
Using UML for Business Object
Based Systems Modeling

A. Korthaus

Lehrstuhl für Wirtschaftsinformatik III,
Universität Mannheim, D-68131 Mannheim, Germany

Abstract: The development of business information systems based on business object
components as defined by the OMG is going to complement and simplify the conventional
approach to object-oriented software development. The intention is to enable end users
and business experts to assemble “plug-and-play” business objects without the help of IT
experts. In spite of the reduction of complexity to be expected, a model-based approach
to systems development is still essential. Business objects are not only well suited
as modeling concepts in software engineering, they may even be used in the context of
business engineering. This paper describes different aspects of modeling business objects
with the Unified Modeling Language and evaluates its aptitude for that purpose.

1 Introduction

Today, enterprises need to adapt themselves in a flexible way to a rapidly changing
environment, in order to remain competitive. To keep up with the dynamic
competition, a considerable number of measures has to be taken, for which buzz-
words such as Business (Re-)Engineering, Continuous Improvement etc. have
been coined (e.g. in Hammer and Champy (1994)). The basis for these measures
is the modeling of the business and its business processes in order to cope with
the complexities of the real world. Based on the business models, software
systems have to be built, which are one of the most important enablers of modern
successful business activities, not only since new WWW-based processes have
become feasible (Davenport (1993)).
Recognizing the close connection between the business perspective and the
software perspective, and trying to exploit the advantages of object technol-
ogy (e.g. modularization, encapsulation, inheritance, polymorphism etc.), Tay-
lor (1995) has propagated an integrated approach called Convergent Engineering
(see Figure 1). This synergetic approach suggests the application of object-
oriented concepts on every level of the system’s lifecycle, from business engi-
neering through analysis and design of information systems to the implementation.
Thus, the use of information systems to support newly designed business processes
is emphasized. The challenge is to ensure a quick implementation of changed or
new business requirements, since timing aspects have become essential today (in
addition to keeping the quality high and the costs low).
In the field of object-oriented software technology, mechanisms such as model-
based specification, component technology, and solution assembly by end users,
which are increasingly gaining attention, seem to be very promising in order to
achieve these goals. The Object Management Group (OMG), the leading industry

2 MODELING WITH THE UML 2

Business Perspective

Software Perspective

Figure 1: Convergent Engineering

consortium for object technology, is a key driver of these trends. It provides and
seeks standards to facilitate the development of distributed information systems.
In Nov. 1997, the Unified Modeling Language (Rational Software Corp. (1997a)–
(1997d)) was adopted as the official standard for modeling languages, and revised
proposals for so-called Business Object components and a Business Object Facility
as an infrastructure for those components based on CORBA are currently being
evaluated (OMG (1996)).
After clarifying the concepts of UML and OMG Business Objects, this paper will
analyze exemplary requirements originating from business object based modeling
and implementation of business and software systems.

2 Modeling with the UML

The UML version 1.1 is the new industry standard for object-oriented analysis
and design modeling languages. It combines common concepts of earlier analysis
and design methods, defines standard notational symbols for those concepts, and
enhances the basic set with new modeling elements meeting the requirements of
current modeling tasks. The UML is a general purpose language designed to be
able to model a wide range of different types of systems, from purely technical
(non-software) through software to business systems.
In this paper, the focus is on business and software systems. According to Eriksson
and Penker (1998), business systems “describe the goals, the resources (humans,
computers etc.), the rules (laws, business strategies, policies etc.), and the actual
work in the business (business processes)”. Information systems, on the other
hand, “store, retrieve, transform, and present information to users. [They] Handle
large amounts of data with complex relationships, which are stored in relational
or object databases.”
Modeling a system with UML means describing different views of the system
under construction with the help of a number of diagrams, containing model-
ing elements. Use Case Diagrams, for example, express the externally visible
behavior of the system and its interactions with actors, e.g. users or different sys-

3 OMG BUSINESS OBJECTS 3

tems. They are just right for modeling business processes or information system
requirements on a very abstract level. Class Diagrams are the structural part
of the system model, expressing elements or entities of the respective business
or software system. A group of diagrams serves for describing behavioral as-
pects. Among them are State Diagrams, Activity Diagrams, Sequence Diagrams
and Collaboration Diagrams. The implementation level may be described by
Component Diagrams and Deployment Diagrams.
Compared with its predecessors, the analysis and design methods Booch, OMT
and OOSE, UML adds some new elements: extensibility mechanisms (stereo-
types, tagged values, constraints), modeling support for patterns and collabora-
tions, Activity Diagrams, refinement, interfaces and components, and the Object
Constraint Language (OCL). As will be shown in section 4, these are very valuable
concepts in the context of business object based modeling.

3 OMG Business Objects

Using object-oriented modeling for business engineering is relatively new and not
very wide-spread at present, although it is broadly acknowledged as an excellent
approach of modeling and documenting businesses and business processes (Ferstl
and Sinz (1995), Frank (1994), Jacobson et al. (1995), Taylor (1995)). Analyz-
ing, improving, and implementing business processes is tightly bound up with
designing and implementing the supporting information systems. Therefore, if
the same object-oriented concepts and models are applied on each level of the
system lifecycle, the result will be considerable synergistic effects.
The UML can be used for developing business models, which describe, among
other things, resources (physical and informational), rules, goals, and actions
(workflows), and for developing business software system models as well. Fig-
ure 2 shows an example of an incomplete inheritance hierarchy of typical business
elements expressed with UML modeling constructs (classes, inheritance arrows,
and constraints which indicate that there are possibly more subclasses that are
missing in the hierarchy) as it might be used to build a taxonomy of business
elements in an enterprise as a basis for communication. These concepts might be
used further in object models describing organizational structures and processes
of the same enterprise.
Recently, the OMG, whose focus used to be on technical aspects of distributed
information systems solely, has been recognizing the fact that distributed object
technologies can only become wide-spread if business users and application de-
velopers are addressed directly and can be shielded from technical IT details. In
1993, a Special Interest Group for Business Object Management (BOMSIG) was
formed within the OMG, which was upgraded as Business Object Domain Task
Force (BODTF) afterwards. BOMSIG issued a Request For Proposal for Com-
mon Business Objects and a Business Object Facility, which solicited proposals
for the following two items, based on ideas of Sims (1994):� “Common Business Objects (CBOs): Objects representing those business

semantics that can be shown to be common across most businesses.

3 OMG BUSINESS OBJECTS 4

Purchase

Product InformationRoleRelationshipPerson

Employee Contact

Business
Element

Process

Company Department Sale

Organization Resource

{incomplete}

{incomplete}{incomplete}
{incomplete}

{incomplete}

Figure 2: Part of a Specialization Hierarchy of Business Elements� Business Object Facility (BOF): The infrastructure (application architec-
ture, services, etc.) required to support business objects operating as
cooperative application components in a distributed object environment.”
(OMG(1996))

The first part of the RFP asks for Common Business Objects, which represent
concepts shared among different business domains (e.g. industry sectors such as
finance, insurance, manufacturing etc.). Since it is very hard to reach an agreement
on CBOs shared by different domains, the OMG is also trying to standardize
domain variations as well as regional variations on CBOs and, of course, purely
domain specific business objects not shared between different industry sectors.
After a long debate, the members of the CBO Working Group of the OMG BODTF
are now arriving at a common understanding of the term business object. Business
objects capture “information about a real world’s (business) concept, operations
on that concept, constraints on those operations, and relationships between that
concept and other business concepts. [...] a business application can be specified
in terms of interactions among a configuration of implemented business objects.”
(OMG (1997a))
Consequently, the term business object is used in two distinct ways, express-
ing the different areas of application, namely business engineering and software
engineering:

1. The term modeling business objects designates the usage of business objects
in business models to capture business concepts and express an abstract view
of the business.

3 OMG BUSINESS OBJECTS 5

Objects

Manufacturing
Business

CORBA, CORBAservices, CORBAfacilities

Business Object Facility

Common Business Objects

Enterprise Specific Business Objects

Other

Objects
Business
Objects

Business
Financial

Figure 3: Architecture for Business Objects

2. The term systems business objects is used in the context of software system
designs or program code. Systems business objects reflect the realization of
business concepts (represented by modeling business objects) in software.

Business objects are organized into a taxonomy of Entity Business Objects (e.g. In-
volved Party, Location, Product, Agreement, Order, Financial Instrument), Pro-
cess Business Objects (e.g. Order Fulfillment, Procurement, Making a Payment),
and Event Business Objects (e.g. Account Overdrawn, End of Fiscal Year, Bond
Mature).
Figure 3 (OMG (1996)) shows the proposed architecture for business objects.
Integrated in OMG’s Object Management Architecture (OMA), which includes a
reference model for distributed object computing and defines OMG’s objectives
and terminology, the Business Object Facility (BOF), based on CORBA, provides
the infrastructure for CBOs, domain specific BOs and enterprise specific BOs.
The major goals of the OMG Common Business Object (CBO) vision are:� “Interoperability of OMG Business Objects as both design-time and run-

time constructs including the possibility of ad-hoc integration.� Simplicity, so that design and implementation, configuration and deploy-
ment is viable for the average developer.” (OMG (1996))

These goals comprise the conceptual and the technical usage of business objects.
On the technical level, ad-hoc integration means that run-time business object
components (called application components in the RFP) must be able to plug-
and-play, i.e. they can be put together in a run-time environment and will then
work without any intervention by IT professionals. Furthermore, a newly plugged-
in business object will be able to interact with other business objects in order to
perform some business function. This interaction can take place even if it was not

4 REQUIREMENTS FOR MODELING WITH BUSINESS OBJECTS 6

planned or foreseen by the developers of the business objects. Although originally
addressed by the CBO/BOF RFP, efforts of enabling plug-and-play components
have been shifted from the responsibility of the BODTF to the Corba Component
Initiative (OMG (1997b)) in the meantime.
The CBO vision is aimed at a marketplace for standardized “off-the-shelf” model-
ing and systems business objects. Generalized descriptions of best business prac-
tices and templates for common constructs like Customer, Order, Product etc. will
be sold in the form of business object models, supplemented by corresponding
software components (systems business objects) which speed up development and
are easily integrated with other business objects through the BOF.

4 Requirements for Modeling with Business Objects

Having clarified the context of business object based systems modeling and de-
velopment, it has to be examined what is required from a modeling language used
for this purpose. The requirements analyzed are typical of (but not inevitably
restricted to) business object based systems. It is neither a systematic nor a com-
plete evaluation of UML in the business object context, but a discussion of some
examplary aspects worthwhile being considered.

4.1 Communication

Communication between domain experts, systems analysts, and software devel-
opers is essential for the success of reengineering a business and developing
information systems. Divergent vocabulary and different background knowledge
on the part of business and IT people often lead to severe problems of mutual
understanding. A modeling language used for developing business and software
models must be simple enough to allow for this understanding and at the same time
detailed enough to specify the system elements unambiguously and sufficiently.
The business object approach emphasizes simplicity and a focus on business
issues. Business and software models must be easy to discuss, to verify against
the given requirements and easy to maintain. It is very important that concepts
from the problem domain are used and expressed in the business terminology.
However, the UML is a general-purpose modeling language which is very complex
and provides a considerable number of modeling elements whose semantics must
be fully understood by the users of UML. While its complexity lays the foundation
for its expressiveness, it also undermines communication with non-experts.
The solution to this problem might be to define different subsets of UML for
different modeling purposes on different stages in systems development. For
example, when dealing with domain experts, it is advisable to restrict the set of
modeling elements to an expressive subset of basic elements useful for conceptual
modeling in the business context (e.g. in Class Diagrams: renunciation of associ-
ation classes, qualifiers, visibility markers etc.). The full variety of constructs is
not needed until implementation oriented design tasks are carried out.

4 REQUIREMENTS FOR MODELING WITH BUSINESS OBJECTS 7

<<Use Case System>>

Stereotype for Business Modeling

Salesperson

Shipping Clerk

Manager

Customer

Order Management

Check Status

Place Order

Fill Order

Order Statistics

Figure 4: Modeling Business Processes and System Functionality with Use Cases

Another possibility to adjust the UML to the needs of business modeling or busi-
ness information systems modeling is to use the UML extensibility mechanisms
(i.e. stereotypes, tagged values, constraints). Particulary stereotypes applied to
an existing metamodel element can help to add new semantics to the language.
For example, the stereotype <<business object>> could indicate that a package or a
class has certain semantics that are characteristic of business objects. Combining
the stereotype with a new presentation icon for the new kind of modeling element
may further increase understandability, if the look of the new icon is meaningful
to the readers of the model. Rational has already defined an UML extension for
business modeling that introduces a number of new stereotypes with correspond-
ing icons and is primarily based on use cases as the central concept for modeling
business processes (Jacobson et al. (1995), Rational Software Corp. (1997a)).

4.2 Modeling Goals, Business Processes and Workflows

All business activities are based on strategies, goals and policies which build
the framework for the conduct of business and must be determined prior to any
other steps during business planning or reengineering. The goals of the business
motivate the workflows, where the resources are used in accordance with specified
rules. Therefore, modeling activities have to start at the strategic level.
Although UML models can be used to establish a basic common set of concepts
and express their relationships and semantics (see Figure 2), the UML is not
powerful at this level. Textual commitments and figures will predominate in this
context.
The modeling of business processes and workflow, though, can be done very well
with the features provided by UML (although the diagrams used for this purpose,
i.e. Use Case Diagrams and Activity Diagrams, are not really object-oriented in
nature). Figure 4 shows, for example, a Use Case Diagram which represents a

4 REQUIREMENTS FOR MODELING WITH BUSINESS OBJECTS 8

o:Order

an: AdviceNote

generate order
from request

create order
from contract
generate order generate order

from offer

[ad hoc] [offer]

[contract] [request]

release order

convey order

Purchasing Department Goods Receiving
Department

receive goods
advice note

create

goods note
movement of

creategm: GoodsMov

create

create

create

release

convey

Figure 5: Mapping of Activity Diagrams to Sequence Diagrams

simplified model of the business process “Order Management”. Like business
objects, use cases can be applied to business modeling, which is portrayed in detail
in Jacobson et al. (1995), and also to software systems modeling as described in
Jacobson et al. (1992).
Activity Diagrams are a good mechanism for expressing workflow. Workflow
designates the automation of a business process, in whole or part, during which
documents, information or tasks are passed from one participant to another for
action, according to a set of rules. In future application systems, workflow ob-
jects (special business objects) will interconnect other business objects (instead
of applications). The OMG seeks proposals for a Workflow Management Facil-
ity (WMF) which will have to work together with the BOF at the infrastructure
level (OMG (1997d)). Activity Diagrams are used to describe how the work
is performed. In addition to showing workflow, they can be used for modeling
dynamics of operations, classes, and use cases. The approach to modeling busi-
ness processes with Activity Diagrams goes hand in hand with use cases or other
techniques to capture the requirements of the business system.
A great advantage of Activity Diagrams is their explicit support of modeling con-
current activities, thus helping to reengineer business processes to increase their
efficiency (Fowler and Scott (1997)). Activity Diagrams have the potential to
replace the wide-spread approach of using Event-Driven Process Chain (EPCs)
Diagrams for modeling business processes (for EPCs see Nüttgens et al. (1998)).
Due to their flowchart heritage, a disadvantage of Activity Diagrams is the dif-
ficult mapping to object-oriented concepts, which is also very difficult for use
cases. Figure 5 shows an idealized mapping of the action states in an Activity
Diagram to the message flows in the corresponding software systems Sequence
Diagram. This will not always be possible, e.g. if different levels of abstractions

4 REQUIREMENTS FOR MODELING WITH BUSINESS OBJECTS 9

have been chosen or if parts of the Activity Diagram are performed manually.
The mapping of information in Activity Diagrams to classes and objects can be
achieved by organizing action states into swimlanes (vertical areas) which indicate
the responsibilities of certain classes/objects.

4.3 Partitioning and Refinement

Business systems and their corresponding software systems are usually very com-
plex in nature. Therefore, methods of partitioning and refinement are needed
for modeling such systems. The partitioning of large models is not only useful
for ergonomical reasons, but also allows for parallel activities of different de-
velopers/teams if the dependencies are not too numerous between the different
parts of the model. In order to handle a large business object system, a hierar-
chical approach is needed to refine the basic requirements and incrementally add
more detail. Because of the known problems, functional decomposition has to be
avoided.
The UML provides a strong mechanism for structuring model parts: packages.
Packages are shown as rectangles in a manila folder shape (see left side of Fig-
ure 10). By grouping model elements which logically belong together, packages
serve for partioning and decomposing the models. Packages may contain other
packages (the whole system is contained in a top-level package labeled with
stereotype <<system>>), can reference other packages, and inheritance between
packages may apply, which means conformity of interfaces and the support of
polymorphism. Not only classes, but, in principle, all modeling elements of the
UML can be organized in packages. To ensure a loose coupling, dependencies
between packages should be minimized. A useful technique supporting this goal
is the instantiation of the Facade pattern (Gamma et al. (1995)) to hide functional
details of a package from other packages. Facades should be labeled with the
predefined stereotype <<facade>>. Although the package concept of UML is very
extensive, it should be noticed that its specification is not yet free of imprecisions
or even contradictions (Schürr and Winter (1998)).
Another UML mechanism for complexity management are refinement relation-
ships which are a special kind of dependency relationships. Like all dependencies,
refinements are shown as dashed arrows between two model elements, labeled
with the keyword <<refine>>. The refinement construct can be used to express a
historical or derivation connection between two elements with a mapping between
them.

4.4 Modeling Business Rules

In every organization there are rules which determine how several tasks have to
be executed. These business rules define and lay down admissable proceedings,
based on ethical, cultural, legal or internal business conditions. They often
express policies and refer to administrative processes. Some of the rules are just
implicitly part of the employees’ know-how, others are explicitly written down

4 REQUIREMENTS FOR MODELING WITH BUSINESS OBJECTS 10

threshold : int

Product

Item

Order

fulfil()

Producer
*

inventory : int

0,1reduce(q : int)

*

Product

-- inventory is number of items in stock

inv: self.inventory = self.item->size

inv: self.inventory < self.threshold implies self.order->notEmpty

-- order always exists if inventory is below threshold

-- if inventory is reduced below threshold, an order must be placed

post: self.inventory < self.threshold

 and self.inventory@pre >= self.threshold@pre

 implies self.order->size = self.order@pre->size + 1

...

Product::reduce(q : int)

Figure 6: Expressing Business Rules in Object Constraint Language (OCL)

in organizational handbooks. If information systems have to be built to support
the conduct of a business, these rules have to be represented in the applications
(Knolmayer and Herbst (1993)).
Since business rules change frequently, they should not be scattered in code as
they are in traditional applications, because this has led to poor maintainability.
Most of the time, business rules will be implemented in the methods of the
business objects affected by those rules. The CBOF proposal to the OMG RFP
for CBOs/BOF (OMG (1996)) describes a business object architecture where
rules may be expressed as components in their own right and can be plugged in
and out as needed (CBOF (1997)). Another aspect to be considered is the fact
that domain experts often are aware of business rules, which means that they
are a good means of communication. As a result, modeling languages used for
modeling business information systems must have an explicit support of business
rule modeling.
UML version 1.1 includes a language for the specification of expressions during
modeling, called Object Constraint Language (OCL). In the UML documentation,
OCL is used to define well-formedness rules expressing the semantics of the UML
modeling elements. The main advantage of OCL is its simplicity while at the
same time it has got a certain degree of formalism. A considerable disadvantage
of OCL might be its lack of rigor. There is no metamodel for OCL in the UML,
and the specification of OCL is not always precise and free of ambiguities (see
Gogolla and Richters (1998)).

4 REQUIREMENTS FOR MODELING WITH BUSINESS OBJECTS 11

0,1

Copy
Order

inventory : int
threshold : int

Product

Item

Order

fulfil()

Producer
*

*

0,1reduce(q : int)

*

*

Copies

Course
Title

Copy
Center

Production

Product

Item

Order
Producer

InstantiationProduction Pattern (Collaboration)

Figure 7: UML’s Support for Patterns

To illustrate how OCL can be used to express business rules, Figure 6 provides
an example. OCL expressions are very suitable for specifying pre- and postcon-
ditions of operations and invariants of operations or classes/types (see subsec-
tion 4.7). The example shows a simplified production pattern, which describes
the production of different kinds of products by producers, based on orders. For
each product type there is an inventory of items, the size of which is stored in the
product object’s attribute inventory. Furthermore, a threshold value is administrated
which determines, when a new order has to be placed. The business rules behind
this production pattern might well be defined as constraints in OCL, as can be
partially seen in the figure.

4.5 Patterns and Reuse

One of the most important progresses in object-oriented analysis and design are
the results of the ongoing research into analysis and design patterns (e.g. Fowler
and Scott (1997), Gamma et al. (1995)). These patterns describe best-practice
solutions to recurring analysis and design problems and facilitate high level reuse
of model specifications. Having in mind the coarse granularity of useful business
object components (implemented as collaborations of smaller business objects),
patterns and collaborations can help very much in documenting and specifying
the semantics of those components, thus laying the foundations for their effi-
cient reuse. Thinking of ready-to-use, “off-the-shelf” systems business object
components, patterns of corresponding modeling business objects could serve as
documentation of their functionality and possible usage.
Collaboration Diagrams in UML are the means to document behavior imple-
mented by sets of business objects that exchange messages within an overall
interaction to accomplish a purpose. Patterns can be defined as parameterized
collaborations in UML with types/classes, relationships, and operations as the
instantiation parameters. Figure 7 repeats the production pattern of Figure 6 and
shows an example of its instantiation into a problem specific UML Class Diagram.

4 REQUIREMENTS FOR MODELING WITH BUSINESS OBJECTS 12

The dashed ellipse symbol contains the pattern name and the dashed lines labeled
with the pattern roles are attached to the participants of the pattern.
The use of this notational convenience in UML proves to be very useful, because
it represents a design construction on a higher abstraction level than the basic
elements, which can be repeatedly applied to different designs. Eriksson and
Penker (1998) speak of UML patterns as “generators of design solutions”, because
they implicitly contain context and interactions, and thus, if not all parts of the
design are shown, simplify the models.
Furthermore, building larger models by composing generic patterns is possible
with this modeling construct. In this case, if two patterns are to be combined,
there is at least one common class/type playing a different role in each pattern.
Assuming that the semantics of business object components will be specified by
collaborations, the composing of these specifications could be the modeling level
preparation for plugging the corresponding systems business object components
together. The construction of models and specifications by composition is de-
scribed further in the Catalysis method (see Catalysis (1997)), D’Souza (1997)).

4.6 Roles and Actors

Separation of concerns is an important principle for design, specification and im-
plementation of business object systems. Different departments and development
teams will inevitably access and modify business objects in different models for
different reasons. This variety of interest in single business objects was one of
the factors which made monolithic enterprise objects impractical. The solution to
this problem are roles. Roles represent aspects of objects connected with a certain
view or a certain part of a model. A role expresses what an object represents in a
special context, not what it is. Roles mirror types that can be adopted and released
dynamically (see Reenskaug, Wold and Lehne (1996) for the OOram method, in
which role modeling is the central concept).
An actor is a role a person or an external system takes over in regard to the system
being modeled (see Figure 4: Customer, Salesperson...). For example, there
might be many business partners who place orders, each of them playing the role
of a customer. However, they are not restricted to that role, but might adopt other
roles at the same time.
One way to express these semantics is the application of dynamic, multiple clas-
sification. Fowler and Scott (1997) describe how dynamic, multiple classification
can be modeled in UML with the help of stereotypes (see Figure 8). If dynamic,
multiple classification is allowed, objects can change their class over time and can
belong to more than one class at a time. Thus, the requirements of role modeling
are met. However, this concept is rarely used because it is usually not supported
by programming languages.
An indirect way of modeling roles without the need for dynamic, multiple clas-
sification, is the application of role patterns. Figure 9 shows a delegation based
design of the same problem domain as illustrated in Figure 8 on the basis of a role
pattern instance.

4 REQUIREMENTS FOR MODELING WITH BUSINESS OBJECTS 13

Person

WomanMan

Manager

Engineer

Salesperson

{multiple}

Sex
{complete}

<<dynamic>>
Job

Figure 8: Dynamic, Multiple Classification

Manager Engineer Salesperson

Person

WomanMan

Sex
{complete}

Role
job

0..*

Figure 9: Role Pattern with Delegation

In UML, the concept of roles is supported directly in three more ways: In addition
to roles in associations which have simpler semantics, roles are represented in
UML by the actors in a use case and by the participants in a collaboration. An
Actor element in a Use Case Diagram characterizes the role played by an outside
object which may play several roles and therefore be modeled by several actors.
In a collaboration, roles must be bound to actual classes when the collaboration
is used. The roles may have their own names and possibly show only subsets of
the attributes, operations and related objects known to actual classes playing the
role. An actual class may play several roles in different collaborations (Rational
Software Corp. (1997b)).

4.7 Component Technology

Another aspect which has to be considered is the fact that implemented OMG
systems business objects will be runtime plug-and-play components. One goal
of the business object approach is to enhance flexibility and extensibility of
systems by enabling substitution of one business object component for another
(e.g. a newer version of a component replaces an older one, or components from
different vendors are interchanged).
To support the component character of business objects at the design stage, it is
necessary to know the component model or rather the business object architecture
that will finally be adopted. At the time of this writing,proposals for the CBO/BOF

4 REQUIREMENTS FOR MODELING WITH BUSINESS OBJECTS 14

<<interface>>
Complaint

subject

date

customer

buying Date

product

customer

CustomerComplaint

<<business object>>

<<interface>>
Request

CustomerRequest

<<conforms>>

<<conforms>>

CustomerServices

<<conforms>>

<<conforms>>

Figure 10: External and Internal View of Business Object Components

RFP (OMG (1997a)) and CORBA Component Model RFP (OMG (1997b)) are
being evaluated. One promising BOF submission (CBOF (1997)) will be briefly
addressed in section 5.
Bearing in mind current component models, it might be useful to concentrate
on modeling with types and interfaces and to ensure separation of concerns and
design by contract. Separation of interface from implementation is central in this
context. Fortunately, the UML provides a number of techniques for this purpose.
First, the external and the internal view of business object components should be
distinguished. Externally visible are the operations or services that are supported
by the business object component. The internal realization of the component
might be based on an encapsulation of highly interrelated classes, associations,
operations, events and constraints. Figure 10 shows a coarse grained business
object component CustomerServices modeled as a stereotyped package which
exports two interfaces. The classes CustomerComplaint and CustomerRequest on
the right belong to the internal realization of CustomerServices and provide those
interfaces.
The distinction between an external and internal view is closely connected with the
distinction between specification and implementation. Fowler (1997) describes
three perspectives in modeling: conceptual, specification, and implementation.
The conceptual perspective describes the concepts of the domain under study
and is independent of implementation aspects. The specification perspective is
concerned with interfaces and types, not implemention classes. Finally, in the
implementation perspective, the actual implementation (with classes etc.) is laid
bare.
When modeling business object based systems, all three perspectives are rele-
vant. The conceptual perspective should be taken in early phases of systems
development (especially business modeling). The specification perspective is
very important. Specifying types and interfaces allows for designs that can be
used for implementation or assembly of a BOF-based system independently of
the source of the business object components that constitute the system. If a
component is to be bought externally, its specification must be matched against
the model, and its implementation is irrelevant. If the component is to be devel-

4 REQUIREMENTS FOR MODELING WITH BUSINESS OBJECTS 15

DesktopMachine2:PC

:CustomerServices

DesktopMachine1:PC

:MarketingResearch
Request

Complaint

:Customer :Products&Services

PerformanceSpec
ServerMachine1:Host

Figure 11: Component Architecture Shown in a Deployment Diagram

oped internally, the specification model has to be refined by a model from the
implementation perspective. UML explicitly supports the concepts of types and
interfaces. For example, there are two notational ways of presenting interfaces
(see Figures 10 and 11), and types can be made explicit by using the predefined
stereotype <<type>> in a class symbol. Modeling with types, interfaces and op-
erations implies designing by contract, i.e. specifying boolean assertions which
must always be true. There are three kinds of assertions to be distinguished,
namely preconditions, invariants, and postconditions. Applied to an operation, a
postcondition specifies what has to be the result of the operation without saying
how to achieve this result, thus ensuring separation of interface and implementa-
tion. Preconditions describe the system state as expected by the operation before
execution, thus defining the responsibilities of the caller. An invariant, applied to
a class, holds always true at any moment an operation is called. In UML models,
assertions should be expressed in OCL. Specifying functionality in this way is
essential if implementational aspects are to be abstracted from in order to allow
for business component substitution.
In the context of an implementation (and architectural) perspective, only one
UML feature shall be mentioned here: Deployment Diagrams, which can be
used to show business object components, their physical locations in a distributed
environment, and the dependencies between them (see Figure 11). Although
describing relevant aspects, Deployment Diagrams appear to be too complex for
the benefit they bring.
As can be inferred from the above paragraphs, it is essential to define a suitable
process of business object based systems development. The UML standard does
not include or prescribe a development process. To allow for a specification
based approach of business object component modeling, ideas might be taken
from methods such as Catalysis (Catalysis (1997)) and COOL (Short (1997)).
Catalysis, which builds on UML, puts collaboration patterns as specifications of

5 EVALUATION AND PROSPECTS 16

components into the center of attention and describes a formalized process of
building business models, requirements specs, designs, and code rapidly from
reusable generic components and frameworks. Its main advantages (e.g. full
model consistency, views and patterns synthesis) stem from its rigor and formality,
which are, simultaneously, its main disadvantages, because it is hard to use for
non-experts from the business domain.

5 Evaluation and Prospects

In this paper, exemplary aspects of a business object based systems modeling
have been analyzed and related to the features and concepts of UML, the new
industry standard for object modeling languages. It has been shown that UML is
very powerful and provides numerous modeling elements needed for the special
purpose under examination. On the other hand, it is necessary both to restrict and
to extend certain parts of the UML to provide the semantics needed and to avoid
undesired complexity. Furthermore, a systems development process for business
object based systems which builds on UML is to be defined to use UML both
efficiently and effectively.
With the adoption of a CBO/BOF proposal by the OMG, more information about
how these problems have to be solved will become available. One of the most
promising responses to the BODTF RFP (OMG (1997a)) is CBOF (1997) which
defines a Business Object Architecture (BOA; a metamodel for the constructs and
types that are used to build a business object system), a Component Definition
Language (CDL; a language for the textual expression of business object specifi-
cations that use the metamodel), and an IDL mapping (to specify what interfaces
are required to support BOA based models). The proposal is integrated in OMG’s
Object Management Architecture, i.e. builds on Corba and IDL, but adds the
semantics of business components. The rationale for the introduction of CDL is,
that it “provides a level of abstraction needed to express the semantics of business
components and to combine (compose) medium-grain business components, a
capability beyond the OMG’s Interface Definition Language. CDL enhances IDL
in that it can describe object semantics as well as interfaces. CDL (and semantic
definition) is required to support the definition and standardization of common
business objects, domain specific business objects and corporate standard business
objects.” (CBOF (1997))
The BOA model is described as an UML extension, i.e. shared concepts are
kept and new concepts are introduced using the UML extension mechanisms.
On the other hand, “the BOA and CDL represent a very specific and narrow
subset of UML capabilities. Within its scope, however, CDL provides more
rigor, more semantic depth for the targeted business object domains, and an
unambiguous relationship with OMA.” For example, the format of constraints
and other expressions is Uninterpreted in UML (i.e. not standardized) whereas the
BOA metamodel explicitly models expressions.
If the CBOF proposal should be adopted and a suitable mapping between UML
and BOA/CDL metamodels can be defined, UML designs will be the starting point

5 EVALUATION AND PROSPECTS 17

for business object modeling, and will be transformed into CDL specifications
automatically. The CDL specification provides the relevant information needed
by the business object infrastructure (Business Object Framework, Meta Object
Facility (OMG (1997c))) so that business object components can be plugged in,
generated by tools or implemented manually. UML models and CDL specifica-
tions will then serve as standardized documentation means of the structure and
semantics of business object components. Future responses to business object
RFPs will require specifications in this form.

References

CATALYSIS (1997): Catalyis—Next Generation Component-Based Development from
Object Frameworks. URL: http://www.iconcomp.com/catalysis/.

CBOF (1997): Combined Business Object Facility—Business Object Architecture (BOA)
Proposal. OMG Business Object Domain Task Force BODTF-RFP 1 Submission. Revi-
sion 1.0. Data Access Technologies et al. OMG Document bom/97-11-09.

COAD, P. and MAYFIELD, M. (1997): Java Design—Building Better Apps & Applets.
Yourdon Press Computing Series, Prentice Hall, New Jersey.

DAVENPORT, T.H. (1993): Process Innovation—Reengineering Work through Infor-
mation Technology. Harvard Business School Press, Boston, Massachusetts.

D’SOUZA, D. (1997): Framework: Java to UML/Catalysis. Journal of Object-Oriented
Programming, 10/5, 10–13.

ERIKSSON, H.-E. and PENKER, M. (1998): UML-Toolkit. Wiley Computer Publish-
ing, New York.

FERSTL, O.K. and SINZ, E. (1995): Der Ansatz des Semantischen Objektmodells
(SOM) zur Modellierung von Geschäftsprozessen. Wirtschaftsinformatik 37/3, 209–220.

FOWLER, M. and SCOTT, K. (1997): UML Distilled—Applying the Standard Object
Modeling Language. Addison-Wesley, Reading, Massachusetts.

FRANK, U. (1994): MEMO: A Tool Supported Methodology for Analyzing and (Re-)
Designing Business Information Systems. In: R. Ege, M. Singh and B. Meyer (eds.):
Technology of Object-Oriented Languages and Systems. Englewood Cliffs, 367–380.

GAMMA, E. , HELM, R., JOHNSON, R., and VLISSIDES, J. (1995): Design Patterns—
Elements of Reusable Object-Oriented Software. Professional Computing Series. Add-
ison-Wesley, Reading, Massachusetts.

GOGOLLA, and RICHTERS, M. (1998): On Constraints and Queries in UML. In:
Schader, M. and Korthaus, A. (eds.): The Unified Modeling Language—Technical Aspects
and Applications. Physica-Verlag, Heidelberg.

HAMMER, M. and CHAMPY, J. (1994): Reengineering the Corporation—A Manifesto
for Business Revolution. Nicholas Brealey Publishing, London.

JACOBSON, I., CHRISTERSON, M., JONSSON, P., and ÖVERGAARD, G. (1992):
Object-Oriented Software Engineering—A Use Case Driven Approach. Addison-Wesley,
Wokingham, England.

5 EVALUATION AND PROSPECTS 18

JACOBSON, I., ERICSSON, M. and JACOBSON, A. (1995): The Object Advantage—
Business Process Reengineering with Object Technology. Addison-Wesley, Wokingham,
England.

KNOLMAYER, G. and HERBST, H. (1993): Business Rules. Wirtschaftsinformatik
35/4, 386-390.

NÜTTGENS, M., FELD, T., and ZIMMERMANN, V. (1998): Business Process Mod-
eling with EPC and UML: Transformation or Integration? In: Schader, M. and Ko-
rthaus, A. (eds.): The Unified Modeling Language—Technical Aspects and Applications.
Physica-Verlag, Heidelberg.

OMG (1996): Common Facilities RFP-4, Common Business Objects and Business
Object Facility. Request for Proposal. OMG TC Document CF/96-01-04. Object
Management Group.

OMG (1997a): Business Object DTF—Common Business Objects. OMG Document
bom/97-11-11 Version 1.3. Object Management Group.

OMG (1997b): CORBA Component Model RFP. Request for Proposal. OMG Document
orbos/96-06-12. Object Management Group.

OMG (1997c): Meta Object Facility (MOF) Specification. OMG Document ad/97-08-14.
Object Management Group.

OMG (1997d): Workflow Management Facility RFP. Request for Proposal. OMG
Document cf/97-05-06. Object Management Group.

RATIONAL SOFTWARE CORP. (1997a): UML Extension for Business Modeling.
Version 1.1, 1 September 1997, Rational Software Corp. et al.

RATIONAL SOFTWARE CORP. (1997b): UML Notation Guide. Version 1.1, 1 Septem-
ber 1997, Rational Software Corp. et al.

RATIONAL SOFTWARE CORP. (1997c): UML Semantics. Version 1.1, 1 September
1997, Rational Software Corp. et al.

RATIONAL SOFTWARE CORP. (1997d): UML Summary. Version 1.1, 1 September
1997, Rational Software Corp. et al.

REENSKAUG, T., Wold, P. and Lehne, O.A. (1996): Working with Objects: The OOram
Software Engineering Method. Greenwich, Manning.

SCHÜRR, A. and WINTER, A. (1998): Formal Definition of UML’s Package Concept.
In: Schader, M. and Korthaus, A. (eds.): The Unified Modeling Language—Technical
Aspects and Applications. Physica-Verlag, Heidelberg.

SHORT, K. (1997): Component Based Development and Object Modeling. WhitePaper,
Texas Instruments Software, Febr. 1997, Version 1.05. URL: http://cool.sterling.com.

SIMS, O. (1994): Business Objects—Delivering Cooperative Objects for Client-Server.
IBM McGraw-Hill series. McGraw-Hill Book Company, london.

TAYLOR, D. (1995): Business Engineering with Object Technology. John Wiley &
Sons, Inc., New York.

