI such that h�; t; �1iM 2M ExistsI if and only if �and �1 are (encodings of G�odel numbers of) proofs, t is (the encodingof the G�odel number of) a term and � = ht; �1i.Notice also that, sinceM is a model of the comprehension scheme, thereis an object Cr such that � 2M Cr if and only if � is a reducibility candidate(i.e. the set of objects � such that � 2M � is a reducibility candidate).De�nition 2.7 (Admissible) An element � of M is said to admissible atlevel i if � is a set of pairs h�; �iM where � is a proof and � an elementof ui and and for each � in ui the set of � such that h�; �iM 2M � is areducibility candidate.Notice that if R is a reducibility candidate (for instance the set of allstrongly normalizable proofs) then the set R�M ui is admissible at level i.Hence, for each integer i, there are elements of M admissible at level i.14



Proposition 2.6 There is an element Ai in M such that � 2M Ai if andonly if � is admissible at level i.Proof. An element � of M admissible at level i if and only if� 2M }M(Proof �M ui)^8� (� 2M ui ) 9C (C 2M Cr ^ (h�; �iM 2M �, � 2M C)))Hence, as M is a model of the comprehension scheme, there is an elementAi in M such that � 2M Ai if and only if � is admissible at level i. 2Notice that � 2 �Ai if and only if � 2 Ai+1. Hence as M is a model ofthe extensionality axiom, �Ai = Ai+1.Notice, at last, that Ai �M }M(Proof �M ui) �M }M(ui �M ui) �M}M (}M (}M (ui))) �M ui+1.Proposition 2.7 If � 2M Ai and � 2M Ai+1 then the set of � such thath�; �i 2M � is a reducibility candidate.Proof. As � 2M Ai+1 and � 2M Ai �M ui+1, the set of � such thath�; �i 2M � is a reducibility candidate. 2Let N be the set of elements of M that are admissible at level 0.De�nition 2.8 Let P be a proposition in the language 2, ' be an assign-ment, we de�ne the set [P ]' of elements of M as follows.� If P = xi 2 xj then [P ]' is the set of proofs � such that h�; '(xi)iM 2M�'(xj).� If P = Q) R then [P ]' is the set of proofs � such that � is stronglynormalizable and � reduces to ���1 then for every �0 in [A]', [�0=�]�1is in [B]'.� If P = Q^R then [P ]' is the set of � such that � is strongly normal-izable and whenever � reduces to h�1; �2i then �1 is in [Q]' and �2 isin [R]'.� If P = Q _ R then [P ]' is the set of � such that � is strongly nor-malizable and whenever � reduces to i(�1) (resp. j(�2)) then �1 (resp.�2) is in [A]' (resp. [B]').� If P = ? then [P ]' is the set of strongly normalizable proofs.� If P = 8x Q then [P ]' is the set of proofs � such that � is stronglynormalizable and whenever � reduces to �x �0 then for every elementa in N and every term t, �0[t=x] is in [P ]'+a=x.15



� If P = 9x Q then [P ]' is the set of proofs � such that � is stronglynormalizable and whenever � reduces to ht; �1i then there exists anelement a in N such that �1 is in [A]'+a=x.Proposition 2.8 For every strati�able proposition P whose free variablesare among x1; : : : ; xn; xn+1 and for all a1; : : : ; an in N , there exists an ele-ment b in N such that for every an+1 in N , h�; an+1iM 2M �b if and onlyif � is in [P ]a1=x1;:::;an+1=xn+1 .Proof. Let jP j be the proposition (read p realizes P ) de�ned as follows.� jxi 2 xj j = hp; xii 2 xj ,� jP ) Qj = p 2 sn ^ 8q 8w 8r (hp; qi 2 red ^ hq; w; ri 2 impI) )8s [s=p]jP j ) 8t ht; r; w; si 2 subst) [t=p]jQj),� jP ^ Qj = p 2 sn ^ 8q 8r 8s ((hp; qi 2 red ^ hq; r; si 2 andI) )[r=p]jP j ^ [s=p]jQj),� jP _Qj = p 2 sn ^ 8q 8r ((hp; qi 2 red ^ hq; ri 2 orI1) ) [r=p]jP j) ^8q 8r ((hp; qi 2 red ^ hq; ri 2 orI2)) [r=p]jQj),� j?j = p 2 sn,� j8x P j = p 2 sn ^ 8q 8w 8r (hp; qi 2 red ^ (hq; w; ri 2 forallI) )8x 8y (x 2 ES(x)^y 2 Term)) 8s (hs; w; y; ri 2 subst0 ) [r=p; x=x]jP j)),� j9x P j = p 2 sn^8q 8t 8r (hp; qi 2 red^(hq; t; ri 2 existsI)) 9x x 2ES(x) ) [r=p; x=x]jP j)).Notice that the free variables of jP j are among term; subst; subst0; red; sn;impI; andI; orI1; orI2; forallI; existsI; p; E0; : : : ; Em; x1; : : : ; xn; xn+1.We let ' = a1=x1; : : : ; an=xn; an+1=xn+1 = Term=term; Subst=subst; Subst0=subst0; Red=red; Sn=sn;ImpI=impI;AndI=andI;OrI1=orI1; OrI2=orI2; F orallI=forallI; ExistsI=existsI;A0=E0; : : : ; Am=Em; �k1a1=x1; : : : ; �knan=xn; �kn+1an+1=xn+1We check, by induction over the structure of P , that if P is a strati�ableproposition, then the set of proofs � such that JjP jKM +�=p = 1 is [P ]'.16



� If P is an atomic proposition xi 2 xj , then kj = ki + 1, we haveJjP jKM +�=p = 1 if and only if h�; �kiaiiM 2M �kjaj if and only ifh�ki�; �kiaiiM 2M �kjaj if and only if �kih�; aiiM 2M �kjaj if andonly if h�; aiiM 2M �aj if and only if � is in [P ]'.� if P = Q) R then we have JjP jKM +�=p = 1 if and only if � is stronglynormalizable and whenever � reduces to �� �1 then for all �0 suchthat JjQjKM +�0=p = 1 we have JjRjKM +[�0=�]�1=p = 1 if and only if � isstrongly normalizable and whenever � reduces to �x �1 then for all �0in [Q]', [�0=�]�1 is in [R]' if and only if � is in [P ]'.� If P = Q ^ R then we have JP KM +�=p = 1 if and only if � is stronglynormalizable and whenever � reduces to h�1; �2i then JQKM +�1=p =1 and JRKM +�2=p = 1 if and only if � is strongly normalizable andwhenever � reduces to h�1; �2i then �1 is in [Q]' and �2 is in [R]' ifand only if � is in [P ]'.� If P = Q _ R then we have JP KM +�=p = 1 if and only if � is stronglynormalizable and whenever � reduces to i(�1) (resp. j(�2)) thenJP KM +�1=p = 1 (resp. JQKM +�2=p = 1) if and only if � is stronglynormalizable and whenever � reduces to i(�1) (resp. j(�2)) then �1 isin [P ]' (resp. [Q]') if and only if � is in [P ]'.� If P = ? then JP KM +�=p = 1 if and only if � is strongly normalizableif and only if � is in [P ]'.� if P = 8x Q, then JjP jKM +�=p = 1 if and only if � is strongly normal-izable and whenever � reduces to �x �1, for all term t and for all cin M such that c 2M Ak, JjQjKM +c=x;[t=x]�1=p = 1 if and only if � isstrongly normalizable and whenever � reduces to �x �1, for all t andfor all e in N JjQjKM +�ke=x+[t=x]�1=p = 1 if and only if � is stronglynormalizable and whenever � reduces to �x �1, for all t and for all ein N , [t=x]�1 2 [Q]'+e=x if and only if � is in [P ]'.� if P = 9x Q, then JjP jKM +�=p = 1 if and only if � is strongly normal-izable and whenever � reduces to ht; �1i, there exists a c in M suchthat c 2M Ak and JjQjKM +c=x;[t=x]�1=p = 1 if and only if � is stronglynormalizable and whenever � reduces to ht; �1i, there exists a e in Nsuch that JjQjKM +�ke=x+[t=x]�1=p = 1 if and only if � is strongly nor-malizable and whenever � reduces to ht; �1i, there exists a e in N ,[t=x]�1 2 [Q]'+e=x if and only if � is in [P ]'.17



Then, the model M is a model of the comprehension scheme. Hence, itis a model of the proposition8E0 : : : 8Em 8x1 : : : 8xn 9z 8p 8xn+1 hp; xn+1i 2 z , hp; xn+1i 2 N�U^jP ji.e.J8E0 : : : 8Em 8x1 : : : 8xn 9z 8p 8xn+1 hp; xn+1i 2 z , hp; xn+1i 2 N�U^jP jKM = 1Thus there exists a b0 such thatJhp; xn+1i 2 z , hp; xn+1i 2 NM � U ^ jP jKM +b0=z;ukn+1+1=U;�=p = 1We have h�; �kn+1an+1iM 2M b0 if and only if �kn+1an+1 2M ukn+1+1and JjP jKM +�=p = 1. Thus h�; an+1iM 2M �kn+1b0 if and only if an+1 2M u1and � is in [P ]'.We take b = ��(kn+1+1)b0 and for all an+1 in N we have h�; an+1iM 2M�b if and only if � is in [P ]'.Finally, notice that b0 is a set of pairs h�; �iM where � is a proof and� an element of ukn+1+1 and for each � in ukn+1+1 the set of � such thath�; �iM 2M b0 is JjP jKM +�=xkn+1 ;�=p = 1, hence it is a reducibility candidate.Hence b0 2M Akn+1+1 and b is in N . 2De�nition 2.9 (Crabb�e's pre-model) The pre-model N = hN;2N ; f̂x1;:::;xn;y;P iis de�ned as follows. The base set is N . If � and � are elements of N wetake 2N (�; �) = f� j h�; �iM 2M ��g.The function f̂x1;:::;xn;xn+1;P maps (a1; : : : ; an) to the object b such thatfor all an+1 in N , h�; an+1iM 2M �b if and only if � is in [P ]a1=x1;:::;an=xn;an+1=xn+1 .Proposition 2.9 The pre-model N is a pre-model of the Strati�ed Founda-tions.Proof. By induction over the structure of P , if P is a proposition in thelanguage 2, its denotation in N for the assignment ' is [P ]'. Then � is inJtn+1 2 fx1;:::;xn;xn+1;P (t1; : : : ; tn)KN' if and only ifh�; Jtn+1KN' iM 2M � f̂x1;:::;xn;xn+1;P (Jt1KN' ; : : : ; JtnKN' )if and only if � is in [P ]Jt1KN' =x1;:::;JtnKN' =xn;Jtn+1KN' =xn+1 if and only if � is inJP KUJt1KN' =x1;:::;JtnKN' =xn;Jtn+1KN' =xn+1 if and only if � is in J[t1=x1; : : : ; tn=xn; tn+1=xn+1]P KN' .Hence, if A � B then A and B have the same denotation. 2Corollary 2.1 All proofs in the Strati�ed Foundations strongly normalize.18



ConclusionIn this note, we have have shown that the Strati�ed Foundations can beexpressed in deduction modulo and that the normalization proof for thistheory be decomposed into two lemmas: one expressing that it has a pre-model and the other that proof normalize in this theory if it has a pre-model.This second lemma is not speci�c to the Strati�ed Foundations, but holdsfor all theories modulo.The �rst lemma does not seem to be speci�c either. Indeed, as noticedby Crabb�e, the modelM could be replaced by a weakly extensional !-modelof the Strati�ed Foundations. The idea of this normalization proof is henceto construct a pre-model within an !-model of some theory with the help offormal realizability. The generality of this idea reamains to be investigated.Thus, this example contributes to explore of the border between the theoriesmodulo that have the normalization property and those that do not.References[1] M. Crabb�e. Non-normalisation de ZF. manuscript, 1974.[2] M. Crabb�e. Strati�cation and cut-elimination. The Journal of Symbolic Logic,56:213{226, 1991.[3] G. Dowek. La part du calcul. Universit�e de Paris 7, 1999. M�emoired'habilitation.[4] G. Dowek, About folding-unfolding cuts and cuts modulo. Rapport deRecherche 4004, Institut National de Recherche en Informatique et en Au-tomatique (2000).[5] G. Dowek, Th. Hardin, and C. Kirchner. Theorem proving modulo. Rapportde Recherche 3400, Institut National de Recherche en Informatique et en Au-tomatique, April 1998. To appear in Journal of Automated Reasoning.[6] G. Dowek, Th. Hardin, and C. Kirchner. HOL-�� an intentional �rst-orderexpression of higher-order logic.Mathematical Structures in Computer Science,11, 2001, pp. 1-25.[7] G. Dowek and B. Werner. Proof normalization modulo. In Types for proofsand programs 98, volume 1657 of Lecture Notes in Computer Science, pages62{77. Springer-Verlag, 1999.[8] R.B. Jensen. On the consistency of a slight (?) modi�cation of Quine's newfoundations. Synthese, 19:250{263, 1968-69.[9] J.W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reductionsystems: introduction and survey. Theoretical Computer Science, 121:279{308,1993. 19


